
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Structural Quality Metrics as Indicators of the Long

Method Bad Smell: An Empirical Study

Sofia Charalampidou, Elvira-Maria Arvanitou, Apostolos Ampatzoglou, Paris Avgeriou,

Alexander Chatzigeorgiou, Ioannis Stamelos

 Department of Computer Science, University of Groningen, Netherlands
 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Department of Informatics, Aristotle University, Thessaloniki, Greece

s.charalampidou@rug.nl, earvanitoy@gmail.com, apostolos.ampatzoglou@gmail.com, paris@cs.rug.nl, achat@uom.gr, stamelos@csd.auth.gr

Abstract—Empirical evidence has pointed out that Extract Meth-

od refactorings are among the most commonly applied refactor-

ings by software developers. The identification of Long Method

code smells and the ranking of the associated refactoring oppor-

tunities is largely based on the use of metrics, primarily with

measures of cohesion, size and coupling. Despite the relevance of

these properties to the presence of large, complex and non-

cohesive pieces of code, the empirical validation of these metrics

has exhibited relatively low accuracy (max precision: 66%) re-

garding their predictive power for long methods or extract meth-

od opportunities. In this work we perform an empirical valida-

tion of the ability of cohesion, coupling and size metrics to predict

the existence and the intensity of long method occurrences. Ac-

cording to the statistical analysis, the existence and the intensity

of the Long Method smell can be effectively predicted by two size

(LoC and NoLV), two coupling (MPC and RFC), and four cohe-

sion (LCOM1, LCOM2, Coh, and CC) metrics. Furthermore, the

integration of these metrics into a multiple logistic regression

model can predict whether a method should be refactored with a

precision of 89% and a recall of 91%. The model yields sugges-

tions whose ranking is strongly correlated to the ranking based

on the effect of the corresponding refactorings on source code

(correl. coef. 0.520). The results are discussed by providing inter-

pretations and implications for research and practice.

Keywords— long method; coupling; cohesion; size; case study

I. INTRODUCTION

Code smells are warning signs indicating possible deeper
problems in the design or code of software, often resulting from
the violation of at least one programming principle [9]. The
notion of smells has been widely adopted by software develop-
ers because such problems are usually easy to identify and per-
ceive and in most of the cases can be resolved by an appropri-
ate refactoring that eliminates the smell without modifying
system behaviour [11]. A number of methods and tools have
been proposed to assist in the identification of code smells and
the automatic application of refactorings. Smell detection ap-
proaches have evolved over the years yielding very sophisticat-
ed tools for some of the code and design problems. The first
approaches relied on structural information or software metrics
[19], but over the years researchers have acknowledged the
need to resort to textual information as well [21]. Change histo-
ry information has also been used to improve the accuracy of

smell detection [22]. Feedback-based smell detection ap-
proaches have been introduced to adapt the employed thresh-
olds [16] and even learning-based techniques that train proba-
bilistic models on golden sets have tackled the problem of iden-
tifying meaningful refactoring opportunities. However, the use
of metrics remains a universal and generalizable approach to
identify parts of the code base in need of refactoring, and for
characterizing the intensity of the underlying problems.

In this study we propose such a metric-based approach, fo-
cusing on one specific smell – the Long Method, which is re-
solved through the Extract Method refactoring, as defined by
Fowler et al. [9]. The reasons for working with this smell are
the following. First, long method is a frequently occurring
smell [5]. Chatzigeorgiou and Manakos [5] investigated
through a case study, the presence and evolution of four types
of code smells, i.e., Long Method, Feature Envy, State Check-
ing and God Class. The results indicated that long methods
were considerably more common compared to the other smells.
Second, long methods are of particular urgency as they often

occur in the early versions of software and persist unless tar-
geted refactoring activities are performed. Specifically, a case
study on an open source project (jFlex) revealed that 89.8% of
the long methods identified in that project remained unresolved
in all the explored versions [5]. Furthermore, Palomba et al.
[21] have found that Long Method exhibited the largest dif-
fuseness among the studies code smells (it affects 84% of the
analysed releases) and on average each of the examined
releases is affected by 44 Long Method instances. Additionally,
so far only a few metrics have been assessed with respect to
their capacity to predict the existence of long methods. To the
best of our knowledge, current approaches achieve a recall rate
of 59% and a precision rate between 39%-66% (see Section II).
Finally, the ability of metrics to prioritize the intensity of the
long methods to be resolved has not been empirically investi-
gated yet. Metric-based detection approaches are based on the
fact that the presence of a smell in a method or class negatively
impacts certain quality properties [2] (e.g. a ‘God’ class has
low maintainability). The affected properties can then be diag-
nosed by the use of the associated software metrics (e.g. size,
cohesion and complexity can be used to detect a ‘God’ class).

Based on a previous study, size and cohesion metrics are
closely related to the existence of long methods [4]). Addition-
ally, we study the coupling property, since coupling and cohe-

mailto:s.charalampidou@rug.nl
mailto:earvanitoy@gmail.com
mailto:apostolos.ampatzoglou@gmail.com
mailto:paris@cs.rug.nl
mailto:achat@uom.gr
mailto:stamelos@csd.auth.gr

sion are two closely connected qualities (see [25]). Therefore,
we focus on three quality properties: method size, coupling, and
cohesion: In particular, we empirically investigate the ability of
size, coupling and cohesion metrics: (a) to predict which meth-
ods suffer from the long method bad smell, and (b) to prioritize
the intensity of the smell, based on the extract method opportu-
nities that they present. Additionally, we will investigate
whether the combination of the studied metrics could provide
us a prediction model with higher precision and recall rates
regarding the concerns stated in (a) and (b). We note that we
assess the intensity of the problems caused by a long method,
based on the identified extract method opportunities, since
Fowler et al. [9] suggest that in 99% of the cases, the extract
method refactoring (i.e. removal of code chunks from one
method that can be turned into new methods, whose names
explain their purpose) is the solution to the long method bad
smell. This paper is a follow-up version of a case study that
aimed at the assessment of one size and several cohesion met-
rics as indicators of the existence of long methods, and their
intensity [4]. The main points of differentiation compared to [4]
are: (a) the assessment of one additional quality attribute, i.e.,
coupling, by investigating two coupling metrics; (b) the as-
sessment of three additional size metrics (compared to only
one); and (c) the use of multiple regression to investigate the
joint predictive power of size, cohesion, and coupling metrics.

II. RELATED WORK

As related work for this study we consider papers that evaluate

existing metrics, with respect to their ability of detecting the

long method smell. Thus, studies which use other approaches

for identifying software artifacts that suffer from bad smells

(e.g., [24]), have been excluded from this section. Also, we

omitted papers that propose new metrics for identifying refac-

toring opportunities or bad smells (e.g. [23]). An extensive

analysis of related work is provided in [4]. Our contributions

compared to state-of-the-art can be summarized as follows:

 the investigation of the predictive power of metrics for the

identification of long method smells is extended to cohe-

sion, coupling, and size metrics.

 Cohesion, coupling, and size metrics are compared not

only as predictors of the existence of long methods but also

as predictors of the intensity of the design problem.

 The proposed model provides higher accuracy (precision

and recall), compared to existing detection approaches.

III. METRICS SELECTION

According to Fowler et al. [9], a method is characterized as
long, based on: (a) the functional distance of the lines of code
of its body, and (b) its size. The functional distance is related to
cohesion, which is defined as the functional relatedness of the
elements of a module [17]. Method-level (i.e., inside the meth-
od body) cohesion metrics have been firstly discussed by Yo-
shida et al. [26], when introducing the NCCP metric, which has
been derived from the transformation of the SCOM metric [8].
In our approach, we have applied a process, similar to the one
proposed by Yoshida et al. [26], for all 13 low-level cohesion
metrics collected by Al Dallal [1]. The main principles for this
process are the mapping of: (a) Lines of code to methods, and
(b) all variables within the scope of the method (i.e., attributes,
local variables, or parameters) to attributes [4]. For example,
the classic LCOM2 metrics [6] is calculated as follows. In total,
in this study we used 13 cohesion metrics [4].

LCOM2 = P – Q, if P − Q ≥ 0 / otherwise LCOM2 = 0,

where P is the number of pairs of lines that do not share variables, and Q is the
number of pairs of lines that share variables.

Additionally, we consider coupling metrics (MPC and RFC)
because of the relationship between cohesion and coupling.
Both metrics are explicitly related to method calls, because at
method level, methods are interconnected only via method in-
vocations. The tailoring of the two metrics is as follows:

 Message Passing Coupling (MPC) [14] is originally defined
at class level as the sum of the number of method calls
made by all members of a class. For the needs of this study
we tailor this definition by counting the total number of
method invocations inside a single method.

 Response for a Class (RFC) [6] is also defined at class level
as the count of (public) methods in a class and methods di-
rectly called by them. Based on the goal of this study we
need to tailor this definition, so as to calculate RFC at the
method level. Thus we define the RFC metric at method
level as the number of “local methods” (i.e. the studied
method itself), plus the count of unique method invocations
inside its body. Therefore, its difference with MPC lies on
the fact that RFC counts multiple invocations of the same
method as one, whereas MPC reports also on how many
times a method is called. The differences between RFC and
MPC are discussed by Li and Henry [14].

Finally, concerning method size, we have used four metrics,
one related to the size of methods in terms of statements, and
three related to the availability of variables in the scope of the
method. The number of available variables is indirectly related
to cohesion, in the sense that in order for a method to be cohe-
sive, its whole body should work on the same variables. Thus,
the more variables are accessible, the more probable the meth-
od to be non-coherent. The following metrics have been used:

 Lines of Code (LoC) [10]. Total number of statements in-

side the method body, excluding blank lines and comments.

 Number of Attributes (NoA) [10]. Total number of attributes

in the class that the studied method belongs to.

 Number of Method Parameters (NoMP) [10]. Total number

of method parameters.

 Number of Local Variables (NoLV) [13]. Total number of

local variables in the method.

IV. CASE STUDY DESIGN

Objectives and Research Questions. Our goal is to analyse 19
structural quality metrics and their combinations for the pur-
pose of evaluation, with respect to their ability to: (a) predict
the existence of long method, and (b) predict their intensity,
from the viewpoint of software engineers, in the context of java
open source software”, which decompose to three questions.

RQ1: Which cohesion, coupling, and size metrics can be used
for predicting the existence of long methods?

RQ2: Which cohesion, coupling, and size metrics can be used
for ranking long methods, with respect to their intensity?

RQ3: Can the refactoring prediction and prioritization be im-
proved by combining structural metrics?

Case Selection and Units of Analysis. The study design is a
replication of previous work (i.e., [4]), which focused only on a
subset of the metrics that we handle in this paper (cohesion
ones). The study is a holistic multiple case study: methods are
both the cases and the units of analysis.

Data Collection and Pre-Processing. For every method, we
recorded the following variables:

 V1 – V3: Project, class, and method name. This set of vari-
ables is used only for characterization purposes.

 V4 – V16: Twelve cohesion metrics: Independent variables
to be analysed.

 V17-V20: Four size metrics (see metrics described in Sec-
tion III): Independent variables to be analysed.

 V21 – V22: Two coupling metrics (see metrics described in
Section III): Independent variables to be analysed.

 V23: Long Method (yes / no). This variable was assigned a
binary score from the developer of each project. This varia-
ble is going to be used as dependent variable in RQ1.

 V24: Long Method Intensity. This variable corresponds to
the average number of lines to be extracted if the extract
method refactoring is applied. This variable is going to be
used as dependent variable in RQ2.

As pre-processing, we filtered out of the dataset methods that
were less probable to suffer from the long method smell. The
motivation for this was to build a balanced dataset with respect
to the number of methods that are in need of refactoring and
those that are not. According to King and Zeng [12], applying
predictive models (e.g. regression) in rare events datasets (in
our case 10%), can benefit from case selection strategies that
reduce the number of negative events (in our cases methods
that are not in need for refactoring). To this end, we excluded
from our dataset methods, which are smaller than 30 lines of
code: according to Lippert and Roock [15], a method is prone
to suffer from bad smells if its size exceeds 30 lines of code.
After applying this filter, the dataset was comprised of 79
methods (including 40.5% of negative events). Although the
number of cases seems rather small, the number of cases is
limited due to the involvement of human experts and the manu-
al processing of source code.

Data Analysis. To answer the research questions, we have sta-
tistically analyse data, as presented in Table I.

TABLE I. DATA ANALYSIS OVERVIEW

 Variables Statistical Analysis

RQ1
Cohesion, Coupling, and Size metrics

Long method (yes / no)
Simple Logistic Regression

RQ2
Cohesion, Coupling, and Size metrics

Extract Method Intensity
Spearman Correlation

RQ3

Cohesion, Coupling, and Size metrics

Long method (yes / no)

Extract Method Intensity

Multiple Logistic Regression

Multiple Linear Regression

Spearman Correlation

V. RESULTS

Due to the size of our results, we preferred to present only the

statistically significant ones. Interpretations and implications

to researchers and practitioners are provided in Section VI.

Metrics for predicting the existence of long methods. To

assess the ability of metrics to predict whether a method suf-

fers from the long method smell (RQ1), we present the results

of the corresponding regression analysis (see Table II): We

present two sets of measures: the first is related to the con-

struction of the prediction model (i.e., beta values and signifi-

cance), whereas the second is related to its evaluation (accura-

cy, precision, and recall). In the table we present only metrics

that have a predictive power at a statistically significant level

(sig.≤ 5%). The results of Table II suggest that in total nine

metrics are able to predict which methods are in need for re-

factoring. We observe that two size metrics (i.e. LoC and

NoLV), three not normalized cohesion metrics (i.e., LCOM,

LCOM2 and LCOM4), and one coupling metric (MPC), form

a group of measures significant at the 1% level. Finally, we

can observe that two normalized cohesion metrics (CC and

Coh) are able to predict methods that are in need of extract

method refactoring with a precision between 89-96%. As ex-

pected, these two metrics misclassify a larger number of false-

negatives compared to the rest of the metrics, leading to a

slightly decreased recall rate. The highest recall and accuracy

are offered by the LoC metric, followed by LCOM1.

TABLE II. PREDICTIVE POWER OF METRICS FOR LONG METHOD

Metric

Prediction Model Predictive Power

b0 b1 sig. Accuracy Precision Recall

LoC -4.491 0.103 0.00 84.8% 80.85% 92.68%

LCOM1 -1.281 0.002 0.00 79.7% 74.47% 89.74%

LCOM2 -0.809 0.002 0.00 70.9% 68.09% 80.00%

MPC -1.939 0.054 0.01 79.7% 84.4% 80.9%

LCOM4 -0.536 0.113 0.01 68.4% 76.60% 72.00%

Coh 1.392 -10.200 0.03 62.0% 89.36% 62.69%

RFC -1.846 0.154 0.04 73.4% 75.0% 82.9%

NoLV -1.063 0.122 0.04 69.6% 71.7% 80.9%

CC 0.996 -5.362 0.05 68.4% 95.74% 66.18%

Metrics for long method prioritization. To assess the ability

of metrics to rank methods, based on their intensity (RQ2), we

summarize the results of the Spearman correlation test in Ta-

ble III. Specifically, we present the ability of the examined

metrics to rank methods, based on the average number of lines

that will be extracted, if a proposed refactoring is applied. We

note that the sign of the correlation depends on whether the

metric expresses cohesion (e.g., Coh), or lack of cohesion

(e.g., LCOM1). Concerning size and coupling metrics, the sign

is positive, due to their direct relation to the number of extract

method opportunities. In Table III, we present only metrics

that are significantly correlated to the dependent variable:

(sign < 0.05 and r > 0.2)1.

TABLE III. CORRELATION TO AVERAGE LINES TO BE EXTRACTED

Metric

Correl.

Coefficient Sig.

Metric

Correl.

Coefficient Sig.

LCOM1 0.472 0.00 Coh -0.303 0.01

LoC 0.463 0.00 RFC 0.292 0.01

LCOM2 0.385 0.00 CC -0.268 0.02

MPC 0.366 0.00 DCD -0.254 0.02

NoLV 0.355 0.00 SCOM -0.253 0.03

LSCC -0.326 0.00 LCOM5 0.244 0.03

Table III suggests that the results are similar to those of

RQ1, in the sense that LCOM1, LCOM2, LoC and MPC are

the top ranked indicators of the smell intensity, followed by

NoLV, Coh, RFC, and CC, which are also highly ranked in

1 Correlations with r < 0.2 present weak or non-existing relations [18]

RQ1. An additional finding from comparing the results of

RQ1 to those of RQ2 is the fact that LSCC, DCD, SCOM, and

LCOM5 are valid indicators for the intensity of the smell, but

not for the existence of extract method opportunities. On the

other hand, LCOM4 is not able to rank smell intensity, despite

the fact that it is a significant predictor of their existence.

Predictive power of combined metrics. To answer RQ3 we

performed a Multiple Stepwise Logistic Regression. The re-

gression, started with the most influential variable, which ac-

cording to the results was RFC.

TABLE IV. STRUCTURAL METRICS – LONG METHOD (PREDICTIVE POWER)

Step

Included

Variable

Prediction Model Predictive Power

Coeffi-

cient sig. Accuracy Precision Recall

8

LoC 0.119 0.01

88.6% 89.4% 91.3%
RFC 0.153 0.01

LCOM1 -0.00 0.02

NoMP 0.394 0.04

The details of final step are reported in Table IV, to

demonstrate the changes in predictive power. We note that for

all steps the model was statistically significant (sig= 0.00). The

results suggest that the combination of the four metrics (see

final step of the model) achieves precision that equals 89.4%,

and recall that equals 91.3% (accuracy: 88.6%). These results

are considerably increased compared to those of analysis con-

sidering single variables (see RQ1)—i.e., LoC: 80.9% preci-

sion and 92.7% recall (84.8% accuracy). Considering the vari-

ables involved in the model, it is interesting to mention that all

quality attributes (i.e. cohesion—LCOM1, coupling—RFC,

and size metrics—LoC and NoMP) were involved, confirming

that all are related to the existence of the long methods. To

investigate whether the combination of multiple variables in a

single model would provide a better indicator for the smell

intensity, we performed a backward linear regression, starting

with all potentially good indicators in step 1 and removing the

least influential ones in every step. The formula that best pre-

dicts the Long Method Intensity (LMI) is:

LMI = -8.223 - 0.004 * LCOM2 + 0.398 * LoC - 0.082 * MPC - 22.671 * CC

We note that although some metrics do not appear to have a

statistically significant correlation with the dependent variable

(i.e., Extract Method Intensity), the overall model is statistical-

ly significant at the 0.05 level (i.e., sig = 0.03). To be able to

compare the predictive power of the newly developed Long

Method Intensity formula (LMI), with the one of single met-

rics, we performed a Spearman rank correlation between LMI

and the smell intensity variable. The results indicated a strong

correlation (coefficient: 0.520 and sig: 0.00), which is higher

than the stronger correlation of a single metric (0.472 for

LCOM1). Therefore, similarly to RQ3a, a clear improvement in

the predictive power has been achieved. Finally, metrics from

all quality attributes have been used for the construction of the

formula, affirming their importance for smell intensity.

VI. DISCUSSION / CONCLUSIONS

Comparison to related work. Our metric-based approach pre-

sents the highest precision. In particular, the precision of the

individual metrics, proposed in this study, ranges from 68% to

93%, whereas related work reports 50% precision of com-

plexity [19] and 38-66% precision of size metrics [7]. The

precision of LoC, based on our results is 81%. We note that

calculating recall for [7] and [19] was not possible. Based on

our results CC and Coh present the highest precision. A safe

comparison of the aforementioned findings can only be ac-

complished by applying all the approaches on a common da-

taset. Finally, by combining metrics, we achieve predictive

power that clearly advances the state-of-the-art, since we ac-

complish 89.4% precision and 91.3% recall. The fact that the

results obtained by the combined approach are better than

those of individual metrics is expected, since models that as-

sess the joint effect of metrics can accommodate the synthesis

of characteristics of all independent variables. The rest of this

section is devoted on discussing individual metrics.

Interpretation of results. Based on the results of this study, we

argue that coupling, size, and cohesion metrics should be used

for the identification of extract method opportunities, and sub-

sequently for the mining of long method bad smell instances.

This is a rather intuitive result, in the sense that all of them

have been already associated in the literature as an indicator of

the number of distinct functionalities that the module offers,

which can be extracted in a new method [9]. Comparing the

ability of individual size, coupling, and cohesion metrics to

indicate if a method is long, cannot lead to safe conclusions, in

the sense that nine metrics seem to outperform the rest, with-

out large differences among them.

Two of the top three cohesion metrics (i.e., LCOM1 and

LCOM2) are correlated to size (LoC), in the sense that they

are open-ended metrics, whose upper limit is calculated as the

count of combinations by two for the number of lines of code.

Regarding precision two normalized metrics (i.e., Coh and

CC) are the optimal predictors. Therefore, if one is interested

in capturing as many long methods as possible, one should

prefer LoC or a non- normalized cohesion metric (Coh or CC),

whereas if one is interested to get as fewer false positives as

possible, then one should prefer normalized cohesion metrics

(LCOM1 or LCOM2) or a coupling metric (MPC or RFC).

Similarly to O’ Cinneide et al. [20], we suggest that different

aspects of cohesion that metrics quantify, lead to different pre-

dictive and ranking power. Other interesting findings are:

 Metrics that quantify lack of cohesion (i.e., LCOM1,

LCOM2, and LCOM4), appear to have higher predictive

power concerning long method identification. This result is

especially interesting since LCOM1 and LCOM2 have un-

til now received much criticism in the literature (e.g., [3]).

However, our results suggest that the fact that they are

open-ended and that they are related to size, provides them

with a comparative advantage for the identification and

characterization of long methods.

 Metrics that involve method invocations in their calcula-

tion (i.e., LCOM4, TCC, LCC, DCD, and DCI) appear to

provide lower ranking power, than those that omit them.

Thus, we assume that the semantic distance between two

lines is not related to whether they call the same method,

but only to whether they access common variables.

 Although Coh is calculated as a function of LCOM5, it

provides better results, implying that the suggested normal-

ization by Briand et al. [3] (which drops the assumption

that each attribute is referenced by at least one method) is

more fitting compared to the original one.

Finally, by comparing coupling metrics, we were not able to

identify important differences, since both studied metrics per-

form similarly in both the prediction of the existence of long

methods, and the prediction of the smell intensity. By compar-

ing size metrics, we observe that the Lines of Code (LoC) is

optimal predictor, followed by the Number of Local Variables

(NoLV). Both results are intuitive in the sense that:

 LoC is a dominant characteristics of long methods, and

 NoLV is expected to be related to method-specific func-

tionalities. In particular, NoLV performs better than other

metrics since: (a) NoA is the same among all methods of a

class (i.e., it cannot differentiate methods in the same

class), and (b) the parameters passed in a method (NoMP)

are probably be used throughout the whole method, in con-

trast to local variables which have a more focused scope.

Implications for researchers & practitioners. We suggest that

practitioners can benefit from the use of the metrics during

quality monitoring tasks, especially in cases that bad smell

detection tool support is not available for their programming

environments. Additionally, software engineers can use the

results of RQ2 and RQ3 to prioritize manual method code in-

spections, with respect to refactoring identification, since these

metrics are strongly correlated to the intensity of the smell. In

addition, researchers can use these results to develop ap-

proaches for identifying extract method opportunities, based

on method-level cohesion metrics or explore the potentially

improved predictive and ranking power of approaches using

multi-criteria methods like the analytic hierarchy process

(AHP), or Bayesian networks. Furthermore, they can investi-

gate the possibility of identifying thresholds, for the nine met-

rics presenting the highest predictive power, that when sur-

passed a method can be classified as in need for extract meth-

od refactoring. Finally, it would be interesting to investigate if

method-level metrics can be used for developing feature iden-

tification algorithms. The inherent relation between lack of

cohesion and the number of functionalities might lead to a

promising way for exploring the field of feature extraction.

ACKNOWLEDGMENT

Work reported in this paper: (a) has received funding from

the European Union Horizon 2020 research and innovation

programme under grant agreement No. 780572 (project:

SDK4ED); and (b) was financially supported by the action

"Strengthening Human Resources Research Potential via Doc-

torate Research" of the Operational Program "Human Re-

sources Development Program, Education and Lifelong Learn-

ing, 2014-2020”, implemented from State Scholarship Foun-

dation (IKY) and co-financed by the European Social Fund

and the Greek public (National Strategic Reference Frame-

work (NSRF) 2014–2020).

REFERENCES

[1] J. Al Dallal and L. Briand,”A Precise method-method interaction-based
cohesion metric for object-oriented classes”, Transactions on Software
Engineering and Methodology, ACM, 23 (2), Article 8, 2012.

[2] J. Bansiya and C. G. Davies, “A hierarchical model for object-oriented
design quality assessment”, Transactions on Software Engineering,
IEEE Computer Society, 28 (1), pp. 4-17, January 2002.

[3] L. C. Briand, J. Daly, and J. Wuest, “A unified framework for cohesion
measurement in object-oriented systems”, Empirical Software
Engineering, Springer, 3 (1), pp. 65-117, 1998.

[4] S. Charalampidou, A.Ampatzoglou, and P. Avgeriou., “Size and
cohesion metrics as indicators of the long method bad smell: An

empirical study”, 11th International Conference on Predictive Models
and Data Analytics in Software Engineering (PROMISE '15). ACM,
2015.

[5] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code
smells in object-oriented systems”, Innovations in Systems and Software
Engineering, Springer, 10 (1), pp. 3-18, 2014.

[6] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design”, Transactions on Software Engineering, IEEE
Computer Society, 20 (6), pp. 476 - 493, June 1994.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics”, 15th Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA’00). ACM, pp. 166-
177, Minnesota, USA, 10 October 2000.

[8] L. Fernández and R. Peña, “A sensitive metric of class cohesion”,
International Journal of Information Theories and Applications, 13 (1),
pp. 82-91, 2006.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring:
Improving the Design of Existing Code”, Addison-Wesley, 1999.

[10] B. Henderson-Sellers, “Object-Oriented Metrics Measures of
Complexity”, Prentice-Hall, 1996.

[11] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative
evaluation of maintainability enhancement by refactoring”, 18th
International Conference on Software Maintenance (ICSM’02), IEEE,
Montreal, Canada, 3-6 October 2002.

[12] G. King and L. Zeng, “Logistic Regression in Rare Events Data Political
Analysis”, Oxford Journal, 9 (2), pp. 137-163, 2001.

[13] M. Kunz, R. R. Dumke, and A. Schmietendorf, “How to Measure Agile
Software Development.”, Software Process and Product Measurement,
Lecture Notes in Computer Science, Springer, pp. 95-101, 2008.

[14] W. Li and S. M. Henry, “Maintenance metrics for the object oriented
paradigm”, 1st International Symposium on Software Metrics
(METRICS’93), IEEE, pp. 52-60, Baltimore, USA, 21-22 May 1993.

[15] M. Lippert and S. Roock, “Refactoring in Large Software Projects”,
John Wiley & Sons, 2006.

[16] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic
feedbackbased threshold adaptation for code smell detection”,
Transactions on Software Engineering, IEEE, 42 (6), pp. 544–558,
June 2011.

[17] T. De Marco, “Structured Analysis and System Specification”, Yourdon
Press Computing Series, 1979.

[18] L. Marg, L. C. Luri, E. O’Curran, and A. Mallett, “Rating Evaluation
Methods through Correlation”, 1st Workshop on Automatic and Manual
Metrics for Operational Translation Evaluation (MTE’14), Reykjavik,
Iceland, 26 May 2014.

[19] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws”, 20th International Conference on Software Maintenance
(ICSM’04). IEEE, pp. 350-359, Chicago, USA, 11-14 September 2014.

[20] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam,
“Experimental assessment of software metrics using automated
refactoring”, 6th International symposium on Empirical software
engineering and measurement (ESEM '12), ACM/IEEE, pp. 49-58,
Lund, Sweden, 19-20 September 2012.

[21] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and A. De
Lucia, ”On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation” Empirical Software
Engineering, 23 (3), pp. 1188–1221, 2017.

[22] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. D. Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” Transactions on Software Engineering, IEEE, 2017.

[23] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based
refactoring”, 5th European Conference on Software Maintenance and
Reengineering (CSMR’01), IEEE, Lisbon, Portugal, 14-16 March 2001.

[24] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods”, Journal of
Systems and Software, Elsevier, 84 (10), pp. 1757-1782, 2011.

[25] H. van Vliet, “Software Engineering: Principles and Practice”, John
Wiley & Sons, 2008.

[26] N. Yoshida, K. Masataka, and I. Hajimu, “A cohesion metric approach
to dividing source code into functional segments to improve
maintainability”, 16th European Conference on Software Maintenance
and Reengineering (CSMR’12), IEEE, pp. 365-375, Szeged, Hungary,
27-30 March 2012.

