ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305724760

A Study On The Accumulation Of Technical Debt On Framework-based Web
Applications

Conference Paper - July 2016

CITATION READS
1 93
4 authors:
Georgios Digkas Alexander Chatzigeorgiou
University of Groningen University of Macedonia
7 PUBLICATIONS 11 CITATIONS 201 PUBLICATIONS 2,223 CITATIONS
SEE PROFILE SEE PROFILE
Apostolos Ampatzoglou ) Paris Avgeriou
University of Macedonia University of Groningen
80 PUBLICATIONS 548 CITATIONS 255 PUBLICATIONS 3,718 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roiect  Game Engineering View project

et Managing Technical Debt View project

All content following this page was uploaded by Apostolos Ampatzoglou on 30 July 2016.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/305724760_A_Study_On_The_Accumulation_Of_Technical_Debt_On_Framework-based_Web_Applications?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/305724760_A_Study_On_The_Accumulation_Of_Technical_Debt_On_Framework-based_Web_Applications?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Game-Engineering?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Managing-Technical-Debt?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Georgios_Digkas?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Chatzigeorgiou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Groningen?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paris_Avgeriou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos_Ampatzoglou?enrichId=rgreq-e189b7b79280e27799922ddb0212c6dd-XXX&enrichSource=Y292ZXJQYWdlOzMwNTcyNDc2MDtBUzozODk2MDk2NzE0MTM3NjBAMTQ2OTkwMTU5Mjc2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Study On The Accumulation Of Technical Debt On
Framework-based Web Applications

Georgios Digkas ¢ Alexander Chatzigeorgiou ° Apostolos Ampatzoglou ¢
g.digkas@rug.nl achat@Quom.gr a.ampatzoglou@rug.nl
Paris Avgeriou ¢
paris@cs.rug.nl

¢ Department of Mathematics and Computer Science, University of Groningen, Netherlands
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Abstract

This paper presents the results of an observational study to investigate
the advantages of using widely used software development frameworks
for Java EE applications. Also, it presents the accumulation of Tech-
nical Debt and the evolution of the quality code metrics, when the
software is developed using frameworks. Considering that web appli-
cations hold the lion’s share of today’s I'T industry, this study focuses
on two widely popular Java EE frameworks, namely Spring Web MVC
Framework and Apache Struts 2. In particular, we have developed one
system over four versions in both frameworks while Technical Debt and
quality code metrics have been monitored. The findings indicate that
software developed based on frameworks is relatively free of Technical
Debt. Moreover, we have not noticed any significant differences be-
tween the two frameworks in terms of Technical Debt. In general, one
could claim that framework-based development can potentiality lead
to high quality and maintainable systems, if the framework is properly
used.

1 Introduction

Technical Debt (TD), is a software engineering metaphor and has been coined by Ward Cunningham|[Cun92]
in 1992 as: “Shipping first time code is like going into debt. A little debt speeds development so long as it
is paid back promptly with a rewrite. Objects make the cost of this transaction tolerable. The danger occurs
when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the debt load of an unconsolidated implementation,
object-oriented or otherwise”.

One way to build faster is to use a framework. A framework is a set of classes and libraries which have been
written by other developers and the programmers can use them to create enterprise applications. Currently,
there is a plethora of frameworks and the number is growing. The developer can gain several benefits from the
usage of a framework such as: easier and faster software development, robust architecture and extendibility. The

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the SATToSE Seminar, Bergen, Norway, 11-JUL-2016, published at http://ceur-
Ws.org



frameworks handle the infrastructure allowing the developer to focus on the business logic to be implemented.
Proponents of frameworks claim that building software using frameworks results in higher quality code/products.
This is happening because most of the frameworks are based on widely-acceptable design patterns.

The purpose of the study is to investigate the benefits that can be obtained by using widely available frame-
works for web applications, with emphasis on applications that are developed in Java EE. The analysis focuses
on the resulting software quality and Technical Debt.

2 Background Information

Although the research community has not agreed on a common way of assessing technical debt, there are some
tools that provide TD estimates (such as the ones that implement the SQALE[Let12] method. SQALE is a
generic and language independent method. SQALE stands for Software Quality Assessment based on Lifecycle
Expectations and is delivered under a Creative Commons license. One of the most widely used tools for the
calculation of the TD is the SonarQubefson] platform. The calculation of TD is based on rules and issues. For
each rule there is an estimation of time that is required to fix the corresponding issue. The SonarQube sums the
estimated time for each of the issues and calculates the Technical Debt in man-days.

3 Case Study Design

The present study aims at investigating the question: “Do frameworks help programmers develop good quality
software in terms of metrics and TD”. The study aims to analyze software systems developed using Java EE
frameworks for the purpose of measuring software quality with respect to the estimated TD and selected metric
values, from the point of view of software researchers in the context of web application development. Moreover,
the study investigates whether TD increases with the passage of versions.

In order to assess the benefits of framework-based development, we have developed two CRUD Java EE web
applications with state-of-the-art technology. CRUD, is a term that is used in computer programming and
stands for Create, Read, Update and Delete, tasks which are most often associated with the administration of
a database. We have developed one application based on the Spring Web MVC Framework[Jo05] and the other
one on Apache Struts 2[str]. Both applications have evolved over four versions. In each generation we were
adding the same new features and functionality into the two applications.

To evaluate the quality of both systems that we have developed, we used the metric suite that Chidamber and
Kemerer[CK94] proposed, which we augmented with a set of 2 other source code metrics that are complementary
to them. Through metrics, project managers can have an overview about the evolution of the projects.

Moreover, we have used the SonarQube platform to calculate the Technical Debt of these projects. During the
development of the two projects, we tried to follow as closely as possible the suggestions of the frameworks on
how design and implementation should be carried out. In the final step of our observational study, we repayed
the identified Technical Debt, measured the required time and compared the actual time with the time that
SonarQube estimated that it would take us to repay the Technical Debt.

The application that we have developed simulates a simplified information system of a university and was
developed incrementally in four versions, with increasing functionality. The functionality of the different versions
is the following:

v.1 The user of the application had the ability to retrieve general information about the university. For example,
she could see the courses that are taught (name, description, ECTS credits and semester), the professors of
the university (name, surname and contact number) and also which courses are taught by each professor.
Finally, she was able to retrieve some general information about the secretaries of the university (name,
surname and contact number).

v.2 Authentication and role authorization was added to the project. Also, additional functionality allowed each
of the users of the web site to update their personal details.

v.3 Added new functionality for the secretaries allowing them to create, modify/update, delete, assign and
remove courses to the professors of the university. Finally, the secretaries have the ability to modify/update
the data of all users.

v.4 The students that are logged into the system with their credentials, are able to update/modify their personal
information, see the courses that they are enrolled in and the grades of the courses that they attended. Also,



4

they have the ability to enroll to new courses as well as be removed from the courses that they are already
enrolled. If a professor logs into the application with hers credentials, she is able to update/modify her
personal information and obtain a list with all students that are attending her courses and finally, she is
able to assign grades to the students.

Results and Discussion

In this section we are going to discuss the results and the findings of our observational study. Firstly, we will
discuss the metric results and then the Technical Debt for the two projects that we have built.

4.1 Source code metrics

As already mentioned the two Java EE projects have the same functionality and evolved over four versions. The
goal was to investigate if the source code metrics will be the same or if there is a comparative advantage by using
one of the frameworks. Figure (1| shows the charts of the six of the metrics that we calculated.

Number Of Classes (NOC). The number of classes that exist in both projects is almost equal. This apparently
is happening due to the fact that both projects have the same functionality. However, the project that was
developed in Struts 2, has a smaller number of classes when we compare it with the Spring. Their minimum
difference is 1 and the maximum is 5. The maximum difference, has happened because one of the Action
classes of Struts 2, in Spring is broken into 3 classes. Moreover, in Spring we have implemented an additional
class that had the role of wrapper. Finally, the Spring application has 2 extra classes, one to display the
data to non-registered users and the other one to registered. In Struts 2 there is one class to handle these
Actions. Struts 2, gives us the opportunity to use Pointcuts and Wildcard expressions for the management
of requests.

Lines Of Code (LOC). From the LOC chart we can see that the Struts 2 application has about one hundred
lines of code less compared to that developed in Spring. This is in accordance to the lower number of classes.

Weighted Methods Per Class (WMC). As we can see from WMPC1 chart this metric for the Spring ap-
plication does not change during the evolution of the project. But for the Struts 2 application this metric
is increasing during the evolution of the application. Struts 2 implements the pull-MVC (or MVC 2) so it
requires getters and setters for the view to be able to retrieve the data. Each getter and setter method, is
increasing the complexity by 1. This is the reason that the Struts 2 application has higher complexity.

Coupling between Object Classes (CBO). From the Figure we can observe that the average coupling for
the Struts is lower than that of Spring and also slightly increases from version to version. While for the
Spring application there is a sizable increase from the second generation to the third and from there to the
fourth. This happened because the Spring application has a larger number of classes. This had as a result
an increase to the average coupling of the system.

Response for a Class (RFC). The average value of the RFC metric for the project that is developed in
Spring, remains nearly constant in all versions of the project. Only the third generation it increased by a
unit, while the fourth version it returns to the baseline. On the other hand, the average value of the RFC
for the Struts 2, is from the first version of the project 10 points higher when we compared with that of
Spring and also observe that from generation to generation has an upward trend. This is happening due
to the fact that Struts 2 has a significantly lower number of Action classes that should manage the same
number of requests.

Lack of Cohesion of Methods (LCOM). The average lack of cohesion in the project that is developed in
Struts 2, is far higher than in Spring, but it remains constant in all versions of the project. The improved
cohesion in Spring is probably due to the larger number of smaller classes which therefore tend to be more
cohesive.



Number Of Classes (NOC) Lines Of Code (LOC)

1714
40 36 1800
35 33 — 1600 1485
- o 1566
30 » B o 1400 1240 1240
25 28 28 29 1200 1313
1000 1109 1114
20
800
1
5 600
10 400
5 200
0 0
1 2 3 4 1 2 3 4
Version Version
——Spring Struts 2 Spring Struts 2
Weighted Methods Per Class 1 (WMPC1) Coupling Between Objects (CBO)
14 10
12.161 9 9.056
12 11.103 7.848
9.964 10.0 8
10 = = 7 6.379 6.379
s 9.690 9.690 9.545 9.611 6 6.839
5 5429 B 5.931
6 4
4 3
2
2 1
0 0
1 2 3 4 1 2 3 4
Version Version
Spring Struts 2 ——Spring Struts 2
Response For Class (RFC) Lack of Cohesion Of Methods 3 (LCOM3)
45 45
39 39 41 40 40 40
40 40
34
35 33 35 i
30 30 34 34
% S — 25 28
20 23 23 2 23 20 23
15 15
10 10
5 5
0 0
1 2 3 4 1 2 3 4
Version Version
—Spring Struts 2 —Spring Struts 2

Figure 1: The evolution of a series of metrics over four versions of the two system implementations

4.2 Technical Debt Results

Table[I] summarizes the results concerning the technical debt of both systems along the four versions. As it can be
observed, the accumulated technical debt is relatively low: the technical debt ratio (i.e. the estimated technical
debt over the size of each application) does not exceed 1.5% for Spring and 2.7% for the Struts application
and the corresponding SQALE rating is A’. For the Spring application no Blocker or Critical issues have been
identified while for the Struts application a few critical issues have been identified. These issues mainly refer to
the rule: “Fields in a Serializable class must themselves be either Serializable or transient even if the class is
never explicitly serialized or deserialized. That is because under load, most J2EE application frameworks flush
objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause
program crashes, and open the door to attackers”. Each one of these issues increases the debt of the application
by 30 minutes. Actually, we think that we should not count these issues as TD. These issues appeared due to
the fact that it is a good practice for the Action classes (the Controllers) of a Struts application, to extend the
ActionSupport class. The ActionSupport class implements the Serializable interface and this is the reason why
the SonarQube counts them as issues.

Concerning the evolution of TD, the estimated effort to repay it and the TD ratio increase with the passage
of versions. This should be mainly attributed to the fact that we are adding new features and functionality to
our projects. In the final step of our exploratory study we repayed the TD and also we measured the time that
took us to do the repayment. The actual time to resolve the reported issues was less than 2 hours. The time



is significantly lower than the SonarQube estimates. Our general belief is that no tremendous improvements in
quality have been incurred by repaying the accumulated TD.

Table 1: SonarQube report for Spring and Struts 2 applications

Version Spring 1 | Spring 2 | Spring 3 | Spring 4 || Struts 1 | Struts 2 | Struts 3 | Struts 4
Lines of code 1375 1455 1765 2046 1296 1303 1517 1801
Functions 166 172 194 212 164 165 182 201
Classes 28 29 33 36 28 28 29 31
Duplicated lines (%) | 1.9% 1.8% 2.3% 4.4% 2.0% 2.0% 2.9% 2.5%
Duplication Lines 38 38 72 124 38 38 64 64
Duplication Blocks 2 2 4 8 2 2 4 4
Complexity 195 201 225 248 193 194 214 240
Complexity /Function | 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
Complexity/Class 7.0 6.9 6.8 6.9 7.0 6.9 6.8 6.9
Issues 82 90 118 140 158 159 171 188
Blocker Issues 0 0 0 0 0 0 0 0
Critical Issues 0 0 0 0 2 2 6 15
Major Issues 13 17 25 33 90 91 95 98
Minor Issues 62 66 86 100 59 59 63 68
Info Issues 7 7 7 7 7 7 7 7
Technical Debt 7h 54min | 1d 1d 4h 1d 7h 1d 7h 2d 2d 3h 3d
Technical Debt Ratio | 1.1% 1.2% 1.4% 1.5% 2.4% 2.5% 2.5% 2.7%
SQALE Rating A A A A A A A A

5 Conclusions and Future Work

This study presents an exploratory study to seek the benefits of framework-based development on Java EE
applications. The main finding of this work is that framework-based development does not lead to serious issues
leading to a relatively low technical debt. Moreover, after repaying the TD no tremendous improvement to the
quality of the software has been observed. Finally, the required effort for the repaying of TD was significantly
lower than the corresponding estimates.

In terms of future work, it would be valuable to generalize this study by analyzing multiple projects and
multiple types of data (i.e. source code metrics, issues, commits, etc). Framework-based development could be
contrasted to non-framework-based applications to investigate if there is a significant difference between these
two types of development.

References

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, June 1994.

[Cun92] Ward Cunningham. The WyCash Portfolio Management System. In Addendum to the Proceedings on
Object-oriented Programming Systems, Languages, and Applications (Addendum), OOPSLA ’92, pages
29-30, New York, NY, USA, 1992. ACM.

[Jo05]  Rod Johnson and others. Introduction to the spring framework. TheServerSide. com, 21:22, 2005.

[Let12] Jean-Louis Letouzey. The SQALE method for evaluating technical debt. In Proceedings of the Third
International Workshop on Managing Technical Debt, pages 31-36. IEEE Press, 2012.

[son] SonarQube. http://www.sonarqube.org/.

[str] Welcome to the Apache Struts project. https://struts.apache.org/.


http://www.sonarqube.org/
https://struts.apache.org/
https://www.researchgate.net/publication/305724760

	Introduction
	Background Information
	Case Study Design
	Results and Discussion
	Source code metrics
	Technical Debt Results

	Conclusions and Future Work

