

Highlights

It's About Time: How To Study Intertemporal Choice in Systems Design

Fabian Fagerholm, Andres De los Ríos, Carol Cárdenas Castro, Jenny Gil, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, Christoph Becker

- Intertemporal decision making is crucial for many software systems design problems.
- An empirical study of intertemporal decision making is presented.
- Software professionals vary in how they value outcomes across time.
- They identify intertemporal choices across all areas of software systems design.
- Theory and guidelines to study intertemporal systems design choices are presented.

It's About Time: How To Study Intertemporal Choice in Systems Design

Fabian Fagerholm^{a,*}, Andres De los Ríos^b, Carol Cárdenas Castro^c, Jenny Gil^c, Alexander Chatzigeorgiou^d, Apostolos Ampatzoglou^d, Christoph Becker^{b,*}

^a *Aalto University, Finland*

^b *University of Toronto, Canada*

^c *S4N, Colombia*

^d *University of Macedonia, Greece*

Abstract

Context: Decision making pervades software and systems engineering. *Intertemporal* decisions involve trade-offs among outcomes at different points in time. They play a central role in systems design, as recognised since the inception of the software engineering (SE) field. They are also crucial factors in the sustainability of design decisions. However, temporal decision making is not adequately understood in SE, while the field of Judgement and Decision Making (JDM) offers a vast array of empirical findings and research methods that could be utilised.

Objective: This article aims to examine how software professionals handle intertemporal choices; in what areas of software development such decisions can be found; and how systems design decisions can be characterised and studied as intertemporal.

Method: We developed a method to study intertemporal choice in SE, based on an initial set of psychological theory grounded in JDM. We instantiated the method in a study to elicit responses to an intertemporal choice task followed by a Cognitive Task Analysis (CTA) interview.

Results: We found that study participants overall displayed a tendency to discount future outcomes, but individual participants varied wildly in how

*Corresponding author

Email addresses: fabian.fagerholm@aalto.fi (Fabian Fagerholm), andres.dlr94@gmail.com (Andres De los Ríos), carolcardenasc@gmail.com (Carol Cárdenas Castro), gil.j.jenny@gmail.com (Jenny Gil), achat@uom.edu.gr (Alexander Chatzigeorgiou), a.ampatzoglou@uom.edu.gr (Apostolos Ampatzoglou), christoph.becker@utoronto.ca (Christoph Becker)

they valued present vs. future outcomes. They indicated several locations in which intertemporal choices occur in everyday software development. Based on these findings, and by reconciling our initial theory with existing JDM theory and results, we further developed and refined our theory and study method into a framework for studying intertemporal decision making in SE.

Conclusions: To obtain a basis for more sustainable software systems design decisions, SE research should adopt a more comprehensive, detailed, and empirically consistent way of understanding and studying intertemporal choices. We provide suggestions for how future research could achieve practical methods that address essential characteristics of real-life systems design decisions.

Keywords: intertemporal choice, temporal discounting, judgement and decision making, naturalistic decision making, cognitive task analysis, psychology, human factors

¹ 1. Introduction

² The life of a software system is full of trade-off decisions. Requirements
³ engineers, architects, programmers, testers, user interface designers, project
⁴ managers, and many other software experts must work in concert to navigate
⁵ design options on different levels that shape the system they are making.
⁶ In response to this reality, software engineering research and practice have
⁷ developed sophisticated approaches to support and, in a limited sense, au-
⁸ tomate decision-making within specific areas of the profession.

⁹ Many trade-off decisions in systems design involve a dimension of central
¹⁰ importance that is particularly difficult to grasp: *time*. Their outcomes are
¹¹ scattered in time: some of them are close, others distant. Decision making
¹² researchers call such trade-offs *intertemporal* [31]. Designers must judge
¹³ not only *what* options exist, but also *when* they occur and *who* they affect.
¹⁴ Long-term considerations have been discussed since the coining of the term
¹⁵ “software engineering” (SE) and were part of the founding impetus of the
¹⁶ field. They become increasingly urgent as a consequence of the ongoing
¹⁷ trend of digitisation of society.

¹⁸ The intertemporal nature of SE choices may affect what is chosen in un-
¹⁹ desirable ways. A tendency to favour immediate outcomes over more distant
²⁰ ones may lead to favouring quick wins over options that look less attractive
²¹ but are more sustainable. This has internal and external consequences for
²² a software project. Internally, the deterioration of a design causes increased
²³ effort for future development and quality. Externally, consequences include

24 negative effects for customers and society at large, depending on the kind
25 of system being built.

26 In this paper, we explore the issue of complex software systems design
27 decisions with implications over time through the psychological lens of *in-*
28 *tertemporal choice*: ‘decisions involving trade-offs among costs and benefits
29 occurring at different times’ [31, p. 351]. We discuss the nature of such
30 decisions and introduce concepts from those scientific disciplines that have
31 examined these topics since before SE emerged. To address the temporal di-
32 mension of decisions more wisely, we propose to first understand more about
33 the decisions themselves as well as the complex cognitive and social decision-
34 making processes that unfold when real-life systems design and development
35 happens. Humans can, after all, successfully navigate very complex design
36 spaces involving technical, social, temporal, and ethical dimensions. Know-
37 ing more about how that happens, and when and why the process might
38 break down, will be crucial for the creation of novel approaches to decision-
39 making in SE. We examine how time plays a role in design decisions in soft-
40 ware projects, and we propose a characterisation of intertemporal choices
41 that helps us understand and analyse their cognitive and social aspects.
42 We conclude by mapping possible research directions that we may pursue
43 to increase the understanding of intertemporal choice in software design
44 decision-making across time. The direction taken here extends the existing
45 significant research in SE on human factors (see, e.g., [8], [51], [74], and [27]
46 for overviews of different areas) and opens a new direction of research with
47 novel potential for improving how we design sustainable information and
48 software technology.

49 **2. Background**

50 *2.1. Decision-making across time in software engineering*

51 Complex engineering decisions with many variables and parameters are
52 at the heart of SE as a field. For example, this includes architectural trade-
53 offs decisions [86, 41, 14, 91, 3, 28], Technical Debt management [52, 2, 24, 9],
54 and software component selection [59, 38].

55 *Intertemporal* choices in which the outcomes are located at different
56 future points occur in many areas of life. Pinpointing where they occur
57 in systems design is not straightforward, but many decisions taken in sys-
58 tem development have uncertain but far-reaching long-term effects. Many
59 also involve trade-offs between uncertain longer-term effects and shorter-
60 term effects. In SE, the decisions that are most explicitly intertemporal

61 surface in Technical Debt management [52, 2, 24, 9], architectural trade-
62 offs [86, 41, 14, 91, 3, 28], refactoring [1], software maintenance and sus-
63 tainability [19], as well as in test automation, feature prioritisation, and
64 project management decisions, as we established previously through a pair
65 of systematic literature reviews [7, 5, 26]. These kinds of decisions all deal
66 specifically with options that have outcomes at different points in the future.
67 However, there may be other places too where intertemporal choices surface
68 in less obvious ways.

69 Building on predecessor disciplines, SE methods rely on multi-criteria
70 decision making methods including utility analysis and the Analytic Hier-
71 archy Process [42, 72]. These mechanisms are used to effectively handle
72 the uncertainty and complexity that arises from the interplay of many in-
73 tersecting factors. Attention is now honing in on the cognitive aspect of
74 decision making in such situations [86]. While the existing work on decision
75 making in SE and its predecessor disciplines bring many valuable sugges-
76 tions on how to effectively and efficiently compute a decision given complex
77 parameters and probabilities, we recognise that the question ‘how do hu-
78 man beings make such decisions’ falls first and foremost into the purview of
79 psychology and the social sciences. Similar to other human factors research
80 in SE [51, 60], we therefore build first from a rigorous foundation based on
81 reference disciplines such as psychology. These provide us with a vocabulary
82 for being precise about the questions we ask.

83 2.2. *The concept of intertemporal choice in reference disciplines*

84 The reference discipline for decision making is of course the field of *Judge-
85 ment and Decision Making* [44], which employs perspectives ranging from
86 psychology and social psychology to behavioural economics, sociology, neu-
87 roscience and combinations thereof, such as neuroeconomics [55]. JDM typi-
88 cally locates its roots in Bernoulli’s work that founded multi-criteria decision
89 making but has incorporated a broad range of disciplinary views over the
90 decades [43].

91 In SE and other fields, the terms *choice* and *decision* are sometimes used
92 interchangeably. But it is worth paying attention to the nuances with which
93 reference disciplines differentiate between these key terms.

94 • A *decision* arises in a situation in which someone could conceivably
95 make different commitments on how to proceed. In naturalistic deci-
96 sion making, a decision is defined as “committing oneself to a certain
97 course of action” [53]. We follow many JDM researchers in taking the

98 encompassing perspective that a decision is a “conclusion or resolution
99 reached after consideration” [65].

100 • A *choice* is a specific *type of decision* where distinct options exist from
101 which a selection has to be made. In other words, a choice is the
102 “act of selecting or making a decision when faced with two or more
103 possibilities”[64].

104 • *Judgement* is broader. For example, when a person faced with a choice
105 between two options rejects the framing and generates a third option to
106 pursue, they have exercised judgement in reflecting on the boundaries
107 of the presented decision and have made a different decision (commit-
108 ment). In other words, judgement is “the ability to make considered
109 decisions or come to sensible conclusions” [66].

110 It is important to note that these distinctions, while established in the
111 reference disciplines of JDM, are not standard in SE. Instead, the prevailing
112 view is narrower, based on only some areas that investigate decision making
113 from a certain perspective. In Decision Analysis and Multi Criteria Decision
114 Making, a narrow definition of decision making as choice – as “selecting one
115 option among possible alternatives” – has been so dominant over the broader
116 cognitive, psychological and social reality of decision making that the con-
117 cept of decision making collapses into choice. As a consequence, some have
118 questioned whether this concept is in fact relevant in software development
119 – for example, whether programmers really make explicit ‘choices’ [71]. In
120 reality, however, decisions often involve the creative development of new op-
121 tions and the re-examination of what comprises the situation. At the same
122 time, they often do not involve *choices between options* [47]. This may ap-
123 pear counter-intuitive, but a commitment to action can be made, and often
124 is made, without comparing multiple options.

125 Correspondingly, this article takes the encompassing definition of deci-
126 sion making from the JDM literature and uses the terms as defined above.
127 However, we use the term choice to mean decision in one case: decisions
128 that involve trade-offs between outcomes occurring at different points in the
129 future. These are called *intertemporal choices* [31, 54], and constitute a cen-
130 tral topic in JDM. The term intertemporal decision would perhaps be more
131 accurate, but since the term is already established, we make this exception
132 to be consistent with terminology in JDM and behavioural economics. Still,
133 we speak of intertemporal decision making when referring to the activity of
134 making decisions of an intertemporal nature.

135 Intertemporal choices are often studied in terms of the extent to which
136 time changes the subjective valuation of an outcome. The degree to which
137 an increase in time changes the valuation a decision maker places on an out-
138 come is called *temporal discounting*. For example, a person who is indifferent
139 between receiving \$100 in one year and receiving \$100 in two years would be
140 said to exhibit no discounting, whereas someone who would require an ad-
141 ditional \$100 to be indifferent to postponing the receipt of money by a year
142 would be said to have a *discount rate* of 100% for that year. Researchers in-
143 vestigating intertemporal choice have noted that “most – if not all – choices
144 that individuals and organisations make in the real world are intertempo-
145 ral” [78]. It follows that many, if not most, software design choices are, too.
146 SE decisions that are most explicitly intertemporal include Technical Debt
147 management, architectural trade-offs, refactoring decisions, test automation,
148 feature prioritisation, and many project management decisions [7, 26].

149 A wealth of research exists on intertemporal choice [54], but within the
150 context of SE, it is a new concept [5]. Most theories, methods and studies
151 are based on the idea that discounting exists and that it can be expressed
152 as a mathematical model of valuation as a function of the time horizon. For
153 example, the dominant model of *discounted utility* proposed by Samuelson
154 [73] assumes that the discount rate is constant in time and models the future
155 value FV as a function of the earlier (often present) value PV and the time
156 between the two options t . In the case of discounted utility, the simplest
157 model, the annualised continuously compounded *discount rate* DR_c [73] is
158 constant: $FV = PV \times e^{DR_c \times t}$.

159 Because many studies observed that participants’ choices are not well
160 described by this exponential curve [31], other models have been developed
161 and evaluated [56, 34, 31]. For example, in *hyperbolic discounting*, the dis-
162 count rate decreases over time, with the rate of decrease in turn decreasing
163 over time [69]; and the Area Under the Curve (AUC) provides a compound
164 measure of the aggregate amount of discounting observed in an individual
165 or a sample over the entire range of time periods [61].

166 Real-life intertemporal choices can be explicit and salient in the decision-
167 maker’s mind, such as the choice of whether to buy a specific health in-
168 surance; vague and open-ended, such as the decision of how to spend the
169 weekend; or habitual, such as always buying a doughnut with the morning
170 coffee on the way to work. It is usually not straightforward to tell what the
171 best decision would be, and with varying individual characteristics, differ-
172 ent persons will choose differently. Nevertheless, a general tendency is for
173 humans to favour positive outcomes that are more immediate. A positive
174 discount rate is common across experiments in many fields, meaning that

175 in general, people tend to perceive outcomes further into the future as less
176 important than more immediate ones [31].

177 Decisions do not happen in a vacuum, and the context in which decisions
178 are made and the way that options are presented affect the decision out-
179 come. The *choice architecture* concept describes how available options are
180 presented to decision-makers, including factors such as layout, sequencing,
181 and range of choices [81]. Altering such factors can nudge decision-makers
182 towards certain choices and behaviours [80] and may interact with temporal
183 aspects of the decision. Choice architecture in turn must be considered as
184 part of the larger context of decision making, which includes such as aspects
185 as team roles and group dynamics as well as organisational policies, incen-
186 tives, norms, and values. In JDM, the entire system of these elements is
187 referred to as the ‘macro-cognitive’ system of decision making (c.f. [46, 75]).

188 In summary, decades of intertemporal choice research in these reference
189 disciplines have resulted in sophisticated study designs to elicit discount
190 rates [15] and explore the many cognitive factors involved in preference con-
191 struction and choice. Researchers have elaborated and compared several
192 models to represent discounting behaviour over time; identified a “spec-
193 tacular” range of individual behaviours in different studies [31]; explored
194 questions such as the differential discounting of losses, gains, and ‘mixed
195 outcomes’ that combine losses and gains [78]; and questioned whether the
196 standard model of intertemporal choice based on quantitative discount rates
197 over time is an empirically valid description of how the human mind per-
198 ceives and values time [90]. These frameworks and methods provide a rig-
199 orous foundation for the study of intertemporal choice in systems design.

200 2.3. *Intertemporal choice in SE*

201 When we consider SE decisions as *intertemporal choices*, many ques-
202 tions arise. From this perspective, how software professionals actually make
203 intertemporal design decisions is not at all clear: The question has only
204 recently begun to attract attention in SE [89, 82, 86, 7, 5].

205 Excessive temporal discounting can cause significant long-term harm, so
206 understanding discounting in software development may provide a key to
207 better long-term outcomes. Long-term perspectives have often been advo-
208 cated for [67, 62, 91]. For example, the focus of technical debt on ‘expedi-
209 ency’ [57] already emphasises the costs of short-term thinking. Even more
210 importantly, short-term thinking can lead to harmful outcomes for stake-
211 holders and society at large.

212 In a recent study [6], replicated in several countries [26], we examined
213 whether software developers discount future outcomes. We found extensive

214 temporal discounting: To regard a positive uncertain future outcome (effort
215 savings) as equally valuable as a comparable closer outcome, participants in
216 all cohorts required additional benefits that exceeded the effects of financial
217 interest rates by orders of magnitude. But just as interestingly, the study
218 also identified striking differences in individual preferences and found that
219 developers with more breadth of experience discounted less.

220 **3. Methods and Contributions**

221 *3.1. Research Questions*

222 Our aim is to better understand the social and psychological dynamics
223 at play in intertemporal software design decisions. This study addresses the
224 following research questions:

225 **RQ1:** How does temporal distance affect software professionals' choices?

226 **RQ2:** Where do intertemporal choices occur in systems design practice?

227 **RQ3:** How can we characterise intertemporal choices in systems design?

228 To address these questions, we present a method for studying the be-
229 havioural and psychological aspects of what choices people make and how,
230 and we instantiate it in an empirical study. Our method poses an intertem-
231 poral choice task in a familiar and often-occurring software project manage-
232 ment task: that of choosing between work with benefit in the short term and
233 long term. The method then uses this task as a probe for inquiring where
234 and how intertemporal choices surface in our participants' work. This al-
235 lows us to look for other activities where intertemporal choices occur. In the
236 analysis, we abstract our results into a framework for guiding future studies
237 on intertemporal choice in systems design. This section covers the design
238 of the method, while Section 4 covers the study design using that method
239 and Section 5 presents results from that study. The materials used in the
240 method are available online[?].

241 *3.2. Method: Cognitive Task Analysis*

242 To examine how software professionals make judgements and decisions
243 that involve trade-offs in time between uncertain future outcomes, our method
244 is structured around an intertemporal choice task that performs two roles:

245 1. It elicits an intertemporal choice response from each participant.

246 2. It serves as a probe for a subsequent interview that explores what
247 other intertemporal choices the participants face in their daily work
248 and how they reason about them.

249 The method is designed to support researchers in exploring the range of
250 reasoning mechanisms and heuristics in their participants' 'cognitive tool-
251 box' [32]. For this reason, it is based on Cognitive Task Analysis (CTA).

252 CTA studies cognition in a real-world context [16] and has been ap-
253 plied in countless domains involving skilled expert performance, including
254 medicine, emergency response teams, management, the military, and engi-
255 neering [76, 36, 16]. It has come to describe a wide range of techniques for
256 *knowledge elicitation, data analysis, and knowledge representation*. For each
257 core aspect of CTA, techniques include methods known in other contexts,
258 such as semi-structured interviews, Q Sort [10], or Repertory Grids [20, 11];
259 a range of methods specifically developed within CTA, such as Critical Deci-
260 sion Method [50], Critical Incident Technique [30], and Interacting Cognitive
261 Subsystems [4]; and methods that originate within the practice of CTA and
262 have found widespread adoption outside, such as concept mapping [63].

263 In SE, CTA techniques such as verbal protocol analysis [23] have been
264 used to gain insights into how cognitive biases may impact the performance
265 of software professionals [37]. For example, in a study on the relationship
266 between pair-programming, cognitive biases and productivity, Jain et al. [39]
267 found that novice and experts software developers are significantly affected
268 by confidence bias, which reduces their productivity.

269 3.3. *Task Design for intertemporal choice studies*

270 To construct a study design for intertemporal decision making that al-
271 lows us to evaluate how temporal distance affects preferences and choices,
272 we turn again to the reference disciplines that have empirically studied in-
273 tertemporal choice for decades [31]. A central issue is how to design the *task*
274 that is used to prompt participants to make an intertemporal choice.

275 Many *task designs* have been proposed to uncover and quantify tem-
276 poral discounting. Most present a specific, abbreviated situation and elicit
277 a response from participants. That response is used to construct a rep-
278 resentation of their time preferences and establish if, and how much, they
279 discount over time [31]. A comprehensive comparison of methods is provided
280 in Hardisty et al. [34].

281 The most frequently used study designs use either a *choice* task that asks
282 participants to decide which of a set of alternatives they prefer [15, 35], or a
283 *matching task* that requires participants to provide a number, typically the

284 number at which one option becomes equally valuable as another one [79,
285 90]. Following this approach, our first empirical study on intertemporal
286 choice in SE [6], replicated in several countries [26], employed a matching
287 task combined with shifting time frames to establish, for each participant,
288 their temporal preferences for a set of time frames ranging from 1 to 10
289 years. This is a well-established study design adopted from behavioural
290 economics [31, 34].

291 In the task design used in this article, adopted from our previous study,
292 we examine whether software developers discount future outcomes in a
293 project management scenario. We ask participants to indicate the time
294 savings they would require to regard an uncertain positive outcome at dif-
295 ferent times in the future (potential effort savings) as equally valuable as a
296 comparable closer outcome (feature development). By asking participants
297 to identify the threshold point at which the more distant outcomes is equal
298 to the closer outcome, we can establish quantitative measures of the effect
299 of time on their preferences.

300 The task design consists of two stages. First, a decision-making scenario
301 is presented for a project currently in progress. Following the scenario de-
302 scription, participants see two options: 1) spend effort earlier on implement-
303 ing a planned feature (a short-term option); or 2) spend effort to integrate a
304 software library with potential long-term benefit in terms of reduced main-
305 tenance effort. The participants' task is to specify how many days of effort
306 savings they would require to prefer the second, long-term option over the
307 first, short-term option. Following best practice in JDM, the uncertainty of
308 the outcome is fixed at 60% probability to minimise additional discounting
309 due to a lack of precise information on the degree of uncertainty [31]. The
310 response is used to establish a baseline preference (present value, PV) free
311 of priming from the consideration of different time-frames.

312 Second, the scenario is presented again with several different project time
313 horizons. This is the step shown in Figure 1. The baseline answer from step
314 1 is used as the *present value* – the baseline is compared against the other
315 values to assess discounting. As a result, participants are actively asked to
316 consider what difference time makes for their preference.

317 The outcome of such a task is a series of data points that can be used
318 to plot the effect of temporal distance on participants' preferences, compute
319 discount rates if desired, and measure in more general terms the temporal
320 attitude of decision makers [15], as we previously demonstrated [6, 26] and
321 will present in Section 5. When this task gets incorporated into a CTA
322 study, however, it becomes the object of continuous observation and the
323 critical incident that can be studied and examined.

Imagine the following scenario happening in the company you currently work in.

You are working on a project that delivers new functionality for a software system that directly affects end customers. It's the end of the week, and you are ahead of schedule in the current iteration. You will soon meet your team and product owner to discuss plans for the next week. You are expected to suggest what you should do during the next week. You have to choose between two options:

Option 1: Implement the next feature from the project backlog. The feature was originally meant for the following iteration. The feature is estimated to require five person days of effort.

Option 2: Work on a task that is not in the project backlog, but that has been discussed before. This task is to integrate a mature and well-tested library that adds no new functionality but could save some effort over the duration of the entire project. The chance of saving the effort is estimated to be 60% (with a 40% chance that the library will not result in those savings). The integration is estimated to require five person days of effort.

The project is 6 months long and has been going for three months.

How many days of effort savings would you require to prefer recommending Option 2 over Option 1?

 days of effort

The project is 1 year long and has been going for three months.

How many days of effort savings would you require to prefer recommending Option 2 over Option 1?

 days of effort

The project is 2 years long and has been going for three months.

How many days of effort savings would you require to prefer recommending Option 2 over Option 1?

 days of effort

The project is 3 years long and has been going for three months.

How many days of effort savings would you require to prefer recommending Option 2 over Option 1?

 days of effort

The project is 5 years long and has been going for three months.

How many days of effort savings would you require to prefer recommending Option 2 over Option 1?

 days of effort

Figure 1: Intertemporal choice scenario and decision tasks (excerpt from questionnaire; version with work consequences for the participant themselves or their team).

324 **4. Research Design and Analysis**

325 *4.1. CTA Study Design*

326 The method described above provides a template for CTA studies of in-
327 tertemporal choice in SE. The task serves as a probe – the ‘critical incident’
328 used for subsequent introspection and reflection. We rely on a probe be-
329 cause the conceptual framing of decisions *as intertemporal* is not common
330 in practice (yet).

331 To instantiate this method in a study, we adapted our previous intertem-
332 poral choice study [6, 26] and embedded it into the CTA study protocol.
333 Whereas participants in the original study answered an online survey on
334 their own, we now had participants answer the survey with researchers
335 present to observe them and collect data on how they reasoned. The present
336 study can be understood as an operational, changed-protocol, changed-
337 operationalisations, changed-populations, and changed-experimenters repli-
338 cation [33] with the addition of a qualitative framing. The CTA study thus
339 uses the original, quantitative study as the incident and trigger for the cog-
340 nitive activity we aim to examine. Materials and details of the study design,
341 including coding schemes and examples, are available as supplementary ma-
342 terial [?].

343 The incident was represented by the questionnaire discussed above (Fig-
344 ure 1). The purpose of the questionnaire is to provide the participants with
345 a decision-making scenario to trigger their cognitive activity and to provide
346 quantitative means of assessing the extent to which they would discount
347 future choices. We based the questionnaire on the original study [6, 26].
348 We altered the time horizons to correspond more closely with project du-
349 rations that the participants could encounter in their work. Finally, the
350 questionnaire ended with demographic background questions.

351 Extensive guidance on how incident-focused interviews should be de-
352 signed, conducted, and analysed has been collected [16, 76] and informs our
353 research design.

354 Each session started with an introduction and verification of informed
355 consent, followed by the participant receiving a paper questionnaire with a
356 set of decision-making tasks (explained in the following section). The par-
357 ticipant was asked to think aloud while reading and answering the question-
358 naire tasks. Once the tasks were completed, the researchers asked cognitive
359 interview questions to gain more information about how the participant had
360 reached the task answers. The sessions were recorded for later analysis, and
361 throughout the sessions, the researchers took notes of their observations.
362 Each session had one or two researchers present; guiding and note-taking

363 were shared in some sessions. Each session was roughly one hour in length.
364 At the end, participants filled in background information on themselves. In
365 this paper, we utilise data from the post-task interview. The task served as
366 a probe which helped participants recall similar episodes which could reveal
367 where and how intertemporal choices occur in their work.

368 4.2. Participants and Implementation

369 We invited employees in three companies to participate in the study.
370 Two of the companies remain anonymous in this paper.

371 S4N (*Company A*) is a Colombian software development company with
372 offices in Bogotá, Medellín, and Seattle, USA, with more than 250 employ-
373 ees and more than 150 software products deployed in industries such as
374 retail, airlines, insurance, and banking. In August 2021, S4N was acquired
375 by EPAM Systems, Inc. [22], a leading digital transformation services and
376 product engineering company. The data collection had been completed prior
377 to the acquisition.

378 *Company B*, based in Greece, is a leading European IT solutions and
379 services group with presence in multiple countries, employing more than
380 2,000 professionals. The company develops products for banking, law and
381 customs, security and taxation, transportation, telecommunications, and
382 healthcare sectors.

383 *Company C* is a Swedish publicly traded provider of accounting, invoicing,
384 sales support, and payroll administration for small- and medium-sized
385 companies. It has over 270 000 customers in Sweden and close to 300 em-
386 ployees.

387 All data collection sessions were conducted on site in closed, quiet rooms
388 by researchers fluent in the participants' native languages (Spanish, Greek,
389 and Swedish, respectively). The participants volunteered and were not of-
390 fered incentives or rewards.

391 51 participants from the three companies (A: 20, B: 8, and C: 23) pro-
392 vided data for the study. There were 17 (33%) female and 32 (63%) male
393 respondents; 2 (4%) did not provide gender information. The participants
394 were between 21 and 47 years old (MD: 31, SD: 7.05). Data cleaning re-
395 moved one missing interview and one missing set of quantitative responses.

396 4.3. Data analysis

397 The range of collected data include 30–90 minutes of recordings per
398 participant, the quantitative responses to the questionnaire, interview tran-
399 scripts, and the interviewers' observations and notes from the session. We

400 examined the quantitative data to yield a categorization of participant be-
401 havior according to high-level patterns. The qualitative data, and second-
402 order notes taken while analysing the session notes and transcripts, were
403 further analysed to locate examples of situations with similarly temporal
404 decisions that they were reminded of. We combined the individual findings
405 to yield a higher-order descriptive framework of intertemporal choice.

406 *4.3.1. Quantitative analysis of responses*

407 For the quantitative analysis, we examined the choice task and demo-
408 graphic data using statistical methods to obtain measures for the amount of
409 discounting among the participants. We calculated the overall discount rate
410 using the area under the curve for the empirical function, i.e., the answers
411 provided by the participants for each time horizon in the task, adjusted
412 for the 60% probability given in the task, as done by [26] and documented
413 in [25]. Because we allowed participants to specify that they would always
414 choose a future option for all time horizons, our task data includes three
415 answers with zero days for all time horizons. In the statistical calculations,
416 we assumed that they were indifferent and constant in their discounting
417 (i.e., their empirical function was set to 1 for all time horizons to allow
418 calculations with the empirical function as divisor to work).

419 The choice of the exponential model was based on it being used in the
420 original study [6, 26], as well as the lack of evidence for model choice in
421 the field. The exponential model is commonly used in the intertemporal
422 choice literature [34], is easy to calculate and replicate, and is sufficient to
423 determine the degree of discounting. AUC was chosen based on its theory-
424 neutrality [61], a desirable characteristic in the absence of evidence for model
425 choice, its suitability for providing a comparable measure of total discounting
426 for a participant, as well as its ease of calculation and replication.

427 We used descriptive statistics to examine the demographic data and de-
428 scribe the sample. We used boxplots to gain an overview of the distribution
429 of the time-savings required by participants to choose the long-term op-
430 tion. We plotted the median discount rate against the time horizon options
431 to examine the overall tendency. We also plotted individual discount rates
432 against the time horizon to examine individual differences. All analysis code
433 is included in the supplementary materials.

434 *4.3.2. Qualitative analysis of interviews*

435 The qualitative component of analysis consists of several related aspects.
436 Note that we do not use the task recordings in this paper but focus on the
437 interviews.

438 The interviews were recorded, transcribed by native speakers on the
439 author team, and coded. For language reasons, coding was split with partial
440 overlaps, maximizing how we deployed the language competences of the
441 team. That means that the analysis was done on the originals for the Spanish
442 and Swedish, and on translated transcripts for the Greek interviews. Spanish
443 interviews were coded by one author and reviewed by the two senior authors
444 fluent in Spanish. In this iterative process, we discussed and refined codes
445 and their definition in a codebook in detail until consensus was reached.
446 Greek interviews were then translated to English and coded by the same
447 two authors; Swedish interviews were coded last, by one senior author. All
448 quotes were manually translated by a native speaker of the origin language.

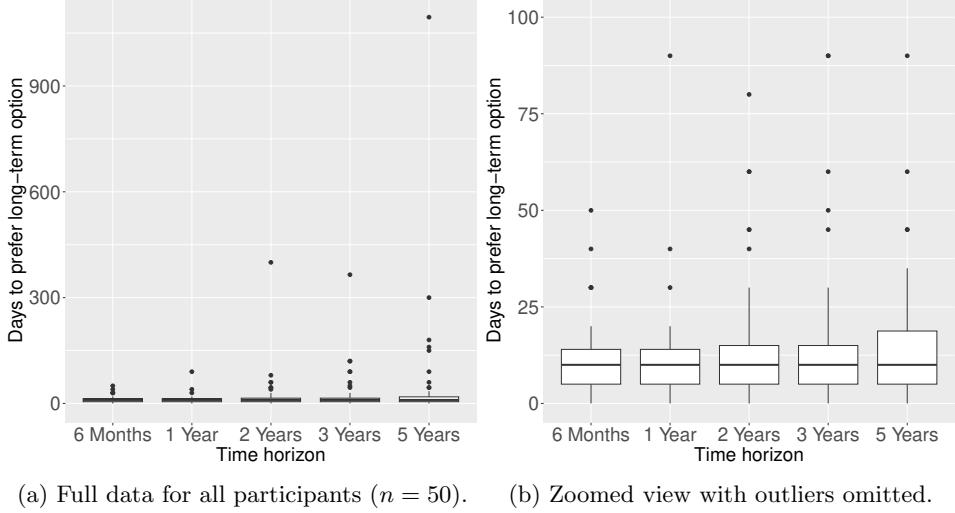
449 In the interviews, we asked our interviewees explicitly for situations of
450 similar kind than our task to address RQ2. Careful to stay away from
451 overly specific and leading language, we stated our interest in identifying
452 “scenarios where there is this kind of future outcome that has to be con-
453 sidered” and asked them “help us pin down some examples of those kinds
454 of situations”. We coded all interviews to identify (a) ‘similar situations’,
455 broadly construed, (b) ‘intertemporal choice’ situations that are explicitly
456 about temporal trade-offs, and (c) whether overall our interviewee recog-
457 nized intertemporal choice situations in their work. For a full tabulation,
458 see supplementary materials.

459 To identify where intertemporal choices occur in our participants’ work
460 (RQ2), we reviewed all these instances, and more broadly all interviews as a
461 whole. In our participant’s memories, similar to other cognitive interviews,
462 a general recognition of semblance is often followed by some probing, which
463 can trigger a sequence of related events, some of which more concrete than
464 others. In our interviews we gain glimpses into stories and follow up on
465 those that appear promising. We pick and report on example instances here
466 because they represent situations that are

- 467 1. explicitly intertemporal (i.e. the interviewee describes them as having
468 outcomes occurring at different points in time),
- 469 2. described in enough detail to narrate them in the article as a vignette,
470 and
- 471 3. refer to concrete software engineering topics such as testing, project
472 management, architecture, etc.

473 The identified concrete instances of intertemporal choices were organized
474 into logical groups for the purpose of presenting them in Section 5.2. The

475 chosen examples were selected not for their representative coverage or fre-
476 quency, but for their value in explaining categories and illustrating salient
477 aspects of *how SE categories* such as quality assurance or technical debt
478 *bring forth intertemporality*. We do not provide frequency counts for these
479 examples because there is no fixed threshold that defines at which point a
480 participant’s memory of a work situation and its semblance to intertemporal
481 choice turns into a concrete experience. The overall assessment, whether or
482 not each interviewee recognizes *some* intertemporal choice situations in their
483 work life, is a holistic judgment that considers all parts of the interview and
484 their dynamic evolution as a whole.


485 To characterize intertemporal choices in SE (RQ3), we used cues from
486 the structure of the examples to characterize the *type* of situation *as intertemporal*,
487 generalizing from situational features as well as prior literature
488 in SE, JDM, and intertemporal choice. For example, when it comes to bug
489 fixing, it is established that bugs are associated with severity, cost, and rip-
490 ple effects, and relevant management concepts include cost estimation, risk
491 management, prioritization, milestones, and project schedules. Temporal
492 dynamics become visible in how these concepts relate to each other in con-
493 crete instances. This iterative process of cycling between theory and data in
494 interpretation is typical for the analysis of qualitative cognitive interviews
495 (Klein).

496 5. Results from the Study

497 In this section, we first examine the occurrence of temporal discounting.
498 We show that despite an aggregate trend to favour more immediate out-
499 comes, our participants vary in interesting ways in whether and how they
500 discount future outcomes. We then identify examples of real-life situations
501 where intertemporal choices occur and organise the examples into areas, pro-
502 viding an answer for how intertemporal choices manifest in systems design.
503 We provide details of the research instruments, quantitative data from the
504 intertemporal choice task, and examples of coded qualitative interview data
505 as supplementary material [?].

506 5.1. Some software professionals exhibit temporal discounting, others don’t 507 (RQ1)

508 We first ask to what extent software developers exhibit temporal dis-
509 counting at all. Figure 2 shows participants’ responses across different time
510 horizons at which potential future effort savings could be obtained in our

(a) Full data for all participants ($n = 50$). (b) Zoomed view with outliers omitted.

Figure 2: Results from our study on intertemporal choice in software projects, a replication of two previous studies [6, 26]. The figures show the distribution of time savings (days) to prefer a long-term investment, for different project time horizons. The left figure (a) shows the wide variance in discounting. Outliers above 100 days are omitted from the zoomed figure on the right (b) to focus on the main effect.

511 scenario (6 months, 1, 2, 3, and 5 years). For each time horizon, the participants
 512 were asked to indicate how many days of effort savings it would take
 513 for them to prefer the potential future savings over getting the nearer benefit.
 514 The responses show striking variance and a clear upward trend across
 515 time. The trend is similar to, but less pronounced than in our previous
 516 studies [6, 26].

517 For the intertemporal analysis, the first response for six months was used
 518 as the present value (PV) and normalised to 1, and the response for years one
 519 and beyond were set to the ratio between PV and the future value for each
 520 scenario. This allows us to calculate how a difference in temporal distance
 521 affects the participants' responses. To understand the kinds of temporal dis-
 522 counting behaviour, consider the three response patterns shown in Figure 3.
 523 For a participant indifferent to changes in time, the normalised ratio stays
 524 constant across time horizons. For a participant whose valuation changes
 525 with increased time, the curve deviates from 1. A downward deviation indi-
 526 cates temporal discounting: they prefer options with nearer outcomes. An
 527 upward deviation indicates a preference for more distant outcomes.

528 If we want to quantify the overall amount of discounting exhibited per

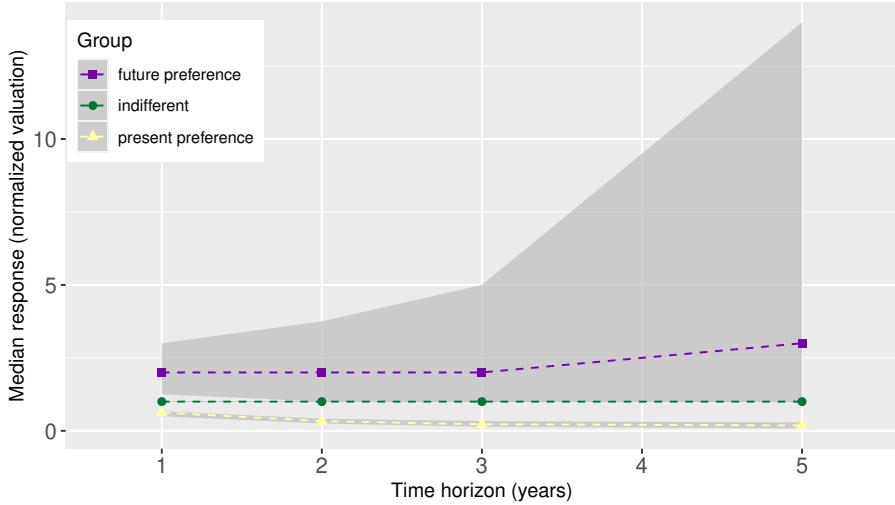


Figure 3: Future preferences ($n = 11$), present preferences ($n = 18$), and indifference ($n = 21$) appear when examining normalised responses to a project-level intertemporal choice scenario, split into groups by overall individual discounting. The grey area represents a 95% confidence interval.

529 participant across all time horizons, we can measure the area under the curve
 530 (AUC). In this case, with four curve segments, the AUC for an indifferent
 531 participant will be 4. An AUC above 4 indicates a *future preference*: the
 532 participant would, overall, prefer to wait for future benefits. An AUC be-
 533 low 4 indicates *temporal discounting*: the participant would, overall, prefer
 534 nearer benefits. An AUC of four is the line of *temporal indifference*.

535 As our analysis shows, we observed extensive temporal discounting in
 536 about 40% of participants, but also striking differences in individual prefer-
 537 ences. About 40% of participants remained indifferent to changes in time,
 538 and over 20% exhibited a future-oriented perspective.

539 Figure 4 plots AUC per company and shows some striking patterns.
 540 There is no participant with future preference in the Greek sample, while
 541 the Swedish sample exhibits a very large range (additional outliers at 50 and
 542 28 are omitted for visual clarity). While the limited data and the complexity
 543 of the situation prevent us from deducing simple causal factors to explain
 544 the comparisons across cohorts of this replication, it is interesting to note
 545 that this replication varies from previous populations in dimensions of cul-
 546 ture (our participants come from three companies and three countries, one
 547 in the global south) and roles (this replication involves professionals while
 548 a previous replication involved students [26]). As in previous replications,

Figure 4: Temporal preferences quantified by AUC per company. Two outliers above 20 are omitted to highlight the main effect.

549 no correlations were found with respect to age and other demographic vari-
 550 ables. This highlights the importance of gaining a situated understanding
 551 of individual differences in preferences and reasoning. We will return to this
 552 issue in the discussion.

553 *5.2. Many situations in systems design involve intertemporal choices (RQ2)*

554 Do professionals think that their work contains intertemporal choices?
 555 Yes, in the interviews, all but two of fifty study participants readily iden-
 556 tified experiences they had encountered which resembled the intertemporal
 557 nature of the scenario we presented. They provided numerous examples
 558 from a range of domains that illustrate how intertemporal choices surface
 559 in their work. Some examples remained more abstract or somewhat vague,
 560 while others led to detailed stories and memories of recent incidents. Be-
 561 low, we review each identified domain and present a selection of examples
 562 that best illustrate how intertemporal choices manifest in our participants'
 563 professional practice. The purpose is not to exhaustively list all possible
 564 intertemporal choices in systems design, nor to make claims about how fre-
 565 quent or significant they are, but rather to show where they occur and how
 566 we might recognise them.

567 *5.2.1. Product Development considers multiple time scales*

568 Many examples referred to the strategic and operational choices made
 569 in product development, iteratively balancing competing demands and pri-

570 orities that evolve on different timescales.

571 Feature development and prioritisation are intertemporal choices because
572 they locate the realisation of various expressions of the organisation's values
573 and goals at varying points in the future. The immediate concerns of satis-
574 fying customer needs is considered in relation to longer-term concerns about
575 where the company wants to be in the future. For example, novel features
576 are often considered in terms of their benefits and the costs to implement
577 them. However, they may also incur maintenance and support costs that
578 will only be realised in the long run.

... it is very difficult to weigh [feature ideas and improvements]
against each other. You have to try to put them against each (1)
other a bit. That is something that often ends up being part of
my role. (Product Owner, Company C)

579
580 Prioritising a backlog similarly involves trade-offs between tasks with
581 differing effort estimates and dependencies. The company may also have a
582 longer-term perspective on building a specific customer segment or view a
583 feature as incompatible with the long-term product vision.

Let's say that sales have received five different orders. [We would
ask them to] discuss and prioritise: which order do you think is
most important [to] get these features [in]? You have to look at
the effort as well. A feature may be small, [it] could be imple-
584 mented in two weeks, and it can give us many new customers.
Another feature might be huge or completely outside our target
group ... Or we might see that this feature [leads in a direction
we don't] want to go ... it leads to a workflow that we no longer
want to encourage. We want to solve [something else] instead
because we think it will be better for customers in the long run.
(Product Owner, Company C)

585 5.2.2. *Architecture and Quality are inherently intertemporal*

586 Architectural decisions, in particular decisions explicitly focused on soft-
587 ware quality, need to consider the future evolution of the system in its dual
588 contexts of use and development. That temporal nature inevitably gives rise
589 to intertemporal choices.

... We actually had one such example [recently], where we discussed whether we should exchange a part with our own service or incorporate it into another service. And the discussions there were... Creating a new service costs us more time. But then we can deploy it ourselves. (System developer, Scrum master, Company C) (3)

590

591 New features may have architectural implications that impact many
592 parts of the software system. Knowledge about how the required changes
593 will likely affect the system over time is important input for the intertemporal
594 choice of whether, when, and how to implement the feature.

595 *5.2.3. Platform choices are always intertemporal*

596 Platform choices are inevitably intertemporal because they combine near-
597 term concerns of a project with longer-term perspectives of future system
598 maintenance, evolution and re-usability across projects and products. For
599 example, when new technical solutions become available, the new possibili-
600 ties they offer can create intertemporal choice situations for software com-
601 panies. Existing investments may pull to the current platform, but a new
602 platform beckons with benefits the current platform lacks.

...it would have been quicker to just continue with the old [plat-
599 form] and continue developing and expanding it even further.
600 But through the transition [to the new platform], we have partly
601 gained the expertise to write mobile apps using the same tech-
602 niques and have a more modular way of releasing our products.
(Software developer, Scrum master, Company C) (4)

603

604 Software developers who are responsible for platform development face
605 intertemporal choices when it comes to the direction of the platform.

We have made changes to frameworks and the like that are
mostly in the sense of “this will make it nicer and perhaps save
time”. But sometimes we choose not to do them and instead
postpone. I believe it happens regularly. (Product owner, Soft-
ware developer, Company C) (5)

606

607 5.2.4. *Testing and QA involve shorter-term intertemporal trade-offs*

608 Testing and quality assurance are continuous activities that centrally
609 involve a consideration of risks. Time spent on testing can increase release
610 times, and testing is often playing catch-up with development. Making
611 testing and quality assurance activities more efficient is desirable, but the
612 return on investment is often unclear.

613 Some technical designs are meant to mitigate against future problems.
614 Risk analysis – formal or informal – can reveal potential events that have
615 never occurred but are not impossible. These are *ambiguous* events, i.e.
616 events for which it is very difficult to get reliable probability information.
617 The potential future event is ambiguous while the action to address it in the
618 present is much clearer, including an idea of the effort involved.

Should we implement logging for something that has never hap-
pened, just in case it might happen? (Product Owner, Company (6)
C)

619

620 *Bug fixing* can be viewed in isolation as a problem-solving activity that
621 aims to find the cause for an undesired behaviour and correct it. How-
622 ever, in practice, it is sometimes not possible to focus only on that single
623 problem-solving activity. Some aspect of the undesired behaviour may have
624 to be addressed very urgently. This creates an intertemporal choice situ-
625 ation where at least two options must be considered: quickly deploying a
626 fix that addresses the most pressing need, and taking the time to develop a
627 longer-lasting change. Sometimes, both options can be taken.

[We had a problem that occurred sporadically for a small number
of customers.] ... Last Friday, I tried out a quick fix where I
really only increased [a timeout] ... At the same time I was
doing a bigger job to solve the bigger problem. That was actually
a combination of a short-term fix to solve the problem for the
customer, and at the same time [there's] a solution in progress
to solve the bigger problem. (System Developer, Company C) (7)

628

629 5.3. *Intertemporal choices are uncertain, ambiguous, temporal, and socio-
630 technical (RQ3)*

631 Participants described similar situations in their work based on a recog-
632 nition of salient characteristics, and in doing so, some reflected on the dif-
633 ference between the presented task and their practice. In the following we

634 illustrate how long-established characteristics of intertemporal choice situa-
635 tions manifest in concrete examples in SE practice.

636 *5.3.1. Intertemporal choices are often as ambiguous as they are uncertain*

637 Across the range of situations where participants recognised intertem-
638 poral choices occurring, they emphasised a lack of information, particularly
639 with regard to precise numeric data on effort and probabilities of success.
640 This means that rather than dealing with uncertain probabilities as in the
641 task example, the real-world situations our participants face in their work
642 *lack probabilities* – i.e., the participants are faced with *ambiguity*. For in-
643 stance, this is true for Quote 4. Additional clues in the interview beyond
644 the quote show an explicit sense of ambiguity: there may be large benefits of
645 the new platform, “but you never know”. There is an indication of potential
646 time savings that the new platform could provide in the long run, but also
647 of a negative effect of learning in the present project. Either course of action
648 comes with benefits *and* drawbacks – they are *mixed outcomes* [78] – and
649 they are ambiguous.

... really this is ... pretty much the way it usually looks ... you
have a feature here to implement. Then you may have something
else, technical debt or something else that [you have to consider].
And then maybe there is even less information, we don't know
how much we save on solving this technical debt or whatever it
is. So [the scenario presented] is almost better than what we
might have in most cases. It's a bit harder in reality to [make
the decision] at least from our team's point of view. We have not
dealt so much with numbers and such. (Junior system developer,
Company C) (8)

650
651 Here too, the lack of numeric information supplying probabilities that
652 could be fed into a weighted trade-off analysis is unmistakable: the partic-
653 ipant's work situation does involve trade-offs, and they are intertemporal,
654 but their values are not fixed estimates, ranges, or probabilities. Ambiguity
655 is in the air.

656 *5.3.2. Intertemporal choices extend beyond individual projects*

657 Some intertemporal choices have outcomes that will occur during the
658 present project. For others, the outcomes will only occur much later. It may
659 be difficult to justify the cost or effort when the benefit cannot be reported
660 for the present project. For example, the time and effort investment into

661 building internal tools to maintain configuration or production data create
662 intertemporal choices. Where is the best compromise between a rudimentary
663 way to access data and a full-fledged internal product with provisions for
664 access control and data quality? Shifting the time horizon will affect the
665 outlook on this trade-off.

666 Investments in *skills development* is another intertemporal choice, and
667 its outcomes are often ambiguous. One expectation is that training will
668 lead to increased competence, in turn resulting in increased efficiency or
669 quality. However, there are other desirable outcomes as well, such as in-
670 creased morale and smoother teamwork, and intrinsic values to personal
671 development. Thus, the decision to invest in training is not as clear-cut and
672 instrumental as adding a feature or developing a tool. But in practice, these
673 decisions sometimes overlap:

We have a project right now, in fact, an internal tool for dis-
seminating skills. I am probably a little more hesitant towards
it than the team, but it is a huge morale boost for them, and
it can work. ... What tips the scales for me is above all the
fact that they want to build it. Had I made the choice myself in
the beginning and not had any such emotional attachment to it
from their side, I would probably have chosen not to do it, and
put effort on other things. (Product owner, Software developer,
Company C)

(9)

674

675 5.3.3. *Seemingly technical decisions often involve a range of social concerns*

676 Decisions that look “technical” often involve concerns with varying time-
677 scales and require consultation with a range of stakeholders. For example,
678 whether to integrate a third-party library with potential long-term benefits,
679 or spend time on refactoring to reduce technical debt, is ultimately con-
680 nected to a wide range of concerns in the software organisation. Decision-
681 making processes in software design are at least as much about understand-
682 ing the decision situation, developing arguments, creating options, and get-
683 ting support for them, as it is about choosing a particular course of action:

I think the first thing would be to talk to people who would be directly affected ... to see if one is thinking about [the idea] correctly. If it directly affects the product, then talk to the product [staff]; if it directly impacts the developers, then talk to the developers, and so on. ... Later, I think it would go to a conversation where everyone was affected, because if times are affected, the product manager, the product owner and the developers who are the ones that would directly affect the time would have to talk to each other. (Frontend Developer, Company A) (10)

684

685 Differences in *roles* influence decisions. The incentives, focus, and time
686 horizons implied in a person's role may alter their perception of time.

Usually consultants think differently. The developer has always in mind the improvement, because this is his job. The consultant would focus on being quick, immediate, something that can be shown, on something that can be presented to the client. ... The developer's job is essentially that, to save time, to make things more automated, because of the nature of his work. (Software Engineer, Company B) (11)

687

688 Across different roles, *personal characteristics* influence preferences during
689 decision making. In the following example, the participant seeks a challenge and prefers a demanding deadline, making the task a personal competition.
690
691

I ... strive to measure myself without methodologies that give me security, such as "you can do this in so-and-so many days because the methodology says so." I don't like that because I don't like to feel that I'm relaxing, and I feel that using methodology is like courting laziness in terms of time decisions. (Frontend/Backend Developer, Company A) (12)

692

693 Methods should provide structure and thus reduce uncertainty, and a
694 possible locus of decisions to examine could be in the prescriptive structures
695 of methods. For example, the Architectural Trade-Off Analysis Method
696 ATAM involves the use of scenarios to explore possible outcomes [41, 14].
697 Still, the preceding example raises the question of what role methods-as-
698 prescribed take on in different contexts. Companies differ in how they or-

699 ganise their practice based on method ideas. Decisions do not fall neatly into
700 any particular method, but are rather socially situated in the organisation:

... each company is a different universe, it has a different culture, different methodologies. Even though many companies say they are agile, each [company] does [agile] differently, has different competencies, and different talent. (Product Manager, Company A) (13)

701
702 SE *methods* become highly customised in companies, sometimes to the extent that we cannot reliably tell what the role of a method is going to be
703 in a particular organisation. Whether they originate from industry itself, from research, or a combination of both, methods are seldom understood or
704 applied as originally intended, nor applied in the same way in each situation [29]. Software development can be seen as epistemic practice characterised by local adaptation and design of methods-in-use; a simultaneous unfolding of the system under development and the development practices [18].
705 This means that methods themselves are subject to interpretation and modification by those using them in practice. When considering decision-making
706 in software design, methods should therefore be treated similarly to other
707 cognitive resources, as part of the uncertain and ambiguous temporal field
708 in which decisions are made.

715 5.4. Summary

716 Our interviewees identify intertemporal choices in many areas of their work. It appears that intertemporal choices surface throughout the practice
717 of software systems development, but are more visible and pronounced in
718 those areas that are explicitly concerned with longer-term evolution, such
719 as architecture. In other words, intertemporal choices arise whenever teams
720 are faced with opportunities to make decisions with lasting effects. The
721 range given here should not be taken as complete, but circumscribed by the
722 range of professional experience of our participants. The examples illustrate
723 how intertemporal choices are related to and influenced by methods, personal
724 characteristics, company differences, a wide range of concerns in the
725 organisation, and different incentive structures depending on people's roles.

726 Table 1 maps the examples given above, and additional instances identified but not quoted, into general SE areas. It highlights that we can
727 distinguish the emergence of intertemporal choices also in terms of their
728 own temporality of occurrence – it makes a difference whether an intertemporal
729 choice is identified early as an opportunity or emerges suddenly as

Area	An opportunity to plan ahead is identified. Should we ...	A choice situation arises. Should we ...
Architecture and Quality	Refactor or optimise for performance and scalability?	Reuse the existing micro-service? (3) How do we handle long-term implications of feature changes on our architecture?
Platform Strategy	Should we improve the platform? (5)	Migrate to a new platform? (4)
Testing	Log potential rare errors? (6)	Fix the bug quickly or develop a longer-term solution? (7)
Product Development	Focus on new features or on reducing technical debt? (8) How should we balance the competing priorities and feature requests knowing that their costs and benefits will shift over time? (1)	Prioritise the small feature that can gain us new customers or the larger more complex feature that our existing customers want? (2)
Beyond the project	Expand our training program? (9) Apply a method or work out the unique case? (12) Incorporate a new method to the company's way of working? (13) Involve a wide range of stakeholders to get their support? (10) Focus on quick delivery or spend time automating? (11)	Upgrade our internal tools?

Table 1: Intertemporal choices arise in many areas of our participants' professional experience. The numbers refer to corresponding interview quotes.

732 a choice that has to be made. Proactively identified choices can be more
733 carefully contemplated, but if the outcomes are in the distant future, they
734 tend to be more ambiguous and harder to envision. At the other extreme,
735 issues identified in hindsight as missed opportunities usually limit the avail-
736 able alternatives – when the critical bug is found, the critical bug has to be
737 fixed.

738 **6. Discussion**

739 The results above demonstrate that temporal distance affects our partici-
740 pants’ reasoning in very uneven ways (RQ1) and that intertemporal decision
741 making is ubiquitous (RQ2). We also found that intertemporal choices are
742 often uncertain *and* ambiguous and always socio-technical (RQ3). We now
743 turn to discussing the implications of these findings for how intertemporal
744 choices can be characterised and studied in SE, deepening the response for
745 RQ3 by interpreting our findings through the lens of judgment and decision
746 making.

747 *6.1. A new lens for an old question*

748 The intertemporal choices that our participants grapple with on a daily
749 basis are not themselves novelties to SE theory. Many of these trade-off
750 decisions are precisely what SE methods are designed to tackle. The longer-
751 term implications of decisions made about product development, testing,
752 architecture, or technical debt have constantly motivated the development
753 of SE tools and methods. For example, software architecture research has
754 long grappled with the question “how to make architectural design decisions
755 sustainable” [91], i.e., how to make them last [85]; and technical debt man-
756 agement aims to identify the optimal balance between short- and long-term
757 interests in software projects [2].

758 What does SE gain from exploring these questions through a psycho-
759 logical lens? Our empirical results show that the psychological view is a
760 crucial frame for understanding the intertemporal nature of systems design.
761 By allowing us to examine common SE decisions *as intertemporal*, the psy-
762 chological view provides a new angle on common challenges in SE across
763 multiple aspects of software development, including technical debt, archi-
764 tecture, project management, and sustainability. It provides insights into
765 daily practice that methods miss to account for. It better explains what
766 really happens when intertemporal trade-offs occur in practice, and how
767 systematic methods interact with individual and team cognition. This is

768 a crucial step towards effectively influencing the choices and outcomes and
769 develop more sustainable software systems.

770 How software professionals *should* take these types of decisions has been
771 exhaustively specified. For every question listed in Table 1, a sizeable choice
772 of SE methods stands ready to support decision making. This concern with
773 long-term effects of engineering decisions has been present since SE was
774 founded as a discipline over 50 years ago and has never lost its central im-
775 portance. Whether design decisions have genuinely become more sustainable
776 during this period is unclear, but the range of available tools and techniques
777 has increased considerably [91].

778 Recognising decisions as intertemporal from a cognitive and psychologi-
779 cal perspective opens new opportunities for progress on this persistent chal-
780 lenge. By examining professional practice through this lens, we gain an
781 inside view of the reality of making real-life intertemporal choices and an
782 opportunity to look deeper into the interactions between methods and their
783 use [18].

784 *6.2. Rationalistic and naturalistic approaches to decision making research*

785 Our results raise the question of how to understand decisions in SE
786 practice. To illustrate how the lens of cognition and psychology can be
787 applied to that question, let us consider Quote 6 as an example: *Should*
788 *we implement logging for something that has never happened, just in case*
789 *it might happen?* The interviewee, a product owner, recounts an exchange
790 with a developer who suggested logging to be implemented to catch potential
791 errors. The product owner asked probing questions about the plausibility of
792 the error based on occurrence in the past and predictions about the future.

793 One way to understand this could be that decisions *should be* based
794 on preconceived mathematical models. In the classic rationalist research
795 paradigm dominating SE [89, 70], the situation would appear as a case of
796 choice under probabilistic uncertainty. The paradigm’s response to proba-
797 bilistic uncertainty is to treat the situation as a quantitative trade-off prob-
798 lem and model its probabilities, costs, and benefits to recommend the opti-
799 mal choice.

800 Similar ideas have been common in other fields. But extensive empiri-
801 cal studies since the 1960s have shown that rationalistic, mathematically-
802 founded models of decision making are inconsistent with empirical obser-
803 vations. This debate is reflected within the history of SE research too [7].
804 Just like the discounted utility model, general models of expected utility
805 that form the basis of most multi-criteria decision making research [42] are
806 built not on studies of how people think, but on game theory [87] and the

807 mathematical axioms of Bernoulli that prescribe how optimal choices *should*
808 *be* made in risky situations such as gambling.

809 Decades of studies reveal that people do think in terms of rationalistic
810 models for clearly circumscribed tasks, while processes such as the Recog-
811 nition Primed Decisions model (RPD) [48] are used in many less circum-
812 scribed situations, for example to structure problems [55, 40]. Evidence for
813 both modes of thinking has been found in SE [89]. The wildly diverging
814 results in the task portion of our study, and the varied locations in which
815 our practitioners recognised decisions, suggest that the basis for interpret-
816 ing these decisions must be primarily a naturalistic one, with a normative
817 rationalistic perspective being subordinate. No single model can be fitted
818 to the data, nor can we say which responses are closest to being optimal.

819 It is thus unsurprising that many practitioners take a pass on rational-
820 istic, normative methods:

- 821 • By assuming probability estimates, the rationalist paradigm does not
822 effectively address the ambiguity that people experience. As a result,
823 the only way to apply this paradigm’s methods often is to pretend that
824 it is possible to model and compute predictions. This sidesteps facing
825 the actual issue of handling ambiguity. In the logging example, am-
826 biguity is handled via deferral. Rather than trying to base a decision
827 on information they lack, many practitioners recognise that they may
828 never need it and choose a form of inaction *for now*.
- 829 • The rationalist paradigm provides no mechanism to distinguish be-
830 tween the immediate statement and the underlying framings and re-
831 framings that surface when groups discuss what to do. In our example,
832 other interactions earlier and later must be understood before these
833 framings become apparent.
- 834 • The paradigm also does not account for the nature of judgement and
835 expertise as nuanced, reflective, situated forms of knowledge. For
836 example, the person may have intuitive expertise manifesting as the
837 hunch that with shifting context, this will become likely to happen for
838 the first time. Far from originating in their gut, this hunch may surface
839 because they have analogous experience with other systems that, when
840 repurposed or reused across domains, had run into behavioural pat-
841 terns previously thought ‘impossible’. They may struggle to articulate
842 this tacit knowledge precisely unless probed carefully [49, 16].

843 *6.3. Limitations: Where next?*

844 The restrictive design of our initial studies of intertemporal choice re-
845 quired participants to complete a particular sequence of questions with min-
846 imal researcher interaction. As we stated [26], “All we know is that people
847 behave *as if* they would perform temporal discounting. We have not iden-
848 tified how or why this effect takes place, nor do we have a ‘gold standard’ of
849 optimal decision making. There is no optimal decision to be made in the pre-
850 sented scenario, and there are many good reasons for discounting uncertain
851 future outcomes.” Because the study design did not examine participants’
852 cognitive processes nor allowed them to interrogate the scenario and the
853 provided information, the findings do not explain the reasoning underlying
854 their responses. As noted in previous work [51, 68], knowledge of cogni-
855 tive processes is important for understanding in depth how and why certain
856 behaviours come about. Consequently, this article prepares the ground to
857 couple quantitative observations of behaviours with a qualitative study of
858 cognition to elucidate the underlying reasoning. Beyond the scope of this
859 article, our current research further examines how our participants reasoned
860 about intertemporal choices, which factors they considered, and how. As a
861 new lens to an old question, this is a promising area of empirical SE research.

862 The present study places primary emphasis on the qualitative under-
863 standing of our participants’ reasoning. Following advice from experts in
864 qualitative research methodology regarding the dangers of quantifying inher-
865 ently qualitative data [88, 17], and echoing similar decisions in previous work
866 in SE [45], we do not make quantitative statements about the frequency of
867 our qualitative findings in the general population of software professionals.
868 We do, however, provide quantitative analysis of the questionnaire results,
869 as prior studies.

870 **7. A Framework for Studying Intertemporal Choice in SE**

871 todo intro what this is; three parts: macrocognitive framework, research
872 directions, guidelines

873 *7.1. How should we characterise intertemporal SE choices?*

874 We are now ready to use concepts from JDM research to structure future
875 analyses of intertemporal choices. To characterise intertemporal choices in
876 SE, account for:

877 1. The **context** in which the decision occurs, understood for now in
878 the widest sense as anything that influences the decision. Typically,

879 the context concerns the social and historical environment in which
880 decision makers act.

- 881 2. **Commitment:** Decisions are commitments to actions, but which actions
882 are available to commit to? This is not always a selection out
883 of explicitly enumerated options – often, some or all of the actions are
884 generated by the decision makers in the course of decision making [48].
885 They may appear as explicit, well-defined “options” to choose between.
886 But more often than not, there are myriad ways in which to proceed,
887 and an option is something that can be defined only in hindsight as the
888 action to which the decision-maker in fact committed or could have
889 committed to but did not. Understanding this for each situation is a
890 key to understanding real-world decision making behaviours.
- 891 3. **Uncertainty** covers uncertain properties of the options and possible
892 outcomes *as well as* their ambiguity. Uncertainty, or *risk*, refers to the
893 objective probability of potential outcomes. *Ambiguity*, on the other
894 hand, means that only vague information about the probabilities is
895 available [21]. Uncertainty about uncertainty complicates how people
896 think about possible outcomes when they decide [12]. It may be un-
897 certain whether something will happen or not; who it will happen to;
898 and what it will mean at the time if it happens. The distinction be-
899 tween the two matters because they are different and must be handled
900 differently.
- 901 4. The **temporal dimension** separates possible outcomes across time
902 and can involve multiple timescales that need to be considered simul-
903 taneously. Time always introduces uncertainty about the outcomes
904 and often also ambiguity regarding both the options and the outcomes.
- 905 5. The **situated cognitive processes** of individual decision-makers pos-
906 sibly acting as a group. Intertemporal choice raises difficult questions
907 about cognition that are not adequately understood yet. For example,
908 people differ in their *ambiguity attitude*: some are drawn to ambigu-
909 ous options while others avoid them. Several studies indicate that
910 attitudes towards ambiguity depend on the likelihood of the uncer-
911 tain events, the domain of the outcome, and the source that generates
912 the uncertainty [83]. This means that decisions cannot be understood
913 only through the temporal separation of the outcomes. It is crucial
914 to understand how the outcome uncertainty is perceived by decision-
915 makers.

916 Given these characteristics, we can now give an account of how the in-
917 tertemporal choice situation in the logging example can be understood.

- 918 1. *Context*: This team-based agile company uses projects to develop new
919 features for their products, which are delivered as Software as a Ser-
920 vice. The time horizon of team responsibility extends beyond projects,
921 with longer-term relations to customers (SMEs in a range of domains).
922 Slowly shifting customer segments can cause domain contexts and user
923 behaviour to evolve.
- 924 2. *Commitment*: The initial question is “To log or not to log”, but pre-
925 sumably, there will be more nuanced options available to generate
926 (“Let’s do a minimum amount of logging?”).
- 927 3. *Uncertainty* is in the air. While the anticipated incident to log has
928 never happened before, someone has brought it up because they believe
929 it might. With shifting domain contexts, behaviour that is currently
930 very improbable may become more likely, but hard to estimate – in a
931 word, ambiguous. In fact, the quote itself is ambiguous. Did you read
932 it as suggesting that it *should* be done? Then imagine it starting as
933 “Should we *really* implement logging...?” – this may better capture
934 the nuance in the ambiguous Swedish original.
- 935 4. *Temporality*: The time dimension is open-ended, extending beyond the
936 current sprint and the completion of the current project. Outcomes
937 are in an ambiguous future. The quote also harks back to the past in
938 noting that nothing bad has happened yet.
- 939 5. *Situated cognitive process*: The interviewee’s story suggests a value
940 of ‘being prepared’ and raises the explicit trade-off: ‘how should we
941 allocate our time now?’. The discussed option is already a compromise:
942 We do not invest time to prevent the unlikely outcome to happen,
943 but we may want to invest just enough time to detect it. In the
944 conversation surrounding the quote, the product owner emphasised
945 the agile value of avoiding unnecessary work. They decided not to
946 implement logging ‘just in case it might happen’. The different roles
947 involved in discussing this choice brought distinct framings, interests
948 and motivations to the group decision. Different kinds of authority
949 were also at play: management, by virtue of allocated responsibility; a
950 seasoned developer, by virtue of their expertise as recognised via their
951 reputation.

952 By characterising this decision via its context, the commitment made,
953 the uncertainty surrounding it, the temporality, and the cognitive facets of
954 the decision, we gain a more accurate understanding of real-world practice.
955 While mundane, our example shows how differently just a single, simple ex-
956 ample can be understood. When situations and questions larger and smaller
957 appear on a daily basis, we can see how software professionals are constantly
958 faced with the challenge of overcoming the confusion of time.

959 We can now begin to understand why a normative method of criteria-
960 based choice does not suffice to address the nature of intertemporal choices.
961 By treating the cognitive process as machinery, the rationalist model prema-
962 turely abstracts the nuances of the substance that makes up what happens.
963 This simply does not address the real difficulties that practitioners face in a
964 situation where they attempt to exercise careful judgement. By appreciat-
965 ing it as a human and social phenomenon taking place in a specific context
966 (1), we gain the perspective to develop more appropriate ways of supporting
967 good choices. We need the specific context to make sense of the situation
968 and understand how intertemporal choices arise. Individual cognitive pro-
969 cesses (5) act together on the small-group level to handle temporality (4)
970 and uncertainty (3) and reach a commitment (2). The cognitive and so-
971 cial aspects of practising individuals and teams, the specific project factors,
972 the methods and tools used by the teams, the organisational context, and
973 the larger context in which the organisation operates all come together to
974 influence decision-making.

975 *7.2. Research Directions*

976 What can we do with this new understanding? TODO finalize – brain-
977 storm: - bypass misleading, rationalist accounts that produce appealing
978 but flawed explanations and simple but ineffective interventions - instead,
979 identify strengths of decision makers, identify strategies of success, enable
980 newcomers to learn from experienced decision makers, design effective inter-
981 ventions that allow teams to be more intentional about their choices...

982 On an applied practical level, this makes an immediate difference in how
983 we understand what happens in practice. For example, a decision making
984 researcher in SE who encounters the logging example above in collaborative
985 research with a software company could use this and similar situations to
986 help the team analyze and reflect how their decisions take place. They can
987 help the team - to understand and make visible the sources of uncertainty
988 and ambiguity - to identify and map the temporal scales of relevance - to
989 make intentional choices about the temporal horizon and scope - to evaluate
990 the context of decision making and identify which factors contribute to short

991 sighted decisions that can be removed, and which factors contribute to wise
992 judgments that could be amplified - in other words, they can support the
993 team in gaining an understanding of what actually happens, and to identify
994 and potentially redesign how they make their intertemporal choices. The
995 outcome may well be a sort of method, but more likely, it will be a com-
996 bination of three things: - a heightened appreciation and awareness of how
997 decision making practice is influenced by situational and contextual factors
998 - a set of techniques to address factors that are understood to distort de-
999 cision making - processes for reflection, analysis, and knowledge sharing in
1000 the team that support team members in learning from each other.

1001 On the theoretical level, it is clear now that understanding decisions
1002 across time in SE requires a much more comprehensive research roadmap
1003 than the one implied by normative rationalistic models and methods. We
1004 argue here that this roadmap must be firmly grounded in reference disci-
1005 plines such as psychology, ask questions across the spectrum of the practice,
1006 point to suitable methods and designs for obtaining answers, and provide a
1007 conceptual framework to build theory and actionable interventions. Some
1008 starting research questions are given here.

1009 The goal should be to promote sustainable software design decisions,
1010 whether we seek to avoid locking ourselves into inflexible technical designs,
1011 setting ourselves up for large future costs, or harming our societies or the
1012 disadvantaged. Some situations are more conducive to produce sustainable
1013 decisions, but what are they like and how do they work?

1014 By using interview techniques from CTA, SE researchers can identify
1015 critical incidents of intertemporal choices in SE practice and investigate
1016 which factors influenced the decision and how the practitioners make their
1017 choices. That is the first step to understanding what changes can be most
1018 effective to increase the sustainability of decisions. A more effort-intensive
1019 but very promising approach would be an ethnographic study of industry
1020 practice sensitized to naturalistic decision making concepts and methods,
1021 building on the work of decision making researchers [47] and SE ethno-
1022 graphers [77]. Staying with the action with the help of these organizing
1023 principles should allow researchers to take the field's understanding of its
1024 practice to new levels.

1025 Many starting points for research questions wait in the baseline we have
1026 presented. For example, intertemporal choice behaviour varies wildly across
1027 different studies and participants [31]. Why did our participants with a
1028 broader range of work experience discount future choices less than oth-
1029 ers [26]? Broad experience may bring with it the ability to make more
1030 detailed mental simulations or to use richer imagination to consider the im-

1031 plications of different options. One aspect of the situation is thus who is
1032 there and what experience they bring with them.

1033 Real-life choices in software systems design are impacted not only by
1034 individual-level factors, but also by the context in which decisions are made
1035 and how decisions are framed. Design decisions are complex, iterative,
1036 and usually ambiguous. Other situational characteristics that can influence
1037 the sustainability of design decisions include the time horizon of projects,
1038 staff turnover, reward and incentive systems, distribution of responsibility,
1039 and contracts. What are relevant patterns of situational characteristics?
1040 Which situational anti-patterns foster unsustainable decisions? An empir-
1041 ically grounded, robust collection of situational patterns and anti-patterns
1042 can provide highly impactful starting points for translating insights into
1043 practical improvements and pedagogical materials.

1044 *7.3. Research Guidelines: How should we study intertemporal SE choices?*

1045 The problem areas discussed above give directions and motivations for
1046 research on intertemporal choice in SE. The following guidelines are a min-
1047 imal set to consider when designing research studies and in evaluating their
1048 outcomes, including in peer-review. The first two address scoping and clar-
1049 ity of what is being studied; the next three address clarity in conceptual
1050 design on the axes of scope, control, and intervention; the final two address
1051 methodology. Together, they expand our response to RQ3.

1052 **The Decision:** Clearly describe each element of intertemporal choice (com-
1053 mitment, uncertainty, temporality, situated cognition, context) to po-
1054 sition each decision in its situation and social context. The distinction
1055 between uncertainty and ambiguity is crucial [21, 12, 83]. Research
1056 designs should be flexible enough to recognise that decisions happen
1057 not only where prescriptive methods place them, but at any point
1058 where those involved can make different commitments. In some cases,
1059 commitment(s) only become visible in hindsight. Follow the lead of
1060 practitioners when they make decisions differently from how, where
1061 and when the methods prescribe them.

1062 **Discounting:** Studies must follow the state of the art in JDM research
1063 when it comes to describing and evaluating intertemporal choices. This
1064 requires caution in the face of normative models of temporal discount-
1065 ing, careful selection of measurement methods (such as the use of AUC
1066 as a theory-free measure of time preference [26]), and it means we must
1067 examine the interactions between perception, time preference, and the

1068 *psychological distance* [84] between decision-makers and those who are
1069 influenced.

1070 **Scope:** Position each study carefully in the systemic context it examines to
1071 explicitly draw the boundaries of concern: what is observed, what is
1072 assumed, what is cut out from attention, and why?

1073 **Control:** Carefully substantiate which contextual elements and relation-
1074 ships are controlled and which are not, and evaluate what degree of
1075 freedom this introduces and how.

1076 **Intervention:** Clearly define the element of intervention, if any, and if pos-
1077 sible, include control groups with no intervention. Carefully consider
1078 established methods for observational and interventional studies to in-
1079 crease validity.

1080 **Method:** Clearly specify and justify the research method. The topic of in-
1081 tertemporal choice has been investigated for almost two centuries [31],
1082 and fields such as JDM have accumulated vast methodological expe-
1083 rience that should be reused and repurposed before developing SE-
1084 specific research methods. That said, the nature of decisions and situ-
1085 ations in systems design *is* peculiar. For example, the nature of profes-
1086 sional expertise distinguishes our participants from many consumer-
1087 focused studies in JDM, and the nature of temporality is baked into
1088 the domain. So at some point, with sufficient stable ground under our
1089 feet, we will be in a position to build new methodologies more attuned
1090 to socio-technical design work.

1091 **Replication:** Document and release study designs, protocols, and data to
1092 enable replication, making use of open data repositories (examples
1093 exist, e.g., [25]). The overall emphasis should be on the *recoverability*
1094 of research design choices, since direct replication is not suitable for
1095 all studies [58, 33]. Where applicable, invite others to replicate the
1096 work, both in direct collaboration but also as independent work; be
1097 prepared to support the replicators with clarifications, details, and
1098 data if needed. Carefully consider guidelines on replication [13].

1099 **8. Conclusions**

1100 As software pervades society, SE is now faced with challenges that go
1101 much beyond what most methods used today are prepared to address. A
1102 software system can impact people beyond the customer, users, and other

1103 stakeholders that current practices identify. Once we start looking, intertemporal
1104 choices can be found everywhere in systems design. Their temporal
1105 nature provides important clues to how systems design could become more
1106 sustainable. By appreciating intertemporal choice from a JDM perspective,
1107 we gain new opportunities for research and innovation. Intertemporal choice
1108 brings a new lens to a central question of SE.

1109 In intertemporal choice, the *when* of the outcome intersects with the
1110 *who*. The decision-makers of the present may not be the ones who bear
1111 the consequences of their designs in the future. Decision-makers can more
1112 readily identify stakeholders close to themselves and cater to their needs than
1113 those who are distant. Stakeholders may be both internal to the software
1114 organisation, such as the developers who must deal with past design choices,
1115 and external, yet unknown groups of people whose lives are affected. As
1116 consequences shift further into the future, knowing who will be affected,
1117 and how, becomes increasingly difficult. But even when those more distant
1118 stakeholders *could* be considered, they often are not.

1119 Situations in which intertemporal choices are made are often as ambiguous
1120 as they are uncertain. We have shown that some software professionals
1121 exhibit temporal discounting, but others do not. Why and how do their
1122 reasons differ? What can we learn to make future decisions more sustainable?
1123 The range of behaviours suggests that many different factors play into
1124 intertemporal choices. To characterise these decisions, and other similar situations,
1125 we introduced a set of five characteristics and showed how such a
1126 characterisation can result in viewpoints different from those of prevailing
1127 rationalistic approaches. Our example shows how to unpack the intertemporal
1128 characteristics of concrete situations that arise in everyday software
1129 projects and hunt for more situations to examine. The protocol we have
1130 presented yields much richer data than we can cover in this paper. Future
1131 analyses should move beyond the questions and analyses discussed in the
1132 paper.

1133 Promising opportunities for studies await. We suggested a direction
1134 towards SE interventions that aim for more sustainable decisions when a
1135 temporal aspect is involved, and present her a foundation for future studies.
1136 Intertemporal choice offers a new angle on a problem as old as SE. It is
1137 now time to forge a perspective where consequences at different points in
1138 the future can be taken into account for a much wider range of stakeholders
1139 than SE methods have acknowledged before. We offer our previous work
1140 with openly published data sets [6, 26], and the materials of the present
1141 study, as potential starting points for inspiration.

1142 **Acknowledgements**

1143 This work was partially funded by NSERC RGPIN-2016-06640. Data
1144 were collected while FF was a Postdoctoral Fellow at the University of
1145 Toronto. We thank Rahul Mohanani for inputs to study design.

1146 FF performed conceptualisation, methodology, validation, formal anal-
1147 ysis, investigation, writing – original draft, writing – review & editing, vi-
1148 sualisation, supervision. AR performed formal analysis, writing – review &
1149 editing. CCC, JG, AC, and AA performed investigation, writing – review &
1150 editing. CB performed conceptualisation, methodology, validation, formal
1151 analysis, investigation, resources, writing – original draft, writing – review
1152 & editing, supervision, funding acquisition.

1153 **References**

- 1154 [1] Amanatidis, T., Mittas, N., Chatzigeorgiou, A., Ampatzoglou, A., An-
1155 gelis, L., 2018. The Developer’s Dilemma: Factors Affecting the De-
1156 cision to Repay Code Debt, in: Proceedings of the 2018 International
1157 Conference on Technical Debt, ACM, New York, NY, USA. pp. 62–66.
1158 URL: <https://doi.org/10.1145/3194164.3194174>.
- 1159 [2] Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Manag-
1160 ing Technical Debt in Software Engineering (Dagstuhl Seminar 16162).
1161 Dagstuhl Reports 6, 110–138. URL: <http://drops.dagstuhl.de/opus/volltexte/2016/6693>, doi:10.4230/DagRep.6.4.110.
- 1163 [3] Avgeriou, P., Stal, M., Hilliard, R., 2013. Architecture Sustainability
1164 [Guest editors’ introduction]. IEEE Software 30, 40–44. doi:10.1109/
1165 MS.2013.120.
- 1166 [4] Barnard, P.J., Teasdale, J.D., 1991. Interacting cognitive subsystems:
1167 A systemic approach to cognitive-affective interaction and change. Cog-
1168 nition & Emotion 5, 1–39.
- 1169 [5] Becker, C., Chitchyan, R., Betz, S., McCord, C., 2018. Trade-off de-
1170 cisions across time in technical debt management: A systematic lit-
1171 erature review, in: Proceedings of the 2018 International Conference
1172 on Technical Debt, ACM, New York, NY, USA. pp. 85–94. URL:
1173 <https://doi.org/10.1145/3194164.3194171>.
- 1174 [6] Becker, C., Fagerholm, F., Mohanani, R., Chatzigeorgiou, A., 2019.
1175 Temporal discounting in technical debt: How do software practitio-
1176 ners discount the future?, in: Proceedings of the Second Internatinal

1177 Conference on Technical Debt, IEEE Press, Piscataway, NJ, USA. pp.
1178 23–32. URL: <https://doi.org/10.1109/TechDebt.2019.00011>.

1179 [7] Becker, C., Walker, D., McCord, C., 2017. Intertemporal choice: De-
1180 cision making and time in software engineering, in: Proceedings of the
1181 10th International Workshop on Cooperative and Human Aspects of
1182 Software Engineering, IEEE Press, Piscataway, NJ, USA. pp. 23–29.
1183 URL: <https://doi.org/10.1109/CHASE.2017.6>.

1184 [8] Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H., 2008.
1185 Motivation in Software Engineering: A systematic literature re-
1186 view. *Information and Software Technology* 50, 860–878. URL:
1187 <https://doi.org/10.1016/j.infsof.2007.09.004>; <https://www.sciencedirect.com/science/article/pii/S0950584907001097>.

1188 [9] Behutiye, W.N., Rodríguez, P., Oivo, M., Tosun, A., 2017. Analyzing
1189 the concept of technical debt in the context of agile software develop-
1190 ment: A systematic literature review. *Information and Software Tech-
1191 nology* 82, 139–158. URL: <http://www.sciencedirect.com/science/article/pii/S0950584916302890>, doi:10.1016/j.infsof.2016.10.
1192 004.

1193 [10] Block, J., 1961. The Q-Sort Method in Personality Assessment and
1194 Psychiatric Research. volume 457. Charles C Thomas, Springfield, IL.

1195 [11] Brown, S.M., 1992. Cognitive mapping and repertory grids for qual-
1196 itative survey research: some comparative observations. *Journal of
1197 Management Studies* 29, 287–307.

1198 [12] Camerer, C., Weber, M., 1992. Recent developments in modeling pref-
1199 erences: Uncertainty and ambiguity. *Journal of Risk and Uncertainty*
1200 5, 325–370. URL: <https://doi.org/10.1007/BF00122575>.

1201 [13] Carver, J.C., Juristo, N., Baldassarre, M.T., Vegas, S., 2014. Repli-
1202 cations of software engineering experiments. *Empirical Software Engi-
1203 neering* 19, 267–276.

1204 [14] Clements, P., 2002. Evaluating software architectures: methods and
1205 case studies. *SEI series in software engineering*, Addison-Wesley,
1206 Boston.

1207 [15] Coller, M., Williams, M.B., 1999. Eliciting individual discount rates.
1208 *Experimental Economics* 2, 107–127. URL: <https://doi.org/10.1007/BF01673482>.

1209

1210

1211

1212 [16] Crandall, B., Klein, G., Hoffman, R.R., 2006. Working Minds: A Practitioner's Guide to Cognitive Task Analysis. 1 edition ed., A Bradford Book, Cambridge, Mass.

1213

1214

1215 [17] Denzin, N.K., Lincoln, Y.S., 2011. The Sage handbook of qualitative research. Sage.

1216

1217 [18] Dittrich, Y., 2016. What does it mean to use a method? Towards a practice theory for software engineering. *Information and Software Technology* 70, 220–231.

1218

1219

1220 [19] Durdik, Z., Klatt, B., Koziolek, H., Krogmann, K., Stammel, J., Weiss, R., 2012. Sustainability guidelines for long-living software systems, in: Proc. ICSM, pp. 517–526. doi:10.1109/ICSM.2012.6405316.

1221

1222

1223 [20] Easterby-Smith, M., 1980. The design, analysis and interpretation of repertory grids. *International Journal of Man-Machine Studies* 13, 3–24.

1224

1225

1226 [21] Ellsberg, D., 1961. Risk, Ambiguity, and the Savage Axioms. *The Quarterly Journal of Economics* 75, 643.

1227

1228 [22] EPAM, 2021. Epam expands presence in latin america, enhancing global delivery and growing top engineering talent in the region. URL: <https://www.epam.com/about/newsroom/press-releases/2021/epam-expands-presence-in-latin-america-enhancing-global-delivery-and-growing-top-engineering-talent-in-the-region>. accessed: 2022-07-29.

1229

1230

1231

1232

1233

1234 [23] Ericsson, K.A., Simon, H.A., 1984. Protocol analysis: Verbal reports as data. the MIT Press, USA.

1235

1236 [24] Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I., 2015. Measure It? Manage It? Ignore It? Software Practitioners and Technical Debt, in: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, New York, NY, USA. pp. 50–60. URL: <http://doi.acm.org/10.1145/2786805.2786848>, doi:10.1145/2786805.2786848.

1237

1238

1239

1240

1241

1242 [25] Fagerholm, F., Becker, C., Chatzigeorgiou, A., Betz, S., Duboc, L., Penzenstadler, B., Mohanani, R., Venters, C., 2019. Dataset and replication package for Temporal Discounting in Software Engineering: A Replication Study. URL: <https://doi.org/10.5281/zenodo.3257378>.

1243

1244

1245

1246 [26] Fagerholm, F., Becker, C., Chatzigeorgiou, A., Betz, S., Duboc, L., Pen-
1247 zenstadler, B., Mohanani, R., Venters, C.C., 2019. Temporal discount-
1248 ing in software engineering: A replication study, in: 2019 ACM/IEEE
1249 International Symposium on Empirical Software Engineering and Mea-
1250 surement (ESEM), pp. 1–12.

1251 [27] Fagerholm, F., Felderer, M., Fucci, D., Unterkalmsteiner, M., Mar-
1252 culescu, B., Martini, M., Tengberg, L.G.W., Feldt, R., Lehtelä, B.,
1253 Nagyváradi, B., Khattak, J., 2022. Cognition in software engineering:
1254 A taxonomy and survey of a half-century of research. ACM Computing
1255 Surveys URL: <https://doi.org/10.1145/3508359>.

1256 [28] Falessi, D., Cantone, G., Kazman, R., Kruchten, P., 2011. Decision-
1257 making techniques for software architecture design: A comparative sur-
1258 vey. ACM Computing Surveys 43, 33:1–33:28. URL: <https://doi.org/10.1145/1978802.1978812>, doi:10.1145/1978802.1978812.

1260 [29] Fitzgerald, B., 1996. Formalized systems development methodologies:
1261 A critical perspective. Information Systems Journal 6, 3–23.

1262 [30] Flanagan, J.C., 1954. The critical incident technique. Psychological
1263 bulletin 51, 327.

1264 [31] Frederick, S., Loewenstein, G., O'Donoghue, T., 2002. Time discount-
1265 ing and time preference: A critical review. Journal of Economic Liter-
1266 ture 40, 351–401.

1267 [32] Gigerenzer, G., Selten, R. (Eds.), 2001. Bounded Rationality: The
1268 Adaptive Toolbox. 1st edition edition ed., The MIT Press, Cambridge,
1269 Mass.

1270 [33] Gómez, O.S., Juristo, N., Vegas, S., 2014. Understanding replication of
1271 experiments in software engineering: A classification. Information and
1272 Software Technology 56, 1033–1048.

1273 [34] Hardisty, D.J., Fox-Glassman, K., Krantz, D., Weber, E.U., 2011. How
1274 to Measure Discount Rates? An Experimental Comparison of Three
1275 Methods. SSRN Scholarly Paper ID 1961367. SSRN. URL: <https://papers.ssrn.com/abstract=1961367>.

1277 [35] Harrison, G.W., Lau, M.I., Williams, M.B., 2002. Estimating Indi-
1278 vidual Discount Rates in Denmark: A Field Experiment. American
1279 Economic Review 92, 1606–1617. URL: <https://doi.org/10.1257/000282802762024674>.

1281 [36] Hoffman, R.R., Crandall, B., Shadbolt, N., 1998. Use of the criti-
1282 cal decision method to elicit expert knowledge: A case study in the
1283 methodology of cognitive task analysis. *Human factors* 40, 254–276.

1284 [37] Hughes, J., Parkes, S., 2003. Trends in the use of verbal protocol
1285 analysis in software engineering research. *Behaviour & Information
1286 Technology* 22, 127–140.

1287 [38] Jadhav, A.S., Sonar, R.M., 2009. Evaluating and selecting soft-
1288 ware packages: A review. *Information and Software Technology* 51,
1289 555–563. URL: <https://www.sciencedirect.com/science/article/pii/S0950584908001262>, doi:10.1016/j.infsof.2008.09.003.

1290 [39] Jain, R., Muro, J., Mohan, K., 2006. A cognitive perspective on pair
1291 programming, in: *Proceedings of the 12th Americas Conference on In-
1292 formation Systems*, AISel, Acapulco, Mexico. pp. 3698–3704.

1293 [40] Kahneman, D., Klein, G., 2009. Conditions for intuitive expertise: A
1294 failure to disagree. *American Psychologist* 64, 515–526. URL: <https://doi.org/10.1037/a0016755>.

1295 [41] Kazman, R., Klein, M., Clements, P., 2000. ATAM: Method for archi-
1296 tecture evaluation. Technical Report. Carnegie-Mellon Univ Pittsburgh
1297 PA Software Engineering Inst.

1298 [42] Keeney, R.L., Raiffa, H., 1993. Decisions with multiple objectives:
1299 preferences and value trade-offs. Cambridge university press.

1300 [43] Keren, G., Wu, G., 2015a. A Bird’s-Eye View of the History of Judg-
1301 ment and Decision Making, in: *The Wiley Blackwell Handbook of Judg-
1302 ment and Decision Making*. John Wiley & Sons, Ltd, pp. 1–39. URL:
1303 <https://doi.org/10.1002/9781118468333.ch1>.

1304 [44] Keren, G., Wu, G. (Eds.), 2015b. *The Wiley-Blackwell handbook of
1305 judgment and decision making*. Wiley-Blackwell, Chichester, West Sus-
1306 sex.

1307 [45] Kim, M., Zimmermann, T., DeLine, R., Begel, A., 2016. The Emerg-
1308 ing Role of Data Scientists on Software Development Teams, in: *Pro-
1309 ceedings of the 38th International Conference on Software Engineering*,
1310 ACM, New York, NY, USA. pp. 96–107. URL: <https://doi.org/10.1145/2884781.2884783>. event-place: Austin, Texas.

1311

1312

1313

1314 [46] Klein, G., Ross, K.G., Moon, B.M., Klein, D.E., Hoffman, R.R., Holl-
1315 nagan, E., 2003. Macrocognition. *IEEE Intelligent Systems* 18, 81–85.

1316 [47] Klein, G.A. (Ed.), 1993. Decision making in action: models and meth-
1317 ods. Ablex Pub., Norwood, N.J.

1318 [48] Klein, G.A., 1997. The recognition-primed decision (RPD) model:
1319 Looking back, looking forward. *Naturalistic decision making* , 285–292.

1320 [49] Klein, G.A., 1998. Sources of Power: How People Make Decisions. MIT
1321 Press, Cambridge.

1322 [50] Klein, G.A., Calderwood, R., MacGregor, D., 1989. Critical decision
1323 method for eliciting knowledge. *IEEE Transactions on Systems, Man,*
1324 and Cybernetics

1325 19, 462–472. URL: <https://doi.org/10.1109/21.31053>.

1326 [51] Lenberg, P., Feldt, R., Wallgren, L.G., 2015. Behavioral software en-
1327 gineering: A definition and systematic literature review. *Journal of*
1328 *Systems and Software* 107, 15–37.

1329 [52] Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study
1330 on technical debt and its management. *Journal of Systems and Soft-*
1331 *ware* 101, 193–220. URL: <http://www.sciencedirect.com/science/article/pii/S0164121214002854>, doi:10.1016/j.jss.2014.12.027.

1333 [53] Lipshitz, R., Klein, G., Orasanu, J., Salas, E., 2001. Taking stock of
1334 naturalistic decision making. *Journal of Behavioral Decision Making*
1335 14, 331–352. URL: <https://doi.org/10.1002/bdm.381>.

1336 [54] Loewenstein, G., Read, D., Baumeister, R.F., 2003. Time and Decision:
1337 Economic and Psychological Perspectives of Intertemporal Choice. Rus-
1338 sell Sage Foundation, New York, NY, USA.

1339 [55] Loewenstein, G., Rick, S., Cohen, J.D., 2008. Neuroeconomics. *Annual*
1340 *Review of Psychology* 59, 647–672.

1341 [56] Mazur, J.E., 1987. An adjusting procedure for studying delayed rein-
1342 forcement, in: Quantitative analyses of behavior. The effect of delay
1343 and intervening events on reinforcement value. Erlbaum, Hillsdale, NJ.
1344 volume 5, pp. 55–73.

1345 [57] McConnell, S., 2007. Technical Debt. URL: http://www.construx.com/10x_Software_Development/Technical_Debt.

1347 [58] Miller, J., 2005. Replicating software engineering experiments: a poi-
1348 soned chalice or the Holy Grail. *Information and Software Technology*
1349 47, 233–244.

1350 [59] Mohamed, A., Ruhe, G., Eberlein, A., 2007. COTS Selection: Past,
1351 Present, and Future, in: 14th Annual IEEE International Confer-
1352 ence and Workshops on the Engineering of Computer-Based Systems
1353 (ECBS’07), pp. 103–114. doi:10.1109/ECBS.2007.28.

1354 [60] Mohanani, R., Salman, I., Turhan, B., Rodriguez, P., Ralph, P.,
1355 2018. Cognitive Biases in Software Engineering: A Systematic Map-
1356 ping Study. *IEEE Transactions on Software Engineering* , 1–1URL:
1357 <https://doi.org/10.1109/TSE.2018.2877759>. arXiv: 1707.03869.

1358 [61] Myerson, J., Green, L., Warusawitharana, M., 2001. Area Under the
1359 Curve as a Measure of Discounting. *Journal of the Experimental Anal-
1360 ysis of Behavior* 76, 235–243.

1361 [62] Neumann, P.G., 2012. The foresight saga, redux. *Commun. ACM* 55,
1362 26–29. URL: <https://doi.org/10.1145/2347736.2347746>.

1363 [63] Novak, J.D., 1990. Concept mapping: A useful tool for science educa-
1364 tion. *Journal of research in science teaching* 27, 937–949.

1365 [64] Oxford Dictionary, 2020a. Choice. Lexico Dictionaries English. URL:
1366 <https://www.lexico.com/en/definition/choice>.

1367 [65] Oxford Dictionary, 2020b. Decision. URL: <https://www.lexico.com/en/definition/decision>.

1369 [66] Oxford Dictionary, 2020c. Decision. URL: <https://www.lexico.com/en/definition/judgement>.

1371 [67] Parnas, D.L., 1994. Software Aging, in: *Proceedings of the 16th Inter-
1372 national Conference on Software Engineering*, IEEE Computer Society
1373 Press, Los Alamitos, CA, USA. pp. 279–287.

1374 [68] Petre, M., Buckley, J., Church, L., Storey, M.A., Zimmermann, T.,
1375 2020. Behavioral Science of Software Engineering. *IEEE Software* 37,
1376 21–25. doi:10.1109/MS.2020.3014413. conference Name: IEEE Soft-
1377 ware.

1378 [69] R. Doyle, J., 2012. Survey of Time Preference, Delay Discounting Mod-
1379 els. *Judgment and Decision Making* 8.

1380 [70] Ralph, P., 2018. The two paradigms of software development research.
1381 Science of Computer Programming 156, 68–89. URL: <https://doi.org/10.1016/j.scico.2018.01.002>.

1383 [71] Ralph, P., Tempero, E., 2016. Characteristics of Decision-making During
1384 Coding, in: Proceedings of the 20th International Conference on
1385 Evaluation and Assessment in Software Engineering, ACM, New York,
1386 NY, USA. pp. 34:1–34:10. URL: <https://doi.org/10.1145/2915970.2915990>.

1388 [72] Saaty, T.L., 1994. Fundamentals of decision making and priority theory
1389 with the analytic hierarchy process. RWS Publications.

1390 [73] Samuelson, P.A., 1937. A Note on Measurement of Utility. The Review
1391 of Economic Studies 4, 155–161.

1392 [74] Sánchez-Gordón, M., Colomo-Palacios, R., 2019. Taking the emotional
1393 pulse of software engineering — a systematic literature review of em-
1394 pirical studies. Information and Software Technology 115, 23–43.

1395 [75] Schraagen, J.M., Klein, G., Hoffman, R.R., 2008. The macrocognition
1396 framework of naturalistic decision making, in: Schraagen, J.M.,
1397 Militello, L.G., Ormerod, T., Lipshitz, R. (Eds.), Naturalistic Decision
1398 Making and Macrocognition. Ashgate Publishing Limited Aldershot,
1399 pp. 3–25.

1400 [76] Schraagen, J.M., Chipman, S.F., Shalin, V.L. (Eds.), 2000. Cognitive
1401 Task Analysis. Psychology Press, Mahwah, N.J.

1402 [77] Sharp, H., Dittrich, Y., de Souza, C.R.B., 2016. The Role of Ethno-
1403 graphic Studies in Empirical Software Engineering. IEEE Transactions
1404 on Software Engineering 42, 786–804. URL: <https://doi.org/10.1109/TSE.2016.2519887>.

1406 [78] Soman, D., Ainslie, G., Frederick, S., Li, X., Lynch, J., Moreau, P.,
1407 Mitchell, A., Read, D., Sawyer, A., Trope, Y., Wertenbroch, K., Za-
1408 uberman, G., 2005. The Psychology of Intertemporal Discounting: Why
1409 are Distant Events Valued Differently from Proximal Ones? Marketing
1410 Letters 16, 347–360.

1411 [79] Thaler, R., 1981. Some empirical evidence on dynamic inconsistency.
1412 Economics Letters 8, 201–207. URL: [https://doi.org/10.1016/0165-1765\(81\)90067-7](https://doi.org/10.1016/0165-1765(81)90067-7).

1414 [80] Thaler, R.H., Sunstein, C.R., 2008. *Nudge: Improving Decisions about*
1415 *Health, Wealth, and Happiness*. Yale University Press.

1416 [81] Thaler, R.H., Sunstein, C.R., Balz, J.P., 2010. Choice architecture.
1417 SSRN URL: <http://dx.doi.org/10.2139/ssrn.1583509>.

1418 [82] Tofan, D., Galster, M., Avgeriou, P., Schuitema, W., 2014. Past and
1419 future of software architectural decisions – A systematic mapping study.
1420 *Information and Software Technology* 56, 850–872. URL: <https://doi.org/10.1016/j.infsof.2014.03.009>.

1422 [83] Trautmann, S.T., van de Kuilen, G., 2015. Ambiguity attitudes, in:
1423 Keren, G., Wu, G. (Eds.), *The Wiley Blackwell Handbook of Judgment*
1424 and *Decision Making*. John Wiley & Sons, Ltd, pp. 89–116.

1425 [84] Trope, Y., Liberman, N., 2003. Temporal construal. *Psychological*
1426 *review* 110, 403. URL: <https://doi.org/10.1037/0033-295x.110.3.403>.

1428 [85] Venters, C.C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T.,
1429 Crouch, S., Nakagawa, E.Y., Becker, C., Carrillo, C., 2018. Software
1430 sustainability: Research and practice from a software archi-
1431 tecture viewpoint. *Journal of Systems and Software* 138, 174–
1432 188. URL: <https://www.sciencedirect.com/science/article/pii/S0164121217303072>, doi:10.1016/j.jss.2017.12.026.

1434 [86] van Vliet, H., Tang, A., 2016. Decision making in software architecture.
1435 *Journal of Systems and Software* 117, 638–644. URL: <https://doi.org/10.1016/j.jss.2016.01.017>.

1437 [87] Von Neumann, J., Morgenstern, O., 1944. *Theory of games and eco-*
1438 *nomic behavior*. Princeton University Press.

1439 [88] Yin, R.K., 2013. *Case Study Research: Design and Methods*. Sage
1440 Publications.

1441 [89] Zannier, C., Chiasson, M., Maurer, F., 2007. A model of design decision
1442 making based on empirical results of interviews with software designers.
1443 *Information and Software Technology* 49, 637–653. URL: <https://doi.org/10.1016/j.infsof.2007.02.010>.

1445 [90] Zauberman, G., Kim, B.K., Malkoc, S.A., Bettman, J.R., 2009. Dis-
1446 counting Time and Time Discounting: Subjective Time Perception and

1447 Intertemporal Preferences. *Journal of Marketing Research* 46, 543–556.
1448 URL: <https://doi.org/10.1509/jmkr.46.4.543>.

1449 [91] Zdun, U., 2013. Sustainable Architectural Design Decisions. *IEEE*
1450 *Software* 30, 46–53.