
On the Temporality of Introducing Code
Technical Debt

Authors field intentionally left blank

Affiliations intentionally left blank

Abstract. Code Technical Debt (TD) is intentionally or unintentionally
created when developers introduce inefficiencies in the codebase. This
can be attributed to various reasons such as heavy work-load, tight de-
livery schedule, unawareness of good practices, etc. To shed light into the
context that leads to technical debt accumulation, in this paper we in-
vestigate: (a) the temporality of code technical debt introduction in new
methods, i.e., whether the introduction of technical debt is stable across
the lifespan of the project, or if its evolution presents spikes; and (b)
the relation of technical debt introduction and the development team’s
workload in a given period. To answer these questions, we perform a case
study on twenty-seven Apache projects, and inspect the number of Tech-
nical Debt Items introduced in 6-month sliding temporal windows. The
results of the study suggest that: (a) overall, the number of Technical
Debt Items introduced through new code is a stable metric, although it
presents some spikes; and (b) the number of commits performed is not
strongly correlated to the number of introduced Technical Debt Items.

Keywords: technical debt temporality · case study · new code debt ·
metrics fluctuation.

1 Introduction

Technical debt (TD) at the code level refers to inefficiencies introduced in the
source code of an application during the implementation or the maintenance
phase [1]. These inefficiencies manifest themselves as violations of coding stan-
dards, complex and hard to understand code, code duplicates, etc. [2]. According
to Alves et al. [3] code TD is the most studied type of technical debt, and based
on Ampatzoglou et al. [4] it is one of the most important in industry.

There has been significant work on how code TD evolves and how it accu-
mulates over time. However, existing studies have looked at TD evolution as
a whole, without distinguishing between Technical Debt that is added as new
code, and TD that is added or modified in existing code. In this paper, we fo-
cus only on the introduction of new code TD, i.e. TD inserted in the system in
the form of new Technical Debt Items (TDIs). More specifically we study new
methods (our scope is object-oriented systems) that contain TD and we look at
the introduction of this type of new TD as a temporal phenomenon.

Focusing on TD that is introduced by new code, as opposed to TD that is
introduced by modifying existing code, can provide a unique insight. Specifically,



2

the new TDIs introduced by new methods at each commit (either new methods
in existing classes or new methods in entirely new classes) reflect more accurately
the type of problems and the timepoint at which they are introduced. In other
words, new methods are more representative of the developers’ practices and
knowledge level, compared to method modifications whose type and timeliness
is often dictated by the need to fix a bug or to extend an already existing
functionality. Thus, we study the temporality of TD through a clearer source.

In particular, we explore: (1 ) if the number of introduced TDIs is uniformly
spread across evolution, or whether there are time windows in which more TDIs
are inserted; and (2 ) if the number of TDIs that is introduced along evolution is
related to the activity (intensity of commits) of developers in different time win-
dows. Projects could exhibit either a stability in the introduction of code TDIs
across evolution or experience fluctuations with isolated or repeating spikes of
introduced code TDIs. In the former case one could assume that accumulation
of TD is most probably due to factors that are constantly present in the entire
lifetime of the project, such as employees’ skills, used methodologies, tools, man-
agement practices, etc. In the latter case, one could postulate that the insertion
of new code TDIs is a highly temporal phenomenon depending on volatile factors
such as feature requests, changing schedules, pressure to fix bugs, etc.

To achieve this goal, we explore the evolution of twenty-seven projects by the
Apache Software Foundation, and we track the number of new TDIs inserted in
each commit. Next, we create a 6-month sliding window, and we calculate the
cumulative number of inserted TDIs for each window, as well as the number
of commits in the same time period. To answer the first question, we use a
metric property (termed SMF—see Section 3.2) that is able to assess metrics
fluctuation along time and characterize them as either stable or sensitive. To
answer the second question we correlate the number of commits for each window
to the number of inserted TDIs. The reporting and interpretation of the results
is performed at the project level.

The rest of the paper is organized as follows: in Section 2 we present related
work and in Section 3 background information important for understanding the
study. In Section 4, we present the design of the case study, while Section 5
elaborates on the results. Section 6 interprets the results and provides implica-
tions for researchers and practitioners. Finally, in Section 7 we present threats
to validity and in Section 8, we conclude the paper.

2 Related Work

Many studies have explored the evolution of code quality, and the reasons for
its degradation. Since this paper focuses on the introduction of TD over time,
we organize this sub-section into causes of TD introduction and TD evolution.
Causes of Technical Debt Introduction: Tufano et al. [5] studied the evolution of
code smells with the goal of understanding when and why code smells are intro-
duced and observed the life cycle of five code smells. The results indicate that:
(a) in the majority of the cases code smells are introduced with the creation



On the Temporality of Introducing Code Technical Debt 3

of the corresponding classes or files; (b) while projects evolve, “smelly” code
artifacts tend to become more problematic; (c) new code smells are introduced
when software engineers implement new features or when they extend the func-
tionality of the existing ones; (d) the developers who introduce new code smells,
are the ones who work under pressure and not necessarily the newcomers; and
(e) the majority of the smells are not removed during the project’s evolution and
few of them are removed as a direct consequence of refactoring operations.

According to Kazman et al. [6] who conducted a case study on the roots
of architecture debt, Architectural Technical Debt (ATD) is extremely common
and probably the most important type of TD because it consumes the largest
percentage of maintenance effort. Their findings suggest that architectural debt
is extremely easy to introduce: programmers typically want to introduce new
features or fix bugs; however, by changing the code they often undermine the
architectural structure leading to the accumulation of ATD.

Martini et al. [7] conducted a case study on five software companies to under-
stand the causes that introduce ATD. Large software companies try to deliver as
fast as possible in order to satisfy their customers’ needs, usually taking short-
cuts, thereby introducing ATD. If the debt is not paid-off, it starts to accumulate
and this makes feature development more difficult.

Evolution of Technical Debt : Although TD is a multifaceted concept, one of the
key constituents of code TD is the presence of code smells. One of the first studies
that investigate the evolution of code smells was conducted by Olbrich et al. [8].
They investigated the evolution of two code smells, God Class and Shotgun
Surgery, on two OSS projects. The results show that along software development,
there are phases where the number of code smells can either increase or decrease
and those phases are not affected by the size of the systems. Chatzigeorgiou and
Manakos [9] have investigated the evolution of the Long Method, Feature Envy,
State Checking, and God Class smells in two open-source software projects. The
results suggested that as projects evolve the number of smells tends to increase.
Another interesting finding is that a significant percentage of smells was not due
to software ageing, since some smells were present right from the first version of
the code in which they reside. Peters and Zaidman [10] studied the lifespan of the
God Class, Feature Envy, Data Class, Message Chain Class, and Long Parameter
List smells. The analysis of eight open-source software projects, confirmed that
the number of smells increases, as projects evolve.

Digkas et al. [11] tracked the evolution of TD in sixty-six open-source Java
projects by the ASF, over a period of 5 years. In order to detect issues that incur
TD, they relied on SonarQube. The results show that on the one hand, there
is a significant increasing trend on the size, complexity, number of TDIs, and
the total TD over time, which seems to confirm the software aging phenomenon.
But on the other hand, when TD is normalized over the non-commented lines of
code, an evident decreasing trend over time is present for many of the projects.
This could possibly be attributed to: (a) developers that perform refactoring
activities and fix some of the open TDIs; or (b) developers that introduce better
quality code in each commit (compared to the project’s existing code base).



4

Despite the fact that code TD introduction has been widely explored, we lack
evidence on: (a) the way in which TD is introduced, i.e. whether there is stable
increase, or large fluctuations exist, and (b) if such fluctuations coincide with
large-scale changes in the codebase.

3 Background Information

In this section we present information that is necessary for understanding the
paper. In Section 3.1 we provide an overview of the process for identifying new
TDIs in each commit. In Section 3.2 we present an overview of the approach
for assessing metrics fluctuation; this is employed to assess the stability in the
introduction of new code TDIs over time.

3.1 Identifying New TD Items along Evolution

To analyze software systems and measure TD throughout their evolution, we
have used SonarQube 7.9.2 LTS. SonarQube (SQ) relies on a set of rules which
are checked by static source code analysis; every time a piece of code breaks one
of those coding or design rules, a Technical Debt Issue is raised. SQ estimates
the effort (in minutes) required to eliminate the identified TDIs. This effort is
obtained by assigning a time estimate for fixing each type of problem and by
multiplying the number of all TDIs of that type with that estimate.

Considering that software systems evolve through a number of revisions and
that in each revision several types of changes may occur simultaneously, we
look at the three major types of code changes: the introduction of new code,
the deletion and the modification of existing code. In this paper we work at
the method level, that is, we aggregate all TDIs reported by SQ for individual
lines to the method in which they belong. The reason for this decision is that
monitoring changes at the instruction level would be more complex and less
accurate considering that several types of changes can simultaneously occur in
some statements (e.g., modification and introduction of new code). Furthermore,
tracking changes at the instruction level is challenging, as one would have to map
each instruction (in a particular revision) to the corresponding instruction in the
previous revision. This process is complicated by the insertion of new statements,
comments, blank lines, etc. Therefore, to be certain about the classification of
changes, we monitor changes at the method level.

At each revision a class can be added, deleted, modified, renamed or remain
unchanged. The same applies for the methods. As explained above, we only
focus on the introduced TDIs in the newly inserted methods. A new method
can be added either in an existing class or upon the creation of a new class.
To distinguish the newly inserted methods for each commit from the deleted,
modified, renamed, and unchanged ones, we rely on the Gumtree Spoon AST
Diff tool [12]. For each revision, first, we detect all changes that occurred in
the corresponding commit at the file-level, i.e. we identify the added, modified,



On the Temporality of Introducing Code Technical Debt 5

renamed, and deleted files. Then, we exclude the deleted files which do not
exist anymore in the examined commit. For the added files/classes, we consider
all methods as new code; in other words we consider them as newly inserted
methods in new classes. For the modified and renamed files we compare their
AST with the AST in the previous revision (using the Gumtree Spoon tool). By
this comparison we identify the newly inserted methods in existing classes.

After identifying which methods have been inserted into the project (in the
commit under study) and their span (starting/ending line in the file), we can
further identify TDIs. For this step we analyze the project using SQ. Then, we
retrieve all the TDIs (via SonarQube’s API) and keep only the ones that can be
mapped to the newly inserted methods. This is performed by matching the line
in which each TDI is reported by SQ with the method containing that line.

3.2 Fluctuation of Software Metrics

Software Metrics Fluctuation (SMF) is a property of metrics, defined as “the
degree to which a metric score changes from one version of the system to the
other” [13]. Using SMF, metrics can be characterized as sensitive (changes in-
duce high variation on the metric score) or stable (changes induce low variation).
To capture the SMF property of a metric, that property should:

– Take into account the order of measurements in a metric time series. This
is the main characteristic that a fluctuation property should hold, in the
sense that it should quantify the extent to which a score changes between
two subsequent time points.

– Yield values that can be intuitively interpreted, especially for border cases.
Therefore, if a score does not change at all, its fluctuation should be evaluated
to zero. Any other change pattern should result in a non-zero fluctuation
value. Finally, the highest value should be obtained for time series that
constantly change and fluctuate between the two ends of their range, for
every pair of successive versions of the software.

To assess SMF, in this paper, we use a measure proposed by Arvanitou et
al. [13], namely mf. The measure is defined as: “the average deviation from zero of
the difference ratios between every pair of successive versions”, as shown below.

mf =

√√√√∑n
i=2

(
scorei−scorei−1

scorei−1

)2
n− 1

In the study that introduced SMF [13], the authors also explored various al-
ternatives (such as coefficient of variance, and auto-correlation-of-lag-one), which
however, were not able to capture the aforementioned properties of SMF.

4 Case Study Design

In this section, we present the design of the case study which was based on the
linear-analytic structure as described by Runeson et al. [14].



6

4.1 Research Questions

As already mentioned in the Introduction Section, we ask two research questions.

RQ1: Does the number of introduced technical debt items by new code fluc-
tuate along evolution?

The answer to this research question will unveil if in different time periods,
different amounts of TD are introduced. The answer reflects the main goal of this
study, i.e., to investigate the temporality of the TD phenomenon. Specifically,
this answer will enable us to characterize TDIs introduction as either stable, or
sensitive to temporal influence. In addition, we will study any possible spikes in
the evolution on new code TD, which might be indicators of “extra-ordinary”
events along evolution. The frequency and the timing (early, middle, or late in
the project) of such spikes will also be explored and reported.

RQ2: Does the amount of introduced technical debt items by new code, cor-
relate to the activity of developers?

To increase the confidence in the results of the previous research question,
we study a potentially important confounding factor for this empirical setup:
developers’ activity. Considering that we are not analyzing at the individual
commit level, but over periods of time, there is a non-negligible chance that
in these periods the developers’ activity (number of commits) is not stable;
therefore, spikes in new code TDIs could be due to more intense programming
activity in the corresponding periods.

4.2 Cases and Units of Analysis

This study is characterized as a multiple, embedded case study [14], in which
the cases are open-source software (OSS) projects, while the units of analysis are
the source code commits (per project) over different time periods. Specifically,
for each project, we analyse the amount of code TDIs added over 6-month time
periods across the project history (see Section 4.3 for more details). The reason
for selecting to perform this study on OSS systems is the vast amount of data
that is available in OSS repositories, in terms of revisions and classes. The long
history that is available for each project enables researchers to observe overall
trends in the evolution of their quality. To retrieve data from only high-quality
projects that evolve over a period of time, we looked into Apache projects and
investigated the projects presented in Table 1. The selection of projects was
based on the following criteria:

– The software is actively maintained. To ensure this, we sorted projects based
on the date of their last commit.

– The software is written in Java and uses Maven as a build tool. This ensures
that the project can be built and allows the retrieval of the project’s language
version from the corresponding pom.xml file.

– The software contains more than 100 classes to ensure the inclusion of sys-
tems with a substantial size, functionality and complexity.



On the Temporality of Introducing Code Technical Debt 7

Table 1: Selected Projects
Project Classes NCLOC Analyzed

Revisions
Project Classes NCLOC Analyzed

Revisions

Atlas 932 87637 1454 Knox 1083 51429 1033

Beam 3757 176663 2780 Kylin 1658 128531 3205

Calcite 2606 186633 1448 Metron 1433 72579 548

Cayenne 2615 164170 2116 MyFaces 1843 174158 1211

Commons IO 132 10500 1059 NiFi 4256 371031 1490

CXF 4111 353085 5079 oozie 1082 97597 587

DeltaSpike 951 46182 513 OpenWebBeans 561 44299 1583

Drill 4655 316552 1316 PDFBox 1279 136916 3758

Dubbo 943 61865 728 Pulsar 1837 147182 1503

Flink 5632 341149 5329 SIS 1948 181588 828

Flume 790 51897 789 Storm 3958 243574 738

Giraph 1414 72972 668 TinkerPop 1698 95652 5178

Jackrabbit 2883 273574 4260 Zeppelin 1209 89193 1562

jclouds 5687 227459 4323

– The software has more than 1000 commits. We have included this criterion
for similar reasons to the previous criterion and to be able to observe trends
in the evolution of their quality. Moreover, this number of revisions provides
an adequate set of repeated measures as input to the statistical analysis.

4.3 Data Collection

To build the dataset for our analysis, we relied on the process described in
Section 3.1. In particular, for each project, we have been able to build a dataset
containing: (a) the commit SHA; (b) the commit timestamp; and (c) the number
of introduced TDIs by the new code of this commit. Next, starting from the
first commit timestamp, we created a 6-month time-window that slides monthly,
along the evolution of the project. Based on these time-windows, we have created
our units of analysis, as shown in Fig. 1. For example, by considering a project
that spans across 22 months (M1-M22), we are able to create 16 units of analysis.

For each period captured by the time-window, we summed the number of
TDIs that were introduced in all commits included in the timeframe. Therefore,
the final dataset consists of three variables: [V1] time-window (in months/year);
[V2] number of commits in the time-window; and [V3] number of TDIs introduced
by new code in the time-window. A replication package is available online1.

4.4 Data Analysis

Data analysis was performed on the aforementioned raw dataset. To answer
RQ1, for each project, we first assess fluctuation by calculating SMF and basic

1 https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P

https://github.com/apache/atlas
https://github.com/apache/knox
https://github.com/apache/beam
https://github.com/apache/kylin
https://github.com/apache/calcite
https://github.com/apache/metron
https://github.com/apache/cayenne
https://github.com/apache/myfaces
https://github.com/apache/commons-io
https://github.com/apache/nifi
https://github.com/apache/cxf
https://github.com/apache/oozie
https://github.com/apache/deltaspike
https://github.com/apache/openwebbeans
https://github.com/apache/drill
https://github.com/apache/pdfbox
https://github.com/apache/incubator-dubbo
https://github.com/apache/pulsar
https://github.com/apache/flink
https://github.com/apache/sis
https://github.com/apache/flume
https://github.com/apache/storm
https://github.com/apache/giraph
https://github.com/apache/tinkerpop
https://github.com/apache/jackrabbit
https://github.com/apache/zeppelin
https://github.com/apache/jclouds
https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P
https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P


8

Fig. 1: Demarcating Units of Analysis (sliding temporal windows)

descriptive statistics of the dependent variable [V3]. Next, to visualize extreme
projects (the most stable and most sensitive), we use a line chart representing
the evolution of TDIs introduced by new code. By inspecting the line chart, we
highlight spikes in the introduction of Technical Debt Issues, and discuss, if they
seemed more concentrated in the beginning, middle, or end of the project. To
answer RQ2, we performed Pearson correlation analyses, and for extreme cases
we visualize the relation through scatterplots, and present the co-evolution of
number of commits and the number of TDIs in a single line chart.

5 Results

5.1 Fluctuation Analysis (RQ1)

In Table 2, we observe the results of the fluctuation analysis for the number of
TDIs introduced by new code, in the 27 cases of the study, based on the value of
the Software Metrics Fluctuation metric. We can observe that for 16 out of 27

(a) Metron - “Stable” (b) SIS - “Sensitive”

Fig. 2: Indicative project evolution



On the Temporality of Introducing Code Technical Debt 9

Table 2: TD Fluctuation per Project
Project SMF Corr.

Coef.
Sig.
Level

Spk Project SMF Corr.
Coef.

Sig.
Level

Spk

Atlas 0.538 0.500 0.000 1 Knox 0.301 0.361 0.002 2

Beam 0.509 0.502 0.002 3 Kylin 0.343 0.598 0.000 3

Calcite 11.902 0.150 0.195 Metron 0.162 0.551 0.002 0

Cayenne 1.019 0.584 0.000 MyFaces 2.992 0.355 0.000

Commons IO 1.344 0.661 0.000 NiFi 0.024 0.302 0.073 1

CXF 0.762 0.363 0.000 3 oozie 0.451 0.198 0.075 1

DeltaSpike 1.396 0.791 0.000 jclouds 0.467 0.890 0.000 1

Drill 0.335 0.519 0.001 1 PDFBox 3.505 −0.066 0.493

Dubbo 1.900 0.929 0.000 Pulsar 0.456 0.768 0.000 1

Flink 4.080 0.353 0.001 SIS 9.558 0.482 0.000

Flume 0.340 0.922 0.000 1 Storm 0.389 0.071 0.611 2

Giraph 1.174 0.463 0.000 TinkerPop 0.156 0.802 0.000 1

Jackrabbit 1.639 0.453 0.000 Zeppelin 0.320 0.161 0.220 2

OpenWebBeans 0.492 0.436 0.000 1
Spk = Spikes

projects the metric under study (i.e., number of TDIs introduced by new code)
can be considered as stable (dark grey cell shading in column SMF), whereas in
the rest 11 projects as sensitive (light grey cell shading).

To provide a visual insight on the discussed fluctuations, in Fig. 2, we present
the evolution of one extremely stable project, namely Metron, and a sensitive
one, namely SIS. We note that even for the most “stable” projects, some spikes
still exist; however, the spikes are small in height. A visual analysis of fluctua-
tions in all projects (figures are available in the online material) revealed that
fluctuations of TD are distributed across the entire project lifetime. This ob-
servation is a first indication that these spikes might be irrelevant to the time
period that they appeared, questioning a relation between TD introduction and
project maturity. Nevertheless, this finding needs further investigation.

5.2 Correlation Analysis: Fluctuation vs. Activity (RQ2)

To investigate if the fluctuation of the number of TDIs that is inserted by new
code is due to some temporal phenomenon that occurs in the given time period,
we need to exclude the most obvious confounding factor, i.e., developers’ activity.
One of the first tentative interpretations on the existence of high spikes as those
presented in Fig. 2(b), would be that in the corresponding time windows, lots of
code has been committed. To explore the existence of this confounding factor,
in Table 2 we highlight with light-gray cell shading (in column Corr. Coef.)
the cases in which the correlation is strong (>0.7 [15]) and at the same time

https://github.com/apache/atlas
https://github.com/apache/knox
https://github.com/apache/beam
https://github.com/apache/kylin
https://github.com/apache/calcite
https://github.com/apache/metron
https://github.com/apache/cayenne
https://github.com/apache/myfaces
https://github.com/apache/commons-io
https://github.com/apache/nifi
https://github.com/apache/cxf
https://github.com/apache/oozie
https://github.com/apache/deltaspike
https://github.com/apache/jclouds
https://github.com/apache/drill
https://github.com/apache/pdfbox
https://github.com/apache/incubator-dubbo
https://github.com/apache/pulsar
https://github.com/apache/flink
https://github.com/apache/sis
https://github.com/apache/flume
https://github.com/apache/storm
https://github.com/apache/giraph
https://github.com/apache/tinkerpop
https://github.com/apache/jackrabbit
https://github.com/apache/zeppelin
https://github.com/apache/openwebbeans


10

statistically significant (p<0.001). The findings suggest that only in 22% of the
projects this correlation is strong. So only in these cases, the commit activity
could explain the fluctuations in the number of TDIs that is added by new
code. To visualize this result, we present the scatter plot and the evolution of
both variables in a single line chart, in Figs. 3a-3b for Dubbo (the project with
the highest correlation), and in Figs. 4a-4b for PDFBox (the project with the
lowest correlation). In the scatter plots, each dot represents a 6-month period,
mapping the values of the two variables for which we seek correlation. For strong
correlations, dots are expected to concentrate around the central diagonal.

(a) Scatter plot (b) Line chart of co-evolution

Fig. 3: Correlation analysis for Dubbo: fluctuation related to developers’ activity

(a) Scatter plot (b) Line chart of co-evolution

Fig. 4: Correlation analysis for PDFBox: fluctuation NOT related to developers’
activity

6 Discussion

6.1 Interpretation of Results

The high-level goal of this study was to investigate if the introduction of TDIs
(by adding new code) is a temporal phenomenon, that diverges over time. Based
on the findings, some temporality can be claimed only for a number of projects.
In particular, based on the fluctuation of TDIs due to the introduction of new



On the Temporality of Introducing Code Technical Debt 11

code (see Section 5.1), we can classify the projects in three categories through
visual inspection of the evolution graphs: (a) stable projects without any tem-
porality—i.e., negligible fluctuations (0-1 spike, 10 projects); (b) stable projects
that are not sensitive, but some “extra-ordinary” spikes occur (>1 spikes, 6
projects); and (c) sensitive projects (many spikes, 11 projects). The number of
spikes of each project is reported in Table 2 (column ‘Spk’); note that we only
provide the number of spikes for the stable projects, since sensitive projects have
multiple ones.

Based on the findings of Table 2, we can claim that the introduction of TDIs
due to the insertion of new code is, in the majority of the projects, independent
of time. This can be interpreted as an indication of project maturity, in the sense
that consistent quality is achieved throughout evolution. However, even for these
projects, the absence of fluctuations does not necessarily imply the absence of
any trend. For example, in Fig.2 we can see that the evolution of project Metron
does not exhibit any spikes; however, its trend is clearly a decreasing one. On
the other hand, for a subset of the analyzed projects, the introduction of new
code TDIs is a temporal phenomenon, since many spikes exist in their evolution.
For these projects, the number of introduced TDIs in each period is not stable,
and it is reasonable to assume that it is influenced by some external parameters.
This observation renders important the study of potential external factors that
drive the accumulation of TDIs along the evolution of a software project.

The second research question that we have explored led to a rather unex-
pected finding: i.e., the number of commits, made in a time period, is (for the
majority of the cases) not correlated to the number of introduced TDIs into the
system. Intuitively, one would expect that these variables would be related, in
the sense that the more code is added, the more TDIs are expected to be intro-
duced. However, this might not be the case for several reasons, i.e., TD might
be more strongly related to: (a) the maturity of the project; (b) the developers’
habits; or (c) the specific type of tasks performed in each time period. Therefore,
this issue needs further investigation, as discussed in Section 6.2.

6.2 Implications to Researchers and Practitioners

Based on the results we are able to provide some first implications to both
researchers and practitioners. Regarding researchers, we can claim that the
accumulation of new code TDIs reflects (at least to some extent) the character-
istics of the development process: by being stable in most cases, the introduction
of new code TD is probably less related to external factors, and primarily de-
pendent on the capabilities of the team. However, for a non-negligible number of
projects, timing seems to be an important factor for studying the accumulation
of technical debt: TDIs do not seem to be uniformly introduced along evolution,
but rather behave as a temporal phenomenon, with multiple and (in some cases)
large fluctuations. Therefore, we propose that researchers:

– For stable projects, investigate further the relation between the constant
rate of introduction of new code TDIs with the practices followed by the



12

development team. It would also be valuable to compare stable projects, but
with different trends (increasing vs. decreasing), with respect to their key
properties.

– For sensitive projects, perform explanatory studies to unveil the reasons
for which spikes occur in the evolution of the introduced TD. Such stud-
ies could identify possible reasons (e.g., changes in the programming team,
changes in used libraries or frameworks, impact of business goals) that lead
teams/projects with a rather stable accumulation of TD, to perform worse
under certain circumstances.

– Based on the output of the above, researchers should work on more accurate
TD prevention methodologies that will attack the heart of the problem,
based on the particular conditions of each project. For example, a project
that is expected to undergo staff turnover, or will face tight deadlines, should
calibrate its quality gates to ensure TD does not grow beyond thresholds.

Regarding practitioners, we suggest the following implications:

– We encourage them to perform fluctuation analysis and investigate the rea-
sons for the existence of high or frequent peaks in the evolution of introduced
TDIs. Understanding the consequences of their way of working in certain pe-
riods (which might lead to excessive accumulation of TD) can prove beneficial
for process improvement purposes and quality control.

– We advise them to classify their project in the categories mentioned in Sec-
tion 6.1. If their project is sensitive or if the observed trend is a steadily
increasing one, then they need to perform a root cause analysis regarding
the parameters that affect the accumulation of new code TD. Some of them
may be mitigated, for example moving certain developers to different teams,
or reprioritizing the backlog to include more refactoring.

7 Threats to Validity

In this section, we discuss threats to the validity of the study, including threats to
construct, external validity and reliability. The study does not aim at establishing
cause-and-effect relations; thus it is not concerned with internal validity.

Construct Validity reflects how far the examined phenomenon is connected
to the intended objectives. The main involved threat is related to the accuracy
by which TD can be captured by static analysis tools such as SonarQube. Rule
violations reported as TDIs are obviously only one manifestation of actual code
and design inefficiencies. Furthermore, it is known that such tools are not capable
of identifying architectural problems or other types of TD such as requirements,
test or build debt. In addition, we consider only TD that can be mapped to
methods, thus ignoring changes which might occur at the level of files. However,
while SonarQube is by far not perfect in identifying TD, other static analysis
tools suffer from similar limitations.

Another construct validity threat is related to the use of the number of com-
mits as a surrogate of the workload that has been carried out by the project



On the Temporality of Introducing Code Technical Debt 13

participants. Since in open-source projects, voluntary contribution is interleaved
with the rest of the developers’ activities, we acknowledge that a ’busy’ or ’re-
laxed’ period in terms of commits, does not necessarily reflect the actual work
conditions of the developers. Moreover, commits differ in the amount of work
that they carry: some commits might be accompanied by many changes in several
files while other are related to only a few changes. Further research is required
to derive the actual workload of developers committing to an OSS project.

Reliability reflects whether the study has been conducted and reported in
a way that others can replicate it and reach the same results. To mitigate this
threat, the study protocol is explicitly described listing all data collection and
analysis steps. The only subjective data interpretation concerns the identification
of spikes (which however is of secondary importance); therefore, to a large extent,
researcher bias has been avoided. A replication package1 is available with all
available data to allow for an independent replication of the investigation.

External Validity examines the applicability of the findings in other settings,
e.g., other software projects, other programming languages and possibly other
TD tools. We have focused only on Java Apache projects that use Maven as a
build tool. This limits the ability to generalize the findings to other projects. The
fact that the study focuses on 27 projects of the ASF, which are highly active and
popular among software developers partially mitigates threats to generalization.
Nevertheless, replication studies on the effect of new code on the evolution of
TD are needed to strengthen the validity of the derived conclusions.

8 Conclusions

Studying the phenomenon of introducing code TDIs is a research direction that
is important for building tools aimed at preventing the accumulation of TD. In
this study, we focus on code technical debt, and in particular, we explore the
temporality of the TD introduction phenomenon. To this end, we explore if the
introduction of TDIs changes in different time periods, and if these changes can
be attributes to the developers’ activity in the corresponding period. To explore
these two questions, we have performed a case study on the complete evolution
of twenty-seven projects from the ASF.

The results of the study suggested that for the majority of the projects
the evolution on TD introduction is stable, i.e., there are not many (at max-
imum 2) high fluctuations in TDIs introduction, due to new code. However, a
non-negligible part of projects (approx. 40%) present high and frequent fluctu-
ations. This result suggest that TD introduction is only partially a temporal
phenomenon, with more TD being introduced in some time periods. The addi-
tional exploration of the phenomenon led to the conclusion that the spikes in the
evolution of TD introduction are not correlated with spikes in the development
activity, suggesting that the number of commits in the examined period is not
the main factor affecting the existence of ‘excessive TD introduction.

https://drive.google.com/drive/folders/1oF51ZPlXSiIL-mM-W2kHs7vi63Ij5n8P


14

References

1. Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” Journal of Systems and Software, vol. 101, pp. 193–220,
2015.

2. J.-L. Letouzey, “The sqale method for evaluating technical debt,” in 2012 Third
International Workshop on Managing Technical Debt (MTD). IEEE, 2012, pp.
31–36.

3. V. Alves, N. Niu, C. Alves, and G. Valença, “Requirements engineering for software
product lines: A systematic literature review,” Information and Software Technol-
ogy, vol. 52, no. 8, pp. 806–820, 2010.

4. A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P. Abrahams-
son, A. Martini, U. Zdun, and K. Systa, “The perception of technical debt in the
embedded systems domain: an industrial case study,” in 2016 IEEE 8th Interna-
tional Workshop on Managing Technical Debt (MTD). IEEE, 2016, pp. 9–16.

5. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad (and whether the
smells go away),” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp.
1063–1088, 2017.

6. R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A. Shapoc-
hka, “A case study in locating the architectural roots of technical debt,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 179–188.

7. A. Martini, J. Bosch, and M. Chaudron, “Investigating architectural technical debt
accumulation and refactoring over time: A multiple-case study,” Information and
Software Technology, vol. 67, pp. 237–253, 2015.

8. S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of
code smells: A case study of two open source systems,” in 2009 3rd international
symposium on empirical software engineering and measurement. IEEE, 2009, pp.
390–400.

9. A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of code smells
in object-oriented systems,” Innovations in Systems and Software Engineering,
vol. 10, no. 1, pp. 3–18, 2014.

10. R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using software
repository mining,” in 2012 16th European Conference on Software Maintenance
and Reengineering. IEEE, 2012, pp. 411–416.

11. G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolution of tech-
nical debt in the apache ecosystem,” in European Conference on Software Archi-
tecture. Springer, 2017, pp. 51–66.

12. J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering. ACM,
2014, pp. 313–324.

13. E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Software
metrics fluctuation: a property for assisting the metric selection process,” Infor-
mation and Software Technology, vol. 72, pp. 110–124, 2016.

14. P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

15. A. Field, Discovering Statistics Using IBM SPSS Statistics. Sage Publications
Ltd., 2013.


	On the Temporality of Introducing Code Technical Debt 

