

Empirical Studies on Software Traceability: A

Mapping Study

Sofia Charalampidou†

Department of Mathematics and Computer Science

University of Groningen

Groningen, The Netherlands

s.charalampidou@rug.nl

Apostolos Ampatzoglou

Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

apostolos.ampatzoglou@gmail.com

Evangelos Karountzos

Department of Mathematics and Computer Science

University of Groningen

Groningen, The Netherlands

e.karountzos@gmail.com

Paris Avgeriou

Department of Mathematics and Computer Science

University of Groningen

Groningen, The Netherlands

paris@cs.rug.nl

During the last decades, software traceability has been studied in a large number of studies, from different

perspectives (e.g., how to create traces? what are the benefits? etc.). This large body of knowledge needs

to be better explored and exploited by both practitioners and researchers: we need an overview of differ-

ent aspects of traceability and a structured way to assess and compare existing work in order to extend it

with new research or apply it in practice, Thus, we have conducted a secondary study on this large corpus

of primary studies, focusing on empirical studies on software traceability, without setting any further re-

strictions in terms of investigating a specific domain or concrete artifacts. The study explores the goals of

existing approaches and the empirical methods used for their evaluation. Its main contributions are the

investigation of: (a) the type of artifacts linked through traceability approaches; (b) the benefits of using

artifact traceability approaches; (c) the ways of measuring their benefit; and (d) the research methods

used. The results of the study suggest that: (i) requirements artifacts are dominant in traceability; (ii) the

research corpus focuses on the proposal of novel techniques for establishing traceability; (iii) the main

benefits are the improvement of software correctness and maintainability. Finally, although many studies

include some empirical validation, there is still room for improvements, and research methods that can be

used more extensively. The obtained results are discussed under the prism of both researchers and practi-

tioners and are compared against the state-of-the-art.

1. Introduction

The term traceability in the software engineering domain refers to the creation of links between different

types of software artifacts. There are two main ways of establishing traceability: (a) trace recovery which

refers to after-the-fact traceability and is defined as the “approach to create trace links after the artifacts

that they associate have been generated or manipulated” [1]; (b) trace capture which refers to real-time

traceability and is defined as “the creation of trace links concurrently with the creation of the artifacts that

they associate” [1]. Thus, they correspond to linking artifacts in backward and forward engineering man-

ner respectively.

There is ample evidence to support the benefits of software traceability; here we discuss three examples.

Antoniol et al. [2] investigated the use of traces between free text documentation and code either during

the development or maintenance cycle. The potential benefits of such an approach include better program

comprehension, easier maintenance activities, capability to assess the completeness of the product based

on the traced requirements, impact analysis and a good foundation for reusing existing software. Further-

more, Alves-Foss et al. [3] suggest that traceability among artifacts enables incremental verification and

validation of correctness and dependability properties, as well as analysis of compliance with existing

standards and certifications during the lifespan of the project. Sundaram et al. [4], discuss two beneficial

contexts of traceability, which are related to the time when traceability is performed. The first one con-

cerns the process compliance and product improvement, when traceability is performed as part of an on-

going software development process. The second concerns software understanding and reuse, when trace-

ability work is performed on completed project data, and its results do not contribute directly to the prod-

uct improvement but rather are used in the product and process analysis.

During the last decades, software traceability has emerged as a popular topic in software engineering re-

search, with hundreds of studies investigating numerous different aspects of traceability. Thus, secondary

studies are required to provide an overview of the existing literature. Secondary studies offer several ben-

efits; among others, they support practitioners and researchers in making informed decisions in selecting

the most fitting approach for their needs, or in identifying gaps for further research respectively.

To address the need for secondary studies in this field, in this paper we report on a Systematic Mapping

Study of software traceability approaches. Our study is not motivated by lack of research on software

traceability; in contrast this research field is thriving and increasingly results are being applied in practice.

Exactly for this reason however, researchers and practitioners need a more systematic way to assess exist-

ing work and extend it or apply it in their own context. More specifically we explore four different as-

pects of traceability approaches. First, we investigate the types of artifacts that are linked through tracea-

bility approaches and the corresponding development activity where traces are created; this will highlight

areas for further research pertaining to artifacts that are not well supported by traceability. Second, we

look into the goals of traceability approaches and how these goals are measured; this can help practition-

ers to find suitable approaches for their needs and researchers in adopting or calibrating measures to vali-

date their own approaches and having them adopted in practice. Third, we examine the quality attributes

in a software system that benefit from traceability; this can inform practitioners on potential benefits to

system qualities from adopting traceability approaches, while researchers can gauge the effect of their

own approach on qualities and how they can further improve their applicability. Fourth, we survey the

research methods used (e.g., case study, experiment etc.) for validation and assessment; this can inform

practitioners on the type of the provided evidence and can assist researchers in identifying areas where

evidence needs to be strengthened and what type of studies are further required. Compared to other sec-

ondary studies on traceability (see Section 5), this study focuses only on empirical studies, but sets no

further restrictions in terms of investigating a specific domain or concrete artifacts (more details are given

in Section 5). Additionally, it is worth mentioning that this study has selected a significantly larger set of

primary studies on the topic of traceability.

The choice of conducting a systematic mapping study (SMS) instead of a systematic literature review

(SLR) needs further justification. According to Kitchenham et al. [5] an important criterion for selecting

the most appropriate form of a secondary study is its goal and scope. The goal of a SMS is the classifica-

tion and thematic analysis of the literature on a specific topic. On the other hand, an SLR aims at “identi-

fying best practice with respect to specific procedures, technologies, methods or tools by aggregating

information from comparative studies” [5]. The scope of an SLR is more focused and the papers included

are usually empirical studies related to a specific research question. Additionally, the information extract-

ed from each paper is usually about individual research outcomes. As mentioned before, this study is sub-

stantially broad as it aims at classifying primary studies in terms of linked artifacts, their goals, the bene-

fits they provide to quality attributes, and the research methods used. Therefore, a SMS is more appropri-

ate for the goal and scope of our study. We note that we investigate only empirical studies (which is usu-

ally the practice in SLRs instead of SMSs). However, this is not uncommon; e.g., Budgen et al. [6] pre-

sent a set of SMSs that report findings on empirical studies rather than the research literature as a whole.

This paper is organized as follows; In Section 2 we present the mapping study protocol we followed. In

Section 3, we present the results of the mapping study and in Section 4 we discuss the results. In Section

5 we discuss related work in terms of secondary studies in the domain of software traceability, and we

compare it with our own study. Finally, in Section 6 we present threats to validity and in Section 7 the

conclusions of this work.

2. Study Design

This section describes the design of the proposed systematic mapping study. To design this mapping

study, we followed the process proposed by Petersen et al. [7]. The essential process steps of a systematic

mapping study are: (a) definition of research questions; (b) conducting the search for relevant papers; (c)

screening of papers; (d) keywording of abstracts; and (e) data extraction and mapping.

2.1 Research Questions

The goal of the study is formulated according to the Goal-Question-Metrics (GQM) approach [8] as fol-

lows: “Analyze empirical studies on software traceability approaches for the purpose of characteriza-

tion, with respect to: (a) the types of artifacts that are connected through traces, (b) the expected goals of

using traceability and their success indicators, (c) the quality attributes that are improved through the

establishment of traces, and (d) the research methods used, from the point of view of software engineer-

ing practitioners and researchers”. According to the abovementioned goals, and the expected contribu-

tions (see section 4) we extracted four research questions (RQ), as follows:

RQ1: Which types of artifacts are connected (in traced objects) and in which development activity are

these artifacts created?

With this research question we aim to investigate which types of artifacts (e.g., use cases, design ar-

tifacts, source code) are most commonly used for traceability purposes and to which artifacts they

are usually linked to. In addition, we will investigate the development activity in which the artifact

is developed (e.g., requirements engineering, design, implementation). In other words, we want to

understand when traces are usually created (i.e., development activity) and between which artifacts.

This in turn will help in identifying potential areas of traceability that have been under-studied. In

terms of development activities, we do not use a predetermined list or a specific software develop-

ment lifecycle but we will report the activities as stated in the primary studies.

RQ2: What are the goals of the studies and how is the achievement of these goals measured?

To answer this research question, we classify the studies according to their main goal. We look at

studies aiming at creating traces among software artifacts, as well as those that maintain traces after

they have been created either manually or automatically. We include both creation and maintenance

as they are considered equally important in traceability management. Finally, we present success

indicators that quantify the extent to which the approaches achieve their respective goal. By an-

swering this research question, we aid practitioners in selecting the most fitting approaches for es-

tablishing and maintaining traces, and researchers in selecting pertinent measurements for validat-

ing their approaches.

RQ3: Which quality attributes are evaluated in the traceability studies?

The establishment of traces is expected to have some effect on the software quality attributes. In

this research question we investigate which quality attributes have been evaluated in terms of such

effects, as well as the measures used for assessing the aforementioned effects. We note that the re-

ported QAs are derived from those stated in the original studies; they were not interpreted or as-

sumed by the authors, so as to avoid researchers’ bias. The answer to this research question is ex-

pected to: (a) highlight the quality benefits that practitioners can gain by establishing and maintain-

ing traces; and (b) explore the quality aspects that are affected by their proposed approaches.

RQ4: What research methods are used for validation and assessment?

Finally, this research question will look into the most commonly used empirical research methods

to validate traceability approaches or assess the effect of traces on software quality. This may pro-

vide insight on the trends of the research methods used and can indicate ideas for future work to

provide stronger or different type of evidence.

2.2 Search Process

Search Scope. The search procedure of a mapping study aims at identifying as many primary studies

related to the research questions as possible, using an unbiased search strategy. To achieve this goal we

performed an automated search process using generic digital libraries, namely: (a) IEEE Digital Library;

(b) ACM Digital Library; (c) Springer Link; and (d) Science Direct. To select the appropriate digital li-

braries, we adopted the inclusion criteria by Dieste et al. [9]: content update (dynamic update with new

publications); availability (provide access to the full text of every research article); quality of results (test

the accuracy of results returned from the query process using a small list of expected publications which

are set by our team from empirical search); and versatility export (since there is a lot of noise in the re-

trieved results there is a process to filter the raw data). The selected sources are well-known and are con-

stantly used in such type of studies in the software engineering field. We excluded from the list of DL

indexing mechanisms, e.g., Scopus, Google Scholar, or DBLP, to: (a) avoid extensive duplication of arti-

cles; and (b) avoid the inclusion of grey literature or non-peer-reviewed materials. The search process

begun at the beginning of 2017, and therefore it included studies published until the end of 2016. There

was no lower boundary in the search period (i.e. we searched from the beginning of publication records).

Search Terms. In a systematic mapping study, to minimize bias and to maximize the number of sources

examined, a pre-defined strategy to identify potential primary studies is required. For the automated

search, the search string consisted of three main parts: trace AND empirical AND software. For each

part, a list of alternate terms was used and connected through logical OR to form a more expressive que-

ry. The terms related to the “trace” part had to exist in the title of the papers, since they define the domain

of interest, and we expected that in the vast majority, they should be part of the title. The terms for the

“empirical” and “software” parts could exist either in their title, abstract or keywords.

Regarding the “empirical” part, the alternate terms should be concrete types of empirical research meth-

ods, since often the term “empirical” is not present in the title, abstract or keywords, resulting to missing

several relevant studies. Thus, we considered several names of empirical research methods found in litera-

ture, as shown in Table 1. The first column of the table shows the research method names we considered,

while the next 6 columns indicate in which sources these research methods have been considered as em-

pirical research. To identify the list of sources, we initially referred to the most well-known papers and

books dealing with empirical research (e.g., [10] and [11]). However, these sources concerned specific

research methods (i.e., experiments and case studies respectively). Thus we looked for papers dealing

with empirical research in a more generic point of view and came up with 5 studies providing explicitly

types of empirical methods. Additionally, since ESEM is the main venue where empirical community

tends to publish, we collected the research methods mentioned in their call for papers too. Similarly, we

looked into the aims and scope of the Empirical Software Engineering journal, however no further key-

words have been identified. Regarding the last column of the table, it shows how many times each key-

word (research method) has been defined as empirical research in the six sources (i.e., [12]-[17]). In our

search string we used as keywords only research methods which have been considered as empirical by at

least two sources (green cells). We note that although the term SLR had a total sum of 2 references, we

did not use the term in the search string, since we were not interested in collecting SLR studies as primary

studies. Such studies would be interesting related work, but since they would not focus on the presenta-

tion or evaluation of a traceability approach they would be excluded from the list of primary studies.

Research Methods [12] [13] [14] [15] [16] [17] Count

Survey X X X X X X 6

Case Study X X X X X X 6

Action Research X X X X X X 6

Experiment X X X X X 5

Ethnography X X X X 4

Field Research/Study X X X 3

Grounded Theory X X 2

Simulation X X 2

Quantitative Analysis X X 2

Experience Report / Industrial X X 2

SLR X X 2

Theoretical/Descriptive X 1

Meta-Analysis X 1

Qualitative X 1

Focus Group X 1

Table 1. Empirical research methods found in literature

Taking the above into consideration, the final search string used was the following:

(“trace” OR “tracing” OR “traceability”) AND

(“empirical” OR “case study” OR “survey” OR “experiment” OR “action research” OR “ethnogra-

phy” OR “field research” OR “field study” OR “grounded theory” OR “simulation” OR “quantita-

tive analysis” OR “experience report” OR “industrial”) AND

 (“software”)

The outcomes of the automated search highly depend on the quality of the search string used, and thus

several refinements were needed before the search string reached its final version, as defined above. Spe-

cifically, we iterated with different versions of the search string on a subset of the venues defined in the

protocol. In each iteration, the retrieved primary studies were analyzed to verify if they are in accordance

with the objective of the mapping study and the main research questions. Subsequently, improvements

were applied and the process was repeated. The majority of these improvements concerned the synonyms

that would be used as parts of the main components of the search terms: namely, trace AND empirical

AND software. Special focus was given to the first part, in which the use of terms like “links” could lead

to a large number of irrelevant results, mostly from the networks domain. All the results of this research

were stored using the JabRef software, an open source bibliography reference manager. The details of the

papers (i.e., title, author(s), abstract, keywords, year of publication and the name of the data source) were

directly exported from the digital libraries to JabRef, using a second tool (namely: Zotero).

Primary Study Validation. To ensure high relevance of the extracted primary studies with the subject of

this research, we have applied the quasi gold standard process as suggested by Zhang and Babar [18]. In

particular we decided to perform a manual search in the top two journals and the two top conferences, in

the domain of software engineering (TSE, TOSEM, ICSE and FSE). However, since the number of pa-

pers in these venues was considerably high, we selected to limit the manual search starting from January

2011. Next, we compared the results of the manual and automatic search indicating whether the search

string was capable to return relevant studies based on the RQs. All papers forming the quasi-gold standard

(4 journal and 10 conference papers in the final dataset—see Appendix B—marked with bold), were also

retrieved through the automated search; therefore, the search string has been validated as appropriate.

2.3 Study Selection (Screening)

The primary studies to be selected must be relevant to empirical investigation of software traceability

approaches. In line with [19], there are three phases of filtering the article set to produce the primary

study data set. The first phase consists of the search process (described in Section 3.2) returning a set of

candidate primary studies. This set subsequently goes through two phases of manual inspection: in the

first one the inclusion/exclusion criteria are applied on each article’s title, abstract/conclusions, while on

the second phase they are applied on each article’s full text. The inclusion/exclusion criteria that will be

used in every phase are listed below:

• Inclusion criteria:

- The study introduces a software traceability approach

- The study evaluates a software traceability approach

- The full text of the study is available in English

• Exclusion criteria:

- The study introduces an approach for tracing the same artifacts across versions (or)

- The study concerns structural dependencies between artifacts.

- The study introduces a traceability approach without stating explicitly the software artifacts

that are linked (or)

- The study is an editorial, position paper, keynote, opinion, tutorial, poster or panel (or)

- The study is a previous version of a more complete paper about the same research

We note that the first exclusion criterion will lead to the exclusion of studies that trace the evolution of an

artifact; therefore, the count of studies that link artifacts produced in the same development activity will

be reduced (which according to the literature is very high [21]). This decision aims to exclude papers

focusing on evolution analysis, which in our opinion is a large software engineering field, which deserves

an investigation of its own. Every article selection phase was handled by the first two authors, who both

checked all primary studies, and possible doubts were resolved by the third and fourth authors. For each

data source mentioned in Section 2.2, we documented the number of papers that were returned, after re-

moving duplicates. Also, we recorded the number of papers left for each digital library after primary

study selection on the basis of title and abstract. Moreover, the number of papers finally selected from

each source was recorded. The number of primary studies selected in each of the three phases is shown in

Table 2 below.

Digital Library

Initial

search

1st Exclusion (title,

abstract, conclusions)

Final

dataset

IEEE DL 431 183 95

ACM DL 213 94 33

Springer Link 31 24 16

Science Direct 39 19 11

Total 714 320 155

Table 2. Overview of primary studies

2.4 Keywording of Abstracts (Classification Scheme)

In [7] the authors propose keywording of abstracts as a way to develop a classification scheme, if existing

schemes do not fit, and ensure that the scheme takes into account the identified primary studies. In this

study, we applied keywording in order to classify artifact tracing approaches with respect to:

• The artifacts they link.

• Their benefits and the success indicators used to measure this benefit.

• Their research setting, in terms of the empirical method used and data collection methods.

Since the aforementioned information could not be obtained based only on the abstract of the study, we

decided to apply the keywording technique to the articles’ full texts.

2.5 Data Extraction & Mapping

During the data collection phase, we collected a set of variables from each primary study. Data collection

was executed by the first two authors and possible conflicts were resolved by the third and fourth author.

For every study, we extracted values to the following variables:

[V1] Author: the list of authors

[V2] Year: the year of the publication

[V3] Title: the title of the publication

[V4] Source: the library where the study was found

[V5] Venue: the venue where the study was published

[V6] Type of Paper: the type of the publication (conference or workshop/ journal)

[V7] Keywords: the keywords reported in the publication

[V8] Connected artifacts: the software artifacts connected by the traceability approach

[V9] Goal of the study: the goal of the study in terms of research questions or expected benefits.

[V10] Success indicators: the means to measure the expected benefits

[V11] Type of data analysis: qualitative, quantitative, mixed

[V12] Research method used: the type of the empirical method used (case study / experiment etc.)

Attributes [V1] – [V7] were used for Documentation reasons. All other variables were used for answering

a corresponding research question. The mapping between attributes and research questions is provided in

Table 3, accompanied by the analysis and presentation methods used on the data. We note that particular-

ly for [V12], the unit of analysis is the ‘empirical study’. Therefore, if one paper reports two studies ex-

plicitly, e.g., first a survey and then a case study, then this paper receives two values in [V12]. A full rep-

lication package has been made available online1.

Research

Question

Variables

Used Analysis & Presentation Method

RQ1
[V8]

Count of connected artifacts (individual artifacts)

Count of connected pairs of artifacts

Grouping of identified artifacts

RQ2
[V9] [V2]

Keywording (goals) → Count of different goals

Trends (of goals per year)

Cross-tabulation (goals – success indicator)

RQ3

[V9], [V10],

[V11]

Keywording (affected QAs) → Count of different affected QAs

Trends (of affected QAs per year)

Cross-tabulation (QAs – success indicator)

RQ4

[V2],

 [V8], [V12]

Count of research methods

Trends (of research methods per year)

Cross-tabulation (research method – pairs of artifacts RQ1)

Count (qualitative / quantitative)

Cross-tabulation (research method – goal/benefit RQ2)

Table 3. Data analysis techniques per research question

1 http://www.cs.rug.nl/search/uploads/Resources/Charalampidou_etal_2020_MS_Traceability.zip

http://www.cs.rug.nl/search/uploads/Resources/Charalampidou_etal_2020_MS_Traceability.zip

For research question RQ1 we investigate which are the most frequent individual artifacts, and pairs of

software artifacts connected using traceability approaches. To do so we count the sets of pairs and indi-

vidual artifacts found in the literature. Additionally, we group artifacts together in larger categories (e.g.,

group together different types of UML diagrams, or different forms of requirements).

To analyze the extracted goals of the primary studies in RQ2, we apply the keywording technique. Key-

wording suggests the identification of keywords in the extracted data, in order to identify and map similar

concepts [7]. Finally, we report the findings based on the publication year, to show how the research top-

ics evolved over time. The same procedure has been performed for success indicators. To do so, we do a

merging process [20] to group together similar success indicators. Then we performed cross-tabulation

matching the identified goals to the success indicators, i.e., the ways that each goal can be measured.

For RQ3 we reported the results in the same way as RQ2 by replacing goals with affected quality attrib-

utes. For RQ4 we count the different types of empirical research methods found in the literature. Then we

show the trend throughout the years to investigate what type of research is mostly conducted as the years

go by, and we relate the type of research method with the pairs of artifacts usually connected. Similarly,

we perform cross-tabulation to investigate potential relations between the research methods and the

goals/benefits studied. Finally, we report on the type of analysis (i.e., qualitative, quantitative or mixed).

3. Results

In this section we present the results of this study, organized by research question. Therefore, in Section

3.1 we investigate the types of artifacts that are being traced along different software development activi-

ties (RQ1). In Section 3.2, we present the results on RQ2, in which we studied the goals of proposing new

traceability approaches. Finally, in Section 3.3, we present an overview on the impact of traceability on

quality attributes, whereas in Section 3.4 we discuss the empirical setting of the validation.

3.1 Types of Traceability Artifacts and Development Activities (RQ1)

This section aims to summarize the findings of our study with respect to the artifacts that are connected

with traceability links, and the development activities in which they are produced. The sub-section is or-

ganized in two parts: the first one reports artifacts in isolation: the number of studies in which the artifacts

are used regardless of the artifacts they are linked to; the second presents results on the pairs of artifacts

that are being connected. Such a distinction is useful to understand both the types of artifacts that are most

frequently traced (e.g., if requirements are more frequently traced than tests) as well as the pairs of arti-

facts that are often linked.

In Table 4, we present the top-15 most frequently investigated individual artifact types. For each artifact

we denote the development activity in which it is produced (e.g., R: requirements engineering, D: design,

I: implementation, T: testing), and the count of primary studies, in which we have identified them. We

note that we had no pre-determined list of development activities; in other words, these four activities (R,

D, I, T) emerged from the data. The mapping of development activities and artifacts is not a trivial task,

due to the existence of various processes and Software Development Lifecycle Models (SDLC) that per-

form this mapping in different ways. To perform the mapping of artifacts to activities, we used a number

of sources, as there was no single source that contained all the mappings we found in the data. Specifical-

ly, we used four process models (RUP, OpenUP, ICONIX, and Scrum) and the IEEE 830 Standard. For

example, the “Software Architecture Document” was mapped to the design activity according to RUP

(RUP calls activities as workflows), whereas the term “Use-Case Model” was mapped to the requirements

activity in both OpenUP and ICONIX (OpenUP calls activities as domains while ICONIX calls them

disciplines. In such cases (i.e., more than one SDLC model suggesting the same mapping) only one has

been in the tables below added for simplicity. In cases of artifacts that can be mapped to more than one

activity depending on the SDLC model, we map the artifact to the activity that produces it; however, we

provide a reference to both SDLC models. For example, the “reported bugs/issues”, which can be treated

as parts of testing (in RUP) or requirements (since they are fed as backlog items in SCRUM), we map

them to testing, since initially bugs are considered as an outcome of testing and later on, they are fed back

to the system as requirements. We also note that the level of detail in which the artifact is being presented,

depends exclusively on the reporting of the primary study. For instance in the 1st row we identified the

term “Requirements (in general)” and in the 5th row the term “use case”; this is because 31 papers were

explicitly referring to use cases (or provided concrete examples with use cases), whereas 70 were refer-

ring to requirements, without clarifying how they are specified (e.g., use cases, user stories, natural lan-

guage, etc.).

Artifact Types

Development

Activity Count

Requirements (in general)2 R 76

Source Code2 I 60

Classes3 I 42

UML Design Diagrams2 D 33

Use Cases2 R 31

Test Cases2 T 29

Features/ Functional requirements4 R 24

Methods/Functions/Operations3 I 20

Design Models2 D 10

Bug Reports / Issues3, 5 T 9

Informal specifications / NL requirements5 R 9

Code Elements (objects / attributes)3 I 8

Design Artifacts2 D 7

Architecture Documentation / Description / Decision / Tactics3 D 7

Architectural Models (HL Design)2 D 6

Architectural Elements / Artifacts2 D 6

Table 4. Most frequently traced software artifact types

2 Rational Unified Process (RUP)
3 Open Unified Process (OpenUP)
4 830 IEE Standard for Software Requirements Specification

5 Scrum - https://www.scrum.org/

https://www.scrum.org/

From the findings of Table 4 we can observe that the development activities of requirements engineering,

design and implementation are almost equally represented in terms of count of types of artifacts (i.e.,

number of lines in Table 4). However, design artifacts appear in fewer studies compared to requirements

and implementation artifacts, since they are mostly concentrated at the bottom of the table. The fact that

the term “requirements” is ranked first in the list is in accordance with the literature [21]; the same goes

for “source code” in the sense that it is the only software artifact that cannot be skipped in the software

development lifecycle. The fact that classes are at 3rd place, denotes that most traceability studies consider

object-oriented systems, whereas the explicit reference to use cases and UML diagrams suggest that there

is also a preference in terms of design language and software development process. However, this could

also stem from the fact that there are very few available datasets on traceability and they are reused exten-

sively; these datasets may skew the results, as discussed further in Section 4. We note that as test cases we

categorize both “test specifications” (document) and “unit tests” (code), since the two are in the majority

of the cases connected by default. For example, when a requirement is linked to a test specification, the

test specification will certainly be linked to the code that is used for testing. Similarly, the existence of a

unit test, without a specification (even as a comment) is highly unlikely. This is in accordance to primary

studies: many of them do not distinguish between the two terms.

Activity Artifact Count Activity Artifact Count

R

Requirements (in general) 76

I

Source Code 55

Use Cases 31 Classes 42

Features / Functional Requirements 20 Methods / Functions 20

Informal Specifications / NL Requirements 9 Code Elements 8

Concerns2,4 5 Packages3 3

D

UML Design Diagrams (in general) 12

T

Test Cases 27

Interaction Diagrams6 12 Bug Reports/ Issues 9

Design Models 10 Unit Tests5 4

Design Artifacts 7 Tests (in general)2 4

Architectural Models (HL Design) 6 Bugs3 3

Architectural Elements / Artifacts 6 Exceptions / Execution Errors3 3

Table 5. Most frequently traced software artifacts per development activity

To avoid researchers’ bias, we preferred to list artifacts exactly in the way they are mentioned in the pri-

mary study, and not provide any interpretation at this point. For example, although one of the most com-

mon ways of specifying functional requirements is through free natural language text, there is a chance

that when authors refer to functional requirements (without making explicit the type of specification),

they have in mind a more structured representation like a use case or a user story. So, in Table 5 we dis-

6 ICONIX

tinguish between: Requirements (in general) when authors report more generally on requirements (even

without explaining if their method is available on FR or NFR); functional requirements when authors

make explicit that they refer to FR, but without making explicit the type of specification; the explicit

specification type (e.g., use case, or NL requirements), when that is explicitly reported in the primary

studies. The same strategy applies for all development activities. Subsequently in Table 5, we present the

top-5 most studied artifacts per development activity by re-grouping the results of Table 4 and including

artifacts with lower counts. We observe that for each development activity, the generic artifact is the dom-

inant one (e.g., requirement, design, source code, test case).

Next, we focus on pairs of artifacts, and we present in Table 6, the top-15 most frequently connected arti-

facts. Similarly to Table 4, we additionally present the development activity of the artifact. We note that

in Table 6, the naming convention Artifact-1 and Artifact-2 does not imply a traceability direction be-

tween the two artifacts. Therefore, both unidirectional and bidirectional relations are treated as the same,

since our goal was to explore the connected artifacts and not the direction of the relation. One important

observation from Table 6 is that the 6 most frequent pairs are between requirements, implementation, and

testing artifacts. This observation is interesting for two reasons: (a) it makes sense as a sequence: first a

requirement is specified, then the code for that requirement is written (requirements-to-code traceability is

the most frequent type of trace in the literature [21], and finally the code is tested, either starting from

source code, or the tested requirement; (b) testing artifacts that were rather underrepresented in Table 4,

rank very high in terms of pairs of artifacts. A more detailed view of the relations between pairs of arti-

facts is presented in Appendix A, in a similar way to Table 6.

Artifact 1 Artifact 2

Development

Activities
Count

Requirements (in general) Source Code R I 21

Use Cases Classes R I 16

Requirements (in general) Classes R I 14

Requirements (in general) Requirements (in general) R R 11

Classes Test Cases I T 10

Requirements (in general) Test Cases R T 10

Source Code Test Cases I T 7

Interaction Diagrams Test Cases D T 6

Interaction Diagrams Classes D I 6

Use Cases Test Cases R T 6

Use Cases Interaction Diagrams R D 6

Source Code Specifications I - 5

Features Source Code R I 5

Requirements (in general) Methods R I 5

Requirements (in general) Design Models R D 5

Table 6. Most Frequently Traced Pairs of Software Artifacts

3.2 Goals of Traceability Approaches and their Success Indicators (RQ2)

This section summarizes the goals of the proposed approaches for traceability management. In Table 7,

we classify the studies according to their goal, and also list their corresponding frequencies, as well as the

most frequent success indicators. We note that some studies are classified under two categories: e.g., a

study that introduces a novel approach can also compare it with existing ones. The analysis has led to four

main categories: (a) studies that aim at proposing approaches for establishing traces, (b) studies that in-

vestigate the impact of traceability on quality attributes, (c) studies that investigate trace maintenance and

evolution, (d) studies that propose benchmarks and guidelines:

• Establishment of Traces: The majority of studies in Table 7 have the general goal of proposing novel

traceability techniques or improving existing ones. In total 80 studies have proposed new techniques

aiming to improve the accuracy of trace extraction, whereas 32 compared existing approaches to new

ones or existing ones against each other. Finally, 16 papers proposed changes or the re-configuration

of existing approaches for improving their accuracy.

• Quality of Traces: The second cluster of studies discusses the aspects that are important for consider-

ing the success of traces. The most common qualities (of traces per se) that are studied are the cost for

establishing the traces, and the performance (usually time) for executing automated methods for trace

recovery. We note that cost and performance are both measured in time but they differ in nature: cost

is the time required to develop the traces manually, whereas performance refers to the time required

by tools to automatically recover the traces. Also, usability of the detection approaches and the repre-

sentation of traces are highlighted by the community as of significant importance. Finally, we identi-

fied two studies that deal with the scalability of trace recovery.

• Trace Maintenance and Evolution: The third and much smaller set includes studies that deal with

the evolution of traces along time and how they should be managed, and the visualization of traces.

• Other: The remaining set includes 6 studies that aim at the development of benchmarks and guide-

lines to be used in traceability studies, as a mean for validating approaches for establishing traces.

General Goal Focus on Count Success Indicators

Approaches Establishing

Traceability Links

Novel Methods 80 Precision

Recall

F-measure

Comparison 32

Improvement 16

Quality Attribute im-

portant for Traceability

Cost 18
Time

Performance 16

Usability 8 Positive Feedback

Scalability 2 #traces, Number of Classes

Trace Maintenance

Evolution 9 #changes

Representation / Visualization 7
User Answers

Other Benchmarks or Guidelines 6 None

Table 7. Classification of general goals and focus of studies

Figure 1. Chronological trends in the topics with count >10

To investigate if there are any trends in the research focus, we present in Figure 1 the chronological trends

of the topics that have more than 10 studies. Regarding the proposal of new techniques, there was a large

growth of papers after 2008, which later on stabilized. The rest of the groups of studies have not shown

such a significant explosion in terms of number of studies, but are rather steadily increasing their numbers

over the years. However, even the sharp rise of novel methods of traceability should be treated with cau-

tion, given the general increase in software engineering publications in the last decade.

3.3 Software Quality Attributes that are Evaluated in Traceability Studies (RQ3)

Table 8 lists the top-5 quality attributes of the software that are evaluated in the primary studies, regarding

how traceability affects them, listed in terms of popularity. The recorded quality attributes have been ex-

tracted from primary studies, and subsequently mapped into software quality attributes from well-

established quality models; namely: ISO-9126 [43] and ISO-25010 [42]. In Table 8 we provide a refer-

ence to the quality model where each quality attribute is defined.

Quality Characteristics Count Success Indicators

Modifiability [42] 15 Time to add a feature

Correctness [42] 14 #Errors / Debugging time

Analyzability [42][43] 10 Positive Users’ Feedback w.r.t. Understandability

Testability [42][43] 5 LoC to be tested

Stability [43] 4 Time to perform maintenance actions

Table 8. Impact of traceability approach on software, in terms of affected Qualities

• Modifiability: The relation between traceability and software modifiability (i.e., how easily a fea-

ture can be added into a system with or without traces) has been considered of great significance.

For example, linking requirements to source code aids in identifying the classes (or code artifacts)

that need to be updated upon a feature request.

• Correctness: For the correctness, traceability links are beneficial both in terms of debugging and

writing defect-free code (14 studies). For example, the existence of traces can reduce the time re-

quired to spot the code artifact that contains the bug, and therefore facilitate the easy correction of

errors.

• Analyzability: According to the primary studies, analyzability can refer both to the ease of under-

standing a piece of software that has traces, and the ease of understanding the traces themselves.

For example, if a source code chunk (method or class) is linked to a requirement (which is usually

more understandable, in the sense that it is expressed in natural language), then it is easier to un-

derstand, compared to non-linked artifacts.

• Testability: This concerns whether software systems that have traces are easier to test (for in-

stance, due to the existence of links between requirements and test cases). In particular, the pri-

mary studies suggest that linking artifacts to source code (ideally linking source code to test cas-

es) reduces the amount of source code that needs to be tested for a particular requirement. In other

words, the effort needed for performing the testing is reduced.

• Stability: The literature suggests that whenever a trace is available, it is possible to perform accu-

rate change impact analysis, i.e., to identify which parts are affected when another part of the

software is changed (i.e., instability). Therefore, the maintainability of the software is boosted.

We acknowledge that the lack of a reference to a specific QA in a study does not automatically suggest

that the investigated traceability approach does not have an effect on this QA; it was simply not studied in

the corresponding primary study. We also note that Table 8 does not guarantee the existence of sufficient

level of empirical evidence to support the relation between traceability and the mentioned quality attrib-

ute. Such a research question could be part of a Systematic Literature Review (in contrast to this SMS),

which could evaluate the rigor and relevance of primary studies. This interesting research direction is

highlighted as a tentative future work opportunity in Section 4. Regarding the chronological trends on

quality attributes, in Figure 2, we can observe that in all three cases there is an increase along time.

Figure 2. Chronological trends in the top 3 topics

3.4 Research Methods used (RQ4)

In this section we present our findings regarding the research methods that have been used for validating

either the methods for establishing traces, or assessing the effect of traces on quality. In Figure 3, we pre-

sent some demographics of the research methods, whereas in Figure 4 the corresponding trends in time.

Figure 3. Count of research methods used Figure 4. Chronological trends in the used research methods

The results suggest that the majority of empirical studies are based on observing the phenomenon in its

current environment (case studies), followed by experiments that control the environment. An interesting

observation on the corpus of empirical studies in the traceability domain is that there is a significant por-

tion of papers (~12%) in which there is a mismatch between the actual research method used, and the one

explicitly reported by the authors of the primary studies. In particular, we have identified 9 primary stud-

ies in which the authors claim that they have performed a case study, but in practice they have only per-

formed a proof-of-concept. Similarly, in another 9 primary studies, there was a mis-classification in terms

of used empirical methods (i.e., case studies instead of experiments, or vice-versa). This finding explains

a possible contradiction to related work (e.g., [37]), which suggests that experiments are the most com-

mon research method, without however performing the aforementioned crosschecking. Regarding trend

analysis, we can observe that proof-of-concept studies and simulations are constant over the years. Addi-

tionally, from 2009 onwards, surveys started to appear.

By cross-tabulating the pairs of development activities in which artifacts are traced and the employed

research methods, we can observe that the majority of case studies includes at least one artifact produced

at the requirements engineering activity, whereas the majority of experiments includes implementation

artifacts. A more detailed view on the exact artifacts being examined with different types of studies in

presented in Appendix A. Regarding the methods used in order to evaluate specific empirical goals, in

Table 9, we present the cross tabulation of study goals with research methods. From the results of Table

9, we can observe that to evaluate the accuracy of novel trace recovery approaches, case studies are usual-

ly performed. This result is expected since real-world projects are used as units of analysis, and the links

have already been manually created and are used as the golden standard; therefore, there is no need to

control other factors. Additionally, to assess the cost of using traces, experiments is the most common

research method.

Research Method Goal Count

Case Study Novel Methods 115

Improvement 45

Comparison 43

Cost 23

Performance 23

Experiment Cost 92

Evolution 84

Novel Methods 67

Comparison 28

Factor 20

Proof of Concept Usability 15

Benefits 13

Survey Validation 4

Benefits 1

Simulation Novel Methods 2

Performance 2

Table 9. Cross tabs of study goals with research methods

Based on the data of Figure 5, we can observe that the majority of traceability studies employ quantitative

analysis (72%), 16% facilitates qualitative analysis, whereas both qualitative and quantitative research

methods are employed in 11% of the studies. This difference suggests that there is a need for more quali-

tative studies that build upon experts’ opinion (through interviews, focus groups, etc.), that rely on natural

language instruments, and allow the participants of the study to express their view on the phenomenon

under study. In most of the cases, the analysis has been performed with artifact analysis, and numerical

data points.

Figure 5. Frequencies on the types of data analysis methods

4. Discussion

Most Traced Artifacts. The most often traced artifacts are software requirements, followed by source

code. The combination of the two artifacts is also the most commonly traced pair in the literature. One

potential explanation (among others) is that these two artifacts are the most common ones used in prac-

tice: regardless of the development process used, requirements are formed in some kind (natural language,

use cases, user stories, etc.) and of course source code is developed. Another tentative explanation on this

could be the fact that there are very few traceability datasets publicly available (65%); and a significant

portion of the studies (44%) reuse them. Therefore, to some extent this result might be related to the ex-

istence of available datasets. Also, the majority of the studies that discuss or identify benefits of traceabil-

ity use these two artifacts as examples (e.g., [22], [23], [24] etc.). In addition, requirements and source

code represent the problem and the solution respectively. During maintenance, both the problem and solu-

tion are constantly updated, so traces among them facilitate changing one to reflect changes on the other.

In contrast, the artifacts that are not well studied, constitute potential areas for traceability research, pro-

vided of course that researchers identify practical needs to expand to such artifacts.

Another interesting observation from the data is that for each development activity, the generic artifact is

the dominant one (e.g., requirements, design, source code, test cases) instead of specific artifacts (e.g., use

cases, interaction diagrams, classes)—the same observation can be made by inspecting the results of other

secondary studies (e.g., [37]). This leads to the conclusion that the description of current traceability ap-

proaches is not explicit, in terms of starting and ending artifacts; for example, they may aim at connecting

source code to another artifact, without specifying the level of granularity (e.g., class, method, package,

etc.). This more coarse-grained approach on the one hand, favors generality (i.e., the approach can be

applied to all source code elements); on the other hand, it might ignore characteristics of the specific arti-

facts. The same finding on the coarse-grained treatment of artifacts and development activities has also

been underlined by Javed and Zdun [38]. Additionally, although the approach is introduced at a coarse-

grained artifact (e.g., source code level), the validation is performed only on one type of this artifact (e.g.,

classes), posing a threat to the validity of the obtained empirical evidence. We thus advise researchers to

state explicitly which specific artifacts their approach applies to, and ensure their validation targets the

same artifacts.

An interesting extension of this work, would be a detailed meta-analysis of the datasets used in the identi-

fied papers to investigate a possible correlation of the aforementioned findings (e.g., focus on require-

ments and source code, focus on OO systems, etc.) and the used available datasets. Finally, we remind

that this study has not explored the directionality of the established traces. Such an investigation would be

very relevant, since in most of the cases the direction is not specified in the primary studies: readers may

assume that a tool can automatically traverse links in both directions, but this might not be true. Since the

direction of the link is a crucial feature of any traceability approach, affecting how it can be used in prac-

tice, such an investigation would be an interesting extension of this study.

Goals of Traceability Approaches. Regarding the research goals of studies on traceability, our results

suggest that the introduction of novel traceability approaches is the most common one in the literature.

These approaches are empirically validated, usually in a quantitative manner, using precision and recall as

success indicators. However, there are also many studies that only focus on comparing existing ap-

proaches, without proposing a novel one. Although the contribution of such studies at a first glance seems

lower compared to proposing a novel approach, we find that comparative studies have merit because: (a)

as the corpus of research in traceability approaches grows, it is more relevant to compare them and identi-

fy scenarios in which every approach can be used, instead of adding new ones, to an already broad set of

existing approaches; and (b) in empirical software engineering research, re-evaluation of methods and

tools, by independent researchers (not the authors of the original studies) is very important for reliability,

repeatability, and generalizability purposes. The work on proposing novel approaches, improving existing

ones, or comparing approaches, highlights the paramount importance of having a baseline, through which

approaches can be objectively contrasted in terms of identification accuracy. It is thus a healthy sign, that

in the last years, we have identified a decent amount of studies that propose benchmarks and guidelines

for evaluating traceability approaches. We advise researchers to gauge their proposed approaches against

such benchmarks and guidelines; we also recommend practitioners to look at such comparisons in order

to select approaches that fit their needs.

The second large line of research in our results is the identification of quality attributes that are used to

assess traceability approaches. On the one hand, automated approaches that aim at identifying traces after-

the-fact are only considered useful in practice, if their performance is acceptable. On the other hand, ap-

proaches that involve humans in the detection or trace establishment can be very resource-intensive and

this cost may prohibit their use in practice. Therefore, we advise both practitioners and researchers to

consider these two parameters (performance of automated approaches and cost of manual approaches)

very carefully. As far as researchers are concerned, apart from the accuracy of the proposed techniques

and the benefits of using traces, they should also consider the cost and/or performance of the proposed

approach, to determine the cost-benefit ratio, by considering the current practice in the case company, as a

baseline. Second, practitioners should place special emphasis on these two parameters in order to make

informed decisions on selecting a traceability approach.

Finally, the results of the study suggest that trace development is not the only aspect that concerns re-

searchers, but also what happens after traces have somehow been established. The research efforts are

grouped in two categories. The first has to do with the visual representation of traces, focusing especially

on their usability (e.g., a GUI-based information, inside the IDE) and striving for a smooth learning curve.

The second deals with the management of traces, dealing with when to update traces, where to store them,

in which file format etc. This is a clear implication for researchers: they need to ensure that these two key

requirements (usability and management of traces) drive the development of their tools, so as to increase

the chances of industrial adoption. Additionally, practitioners can exploit this line of research to identify

the most user-friendly methods and tools, as well as those that provide the most fitting trace management

features to their needs. We note that regarding the goals of traceability approaches our results are not

comparable to existing literature, since authors of other studies (i.e., [37] and [38]), refer to the benefits of

the proposed approaches (e.g., post-requirements traceability, regulatory compliance, etc.) as goals, and

not to the goals of the study.

Benefit to Quality Attributes. Our results are the first among existing secondary studies that explicitly

link traceability to software qualities. In particular, in RQ3 we have explored the potential benefits that

traceability brings to the software in terms of quality attributes. As a result, most of the quality attributes

that have been explored as beneficial to traceability are maintenance-related: modifiability, correctness,

instability, testability, and understandability. This indicates that traceability, although it might increase

development cost (due to the extra effort to establish the traces), can potentially provide significant bene-

fits with respect to maintenance. The positive correlation of traceability and maintainability constitutes

traceability as a very promising solution to one of the most important problems in the software engineer-

ing domain, i.e., the increasing maintenance costs. This can be a convincing argument for practitioners

who consider applying traceability approaches but may not be enough to get management approval.

Therefore, researchers may look into the trade-off between the costs incurred while developing traces and

the financial benefits obtained during maintenance. This can be an important factor in applying traceabil-

ity in practice, as the return of investment during maintenance can be a decisive factor in convincing pro-

ject managers to spend resources on traceability. An interesting future research direction would be an in-

depth exploration of the studies that provide empirical evidence on the relation between quality attributes

and traceability, so as to: (a) investigate their rigor and relevance; and (b) synthesize evidence to reach a

stronger conclusion on the effect of traceability on quality.

Empiricism in Traceability Research. The level of evidence in traceability research is quite high, in the

sense that many case studies and experiments have been conducted (levels 4 to 6, according to Alves et al.

[28]7). Also, a number of proof-of-concept applications have been demonstrated, to showcase the benefits

of traceability in practice. Finally, surveys have recently started to appear. One interpretation for this later

start of surveys compared to the other methods may be because the motivation to use surveys as research

methods relies on the existence of knowledge or experience of the subjects with the topic. Indeed, the

application of traceability approaches (especially automated ones) and tools (most of them are research

prototypes) in the industry was rather limited until recently [29].

The overall level of evidence is encouraging, especially as it combines quantitative results from experi-

ments (including several causal investigations) with qualitative results from case studies (including sever-

al explorative investigations). A possible interpretation is that the level of empirical evidence tends to

increase over time as studies become more rigorous; therefore, future secondary studies are expected to

identify papers with higher quality evidence. Another interpretation is that our study focuses on empirical

papers, since we explicitly use the empirical software engineering terms in our search string; therefore,

studies that are at level 0 (no evidence) have been excluded. Research methods that are under-used for the

time being, are longitudinal industrial case studies and action research. Such studies, if rigorously con-

ducted, would significantly increase the industrial relevance of traceability research and contribute to-

wards their further adoption in practice.

Another interesting perspective on empirical relevance, is the type and size of datasets that are used to

validate new approaches. Based on our findings, only 14% of the studies use industrial datasets, while

55% use open-source and 16% use artificial ones (i.e. developed by the researchers). Among the 127 da-

taset that are reported in the studies (~18% of the studies have no link to a dataset) approximately 75%

are available to researchers. Although there is a large number of validation datasets available (most of

them originating from CoEST8), many of them are significantly less complex in terms of lines of code

7 According to Alves et al. [28] the levels of empirical evidence that a study uses can be classified as: no evidence (0), toy exam-

ples (1), experts’ opinion (2), observational (3), academic/lab (4), industrial studies (5), and industrial application (6).
8 http://www.coest.org/

http://www.coest.org/

(see Table 10, in which we present the mean values of each variable for the dataset of our primary stud-

ies) than industrial datasets. Consequently, there is a need for the community to create and make available

real-world datasets for validation purposes, so as to improve the external validity of future studies. An

alternative could be the exploration of large-scale open datasets that resemble the size and complexity of

industrial ones. Finally, we note that we have found very few papers with negative results; this is indica-

tive of research not just on traceability but on software engineering in general.

Dataset Type Lines of Code #of Classes #of Requirements

Industrial ~1Mo ~1.3K ~400

Open Source ~65K ~850 ~195

Academic ~15K ~34 ~400

Table 10. Size of Datasets

5. Related Work

In this section we present related work in terms of other secondary studies in the domain of software

traceability, and subsequently summarize and compare this work with our study. In 2005, Spanoudakis

and Zisman [29] presented a software traceability roadmap which reviewed and presented (a) different

classifications of traceability relations, (b) different approaches for generating, representing, recording,

and maintaining traceability relations, and (c) different ways of deploying traceability relations in the

software development process. In 2007, Galvao and Goknil [30] conducted a review of the state-of-the-art

on the topic of traceability approaches in MDE. The authors analyzed the primary studies with respect to

five general comparison criteria: representation, mapping (i.e., traceability of model elements at different

levels of abstraction), scalability, change impact analysis and tool support. In 2010, Winkler and Pilgrim

[31] investigated traceability similarities and differences also in the domains of model driven and soft-

ware engineering. Their research provided a basic description of traceability and associated topics, elabo-

rating on how traceability can be achieved and used.

Torkar et al. [32] conducted a systematic literature review on requirements traceability. The study consid-

ers primary studies during the period 1997 to 2007 and aims at answering two main research questions,

regarding: (a) the existing definitions of the requirements traceability, and (b) the existing requirements

traceability techniques, their challenges and the related tools found in literature. In 2017, Tufail et al. [33]

performed a Systematic Literature Review also in the area of requirements traceability aiming to identify

the leading models, challenges and tools in the domain during 2010 to 2017, as well as the pros and cons

of the leading requirement traceability models and tools. In the same year, Omar and Dahr conducted also

a systematic literature review on the same field, aiming to present to practitioners interested into finding a

suitable method for tracing requirements, the most recent (from 2008-2017) requirement traceability prac-

tices and tools available [34]. Regan et al. [35] conducted a review on traceability analyzing the motiva-

tions of the organizations for implementing traceability mostly within the regulated software safety criti-

cal domain, but also by firms outside of this field. The same year they published a second review on the

topic of traceability from the perspective of the implementation of traceability in real organizations. This

study aimed at presenting the barriers faced by organizations while implementing traceability. Additional-

ly, it presented proposed solutions to these barriers, while it provided a comparison of them, for organiza-

tions operating inside and outside of the domain of critical systems [36].

Another Systematic Mapping Study was conducted by Borg et al. focused on information retrieval (IR)-

based trace recovery approaches. The scope of the study is limited, focusing only on traceability ap-

proaches of natural language (NL) software artifacts, during the years 1999 to 2011. The research ques-

tions that are investigated during the study consider (a) the identification of the most frequent IR ap-

proaches for tracing NL software artifacts, (b) the types of the artifacts that are most commonly linked,

and (c) the level of evidence during the evaluation of these approaches [21]. In 2013 one more review on

the topic of traceability were published. Nair et al. [37] collected 70 primary studies on the domain of

traceability, which had been published in the requirements engineering conference in a period of 20 years.

The review investigated what traceability related aspects have been studied and by whom, what types of

systems have been considered, what types of artefacts have been traced and what empirical methods have

been applied. Additionally, the study reported on specific challenges on the domain that have been ad-

dressed by primary studies, and tool features that have been developed to support traceability. In 2014,

Javed and Zdun conducted an SLR aiming to discover the existing traceability approaches and tools be-

tween software architecture and source code, as well as the empirical evidence for these approaches, their

benefits and liabilities, their relations to software architecture understanding, and issues, barriers, and

challenges of the approaches [38]. Finally, [1] conducted a roadmap for software and system traceability

research, through which they present a brief view of the state of the art in traceability, the biggest chal-

lenges identified and future directions for the field. However, although this work reports on existing stud-

ies on Traceability Information Models, Automated Trace Creation and Maintenance and Traceability

Economics, and provides directions based on the existing literature in the field of traceability, it is not

directly comparable to our work, because it stays on a higher level of abstraction.

There are several points of differentiation between the aforementioned studies and our work. An overview

of the comparison between these studies and our work is presented in Table 11. In particular, for every

secondary study, we present its scope (i.e., what domain or paradigm it focuses on, what types of artifacts

it investigates, which venues were searched and until which year primary studies were collected) and

whether it covers the research questions of our own study (i.e., whether it studies the type of artifacts

most commonly linked, the goals of traceability approaches, the benefits and the research methods used).

As indicated by the table, our study has performed an analysis on the biggest dataset of primary studies

compared to previous related work. Also, although our study focused only on empirical studies, there

were no restrictions applied in terms of a specific domain or concrete artifacts under investigation.

Table 10. Comparison with related work

9 Study [41] is a revised version (meta-analysis and synthesis) of [21], and therefore they are listed in the same row

Secondary study

Scope Goals

Domain / Paradigm Connected artifacts Search venues End year

#primary

studies

Traced

Artifacts

Goal of

studies

Quality

Attributes

Research

method

[29] All to all Not mentioned Not mentioned Not mentioned YES NO NO NO

[30] MDE All to all Not mentioned Not mentioned Not mentioned NO NO NO NO

[31] MDE +

Requirements

 main conferences,

workshops, and jour-

nals of both the RE

and MDD communi-

ties + snowballing

Not mentioned Not mentioned NO NO NO NO

[32] Requirements to

other artifacts

5 databases 2007 29 NO NO NO NO

[33] Requirements Requirements 5 databases 2017 33 YES NO NO NO

[34] Requirements 5 databases 2015 37 NO YES NO NO

[35] (Critical Systems) Not mentioned Not mentioned 8 NO NO NO NO

[36] (Critical Systems) –

Case Studies only

 2 database +

Google scholar

Not mentioned 8 NO NO NO NO

[21],[41]9 IR traceability

approaches

NL artifacts to other

artifacts

6 databases 2011 / 2013 79 / 25 YES NO NO YES

[37] All to all RE Conference 2012 70 YES YES NO YES

[38] Architecture and

source code

1 database +

snowballing

2013 11 NO YES NO YES

Our SMS Empirical studies All to all 4 databases 2016 156 YES YES YES YES

6. Threats to Validity

In this section we present threats to validity and their mitigation, based on the guidelines provided by

Ampatzoglou et al. [39]. Specifically, in Section 6.1, we report threats to validity related to study selec-

tion, in Section 6.2, we report threats related to data validity, and in Section 6.3, we report threats related

to research validity.

6.1 Study Identification Validity

Study selection validity concerns the early phases of the research, i.e., the search process and the filtering

of studies. In order to ensure that our search process has adequately identified all relevant studies, the

primary studies that have been selected for inclusion have been carefully chosen following a well-defined

protocol based on strict guidelines [40]. The identification procedure consisted of an automated search

through the search engines of the most-known DLs. The search string that we used (see Section 2.2) is

quite broad, since we only included the name of the investigated research method and synonyms of trace-

ability, aiming to retrieve the maximum number of relevant studies. However, studies that adopted differ-

ent terminology than the most established ones might have been excluded. The benefit of focusing only

on research efforts that use standard terminology, is that we avoided using subjective criteria for charac-

terizing the type of empirical research. To mitigate the threat of missing relevant studies, a quasi-gold

standard has been used. In particular, we manually browsed the papers published in four well-established

venues (namely TSE, TOSEM, FSE, and ICSE), and compared those that would be qualified for inclusion

through manual extraction to those that have been retrieved automatically. Despite the fact that this pro-

cess had 100% success, we need to acknowledge that using more venues for manual consideration might

have yielded different results.

Next, during the article inclusion/exclusion phase, there is always a possibility of excluding relevant arti-

cles. For instance, the exclusion of studies that report on structural dependencies, or the temporal traces,

might have led to excluding studies, which might be considered relevant in a wider context. To mitigate

this threat, two researchers have been involved in this process, discussing any possible conflicts. On the

completion of this process, a third researcher was randomly screening the selection of articles for inclu-

sion. Also, the inclusion/exclusion criteria have been extensively discussed among the authors, so as to

guarantee their clarity and prevent misinterpretations. Furthermore, from our searching space we have

excluded grey literature, since the study focuses on the use of empirical evidence, which are almost never

published in grey literature. As part of validation, we note that all primary studies of [21] and [32] that

conform to our inclusion criteria (esp. the empirical part) have already been identified and retained in the

dataset.

Additionally, although we have not identified any duplicate articles, our research protocol dictated that we

check for duplicated articles, based on the abstract. Upon identification of duplicates, the most extensive

one would be retained. Also, our study is not suffering from missing non-English papers and the papers

published in a limited number of journals and conferences, since our search process was aiming at a large

number of publication venues (including DLs as a whole) all publishing papers only in English. Moreo-

ver, we have been able to access all publications that we were interested in, since our research institutes

provide us access to the used DLs.

6.2 Data Validity

Regarding data validity, the main threat is related to data extraction bias. All relevant data were extracted

and recorded manually by the third author. Since this procedure is prone to some subjectivity (e.g., with

respect to the mapping of artifacts to specific development activities), two researchers further inspected

and refined the collected data, re-validating them. After this procedure the results were discussed among

all researchers and any conflicts were resolved. One threat worth mentioning concerns the QA variable: if

a QA is not mentioned in a particular study, it does not necessarily mean that this QA is not relevant to

the goal of the proposed traceability approach. In most cases, authors of primary studies report findings

on the QAs, which are mostly affected by their proposed approaches, instead of all affected QAs. Addi-

tionally, no publication bias is present in our results since primary studies have been collected from vari-

ous venues. Thus, we argue that the obtained data points are not influenced by a small group of people.

Our secondary study is not affected by the following threats: (a) small sample size—we have been able to

retrieve approx. 150 articles; (b) lack of relationships—our study was not aiming to identify any relation-

ships among data, but only to classify and synthesize; (c) low quality of primary studies—since quality

assessment is not advised for SMSs by the guidelines [7] (unless there is an explicit research question on

quality assessment); and (d) selection of variables to be extracted—the straightforward research questions

of our study have not raised any conflicts in the discussions among authors on which variables should be

extracted. Moreover, we did not identify issues with the use of statistical analysis, in the sense that the

nature of our research questions did not require hypothesis testing but only basic statistical analysis (de-

scriptive statistics). Finally, to mitigate the researchers’ bias in data interpretation and analysis the authors

have discussed the data clustering for the goal of the studies, the qualities of interest, and the research

methods used. However, we acknowledge that some interpretations (marked as tentative ones) are ex-

pressing the opinions of the authors, based on their understanding of the results.

6.3 Research Validity

Concerning research validity, the relevant threats concern research method bias and repeatability. Regard-

ing the former, the authors are highly familiar with the process of conducting secondary studies, since

they have been involved in a large number of secondary studies as authors and reviewers. Regarding the

latter, we believe that the followed review process ensures the reliability and the safe replication of our

study. First, all important decisions in our review planning have been thoroughly documented in this

manuscript (see Section 2) and can be easily reproduced by other researchers. Second, the fact that the

data extraction was based on the opinion of three researchers can to some extent guarantee the elimination

of bias, making the dataset reliable. Third, all extracted data have been made publicly available1, so as to

enable comparison of results.

Additionally, through discussion among the authors we have set four research questions that accurately

and holistically map to the set goal. This is clearly depicted by the mapping of each research question to

the research sub-goals/objectives. Furthermore, in the literature we have been able to identify a substantial

amount of related works that can be used for comparison to our results. In particular, for this reason we

used related studies from the software engineering literature. Finally, the selection of the research method

is adequate for the goal of this study and no deviations from the guidelines have been performed.

7. Conclusions

This study focuses on software traceability, i.e., the connection of software artifacts. In particular, we aim

at identifying studies that provide any kind of empirical evidence related to traceability, and understand-

ing their characteristics (in terms of linked artifacts and research methods) and goals. To achieve this goal

we have performed a systematic mapping study, which has led to the inclusion of 155 studies. The results

of the study suggest that requirements and source code are the most studied software artifacts, a fact that

can be explained due to their nature, and importance in the software development lifecycles. Regarding

the goals of the studies, our results suggest that most of the studies aim at proposing novel traceability

methods, whereas the most studied quality attributes that are affected by traceability are maintainability-

related. On the one hand, regarding researchers we have highlighted the following interesting research

directions: (a) there is a need of a meta-analysis of the dataset in order to evaluate the level of empirical

evidence; (b) traceability researchers should be more explicit in their primary studies when defining the

artifacts that are being connected, and not refer to generic artifacts, such as "requirements", but rather

than to concrete ones (e.g., use cases, user stories, etc.); (c) the traceability community shall expand their

efforts to the connection of additional artifacts, since in the current SoTA most studies refer to require-

ments and code; and (d) there is a need for the development of open datasets that resemble industrial

complexity. On the other hand, practitioners are encouraged to perform cost-benefit analysis for the appli-

cation of traceability approaches, by considering as a benefit the high (as reported in the primary studies)

maintenance gains.

Acknowledgements

We would like to appreciate our gratitude to Yikun Li for taking over additional data collection in the last

review round of the paper.

References

[1] Cleland-Huang, J., Gotel, O., & Zisman, A. (2012). Software and systems traceability. Springer,

London.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering traceability

links between code and documentation. IEEE Transactions on Software Engineering, IEEE Com-

puter Society, 28 (10), 970-983.

[3] Alves-Foss, J., Conte de Leon, D., & Oman, P. (2002). Experiments in the use of XML to enhance

traceability between object-oriented design specifications and source code. Proceedings of the 35th

Annual Hawaii International Conference on System Sciences, Big Island, HI, 3959-3966.

[4] Sundaram, S.K., Hayes, J. H., Dekhtyar, A., and Holbrook, E. A. (2010). Assessing traceability of

software engineering artifacts. Requirements Engineering, 15 (3), 313-335

[5] Kitchenham, B. , Budgen, D., & Brereton, O. (2011). Using mapping studies as the basis for further

research - A participant-observer case study. Information and Software Technology, Elsevier,

53(6), 638-651.

[6] Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. (2008). Using mapping studies in software

engineering, Proceedings of the 20th Annual Workshop of the Psychology of Programming Interest

Group (PPIG), Lancaster University, 195–204.

[7] Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in

software engineering. Proceedings of the 12 th International Conference on Evaluation and

Assessment in Software Engineering, British Computer Society, 68-77.

[8] Basili, V., Caldiera, G., & Rombach, D. (1994). The Goal Question Metric Approach.

Encyclopedia of Software Engineering, John Wiley & Sons, 528-532.

[9] Dieste, O., & Padua, A. G. (2007). Developing Search Strategies for Detecting Relevant Experi-

ments for Systematic Reviews. First International Symposium on Empirical Software Engineering

and Measurement (ESEM), Madrid, 215-224.

[10] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in Software Engineering, Springer Publishing Company, Incorporated.

[11] Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case Study Research in Software

Engineering: Guidelines and Examples (1st ed.). John Wiley & Sons.

[12] Easterbrook, S., Singer, J., Storey, M.A., & Damian, D. (2008). Selecting empirical methods for

software engineering research. In Guide to advanced empirical software engineering. Springer,

New York, 285–311

[13] De Magalhães, C.V.C., Da Silva, F.Q.B., & Santos, R.E.S. (2014). Investigations about replication

of empirical studies in software engineering: preliminary findings from a mapping study. In Pro-

ceedings of the 18th International Conference on Evaluation and Assessment in Software Engineer-

ing (EASE '14). ACM, New York, NY, USA, Article 37.

[14] Hummel, M. (2014). State-of-the-Art: A Systematic Literature Review on Agile Information Sys-

tems Development. In 47th Hawaii International Conference on System Sciences, Waikoloa, HI,

4712-4721.

[15] Silva, F.S., Furtado Soares, F.S., Lima Peres, A., De Azevedo, I.M., Vasconcelos, A.P.L.F., Kamei,

F. K., & De Lemos Meira, S. R. (2015). Using CMMI together with agile software development: A

systematic review. Information and Software Technology, Volume 58, 20-43.

[16] International Symposium on Empirical Software Engineering and Measurement

(ESEM), http://esem-conferences.org.

 [17] Stol, K, Babar, J. M.A., Russo, B., & Fitzgerald, B. (2009). The use of empirical methods in Open

Source Software research: Facts, trends and future directions. In Proceedings of the 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Development

(FLOSS), IEEE Computer Society, Washington, DC, USA, 19-24.

[18] Zhang, H., and Babar, M. A. (2010). On searching relevant studies in software engineering. In

Proceedings of the 14th international conference on Evaluation and Assessment in Software

Engineering (EASE), British Computer Society, Swinton, UK, UK, 111-120.

[19] Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic

review. Information and Software Technology, Elsevier, 50 (9-10), 833-859.

[20] Bafandeh Mayvan, B., Rasoolzadegan, A., & Ghavidel Yazdi, Z. (2017). The state of the art on

design patterns. Journal of Systems and Software. 125, C, 93-118.

[21] Borg, M., Runeson, P., & Ardö, A. (2013). Recovering from a decade: a systematic mapping of

information, retrieval approaches to software traceability. Empirical Software Engineering,

Springer.

[22] Maia, M. A., & Lafeta, R. F. (2013). On the impact of trace-based feature location in the perfor-

mance of software maintainers. Journal of Systems and Software, 86(4), 1023-1037.

[23] Ali, N., Sharafi, Z., Guéhéneuc, YG., Antoniol, G. (2015). An empirical study on the importance of

source code entities for requirements traceability. Empirical Software Engineering, 20(2), 442–

478.

[24] Mäder, P., & Egyed, A. (2015). Do developers benefit from requirements traceability when evolv-

ing and maintaining a software system? Empirical Software Engineering, 20(2), 413-441.

[25] Van Vliet, H. (2008). Software Engineering: Principles and Practice, 3rd edition, John Wiley

& Sons.

[26] Galorath, D. D. (2008). Software total ownership costs: development is only job one. Software

Tech News, 11(3).

[27] Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2015). Introducing a Rip-

ple Effect Measure: A Theoretical and Empirical Validation. In 9th International Symposium on

Empirical Software Engineering and Measurement (ESEM), IEEE, 1-10.

[28] Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software prod-

uct lines: A systematic literature review. Information and Software Technology, 52(8), 806-820.

[29] Spanoudakis, G., & Zisman, A. (2005). Software traceability: a roadmap. In Handbook of Software

Engineering and Knowledge Engineering, vol. 3--Recent Advances,World Scientific, Singapore,

395-428.

[30] Galvao, I., & Goknil, A. (2007). Survey of Traceability Approaches in Model-Driven Engineering.

In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Confer-

ence (EDOC), IEEE Computer Society, Washington, DC, USA, 313-313.

[31] Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-

driven development, Softw. Syst. Model. 9(4), 529-565.

[32] Torkar, R., Gorschek, T. , Feldt, R., Svahnberg, M., Akbarraja, U., Kamran, K. (2012).

Requirements Traceability: A Systematic review and Industry Case Study. International Journal of

Software Engineering and Knowledge Engineering, World Scientific Publishing, 22(03), 385-433.

[33] Tufail, H., Masood, M. F., Zeb, B., Azam, F., & Anwar, M.W. (2017). A systematic review of

requirement traceability techniques and tools. In the 2nd International Conference on System

Reliability and Safety (ICSRS), Milan, 450-454.

[34] Omar, M., & Dahr. J. M. (2017). A Systematic Literature Review of Traceability Practices for

Managing Software Requirements. Journal of Engineering and Applied Sciences, 12: 6870-6877.

[35] Regan, G., McCaffery, F., McDaid, K., & Flood, D. (2012a). Traceability- Why Do It?

International Conference on Software Process Improvement and Capability Determination

(SPICE’12), 161-172

http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(borg%2C+m)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(runeson%2C+p)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(ardo%2C+a)
https://link.springer.com/conference/spice

[36] Regan, G., McCaffery, F., McDaid, K., & Flood, D. (2012b). The Barriers to Traceability and their

Potential Solutions: Towards a Reference Framework. In 38th Euromicro Conference on Software

Engineering and Advanced Applications, Cesme, Izmir, 319-322.

[37] Nair, S., De la Vara, J. L., & Sen, S. (2013). A review of traceability research at the requirements

engineering conference. In 21st IEEE International Requirements Engineering Conference (RE),

Rio de Janeiro, 222-229.

[38] Javed, A., & Zdun, U. (2014). A systematic literature review of traceability approaches between

software architecture and source code. In Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering (EASE), ACM, New York, NY, USA, Article

16.

[39] Ampatzoglou, A., Bibi, S., Avgeriou, P., Verbeek, M., & Chatzigeorgiou, A. (2019). Identifying,

Categorizing and Mitigating Threats to Validity in Software Engineering Secondary Stud-

ies. Information and Software Technology, 106.

[40] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in

software engineering. Technical Report EBSE 2007-001, Keele University and Durham University.

[41] Borg M. and Runeson P., "IR in Software Traceability: From a Bird's Eye View," 2013 ACM /

IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore,

MD, 2013, pp. 243-246

[42] ISO/IEC 25010:2011, Systems and software engineering—Systems and software Quality

Requirements and Evaluation (SQuaRE)—System and software quality models, Geneva,

Switzerland, 2011.

[43] ISO/IEC 9126-1:2001, Software engineering - Product quality (Part 1: Quality model), Geneva,

Switzerland, 2001.

