
Investigating Quality Trade-offs in Open Source Critical
Embedded Systems

Daniel Feitosa1, Apostolos Ampatzoglou1, Paris Avgeriou1, Elisa Yumi Nakagawa2
1 Department of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

2 Department of Computer Systems, University of São Paulo, São Carlos, SP, Brazil
d.feitosa@rug.nl, a.ampatzoglou@rug.nl, paris@cs.rug.nl, elisa@icmc.usp.br

ABSTRACT
During the development of Critical Embedded Systems (CES),
quality attributes that are critical for them (e.g., correctness,
security, etc.) must be guaranteed. However, this often leads to
complex quality trade-offs, since non-critical qualities (e.g.,
reusability, understandability, etc.) may be compromised. In this
study, we aim at empirically investigating the existence of quality
trade-offs, on the implemented architecture, among versions of
open source CESs, and compare them with those of systems from
other application domains. The results of the study suggest that in
CES, non-critical quality attributes are usually compromised in
favor of critical quality attributes. On the contrary, we have not
observed compromises of critical qualities in favor of non-critical
ones in either CES or other application domains. Furthermore,
quality trade-offs are more frequent among critical quality
attributes, compared to trade-offs among non-critical quality
attributes. Our study has implications for both practitioners when
making trade-offs in practice, as well as researchers that
investigate quality trade-offs.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.11 [Software
Engineering]: Software Architectures – domain-specific
architectures.

General Terms
Measurement, Performance, Design, Experimentation, Security

Keywords
embedded systems; quality trade-offs; software metrics

1. INTRODUCTION
Critical Embedded Systems (CESs) are among the most
significant types of software-intensive systems, since they are
extremely pervasive in modern society, being used from cars to
power plants [19]. CESs are embedded systems in which design
errors can potentially be catastrophic [12], in terms of causing
serious damage to the environment or to human lives, or non-
recoverable material and financial losses [2]. Due to the criticality
of such systems, the satisfaction of multiple quality constraints
must be guaranteed, which is far from trivial, as it entails complex

trade-offs: compared to other application domains, in CES such
trade-offs to a large extent concern safeguarding the levels of
critical against other non-critical qualities [5], [18]. As critical
quality attributes (QAs), we characterize those that can cause
catastrophic failures, as mentioned before, and usually concern
performance, security and reliability.

Trade-offs occur because almost every design decision has the
potential to positively affect some QAs and negatively affect
others. For example, solutions that aim at enhancing security
might, as a side effect, harm the performance of the system.
Resolving a QA trade-off is a complex process, as it touches upon
multiple design decisions. If a trade-off is not resolved well, it can
lead to poor satisfaction of QAs, or an overkill in their satisfaction
[8]. Understanding the nature of such trade-offs is of paramount
importance to guide practitioners in making optimal trade-offs,
and researchers in facilitating the practitioners in their job.

Until now, trade-offs between quality attributes have not received
sufficient empirical investigation [8] in real-life systems, but have
mostly been addressed at a theoretical level. Specifically, we lack
empirical evidence on the types of trade-offs performed in the
domain of CES, and how exactly these trade-offs differ from
other application domains. The goal of this study is to provide
such evidence, by examining trade-offs in the implementation of
real-life systems for both CES and other domains. Although QA
trade-off analysis is usually investigated at the architecture design
level, we work at the architecture implementation level (i.e.,
source code) for two reasons. First, the implemented architecture
(derived from the source code) may deviate from the intended (as
designed) architecture, in a phenomenon known as architectural
drift [23]. But we want to study the quality trade-offs as they exist
in real systems, not as they may have been intended during
design. Therefore, as a side-effect of this decision, we emphasize
that in this study both intentional and unintentional trade-offs are
being considered without distinction between them. Second, the
availability of source code is much greater than the availability of
architecture design documentation (especially with information
about quality trade-offs) in both open-source systems (OSS) and
commercial systems.

Thus, in this study, we aim at exploring:

(goal - a) the existence of quality trade-offs in the
implemented architecture of CES, by investigating
their source code; and

(goal - b) whether trade-offs differ between CES and systems
of other application domains.

In order to explore the existence of quality trade-offs from source
code, we need to use methods, such as static analysis, to explore
the evolution of quality attributes (i.e., changes in the levels of
quality across successive versions), since no documentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
QoSA'15, May 4-8, 2015, Montréal, QC, Canada.
Copyright 2015 ACM 978-1-4503-3470-9/15/05…$15.00.
http://dx.doi.org/10.1145/2737182.2737190

regarding quality trade-offs is available at the source code level.
In this sense, trade-offs refer to cases where changes in source
code correlate with the improvement of one quality attribute and
deterioration of a second. As aforementioned, this means that we
extract both intentional and unintentional trade-offs, thus being
inclusive rather than exclusive.

To accomplish the aforementioned goals, we performed an
embedded multiple-case study on multiple versions of twenty one
OSS projects [25]. The results of the study suggest the existence
of QAs trade-offs in the CES domain, as well as in other domains,
and highlight differences between them. The remainder of this
paper is organized as follows: related work is presented in Section
2, along with a discussion of the main contributions of this study.
In Section 3, we present the design of the case study. In Sections
4 and 5 we present the results and discuss the most important
findings respectively. In Section 6, we report on the identified
threats to validity and actions taken to mitigate them. Finally, in
Section 7 we conclude the paper and present some interesting
extensions for this study.

2. RELATED WORK
In this section we present related work that discusses software
quality attributes. In the software engineering literature, QAs can
be characterized based on many classifications (e.g., [1] and
[17]); however, since our work is focused on the domain of CES,
we decided to simply classify them as either critical or non-
critical.

We organize this section by first presenting studies on the domain
of embedded systems (Section 2.1) and next on the evolution of
software qualities in general (Section 2.2)1, as trade-offs are
inherent in evolution. When presenting related work, we
emphasize (in bold italic) the number of cases considered in the
studies, as well as the tackled QAs. This information will be
further summarized and compared with the main points of
advancement of our work (Section 2.3). Most of the related work
discussed in this section is based on a mapping study on software
quality trade-offs by Barney et al. [8].

2.1 Quality Trade-offs in Embedded Systems
Concerning the interplay between QAs in the domain of
embedded systems, Del Rosso presents an architectural approach
for improving the performance of software products derived from
a product family for real-time embedded systems, and its possible
implications to maintainability [24]. To validate his approach, he
conducts two cases studies on assessing the performance: (a) of
one specific product line; and (b) on four scenarios involving
derived products during product line evolution (the addition of
new features). The first study involved one case, while the second
involved four cases. The performance is measured by run-time
metrics related to memory allocation, and the author discusses the
trade-offs with maintainability. The results suggest that, by
analyzing the commonalities and differences among derived
products, one can extract bottlenecks and problems in core
architecture (e.g., God class).

In a similar context, Oliveira et al. investigate the relationship
between non-critical quality attributes, measured by metrics

1 We note that the presentation of related work on software evolution is

indicative, since the amount of research on this domain is too large to
include in this paper, due to size limitations.

obtained from source code, and performance, measured by
physical metrics (i.e., memory, time, and energy) obtained from
run-time monitoring [21]. The explored quality attributes are the
following: complexity, coupling, cohesion, extendibility/ reuse,
and population / size. The study comprises a case study involving
the evaluation of four alternative designs of an example system,
in which measurements are collected for each design solution,
showing potential trade-offs between the aforementioned metrics,
and supporting the decision-making regarding the selection of a
design solution. Results indicate the existence of trade-offs
between quality and physical metrics, as well as the fact that
quality metrics can provide information regarding high-level
QAs, guiding the design solution selection at early stages, which
might lead to significant gain in physical characteristics latter on.
A main difference of this work, compared to ours, is that we are
investigating the relationship between QAs within the evolution
of the software, rather than trade-offs among possible designs
from the solution space.

2.2 Quality Analysis through Evolution
Concerning the investigation of quality attributes through source
code evolution; Buyens et al. [13] present an analysis of the
interaction, on three cases, between security, measured by two
metrics, and maintainability, measured by two metrics as well.
Each security metric is based on one security principle, namely
Least Privilege (the metric is the number of violations) and Attack
Surface (the metric is the estimation of the attackers’ effort).
Whereas, the two maintainability metrics are: Coupling Between
Components, and Components Instability. The metrics are
measured while applying modification in the implementation of
each security principle (i.e., changing the involved components),
causing changes in the system. Results of this study indicate that:
(a) transformations are more effective when applied jointly, and
(b) trade-offs exist between security metrics, and between security
and maintainability QAs.

Additionally, Barros et al. characterize the evolution of one open
source project (Apache Ant) in terms of size, changeability,
cohesion, and coupling QAs, through an exploratory study [9]. A
main point of discussion is regarding the investigation of the high
cohesion and low coupling principle. The results suggest that the
original design was “lost” throughout the evolution of the system,
while architectural optimization is hard, leading to a more
complex to maintain resulting design.

Finally, Di Penta et al. [22] study security in software systems by
investigating the life-span of vulnerabilities among software
versions. The authors define vulnerability as “any instance of an
error in the specification, development, or configuration of
software such that its execution can violate the security policy”
[22]. Di Penta et al. investigate a total of 14 vulnerabilities,
organized into four categories: input validation, memory safety,
race / control flow condition, and other. To investigate the
evolution of these vulnerabilities, they perform a case study on
three open source software projects. Results indicate that: (a)
vulnerabilities tend to be removed from the source code (between
56% and 93 %), (b) functions with security issues tend to be
replaced, and (c) new functionality tends to introduce new
vulnerabilities.

2.3 Overview of Related Work
The main differences of this study compared to the related work
are summarized in Table 1. Specifically, we present the

differences in: (a) the studied application domains, (b) the studied
QAs, and (c) the size of the performed case studies.

Therefore, the main contributions of this study with respect to the
research state-of-the-art are:

c1: it compares trade-offs that appear in CESs with other
application domains. To the best of our knowledge, this is the
first study that presents empirical evidence on this matter; and

c2: it investigates the interplay among 9 QAs. To the best of our
knowledge, this is the most inclusive study of this type in
terms of investigated QAs.

3. CASE STUDY DESIGN
This section describes the case study protocol, which was
designed according to the guidelines of Runeson et al. [25], and is
reported based on the Linear Analytic Structure [25].

3.1 Objectives and Research Questions
The goal of this study is described using the Goal-Question-
Metrics (GQM) approach [10], as follows: “analyze open source
software for the purpose of understanding quality attributes
trade-offs with respect to the application domain of CES and
others from the point of view of software developers in the
context of Open Source projects”. Based on the goal of this study,
we defined the following research questions:

RQ1: Are there trade-offs between quality attributes of CES?

RQ1.1: Are there trade-offs between non-critical quality
attributes?

RQ1.2: Are there trade-offs between critical quality attributes?

RQ1.3: Are there trade-offs between critical and non-critical
quality attributes?

RQ1.4: Are trade-offs between pairs of quality attributes bi-
directional?

RQ1 aims at investigating goal-a, i.e., investigating the existence
of quality trade-offs. In order to further investigate the nature of
such trade-offs (RQ1), we employ the QA classification into
critical and non-critical attributes and explore interactions
between them (RQ1.1 - RQ1.3). Intuitively, we would expect that
quality trade-offs in CES would be different among critical and
non-critical qualities categories. Subsequently, it is relevant to
explore whether trade-offs between QAs occur on both directions,
i.e., if the improvement of a certain QA “causes” another to
decrease, does the vice-versa phenomenon occur? (RQ1.4).

RQ2: What is the difference in quality attributes trade-offs among
CES and non-CES domains?

RQ2.1: Are there similar trade-offs among CES and non-CES
domains?

RQ2.2: Are there different trade-offs among CES and non-
CES domains?

Since one of the most prevalent characteristics of the CES domain
is the distinction between critical and non-critical qualities, it is
interesting to compare it to other domains (regarding the same
QAs), in order to see how this distinction is reflected in quality
trade-offs (RQ2). Therefore, it is important to identify similar
trade-offs among CES and other domains (RQ2.1), as well as the
differences in trade-offs between QAs (RQ2.2).

3.2 Case Selection and Unit of Analysis
This study is an embedded multiple-case study, in which

each case is represented by one project. As unit of analysis we
refer to changes in the quality attributes between subsequent
versions of any project. In order to select appropriate cases for our
study we needed to retrieve successive versions of OSS projects
of two different groups: CES projects, and non-CES projects. The
projects used in our analysis were required: (a) to be written in
Java, due to limitations of the used tools (see Section 3.3.3), (b) to
have an adequate number of versions for evolution analysis, and
(c) not to be considered as “toy examples”. The selected projects,
accompanied by some additional information, are presented in
Table 2. We clarify that although the selected CESs do not
provide high-level end-user functionalities (e.g., move a robot),
they are high-quality systems (more specifically, virtual
machines) tailored for CES. Therefore, they are subject to the
same, or stricter, (critical) constraints when compared to
applications running on top of the virtual machine.

In order to ensure that the sample of non-CES represents a
number of different application domains, thus avoiding bias from

Table 1. Overview of related work

#ref

App. Domain QA #cases

CES Others #critical
#non-

critical CES Others
[25] √ X 1 1 4 N/A

[22] √ X 1 5 4 N/A

[14] X √ 1 1 N/A 3

[10] X √ 0 4 N/A 1

[23] X √ 1 1 N/A 3

this √ √ 3 6 4 17

Table 2. Projects considered in the case study

Project Name
Starting

Year
Size** NoV* Group NoV*

Java-SE-Embedded 2010 834k 14

CES 50
LeJOS 2000 81k 16

LeJOS-EV3 2013 30k 9

LeJOS-NXJ 2006 52k 11

Art of Illusion 2000 53k 32

Non-
CES

572

DrJava 2002 180k 24

FileBot 2007 532k 25

FreeCol 2002 51k 34

FreeMind 2000 28k 34

Hibernate 2001 123k 28

HomePlayer 2005 24k 32

HtmlUnit 2002 27k 26

iText 2000 56k 23

JFreeChart 2000 62k 56

Lightweight-Java-
Game-Library

2002 72k 40

MediathekView 2008 17k 41

Mondrian 2001 51k 33

OpenRocket 2009 182k 27

Pixelitor 2009 27k 33

Subsonic 2004 282k 42

TuxGuitar 2005 28k 19

*NoV = Number of Versions
**Size, of the last version, in lines of code

specific non-CES domains, we have selected systems2 from 10
different domains. Therefore, our dataset contains four CES and
an average of 3.1 systems from each of the 10 different non-CES
domains. This means that the number of CES is not comparable to
the total number of non-CES, but it is comparable to the number
of systems in each of the different application domains.

3.3 Data Collection and Pre-processing
In order to answer the research questions, we extracted three sets
of variables from each unit of analysis (see Section 3.3.3). The
first set comprises data related to project identification and
classification (V1 and V2). The second and third sets comprise
variables for the quantification of critical (V3 – V5) and non-
critical (V6 – V11) QAs. We clarify that in this paper QAs are
assessed based on a set of metrics. To this end, we selected
several metrics that, to the best of our knowledge, are able to
quantify the levels of quality. The two sets of metrics, for critical
and non-critical QAs respectively, are presented in detail in the
following sections.

3.3.1 Assessment of Critical Quality Attributes
Bugs have been extensively investigated as indicators of quality.
More specifically, Misra and Bhavsar [20] have explored bugs as
indicators for correctness, and Zaman et al. [26] have explored
bugs as indicators for security and performance. When using bugs
to quantify quality, it is a common practice to classify them into
categories. For example, Zaman et al. [26] classified bugs
according to their effect on specific QAs (e.g., security and
performance). Therefore, to evaluate software projects with
respect to their critical quality attributes, we performed static
analysis by collecting the amount of several different types of
bugs. For that, we used the tool FindBugs3. FindBugs is capable
of detecting vulnerabilities in software by using bug patterns [16].
In this case study, we have chosen to use FindBugs because it
provides:

 adequate performance (with respect to precision) when
compared to similar tools [16] [27];

 a collection of over 400 bug patterns; and

 a grouping of these bug patterns in nine high-level categories
(i.e., Security, Correctness, Multithreaded Correctness,
Performance, Malicious Code, Bad Practice,
Internationalization, Experimental and Dodgy Code), which
can in turn be mapped into quality attributes.

In this study, in order to evaluate critical quality attributes, we
considered the first five categories (in total 246 bug patterns), as
they can be mapped to three critical QAs: correctness
(Correctness and Multithreaded Correctness categories),
performance (Performance category), and security (Security and
Malicious Code categories). Therefore, the level of quality for the
three aforementioned QAs is measured by the quantity of detected
bugs. We clarify that for the correctness and security QAs, the
number of bugs is the sum of the two categories each QA is
comprised of. For example, security is measured by summing the
number of bugs from both Security and Malicious Code

2 We collected these systems from https://sourceforge.net, and considered

the root from each category as the domain. Additionally, each system
may belong to more than one domain.

3 http://findbugs.sourceforge.net/

categories. For all QAs a lower number of bugs reflects a higher
level of quality.

3.3.2 Assessment of Non-critical QAs
Regarding the quantification of non-critical quality attributes, we
selected to use the Quality Model for Object-Oriented Design
(QMOOD) [7]. QMOOD is a well-known hierarchical quality
model that provides an approach for assessing six high-level
quality attributes: reusability, understandability, functionality,
extendibility, effectiveness, and flexibility [7]. These attributes
are quantified based on 11 structural object-oriented design
properties: design size, hierarchies, abstractions, encapsulation,
coupling, cohesion, composition, inheritance, polymorphism,
messaging, and complexity [7]. The definition for the
aforementioned quality attributes and properties, and the
equations to calculate the score of each quality attribute (by using
weighted sum) can be found in the work of Bansiya and Davis
[7]. Although the QMOOD quality model seems rather simplistic
in its calculations, weighted sum is the most classical and,
therefore, used approach for combining metrics [14].
Additionally, Bansiya and Davis [7] validated it empirically by
using 13 appraisers, with 2-7 years of experience in commercial
software development, to evaluate 14 software projects. Their
evaluation was compared to the quality model output, which
showed to be significantly correlated. Therefore, we selected to
use QMOOD since it:

 uses simple calculations, which can be easily automated;

 provides clear definitions of low-level properties and direct
mapping to quality attributes; and

 presents a fair amount of quality attributes.

In order to assess the QAs for each project we used Percerons
Client4, i.e., a tool developed in our research group, which
automates the assessment of these QAs for provided Java classes.
Percerons is a software engineering platform [6], created by one
of the authors, to facilitate empirical research in software
engineering, by providing: (a) indications of componentizable
parts of source code, (b) quality assessment, and (c) design
pattern instances. The platform has been used for similar reasons
in [5], [15], and [3].

3.3.3 Collection Procedure and Pre-processing
The data collection phase was a two-step process. First, the QAs
assessment variables were extracted from every unit of analysis,
using FindBugs and Percerons Client. Both tools work on Java
binary code, so we provided them with a set of .jar files (one per
version), and recorded the outcome in an initial dataset. For
FindBugs, we used the command line version 3.0.0, for easy
reproduction and automation purposes. During execution, we
requested maximum effort (i.e., enabling analysis that increases
precision), and reported bugs from all urgency priorities (i.e.,
from least to most harmful to the system).

The initial dataset was compiled in a single file for each project,
containing all extracted data (from both tools) for each version.
This file comprises a table with the following fields for each row
of data: version, number of correctness bugs, number of
performance bugs, number of security bugs, reusability score,
understandability score, functionality score, extendibility score,

4 http://www.percerons.com

effectiveness score, and flexibility score. The number of bugs
from each aforementioned QA was obtained by counting the rule
violations with medium and high confidence from Findbugs
output. We decided to filter out the bugs with low confidence
level for increasing the precision of the automatic rule violation
identification process. Specifically, we manually
analyzed/validated a sample of 15 bugs per level of confidence
(chosen randomly), and we estimated that the precision for low,
medium, and high categories were 26.67%, 60%, and 73.33%
respectively.

Next, the final dataset was created by calculating the difference
between two consecutive versions (δvariable = variablev - variablev-

1), for every version v of each project. This was performed for
each estimator (number of bugs or design-time attribute quality
score). Then all data were merged in a single table consisting of
the following fields: project name, type of project (i.e., CES or
non-CES), δcorrectness, δperformance, δsecurity, δreusability, δunderstandability,
δfunctionality, δextendibility, δeffectiveness, and δflexibility. Finally, the values of
the δ* variables were classified as improvement cases,
deterioration cases, or neutral cases, based on the sign of the
corresponding δ value.

Summarizing, the full list of variables collected from each unit of
analysis, together with their description, is presented in Table 3.

3.4 Data Analysis
During this phase, we analyzed the previously described δ* fields
(V3 – V11), in order to identify trade-offs, which will be further
used for comparison between CES and non-CES groups. We
clarify that these fields represent assessments of the studied QAs,
and, therefore, when referring to the attributes, we are in practice
referring to their assessments. The analysis of the collected data is
split in three steps:

(step 1) Analysis of pairs of QAs: For both groups (CES and
non-CES projects), we have to seek evidence on the
existence of trade-offs, in every pair of QAs. For
instance, Figure 1 depicts the analysis of qualities V6
vs. V10, for CES. Therefore, for every pair of QAs, we
proceed as follows:

(step 1.1) Filter improvement cases: As we are looking for
cases of occurrences of trade-offs, it is important
to select only cases in which one of the two QAs
has improved. For this reason, we create two sub-
datasets, each one consisting of the cases having
positive scores for the respective QA. For
instance, in Figure 1, the two sub-datasets consist
of the cases in which V6 improves (positive
values of V6), and the cases in which V10
improves (positive values of V10). This ensures
that we are tracking the cases in which perfective
maintenance tasks may have been performed in
order to improve the tracked aspect of the
software.

(step 1.2) Calculate statistics of sub-dataset: Each sub-
dataset (corresponding to an improving QA) is
analyzed by creating a frequency table for the
second QA. In the example presented in Figure 1,
for the sub-dataset comprising cases of
improvement of V6, we calculate the frequencies
for V10; and vice-versa. Thus, when exploring
each sub-dataset, we calculate the frequency

percentages of the classes of the second QA (i.e.,
improvement cases, deterioration cases, stable
cases). Next, the improvement cases are marked
as co-evolution, the deterioration cases are marked
as trade-offs, whereas the neutral cases as neutral.
For instance, in Figure 1, in the sub-dataset
comprising improvement cases of V6, we
calculated “V10 -” (trade-off), “V10 +” (co-
evolution), and “V10 0” (neutral).

(step 1.3) Filter evidence: To identify the trade-offs
occurring between QAs, we keep out of the two
sub-datasets of step 1.2, only those in which the
percentage of the trade-off cases is higher than the
percentage of co-evolution and neutral. In the
example of Figure 1, we identify a possible trade-
off at the sub-dataset in which the improvement of
V6 affects negatively V10.

(step 2) Synthesis of presentation: In this step we
synthesize and graphically represent the results of
step 1, so as to answer the research questions.

Table 3. List of collected variables

Variable Description Tool

[V1]
Software project: the name of the OSS project
from which data were extracted.

-

[V2]
Domain Group: project belongs either to CES or
non-CES

-

[V3]

Difference between two versions, in the count
of security rule violations: count of bug pattern
instances in “Malicious code vulnerability” and
“Security” categories. F

indB
ugs

[V4]
Difference between two versions, in the count
of “Performance” rule violations: count of bug
pattern instances in “Performance” category.

[V5]

Difference between two versions, in the count
of correctness rule violations: count of bug
patterns in “Correctness” and “Multithread
correctness” categories.

[V6]
Difference between two versions, in the
reusability score: the reusability assessment
computed as defined by Bansiya and Davis [8].

P
ercerons C

lient

[V7]
Difference between two versions, in the
flexibility score: the flexibility assessment
computed as defined by Bansiya and Davis [8].

[V8]

Difference between two versions, in the
Understandability score: the understandability
assessment computed as defined by Bansiya and
Davis [8].

[V9]

Difference between two versions, in the
Functionality score: the functionality
assessment computed as defined by Bansiya and
Davis [8].

[V10]
Difference between two versions, in the
Extendibility score: the extendibility assessment
computed as defined by Bansiya and Davis [8].

[V11]

Difference between two versions, in the
Effectiveness score: the effectiveness
assessment computed as defined by Bansiya and
Davis [8].

Two heat maps are derived from the information
on step 1: one depicting the trade-offs within the
CES group (row: improved QAs, columns:
affected QAs, intensity: the frequency of trade-
offs); and another showing the comparison of
trade-offs between the two groups (the difference
and similarities between CES and non-CES trade-
offs).

(step 3) Comparison of evidence in CES projects: With the data
collected and summarized, it is analyzed within the CES
group, aiming at comparing the interactions between the
QAs in order to answer RQ1 and its sub-questions. For
this step the heat map on CES trade-offs is used.

(step 4) Comparison of evidence from groups: The analysis is
now extended to the non-CES group, aiming, therefore,
at comparing all collected data in order to answer RQ2
and its sub-questions. For this step the heat map on the
comparison between CES and non-CES groups is used.

Summarizing the procedure for answering the RQs, Table 4
presents the mapping between each RQ, the used variables, as
well as the step of the analysis in which RQs are answered and the
presentation methods that are used.

4. RESULTS
In this section we present the output of the analysis, and answer
the research questions. To answer RQ1 and its sub-questions, we
explore the findings obtained from step 3. In order to visualize the
interaction between the QAs, we compiled raw data (omitted from
this manuscript due to space limitations5) into a heat map (see
Figure 2). In the heat map of Figure 2, each cell represents the
effect of improving one QA (vertical axis) over another
(horizontal axis). The intensity of the heat map (i.e., color
darkness – also written inside the cell) represents the percentage
of the cases that constitute valid trade-offs (see step 1.3).
Moreover, the two bold lines in the map divide it into quadrants in
order to highlight the interactions within and between the critical
and non-critical groups of QAs. Hence, the top-left quadrant
represents the interactions between critical QAs, the bottom-right
quadrant represents the interactions between non-critical QAs,

5 Supplementary material on the collected data during the study is

available at:
 http://www.rug.nl/research/software-engineering/publication_files/QA-

tradeoffs-TR-2015-01-08.pdf

Figure 1. Example of trade-off analysis within the final dataset

Table 4. Mapping of RQs to variables, steps, and presentation

Research
Question

Variables
Used

Step Presentation Method

RQ1 [V2-V13]

3 Heat Map on CES trade-offs
RQ1.2

[V2]
[V8-V13]

RQ1.2 [V2-V7]

RQ1.3 [V2-V13]

RQ1.4 [V2-V13]

RQ2 [V2-V13]

4
Heat Map on comparison
between CES and non-CES

RQ2.1 [V2-V13]

RQ2.2 [V2-V13]

Figure 2. Trade-offs in CES domain

while the other two represent the interaction between QAs of the
two groups.
Based on Figure 2, we are able to answer all sub-questions of
RQ1, by confirming the existence of trade-offs between QAs (see
Section 3.4, step 1), and answering affirmatively RQ1.1 - RQ1.3.
Consequently, by investigating each quadrant separately, it’s also
possible to point out possible trade-offs between critical QAs
(second quadrant), non-critical QAs (fourth quadrant), and
between QAs of the two groups (first and third quadrants). The
findings from exploring RQ1.1 - RQ 1.3 is the existence of trade-
offs6 between:

 understandability and the other non-critical QAs (and vice-
versa);

 correctness and performance, as well as between security and
correctness;

 all critical QAs and extendibility, and between all QAs and
understandability;

 performance and reusability;

 reusability and extendibility.

Subsequently we examine whether the interactions between two
QAs are bi-directional (RQ1.4), i.e., if the improvement of one QA
negatively affects another QA, the opposite relationship also
holds. To answer this research question, we examine Figure 2 for
symmetries. We observe that although we identified some bi-
directional interactions, it is not possible to conclude that all
identified trade-offs between QAs are bi-directional. However, for
some pairs of QAs, bi-directional trade-offs can be identified, i.e.,
between understandability and the rest of the non-critical QAs
(effectiveness, extendibility, flexibility, functionality, and
reusability). Moreover, we highlight one interesting finding
regarding the interactions between critical and non-critical QAs:
although the improvement of some critical QAs negatively affects
non-critical QAs, the opposite phenomenon never appears, i.e., in
this study we found no evidence of non-critical QAs negatively
affecting critical QAs.

Finally, having examined the trade-offs in the CES domain, we
can compare them with other application domains (RQ2): in what

6 We note that, in this study, when reporting trade-offs in the form of

“trade-off between QAA and QAB”, we refer to a compromise in the
levels of QAB in favor of an improvement in the levels of QAA.

aspects they are similar (RQ2.1), and the ones in which they differ
(RQ2.2). To answer these questions, we created two heat maps:
one akin to that depicted on Figure 2 (see Figure 3), but
considering data from the non-CES projects, and another
representing the difference of the two heat maps (see Figure 4). In
Figure 4, three different filling patterns (with their respective
colors) represent the possible classifications for the observed
trade-offs: evident only in the group of CES projects (red
background with circles); evident only in the group of non-CES
projects (blue with slanted lines); and evident in both groups
(green background with vertical lines). Based on this figure, we
answer affirmatively RQ2.1 - RQ 2.2, and, additionally, make the
following observations:

 Similarities between the two groups of projects: Trade-offs
between security and correctness; between correctness and
performance; between all QAs and understandability; and
between understandability and non-critical QAs.

 Trade-offs occurred only in the group of CES projects:
between the critical QAs and extendibility; between
reusability and extendibility; and between performance and
reusability.

 Trade-offs occurred only in the group of non-CES projects:
between correctness and security, as well as between
performance and security; and between correctness and
effectiveness.

Finally, concerning the group of CES projects, the trade-offs
occur mostly between critical QAs and non-critical QAs, which
implies that, in the CES domain, non-critical QAs are more often
sacrificed in favor of critical QAs.

5. DISCUSSION
In this section we present a discussion of the results, by providing
possible interpretations and a comparison against related work
(when applicable). We first discuss the findings from the CES
trade-off analysis, and then the comparison between CES and
non-CES. At the end of this section, we discuss possible
implications to researchers and practitioners.

5.1 Trade-offs in CES Domain
By exploring the trade-offs in CES, the following observations
can be made:

 extendibility is negatively affected by reusability. This is
intuitive for CES. In general, embedded systems provide

Figure 4. Comparison between CES and non-CEs groups

Figure 3. Trade-offs in non-CES domain

specific functionalities that are not designed to facilitate
future extensions in an object-oriented way (e.g., adding
subclasses, polymorphic methods, etc.). Therefore, the
addition of new functionality is expected to be performed by
adding methods in existing classes, making existing methods
larger in size, or adding new concrete classes, which in turn
lead to even more decreased extendibility. On the other hand,
according to [7], such classes (which offer large amount of
functionalities) are considered more probable to be reused,
since they provide more reuse opportunities, regarding offered
functionalities.

 performance negatively affects reusability. One possible
explanation is that, in order to improve the system
performance, some solutions (e.g. refactoring of class into
inner class7) lead to deterioration of aspects that support
reusability, such as cohesion, coupling, and size. Coupling
and cohesion are important assessors of reusability in the
sense that they are related to the adaptation time needed for
reusing a specific piece of code. A similar finding can also be
drawn based on the work of Oliveira et al. [21], who suggest
that cohesion and coupling metrics, that are assessments of
reusability, are compromised in favor of metrics for
performance [7].

Although the results of Figure 2 suggest that extendibility is
negatively affected by all critical QAs, we believe that this result
needs further investigation. Intuitively, extendibility is
compromised by source code growth [4], and embedded system
development style, as already mentioned. Therefore extendibility
deteriorates during the evolution of CES, but we do not have
evidence regarding the extent that this is connected to bug solving
(i.e. improvement of critical QAs). However, a similar finding is
reported in [21], where metrics for extendibility are compromised
in favor of performance.

The rest of the findings are discussed in the next subsection, as
they are also observed in the non-CES group.

5.2 Comparison of the Two Groups
On the one hand, in both CES and non-CES, we were able to
observe the following:

 non-critical QAs do not affect critical QAs. Improvements on
object-oriented properties (i.e., enhancement in design-time
QAs – all non-critical QAs investigated in this study are
design-time) are not likely to result in additional source code
vulnerabilities (rule violations – assessment of critical QAs).
A possible explanation is that there is no tension between
non-critical and critical QAs. However, another possibility is
that when improving design-time quality attributes, the
developers are refactoring the code without changing its
external behavior (extract class, extract method, etc.), which
only “moves” rule violations to other parts of the system,
without introducing new ones. In addition to that, especially
concerning CES, this finding is intuitive in the sense that it
was not expected from development teams to compromise a
critical QA in a critical system, in favor of a non-critical one.

 security negatively affects correctness. Fixing security
vulnerabilities can lead to additional errors in the code. For

7http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_

SHOULD_BE_STATIC

example, in order to fix a vulnerability related to a field that is
not well implemented and should be moved8, one might do
the refactoring as suggested, but forget to initialize the field9.

 correctness negatively affects performance. Coding mistakes
are common during development (e.g., accessing an already
freed reference10). Therefore, in order to solve these bugs, one
might use inefficient coding styles (in terms of performance)
in order to ensure that the output is the expected (e.g.,
introducing extra parameters in a method that ends up being
of limited utility11).

On the other hand, by comparing the differences between the two
groups, we identified the following findings:

 Although specific evidence of trade-off was discussed already
(in the previous subsection), we note that the higher frequency
of trade-offs between the critical QAs with non-critical QAs
might reflect a higher importance of critical QAs over non-
critical QAs in CES.

 In non-CES, correctness negatively affects effectiveness.
While maintaining parts of source code, it might be the case
that more non-object-oriented approaches are employed,
leading to a reduction in system’s effectiveness. We note that
effectiveness is quantified by assessing how well the object-
orientation paradigm is employed in the source code [7]. For
example, in order to solve missed locks12, one might
centralize the responsibilities to avoid forgetting the lock.

 In non-CES, correctness affects all other critical QAs. This
might be an indication that functionalities are not optimally
implemented (i.e., implying less attention to errors or less
knowledge on the topic) in other domains, possibly due to a
lack on developers’ skills.

 In non-CES, security is affected by all other critical QAs.
Similarly to the previous finding, code exploitation
vulnerabilities appear to be common in other domains, and
could also be explained by lack of skills regarding this issue.

Finally, although the results of Figure 4 suggest that
understandability is negatively affected by all other QAs and vice-
versa, we believe that this result needs further investigation.
Specifically, we observed that understandability is a QA that
continually deteriorates during systems evolution [22], because
based on the way it is calculated [7] it is inversely proportional to
the growth of properties such as complexity (measured by number
of methods) and design size (measured by number of classes). On
the other hand, in the cases when understandability is increasing,
we observe a negative relationship with the rest of the non-critical
QAs, again because of the way that both understandability and
non-critical-QAs are calculated. Concluding, we believe that the
decrease of understandability in our study is not the result of

8http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_

PKGPROTECT
9http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNIN

IT_READ
10http://findbugs.sourceforge.net/bugDescriptions.html#NP_NUL

L_ON_ SOME_PATH
11http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNB

OXING_ IMMEDIATELY_REBOXED
12http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SL

EEP_WITH_LOCK_HELD

explicit trade-offs, but simply, the natural effect of system
growth.

5.3 Implications for Practitioners and
Researchers
Firstly, by investigating our results, architects and software
engineers can become aware of the most probable side-effects that
the enhancement of one QA might have to another, in the sense
that some trade-offs may be performed unintentionally. For
example, by making developers aware of the fact that when fixing
bugs related to security, they usually introduce additional bugs
related to correctness, would make them consider possible ways
to avoid such side-effects. Similarly, architects can also benefit
from the identified trade-offs, as a source of potential threats to
QAs, enabling them to: (a) monitor the potentially harmed QAs,
and (b) identify concrete QA compromises earlier, so as to
employ the necessary countermeasures.

Secondly, the results of the study suggest that CES differ from
other application domains in terms of the actual trade-offs, and in
terms of trade-offs between QAs not being bi-directional.
Therefore, we strongly advise both researchers and practitioners
to: (a) reflect on the direction of trade-offs, when reasoning about
the interplay of QAs (e.g., the improvement of one QA affects
another QA negatively, but not vice-versa), and (b) to take into
account the application domain when investigating trade-offs.

Finally, the results of the study suggest that the outcome of
investigating trade-offs at the level of the implemented
architecture are intuitively correct, as they align with architecting
principles. Therefore, we induce researchers to consider source
code artifacts, when exploring trade-offs between QAs.

6. THREATS TO VALIDITY
In this section we present and discuss construct validity,
reliability, as well as external validity for this study. Internal
validity is not applicable, as the study does not examine causal
relations. Construct validity reflects how connected are the object
of study and the research questions. The reliability is related to
whether the case study is conducted and presented in such way
that others can replicate it with the same results. Finally, external
validity deals with possible threats when generalizing the findings
derived from sample to the entire population.

Concerning construct validity, one threat concerns the correctness
of the formulae, proposed by Bansiya and Davis [11], for
assessing the non-critical QAs. However, as described in the data
collection section, the calculation had been validated through an
empirical study involving experienced practitioners. Additionally,
regarding FindBugs, we acknowledge that the list of bug patterns
are by no means exhaustive, and additional bugs related to the
investigated QAs could be used. However, to the best of our
knowledge the used tool is among the most reputed in the
community, and has adequate performance (see Section 3.3.1).
Another threat is that effect size is not considered during the data
analysis (Section 3.4), i.e., any positive or negative change in an
attribute is considered the same, regardless of its magnitude. This
measure was taken in order to avoid bias from specific projects to
the entire domain.

In order to mitigate reliability, two different researchers were
involved in the data collection, having all outputs double-
checked. Furthermore, the same double-checking procedure
happened during the data analysis. Finally, all primitive data can

be reproduced by using the same bug detection tool (FindBugs,
v3.0.0), for estimating critical QAs, and the QMOOD quality
model calculations [11], for estimating non-critical QAs.

Finally, concerning external validity, we have identified four
possible threats to the validity of our results. Firstly, we
investigated a limited number of CESs, due to unavailability of
critical embedded OSS implemented in Java. Thus, the inclusion
of more CESs may differentiate the reported results. Additionally,
modifications on the type and/or number of non-CES may slightly
differentiate the results as well. Secondly, all software systems
that were investigated are written in Java, while C/C++ is a more
popular language for implementing CES; thus, there is a
possibility that results are different for other object-oriented
languages, as well as for other paradigms. Thirdly, due to the use
of FindBugs and QMOOD, the reported results concern three
critical and six non-critical QAs. Therefore, all discussions on the
existence of possible trade-offs between critical and non-critical
QAs, cannot be generalized to other QAs (e.g., reliability,
changeability, etc.) without further investigation. Finally, our
results cannot be generalized “as is” to trade-offs in the intended
architecture, because we have analyzed trade-offs from the
perspective of the implemented architecture, i.e. source code
(including both intentional and unintentional trade-offs). In order
to draw safe conclusions on the intentional trade-offs the
architectural design of a system should be explored. For example,
considering other points of view, such as risk analysis in the
intended architecture [11].

7. CONCLUSION
One of the greatest challenges in engineering CESs is to
guarantee critical QAs, which may pose hard constraints. This
entails that complex trade-offs need to be made, either
intentionally or unintentionally. In our study, we aimed at
empirically investigating the interplay of QA and existence of
quality trade-offs by analyzing source code through software
evolution. For that we explored 9 QAs, measured from a total of
622 versions, obtained from 21 open source software projects.

Concerning CES, the results of the study imply the existence of
possible trade-offs between critical QAs (correctness, security,
and performance), as well as the fact that non-critical QAs (e.g.,
reusability, understandability, etc.) are usually compromised in
favor of critical QAs. However, we have not observed critical
QAs compromised in favor of non-critical QAs, for either CES or
other application domains. Finally, we provide evidence on the
fact that non-critical QAs are more often compromised than
critical QAs.

As interesting pointers for future work, the results of our study
highlight the relevance of investigating trade-offs involving
critical QAs from a more detailed perspective, exploring the bug
patterns entangled in the trade-offs, therefore, identifying possible
connections between patterns and specific trade-offs.
Furthermore, in order to support the high level findings presented
in this study, it is interesting to consider additional QAs,
especially critical ones. Finally, as an interesting replication we
consider the execution of this study with projects written in other
languages often used for developing embedded systems, such as C
and C++.

8. ACKNOWLEDGMENTS
This work is financially supported by Brazilian funding agencies
CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.:
204607/2013-2), as well as the INCT-SEC (Grant N.:
573963/2008-8 and 2008/57870-9).

9. REFERENCES
[1] Abran, A., Moore, J.W., Bourque, P., Dupuis, R. and Tripp,

L.L. 2014. Guide to the Software Engineering Body of
Knowledge.

[2] Aguiar, A., Filho, S.J., Magalhães, F.G., Casagrande, T.D.
and Hessel, F. 2010. Hellfire: A design framework for
critical embedded systems’ applications. In Proceedings of
the 11th International Symposium on Quality Electronic
Design (2010). ISQED'10. 730–737.

[3] Alhusain, S., Coupland, S., John, R. and Kavanagh, M.
2013. Towards machine learning based design pattern
recognition. In 13th UK Workshop on Computational
Intelligence (2013). UKCI'13. 244–251.

[4] Alshammari, B., Fidge, C. and Corney, D. 2010. Security
Metrics for Object-Oriented Designs. In Proceedings of the
21st Australian Software Engineering Conference (2010).
ASWEC'10. 55–64.

[5] Ampatzoglou, A., Gkortzis, A., Charalampidou, S. and
Avgeriou, P. 2013. An Embedded Multiple-Case Study on
OSS Design Quality Assessment across Domains. In
Proceedings of the ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement
(2013). ESEM'13. 255–258.

[6] Ampatzoglou, A., Michou, O. and Stamelos, I. 2013.
Building and mining a repository of design pattern
instances: Practical and research benefits. Entertainment
Computing. 4, 2 (Apr. 2013), 131–142.

[7] Bansiya, J. and Davis, C.G. 2002. A hierarchical model for
object-oriented design quality assessment. IEEE
Transactions on Software Engineering. 28, 1 (2002), 4–17.

[8] Barney, S., Petersen, K., Svahnberg, M., Aurum, A. and
Barney, H. 2012. Software quality trade-offs: A systematic
map. Information and Software Technology. 54, 7 (Jul.
2012), 651–662.

[9] Barros, M. de O., Farzat, F. de A. and Travassos, G.H.
2014. Learning from optimization: A case study with
Apache Ant. Information and Software Technology. 57, 1
(Aug. 2014), 684–704.

[10] Basili, V.R., Caldiera, G. and Rombach, H.D. 1994. Goal
Question Metric paradigm. Encyclopedia of Software
Engineering. Wiley & Sons. 528–532.

[11] Bass, L., Nord, R., Wood, W., Zubrow, D. and Ozkaya, I.
2008. Analysis of architecture evaluation data. Journal of
Systems and Software. 81, 9 (Sep. 2008), 1443–1455.

[12] Bate, I. 2008. Systematic approaches to understanding and
evaluating design trade-offs. Journal of Systems and
Software. 81, 8 (Aug. 2008), 1253–1271.

[13] Buyens, K., Scandariato, R. and Joosen, W. 2009.
Measuring the interplay of security principles in software
architectures. In Proceedings of the 3rd International

Symposium on Empirical Software Engineering and
Measurement (2009). ESEM'09. 554–563.

[14] Chatzigeorgiou, A. and Stiakakis, E. 2013. Combining
metrics for software evolution assessment by means of Data
Envelopment Analysis. Journal of Software: Evolution and
Process. 25, 3 (Mar. 2013), 303–324.

[15] Griffith, I. and Izurieta, C. 2014. Design pattern decay: the
case for class grime. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement (2014). ESEM'14. 1–4.

[16] Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy.
ACM SIGPLAN Notices. 39, 12 (2004), 92–106.

[17] Kitchenham, B. and Pfleeger, S.L. 1996. Software quality:
the elusive target [special issues section]. IEEE Software.
13, 1 (1996), 12–21.

[18] Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A.,
Poshyvanyk, D. and Guéhéneuc, Y.-G. 2014. Domain
matters: bringing further evidence of the relationships
among anti-patterns, application domains, and quality-
related metrics in Java mobile apps. In Proceedings of the
22nd International Conference on Program Comprehension
(2014). ICPC'14. 232–243.

[19] Marwedel, P. 2010. Embedded System Design: Embedded
Systems Foundations of Cyber-Physical Systems. Springer
Netherlands.

[20] Misra, S.C. and Bhavsar, V.C. 2003. Relationships Between
Selected Software Measures and Latent Bug-Density:
Guidelines for Improving Quality. In Proceedings of the
Computational Science and Its Applications (2003).
ICCSA'03. 724–732.

[21] Oliveira, M.F.S., Redin, R.M., Carro, L., Lamb, L. and
Wagner, F. 2008. Software Quality Metrics and their Impact
on Embedded Software. 5th International Workshop on
Model-based Methodologies for Pervasive and Embedded
Software (2008). MOMPES'08. 68–77.

[22] Penta, M. Di, Cerulo, L. and Aversano, L. 2009. The life
and death of statically detected vulnerabilities: An empirical
study. Information and Software Technology. 51, 10 (Oct.
2009), 1469–1484.

[23] Perry, D.E. and Wolf, A.L. 1992. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes. 17, 4 (Oct. 1992), 40–52.

[24] Del Rosso, C. 2008. Software performance tuning of
software product family architectures: Two case studies in
the real-time embedded systems domain. Journal of Systems
and Software. 81, 1 (Jan. 2008), 1–19.

[25] Runeson, P., Host, M., Rainer, A. and Regnell, B. 2012.
Case Study Research in Software Engineering: Guidelines
and Examples. Wiley Blackwell.

[26] Zaman, S., Adams, B. and Hassan, A.E. 2011. Security
versus performance bugs. Proceeding of the 8th working
conference on Mining software repositories (2011).
MSR'11. 93–102.

[27] Zheng, J., Williams, L., Nagappan, N., Snipes, W.,
Hudepohl, J.P. and Vouk, M.A.S.E.I.T. on 2006. On the
value of static analysis for fault detection in software.
Software Engineering, IEEE Transactions on. 32, 4 (2006),
240–253.

