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ABSTRACT 
During the development of Critical Embedded Systems (CES), 
quality attributes that are critical for them (e.g., correctness, 
security, etc.) must be guaranteed. However, this often leads to 
complex quality trade-offs, since non-critical qualities (e.g., 
reusability, understandability, etc.) may be compromised. In this 
study, we aim at empirically investigating the existence of quality 
trade-offs, on the implemented architecture, among versions of 
open source CESs, and compare them with those of systems from 
other application domains. The results of the study suggest that in 
CES, non-critical quality attributes are usually compromised in 
favor of critical quality attributes. On the contrary, we have not 
observed compromises of critical qualities in favor of non-critical 
ones in either CES or other application domains. Furthermore, 
quality trade-offs are more frequent among critical quality 
attributes, compared to trade-offs among non-critical quality 
attributes. Our study has implications for both practitioners when 
making trade-offs in practice, as well as researchers that 
investigate quality trade-offs.   

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics; D.2.11 [Software 
Engineering]: Software Architectures – domain-specific 
architectures. 

General Terms 
Measurement, Performance, Design, Experimentation, Security 

Keywords 
embedded systems; quality trade-offs; software metrics 

1. INTRODUCTION 
Critical Embedded Systems (CESs) are among the most 
significant types of software-intensive systems, since they are 
extremely pervasive in modern society, being used from cars to 
power plants [19]. CESs are embedded systems in which design 
errors can potentially be catastrophic [12], in terms of causing 
serious damage to the environment or to human lives, or non-
recoverable material and financial losses [2]. Due to the criticality 
of such systems, the satisfaction of multiple quality constraints 
must be guaranteed, which is far from trivial, as it entails complex 

trade-offs: compared to other application domains, in CES such 
trade-offs to a large extent concern safeguarding the levels of 
critical against other non-critical qualities [5], [18]. As critical 
quality attributes (QAs), we characterize those that can cause 
catastrophic failures, as mentioned before, and usually concern 
performance, security and reliability.  

Trade-offs occur because almost every design decision has the 
potential to positively affect some QAs and negatively affect 
others. For example, solutions that aim at enhancing security 
might, as a side effect, harm the performance of the system. 
Resolving a QA trade-off is a complex process, as it touches upon 
multiple design decisions. If a trade-off is not resolved well, it can 
lead to poor satisfaction of QAs, or an overkill in their satisfaction 
[8]. Understanding the nature of such trade-offs is of paramount 
importance to guide practitioners in making optimal trade-offs, 
and researchers in facilitating the practitioners in their job.  

Until now, trade-offs between quality attributes have not received 
sufficient empirical investigation [8] in real-life systems, but have 
mostly been addressed at a theoretical level. Specifically, we lack 
empirical evidence on the types of trade-offs performed in the 
domain of CES, and how exactly these trade-offs differ from 
other application domains. The goal of this study is to provide 
such evidence, by examining trade-offs in the implementation of 
real-life systems for both CES and other domains. Although QA 
trade-off analysis is usually investigated at the architecture design 
level, we work at the architecture implementation level (i.e., 
source code) for two reasons. First, the implemented architecture 
(derived from the source code) may deviate from the intended (as 
designed) architecture, in a phenomenon known as architectural 
drift [23]. But we want to study the quality trade-offs as they exist 
in real systems, not as they may have been intended during 
design. Therefore, as a side-effect of this decision, we emphasize 
that in this study both intentional and unintentional trade-offs are 
being considered without distinction between them. Second, the 
availability of source code is much greater than the availability of 
architecture design documentation (especially with information 
about quality trade-offs) in both open-source systems (OSS) and 
commercial systems.  

Thus, in this study, we aim at exploring: 

(goal - a)  the existence of quality trade-offs in the 
implemented architecture of CES, by investigating 
their source code; and 

(goal - b)  whether trade-offs differ between CES and systems 
of other application domains.  

In order to explore the existence of quality trade-offs from source 
code, we need to use methods, such as static analysis, to explore 
the evolution of quality attributes (i.e., changes in the levels of 
quality across successive versions), since no documentation 
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regarding quality trade-offs is available at the source code level. 
In this sense, trade-offs refer to cases where changes in source 
code correlate with the improvement of one quality attribute and 
deterioration of a second. As aforementioned, this means that we 
extract both intentional and unintentional trade-offs, thus being 
inclusive rather than exclusive. 

To accomplish the aforementioned goals, we performed an 
embedded multiple-case study on multiple versions of twenty one 
OSS projects [25]. The results of the study suggest the existence 
of QAs trade-offs in the CES domain, as well as in other domains, 
and highlight differences between them. The remainder of this 
paper is organized as follows: related work is presented in Section 
2, along with a discussion of the main contributions of this study. 
In Section 3, we present the design of the case study. In Sections 
4 and 5 we present the results and discuss the most important 
findings respectively. In Section 6, we report on the identified 
threats to validity and actions taken to mitigate them. Finally, in 
Section 7 we conclude the paper and present some interesting 
extensions for this study.  

2. RELATED WORK 
In this section we present related work that discusses software 
quality attributes. In the software engineering literature, QAs can 
be characterized based on many classifications (e.g., [1] and 
[17]); however, since our work is focused on the domain of CES, 
we decided to simply classify them as either critical or non-
critical.     

We organize this section by first presenting studies on the domain 
of embedded systems (Section 2.1) and next on the evolution of 
software qualities in general (Section 2.2)1, as trade-offs are 
inherent in evolution. When presenting related work, we 
emphasize (in bold italic) the number of cases considered in the 
studies, as well as the tackled QAs. This information will be 
further summarized and compared with the main points of 
advancement of our work (Section 2.3). Most of the related work 
discussed in this section is based on a mapping study on software 
quality trade-offs by Barney et al. [8].  

2.1 Quality Trade-offs in Embedded Systems 
Concerning the interplay between QAs in the domain of 
embedded systems, Del Rosso presents an architectural approach 
for improving the performance of software products derived from 
a product family for real-time embedded systems, and its possible 
implications to maintainability [24]. To validate his approach, he 
conducts two cases studies on assessing the performance: (a) of 
one specific product line; and (b) on four scenarios involving 
derived products during product line evolution (the addition of 
new features). The first study involved one case, while the second 
involved four cases. The performance is measured by run-time 
metrics related to memory allocation, and the author discusses the 
trade-offs with maintainability. The results suggest that, by 
analyzing the commonalities and differences among derived 
products, one can extract bottlenecks and problems in core 
architecture (e.g., God class).  

In a similar context, Oliveira et al. investigate the relationship 
between non-critical quality attributes, measured by metrics 

                                                                 
1 We note that the presentation of related work on software evolution is 

indicative, since the amount of research on this domain is too large to 
include in this paper, due to size limitations. 

obtained from source code, and performance, measured by 
physical metrics (i.e., memory, time, and energy) obtained from 
run-time monitoring [21]. The explored quality attributes are the 
following: complexity, coupling, cohesion, extendibility/ reuse, 
and population / size. The study comprises a case study involving 
the evaluation of four alternative designs of an example system, 
in which measurements are collected for each design solution, 
showing potential trade-offs between the aforementioned metrics, 
and supporting the decision-making regarding the selection of a 
design solution. Results indicate the existence of trade-offs 
between quality and physical metrics, as well as the fact that 
quality metrics can provide information regarding high-level 
QAs, guiding the design solution selection at early stages, which 
might lead to significant gain in physical characteristics latter on. 
A main difference of this work, compared to ours, is that we are 
investigating the relationship between QAs within the evolution 
of the software, rather than trade-offs among possible designs 
from the solution space. 

2.2 Quality Analysis through Evolution 
Concerning the investigation of quality attributes through source 
code evolution; Buyens et al. [13] present an analysis of the 
interaction, on three cases, between security, measured by two 
metrics, and maintainability, measured by two metrics as well. 
Each security metric is based on one security principle, namely 
Least Privilege (the metric is the number of violations) and Attack 
Surface (the metric is the estimation of the attackers’ effort). 
Whereas, the two maintainability metrics are: Coupling Between 
Components, and Components Instability. The metrics are 
measured while applying modification in the implementation of 
each security principle (i.e., changing the involved components), 
causing changes in the system. Results of this study indicate that: 
(a) transformations are more effective when applied jointly, and 
(b) trade-offs exist between security metrics, and between security 
and maintainability QAs.  

Additionally, Barros et al. characterize the evolution of one open 
source project (Apache Ant) in terms of size, changeability, 
cohesion, and coupling QAs, through an exploratory study [9]. A 
main point of discussion is regarding the investigation of the high 
cohesion and low coupling principle. The results suggest that the 
original design was “lost” throughout the evolution of the system, 
while architectural optimization is hard, leading to a more 
complex to maintain resulting design. 

Finally, Di Penta et al. [22] study security in software systems by 
investigating the life-span of vulnerabilities among software 
versions. The authors define vulnerability as “any instance of an 
error in the specification, development, or configuration of 
software such that its execution can violate the security policy” 
[22]. Di Penta et al. investigate a total of 14 vulnerabilities, 
organized into four categories: input validation, memory safety, 
race / control flow condition, and other. To investigate the 
evolution of these vulnerabilities, they perform a case study on 
three open source software projects. Results indicate that: (a) 
vulnerabilities tend to be removed from the source code (between 
56% and 93 %), (b) functions with security issues tend to be 
replaced, and (c) new functionality tends to introduce new 
vulnerabilities. 

2.3 Overview of Related Work 
The main differences of this study compared to the related work 
are summarized in Table 1. Specifically, we present the 



differences in: (a) the studied application domains, (b) the studied 
QAs, and (c) the size of the performed case studies. 

Therefore, the main contributions of this study with respect to the 
research state-of-the-art are: 

c1: it compares trade-offs that appear in CESs with other 
application domains. To the best of our knowledge, this is the 
first study that presents empirical evidence on this matter; and 

c2: it investigates the interplay among 9 QAs. To the best of our 
knowledge, this is the most inclusive study of this type in 
terms of investigated QAs.  

3. CASE STUDY DESIGN 
This section describes the case study protocol, which was 
designed according to the guidelines of Runeson et al. [25], and is 
reported based on the Linear Analytic Structure [25]. 

3.1 Objectives and Research Questions 
The goal of this study is described using the Goal-Question-
Metrics (GQM) approach [10], as follows: “analyze open source 
software for the purpose of understanding quality attributes 
trade-offs with respect to the application domain of CES and 
others from the point of view of software developers in the 
context of Open Source projects”. Based on the goal of this study, 
we defined the following research questions: 

RQ1: Are there trade-offs between quality attributes of CES? 

RQ1.1: Are there trade-offs between non-critical quality 
attributes? 

RQ1.2: Are there trade-offs between critical quality attributes? 

RQ1.3: Are there trade-offs between critical and non-critical 
quality attributes? 

RQ1.4: Are trade-offs between pairs of quality attributes bi-
directional? 

RQ1 aims at investigating goal-a, i.e., investigating the existence 
of quality trade-offs. In order to further investigate the nature of 
such trade-offs (RQ1), we employ the QA classification into 
critical and non-critical attributes and explore interactions 
between them (RQ1.1 - RQ1.3). Intuitively, we would expect that 
quality trade-offs in CES would be different among critical and 
non-critical qualities categories. Subsequently, it is relevant to 
explore whether trade-offs between QAs occur on both directions, 
i.e., if the improvement of a certain QA “causes” another to 
decrease, does the vice-versa phenomenon occur? (RQ1.4). 

RQ2: What is the difference in quality attributes trade-offs among 
CES and non-CES domains? 

RQ2.1:  Are there similar trade-offs among CES and non-CES 
domains? 

RQ2.2:  Are there different trade-offs among CES and non-
CES domains? 

Since one of the most prevalent characteristics of the CES domain 
is the distinction between critical and non-critical qualities, it is 
interesting to compare it to other domains (regarding the same 
QAs), in order to see how this distinction is reflected in quality 
trade-offs (RQ2). Therefore, it is important to identify similar 
trade-offs among CES and other domains (RQ2.1), as well as the 
differences in trade-offs between QAs (RQ2.2). 

3.2 Case Selection and Unit of Analysis 
This study is an embedded multiple-case study, in which 

each case is represented by one project. As unit of analysis we 
refer to changes in the quality attributes between subsequent 
versions of any project. In order to select appropriate cases for our 
study we needed to retrieve successive versions of OSS projects 
of two different groups: CES projects, and non-CES projects. The 
projects used in our analysis were required: (a) to be written in 
Java, due to limitations of the used tools (see Section 3.3.3), (b) to 
have an adequate number of versions for evolution analysis, and 
(c) not to be considered as “toy examples”. The selected projects, 
accompanied by some additional information, are presented in 
Table 2. We clarify that although the selected CESs do not 
provide high-level end-user functionalities (e.g., move a robot), 
they are high-quality systems (more specifically, virtual 
machines) tailored for CES. Therefore, they are subject to the 
same, or stricter, (critical) constraints when compared to 
applications running on top of the virtual machine.  

In order to ensure that the sample of non-CES represents a 
number of different application domains, thus avoiding bias from 

Table 1. Overview of related work 

#ref 

App. Domain QA #cases 

CES Others #critical 
#non-

critical CES Others 
[25] √ X 1 1 4 N/A 

[22] √ X 1 5 4 N/A 

[14] X √ 1 1 N/A 3 

[10] X √ 0 4 N/A 1 

[23] X √ 1 1 N/A 3 

this √ √ 3 6 4 17 

Table 2. Projects considered in the case study 

Project Name 
Starting 

Year 
Size** NoV* Group NoV*

Java-SE-Embedded 2010 834k 14 

CES 50 
LeJOS 2000 81k 16 

LeJOS-EV3 2013 30k 9 

LeJOS-NXJ 2006 52k 11 

Art of Illusion 2000 53k 32 

Non-
CES 

572 

DrJava 2002 180k 24 

FileBot 2007 532k 25 

FreeCol 2002 51k 34 

FreeMind 2000 28k 34 

Hibernate 2001 123k 28 

HomePlayer 2005 24k 32 

HtmlUnit 2002 27k 26 

iText 2000 56k 23 

JFreeChart 2000 62k 56 

Lightweight-Java-
Game-Library 

2002 72k 40 

MediathekView 2008 17k 41 

Mondrian 2001 51k 33 

OpenRocket 2009 182k 27 

Pixelitor 2009 27k 33 

Subsonic 2004 282k 42 

TuxGuitar 2005 28k 19 

*NoV = Number of Versions  
**Size, of the last version, in lines of code 



specific non-CES domains, we have selected systems2 from 10 
different domains. Therefore, our dataset contains four CES and 
an average of 3.1 systems from each of the 10 different non-CES 
domains. This means that the number of CES is not comparable to 
the total number of non-CES, but it is comparable to the number 
of systems in each of the different application domains. 

3.3 Data Collection and Pre-processing 
In order to answer the research questions, we extracted three sets 
of variables from each unit of analysis (see Section 3.3.3). The 
first set comprises data related to project identification and 
classification (V1 and V2). The second and third sets comprise 
variables for the quantification of critical (V3 – V5) and non-
critical (V6 – V11) QAs. We clarify that in this paper QAs are 
assessed based on a set of metrics. To this end, we selected 
several metrics that, to the best of our knowledge, are able to 
quantify the levels of quality. The two sets of metrics, for critical 
and non-critical QAs respectively, are presented in detail in the 
following sections.  

3.3.1 Assessment of Critical Quality Attributes 
Bugs have been extensively investigated as indicators of quality. 
More specifically, Misra and Bhavsar [20] have explored bugs as 
indicators for correctness, and Zaman et al. [26] have explored 
bugs as indicators for security and performance. When using bugs 
to quantify quality, it is a common practice to classify them into 
categories. For example, Zaman et al. [26] classified bugs 
according to their effect on specific QAs (e.g., security and 
performance). Therefore, to evaluate software projects with 
respect to their critical quality attributes, we performed static 
analysis by collecting the amount of several different types of 
bugs. For that, we used the tool FindBugs3. FindBugs is capable 
of detecting vulnerabilities in software by using bug patterns [16]. 
In this case study, we have chosen to use FindBugs because it 
provides:  

 adequate performance (with respect to precision) when 
compared to similar tools [16] [27];   

 a collection of over 400 bug patterns; and  

 a grouping of these bug patterns in nine high-level categories 
(i.e., Security, Correctness, Multithreaded Correctness, 
Performance, Malicious Code, Bad Practice, 
Internationalization, Experimental and Dodgy Code), which 
can in turn be mapped into quality attributes.  

In this study, in order to evaluate critical quality attributes, we 
considered the first five categories (in total 246 bug patterns), as 
they can be mapped to three critical QAs: correctness 
(Correctness and Multithreaded Correctness categories), 
performance (Performance category), and security (Security and 
Malicious Code categories). Therefore, the level of quality for the 
three aforementioned QAs is measured by the quantity of detected 
bugs. We clarify that for the correctness and security QAs, the 
number of bugs is the sum of the two categories each QA is 
comprised of. For example, security is measured by summing the 
number of bugs from both Security and Malicious Code 
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the root from each category as the domain. Additionally, each system 
may belong to more than one domain. 

3 http://findbugs.sourceforge.net/ 

categories. For all QAs a lower number of bugs reflects a higher 
level of quality. 

3.3.2 Assessment of Non-critical QAs 
Regarding the quantification of non-critical quality attributes, we 
selected to use the Quality Model for Object-Oriented Design 
(QMOOD) [7]. QMOOD is a well-known hierarchical quality 
model that provides an approach for assessing six high-level 
quality attributes: reusability, understandability, functionality, 
extendibility, effectiveness, and flexibility [7]. These attributes 
are quantified based on 11 structural object-oriented design 
properties: design size, hierarchies, abstractions, encapsulation, 
coupling, cohesion, composition, inheritance, polymorphism, 
messaging, and complexity [7]. The definition for the 
aforementioned quality attributes and properties, and the 
equations to calculate the score of each quality attribute (by using 
weighted sum) can be found in the work of Bansiya and Davis 
[7]. Although the QMOOD quality model seems rather simplistic 
in its calculations, weighted sum is the most classical and, 
therefore, used approach for combining metrics [14]. 
Additionally, Bansiya and Davis [7] validated it empirically by 
using 13 appraisers, with 2-7 years of experience in commercial 
software development, to evaluate 14 software projects. Their 
evaluation was compared to the quality model output, which 
showed to be significantly correlated. Therefore, we selected to 
use QMOOD since it: 

 uses simple calculations, which can be easily automated; 

 provides clear definitions of low-level properties and direct 
mapping to quality attributes; and 

 presents a fair amount of quality attributes. 

In order to assess the QAs for each project we used Percerons 
Client4, i.e., a tool developed in our research group, which 
automates the assessment of these QAs for provided Java classes. 
Percerons is a software engineering platform [6], created by one 
of the authors, to facilitate empirical research in software 
engineering, by providing: (a) indications of componentizable 
parts of source code, (b) quality assessment, and (c) design 
pattern instances. The platform has been used for similar reasons 
in [5], [15], and [3].  

3.3.3 Collection Procedure and Pre-processing 
The data collection phase was a two-step process. First, the QAs 
assessment variables were extracted from every unit of analysis, 
using FindBugs and Percerons Client. Both tools work on Java 
binary code, so we provided them with a set of .jar files (one per 
version), and recorded the outcome in an initial dataset. For 
FindBugs, we used the command line version 3.0.0, for easy 
reproduction and automation purposes. During execution, we 
requested maximum effort (i.e., enabling analysis that increases 
precision), and reported bugs from all urgency priorities (i.e., 
from least to most harmful to the system).  

The initial dataset was compiled in a single file for each project, 
containing all extracted data (from both tools) for each version. 
This file comprises a table with the following fields for each row 
of data: version, number of correctness bugs, number of 
performance bugs, number of security bugs, reusability score, 
understandability score, functionality score, extendibility score, 
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effectiveness score, and flexibility score. The number of bugs 
from each aforementioned QA was obtained by counting the rule 
violations with medium and high confidence from Findbugs 
output. We decided to filter out the bugs with low confidence 
level for increasing the precision of the automatic rule violation 
identification process. Specifically, we manually 
analyzed/validated a sample of 15 bugs per level of confidence 
(chosen randomly), and we estimated that the precision for low, 
medium, and high categories were 26.67%, 60%, and 73.33% 
respectively. 

Next, the final dataset was created by calculating the difference 
between two consecutive versions (δvariable = variablev - variablev-

1), for every version v of each project. This was performed for 
each estimator (number of bugs or design-time attribute quality 
score). Then all data were merged in a single table consisting of 
the following fields: project name, type of project (i.e., CES or 
non-CES), δcorrectness, δperformance, δsecurity, δreusability, δunderstandability, 
δfunctionality, δextendibility, δeffectiveness, and δflexibility. Finally, the values of 
the δ* variables were classified as improvement cases, 
deterioration cases, or neutral cases, based on the sign of the 
corresponding δ value. 

Summarizing, the full list of variables collected from each unit of 
analysis, together with their description, is presented in Table 3. 

3.4 Data Analysis 
During this phase, we analyzed the previously described δ* fields 
(V3 – V11), in order to identify trade-offs, which will be further 
used for comparison between CES and non-CES groups. We 
clarify that these fields represent assessments of the studied QAs, 
and, therefore, when referring to the attributes, we are in practice 
referring to their assessments. The analysis of the collected data is 
split in three steps: 

(step 1)  Analysis of pairs of QAs: For both groups (CES and 
non-CES projects), we have to seek evidence on the 
existence of trade-offs, in every pair of QAs. For 
instance, Figure 1 depicts the analysis of qualities V6 
vs. V10, for CES. Therefore, for every pair of QAs, we 
proceed as follows:  

(step 1.1)  Filter improvement cases: As we are looking for 
cases of occurrences of trade-offs, it is important 
to select only cases in which one of the two QAs 
has improved. For this reason, we create two sub-
datasets, each one consisting of the cases having 
positive scores for the respective QA. For 
instance, in Figure 1, the two sub-datasets consist 
of the cases in which V6 improves (positive 
values of V6), and the cases in which V10 
improves (positive values of V10). This ensures 
that we are tracking the cases in which perfective 
maintenance tasks may have been performed in 
order to improve the tracked aspect of the 
software. 

(step 1.2)  Calculate statistics of sub-dataset: Each sub-
dataset (corresponding to an improving QA) is 
analyzed by creating a frequency table for the 
second QA. In the example presented in Figure 1, 
for the sub-dataset comprising cases of 
improvement of V6, we calculate the frequencies 
for V10; and vice-versa. Thus, when exploring 
each sub-dataset, we calculate the frequency 

percentages of the classes of the second QA (i.e., 
improvement cases, deterioration cases, stable 
cases). Next, the improvement cases are marked 
as co-evolution, the deterioration cases are marked 
as trade-offs, whereas the neutral cases as neutral. 
For instance, in Figure 1, in the sub-dataset 
comprising improvement cases of V6, we 
calculated “V10 -” (trade-off), “V10 +” (co-
evolution), and “V10 0” (neutral).  

(step 1.3)  Filter evidence: To identify the trade-offs 
occurring between QAs, we keep out of the two 
sub-datasets of step 1.2, only those in which the 
percentage of the trade-off cases is higher than the 
percentage of co-evolution and neutral. In the 
example of Figure 1, we identify a possible trade-
off at the sub-dataset in which the improvement of 
V6 affects negatively V10. 

(step 2)  Synthesis of presentation: In this step we 
synthesize and graphically represent the results of 
step 1, so as to answer the research questions. 

Table 3. List of collected variables 

Variable Description Tool 

[V1] 
Software project: the name of the OSS project 
from which data were extracted. 

- 

[V2] 
Domain Group: project belongs either to CES or 
non-CES 

- 

[V3] 

Difference between two versions, in the count 
of security rule violations: count of bug pattern 
instances in “Malicious code vulnerability” and 
“Security” categories. F

indB
ugs 

[V4] 
Difference between two versions, in the count 
of “Performance” rule violations: count of bug 
pattern instances in “Performance” category. 

[V5] 

Difference between two versions, in the count 
of correctness rule violations: count of bug 
patterns in “Correctness” and “Multithread 
correctness” categories. 

[V6] 
Difference between two versions, in the 
reusability score: the reusability assessment 
computed as defined by Bansiya and Davis [8]. 

P
ercerons C

lient 

[V7] 
Difference between two versions, in the 
flexibility score: the flexibility assessment 
computed as defined by Bansiya and Davis [8]. 

[V8] 

Difference between two versions, in the 
Understandability score: the understandability 
assessment computed as defined by Bansiya and 
Davis [8]. 

[V9] 

Difference between two versions, in the 
Functionality score: the functionality 
assessment computed as defined by Bansiya and 
Davis [8]. 

[V10] 
Difference between two versions, in the 
Extendibility score: the extendibility assessment 
computed as defined by Bansiya and Davis [8]. 

[V11] 

Difference between two versions, in the 
Effectiveness score: the effectiveness 
assessment computed as defined by Bansiya and 
Davis [8]. 

 



Two heat maps are derived from the information 
on step 1: one depicting the trade-offs within the 
CES group (row: improved QAs, columns: 
affected QAs, intensity: the frequency of trade-
offs); and another showing the comparison of 
trade-offs between the two groups (the difference 
and similarities between CES and non-CES trade-
offs). 

(step 3)  Comparison of evidence in CES projects: With the data 
collected and summarized, it is analyzed within the CES 
group, aiming at comparing the interactions between the 
QAs in order to answer RQ1 and its sub-questions. For 
this step the heat map on CES trade-offs is used. 

(step 4)  Comparison of evidence from groups: The analysis is 
now extended to the non-CES group, aiming, therefore, 
at comparing all collected data in order to answer RQ2 
and its sub-questions. For this step the heat map on the 
comparison between CES and non-CES groups is used.  

Summarizing the procedure for answering the RQs, Table 4 
presents the mapping between each RQ, the used variables, as 
well as the step of the analysis in which RQs are answered and the 
presentation methods that are used.  

4. RESULTS 
In this section we present the output of the analysis, and answer 
the research questions. To answer RQ1 and its sub-questions, we 
explore the findings obtained from step 3. In order to visualize the 
interaction between the QAs, we compiled raw data (omitted from 
this manuscript due to space limitations5) into a heat map (see 
Figure 2). In the heat map of Figure 2, each cell represents the 
effect of improving one QA (vertical axis) over another 
(horizontal axis). The intensity of the heat map (i.e., color 
darkness – also written inside the cell) represents the percentage 
of the cases that constitute valid trade-offs (see step 1.3). 
Moreover, the two bold lines in the map divide it into quadrants in 
order to highlight the interactions within and between the critical 
and non-critical groups of QAs. Hence, the top-left quadrant 
represents the interactions between critical QAs, the bottom-right 
quadrant represents the interactions between non-critical QAs, 

                                                                 
5  Supplementary material on the collected data during the study is 

available at:  
    http://www.rug.nl/research/software-engineering/publication_files/QA-

tradeoffs-TR-2015-01-08.pdf  

 

Figure 1. Example of trade-off analysis within the final dataset 

Table 4. Mapping of RQs to variables, steps, and presentation 

Research 
Question 

Variables 
Used 

Step Presentation Method 

RQ1 [V2-V13] 

3 Heat Map on CES trade-offs 
RQ1.2 

[V2] 
[V8-V13] 

RQ1.2 [V2-V7] 

RQ1.3 [V2-V13] 

RQ1.4 [V2-V13] 

RQ2 [V2-V13] 

4 
Heat Map on comparison 
between CES and non-CES 

RQ2.1 [V2-V13] 

RQ2.2 [V2-V13] 

Figure 2. Trade-offs in CES domain 



while the other two represent the interaction between QAs of the 
two groups.  
Based on Figure 2, we are able to answer all sub-questions of 
RQ1, by confirming the existence of trade-offs between QAs (see 
Section 3.4, step 1), and answering affirmatively RQ1.1 - RQ1.3. 
Consequently, by investigating each quadrant separately, it’s also 
possible to point out possible trade-offs between critical QAs 
(second quadrant), non-critical QAs (fourth quadrant), and 
between QAs of the two groups (first and third quadrants). The 
findings from exploring RQ1.1 - RQ 1.3 is the existence of trade-
offs6 between: 

 understandability and the other non-critical QAs (and vice-
versa); 

 correctness and performance, as well as between security and 
correctness;  

 all critical QAs and extendibility, and between all QAs and 
understandability; 

 performance and reusability; 

 reusability and extendibility.  

Subsequently we examine whether the interactions between two 
QAs are bi-directional (RQ1.4), i.e., if the improvement of one QA 
negatively affects another QA, the opposite relationship also 
holds. To answer this research question, we examine Figure 2 for 
symmetries. We observe that although we identified some bi-
directional interactions, it is not possible to conclude that all 
identified trade-offs between QAs are bi-directional. However, for 
some pairs of QAs, bi-directional trade-offs can be identified, i.e., 
between understandability and the rest of the non-critical QAs 
(effectiveness, extendibility, flexibility, functionality, and 
reusability). Moreover, we highlight one interesting finding 
regarding the interactions between critical and non-critical QAs: 
although the improvement of some critical QAs negatively affects 
non-critical QAs, the opposite phenomenon never appears, i.e., in 
this study we found no evidence of non-critical QAs negatively 
affecting critical QAs. 

Finally, having examined the trade-offs in the CES domain, we 
can compare them with other application domains (RQ2): in what 

                                                                 
6  We note that, in this study, when reporting trade-offs in the form of 

“trade-off between QAA and QAB”, we refer to a compromise in the 
levels of QAB in favor of an improvement in the levels of QAA. 

aspects they are similar (RQ2.1), and the ones in which they differ 
(RQ2.2). To answer these questions, we created two heat maps: 
one akin to that depicted on Figure 2 (see Figure 3), but 
considering data from the non-CES projects, and another 
representing the difference of the two heat maps (see Figure 4). In 
Figure 4, three different filling patterns (with their respective 
colors) represent the possible classifications for the observed 
trade-offs: evident only in the group of CES projects (red 
background with circles); evident only in the group of non-CES 
projects (blue with slanted lines); and evident in both groups 
(green background with vertical lines). Based on this figure, we 
answer affirmatively RQ2.1 - RQ 2.2, and, additionally, make the 
following observations:  

 Similarities between the two groups of projects: Trade-offs 
between security and correctness; between correctness and 
performance; between all QAs and understandability; and 
between understandability and non-critical QAs. 

 Trade-offs occurred only in the group of CES projects: 
between the critical QAs and extendibility; between 
reusability and extendibility; and between performance and 
reusability.  

 Trade-offs occurred only in the group of non-CES projects: 
between correctness and security, as well as between 
performance and security; and between correctness and 
effectiveness. 

Finally, concerning the group of CES projects, the trade-offs 
occur mostly between critical QAs and non-critical QAs, which 
implies that, in the CES domain, non-critical QAs are more often 
sacrificed in favor of critical QAs. 

5. DISCUSSION 
In this section we present a discussion of the results, by providing 
possible interpretations and a comparison against related work 
(when applicable). We first discuss the findings from the CES 
trade-off analysis, and then the comparison between CES and 
non-CES. At the end of this section, we discuss possible 
implications to researchers and practitioners. 

5.1 Trade-offs in CES Domain 
By exploring the trade-offs in CES, the following observations 
can be made:  

 extendibility is negatively affected by reusability. This is 
intuitive for CES. In general, embedded systems provide 

Figure 4. Comparison between CES and non-CEs groups 

 

Figure 3. Trade-offs in non-CES domain 



specific functionalities that are not designed to facilitate 
future extensions in an object-oriented way (e.g., adding 
subclasses, polymorphic methods, etc.). Therefore, the 
addition of new functionality is expected to be performed by 
adding methods in existing classes, making existing methods 
larger in size, or adding new concrete classes, which in turn 
lead to even more decreased extendibility. On the other hand, 
according to  [7], such classes (which offer large amount of 
functionalities) are considered more probable to be reused, 
since they provide more reuse opportunities, regarding offered 
functionalities.  

 performance negatively affects reusability. One possible 
explanation is that, in order to improve the system 
performance, some solutions (e.g. refactoring of class into 
inner class7) lead to deterioration of aspects that support 
reusability, such as cohesion, coupling, and size. Coupling 
and cohesion are important assessors of reusability in the 
sense that they are related to the adaptation time needed for 
reusing a specific piece of code. A similar finding can also be 
drawn based on the work of Oliveira et al. [21], who suggest 
that cohesion and coupling metrics, that are assessments of 
reusability, are compromised in favor of metrics for 
performance [7]. 

Although the results of Figure 2 suggest that extendibility is 
negatively affected by all critical QAs, we believe that this result 
needs further investigation. Intuitively, extendibility is 
compromised by source code growth [4], and embedded system 
development style, as already mentioned. Therefore extendibility 
deteriorates during the evolution of CES, but we do not have 
evidence regarding the extent that this is connected to bug solving 
(i.e. improvement of critical QAs). However, a similar finding is 
reported in [21], where metrics for extendibility are compromised 
in favor of performance. 

The rest of the findings are discussed in the next subsection, as 
they are also observed in the non-CES group.  

5.2 Comparison of the Two Groups 
On the one hand, in both CES and non-CES, we were able to 
observe the following: 

 non-critical QAs do not affect critical QAs. Improvements on 
object-oriented properties (i.e., enhancement in design-time 
QAs – all non-critical QAs investigated in this study are 
design-time) are not likely to result in additional source code 
vulnerabilities (rule violations – assessment of critical QAs). 
A possible explanation is that there is no tension between 
non-critical and critical QAs. However, another possibility is 
that when improving design-time quality attributes, the 
developers are refactoring the code without changing its 
external behavior (extract class, extract method, etc.), which 
only “moves” rule violations to other parts of the system, 
without introducing new ones. In addition to that, especially 
concerning CES, this finding is intuitive in the sense that it 
was not expected from development teams to compromise a 
critical QA in a critical system, in favor of a non-critical one. 

 security negatively affects correctness. Fixing security 
vulnerabilities can lead to additional errors in the code. For 

                                                                 
7http://findbugs.sourceforge.net/bugDescriptions.html#SIC_INNER_ 

SHOULD_BE_STATIC  

example, in order to fix a vulnerability related to a field that is 
not well implemented and should be moved8, one might do 
the refactoring as suggested, but forget to initialize the field9. 

 correctness negatively affects performance. Coding mistakes 
are common during development (e.g., accessing an already 
freed reference10). Therefore, in order to solve these bugs, one 
might use inefficient coding styles (in terms of performance) 
in order to ensure that the output is the expected (e.g., 
introducing extra parameters in a method that ends up being 
of limited utility11). 

On the other hand, by comparing the differences between the two 
groups, we identified the following findings: 

 Although specific evidence of trade-off was discussed already 
(in the previous subsection), we note that the higher frequency 
of trade-offs between the critical QAs with non-critical QAs 
might reflect a higher importance of critical QAs over non-
critical QAs in CES. 

 In non-CES, correctness negatively affects effectiveness. 
While maintaining parts of source code, it might be the case 
that more non-object-oriented approaches are employed, 
leading to a reduction in system’s effectiveness. We note that 
effectiveness is quantified by assessing how well the object-
orientation paradigm is employed in the source code [7]. For 
example, in order to solve missed locks12, one might 
centralize the responsibilities to avoid forgetting the lock. 

 In non-CES, correctness affects all other critical QAs. This 
might be an indication that functionalities are not optimally 
implemented (i.e., implying less attention to errors or less 
knowledge on the topic) in other domains, possibly due to a 
lack on developers’ skills. 

 In non-CES, security is affected by all other critical QAs. 
Similarly to the previous finding, code exploitation 
vulnerabilities appear to be common in other domains, and 
could also be explained by lack of skills regarding this issue.  

Finally, although the results of Figure 4 suggest that 
understandability is negatively affected by all other QAs and vice-
versa, we believe that this result needs further investigation. 
Specifically, we observed that understandability is a QA that 
continually deteriorates during systems evolution [22], because 
based on the way it is calculated [7] it is inversely proportional to 
the growth of properties such as complexity (measured by number 
of methods) and design size (measured by number of classes). On 
the other hand, in the cases when understandability is increasing, 
we observe a negative relationship with the rest of the non-critical 
QAs, again because of the way that both understandability and 
non-critical-QAs are calculated. Concluding, we believe that the 
decrease of understandability in our study is not the result of 
                                                                 
8http://findbugs.sourceforge.net/bugDescriptions.html#MS_OOI_ 

PKGPROTECT 
9http://findbugs.sourceforge.net/bugDescriptions.html#UR_UNIN

IT_READ 
10http://findbugs.sourceforge.net/bugDescriptions.html#NP_NUL

L_ON_ SOME_PATH 
11http://findbugs.sourceforge.net/bugDescriptions.html#BX_UNB

OXING_ IMMEDIATELY_REBOXED 
12http://findbugs.sourceforge.net/bugDescriptions.html#SWL_SL

EEP_WITH_LOCK_HELD 



explicit trade-offs, but simply, the natural effect of system 
growth. 

5.3 Implications for Practitioners and 
Researchers 
Firstly, by investigating our results, architects and software 
engineers can become aware of the most probable side-effects that 
the enhancement of one QA might have to another, in the sense 
that some trade-offs may be performed unintentionally. For 
example, by making developers aware of the fact that when fixing 
bugs related to security, they usually introduce additional bugs 
related to correctness, would make them consider possible ways 
to avoid such side-effects. Similarly, architects can also benefit 
from the identified trade-offs, as a source of potential threats to 
QAs, enabling them to: (a) monitor the potentially harmed QAs, 
and (b) identify concrete QA compromises earlier, so as to 
employ the necessary countermeasures.  

Secondly, the results of the study suggest that CES differ from 
other application domains in terms of the actual trade-offs, and in 
terms of trade-offs between QAs not being bi-directional. 
Therefore, we strongly advise both researchers and practitioners 
to: (a) reflect on the direction of trade-offs, when reasoning about 
the interplay of QAs (e.g., the improvement of one QA affects 
another QA negatively, but not vice-versa), and (b) to take into 
account the application domain when investigating trade-offs.  

Finally, the results of the study suggest that the outcome of 
investigating trade-offs at the level of the implemented 
architecture are intuitively correct, as they align with architecting 
principles. Therefore, we induce researchers to consider source 
code artifacts, when exploring trade-offs between QAs. 

6. THREATS TO VALIDITY 
In this section we present and discuss construct validity, 
reliability, as well as external validity for this study. Internal 
validity is not applicable, as the study does not examine causal 
relations. Construct validity reflects how connected are the object 
of study and the research questions. The reliability is related to 
whether the case study is conducted and presented in such way 
that others can replicate it with the same results. Finally, external 
validity deals with possible threats when generalizing the findings 
derived from sample to the entire population.  

Concerning construct validity, one threat concerns the correctness 
of the formulae, proposed by Bansiya and Davis [11], for 
assessing the non-critical QAs. However, as described in the data 
collection section, the calculation had been validated through an 
empirical study involving experienced practitioners. Additionally, 
regarding FindBugs, we acknowledge that the list of bug patterns 
are by no means exhaustive, and additional bugs related to the 
investigated QAs could be used. However, to the best of our 
knowledge the used tool is among the most reputed in the 
community, and has adequate performance (see Section 3.3.1). 
Another threat is that effect size is not considered during the data 
analysis (Section 3.4), i.e., any positive or negative change in an 
attribute is considered the same, regardless of its magnitude. This 
measure was taken in order to avoid bias from specific projects to 
the entire domain. 

In order to mitigate reliability, two different researchers were 
involved in the data collection, having all outputs double-
checked. Furthermore, the same double-checking procedure 
happened during the data analysis. Finally, all primitive data can 

be reproduced by using the same bug detection tool (FindBugs, 
v3.0.0), for estimating critical QAs, and the QMOOD quality 
model calculations [11], for estimating non-critical QAs. 

Finally, concerning external validity, we have identified four 
possible threats to the validity of our results. Firstly, we 
investigated a limited number of CESs, due to unavailability of 
critical embedded OSS implemented in Java. Thus, the inclusion 
of more CESs may differentiate the reported results. Additionally, 
modifications on the type and/or number of non-CES may slightly 
differentiate the results as well.  Secondly, all software systems 
that were investigated are written in Java, while C/C++ is a more 
popular language for implementing CES; thus, there is a 
possibility that results are different for other object-oriented 
languages, as well as for other paradigms. Thirdly, due to the use 
of FindBugs and QMOOD, the reported results concern three 
critical and six non-critical QAs. Therefore, all discussions on the 
existence of possible trade-offs between critical and non-critical 
QAs, cannot be generalized to other QAs (e.g., reliability, 
changeability, etc.) without further investigation. Finally, our 
results cannot be generalized “as is” to trade-offs in the intended 
architecture, because we have analyzed trade-offs from the 
perspective of the implemented architecture, i.e. source code 
(including both intentional and unintentional trade-offs). In order 
to draw safe conclusions on the intentional trade-offs the 
architectural design of a system should be explored. For example, 
considering other points of view, such as risk analysis in the 
intended architecture [11]. 

7. CONCLUSION 
One of the greatest challenges in engineering CESs is to 
guarantee critical QAs, which may pose hard constraints. This 
entails that complex trade-offs need to be made, either 
intentionally or unintentionally. In our study, we aimed at 
empirically investigating the interplay of QA and existence of 
quality trade-offs by analyzing source code through software 
evolution. For that we explored 9 QAs, measured from a total of 
622 versions, obtained from 21 open source software projects.  

Concerning CES, the results of the study imply the existence of 
possible trade-offs between critical QAs (correctness, security, 
and performance), as well as the fact that non-critical QAs (e.g., 
reusability, understandability, etc.) are usually compromised in 
favor of critical QAs. However, we have not observed critical 
QAs compromised in favor of non-critical QAs, for either CES or 
other application domains. Finally, we provide evidence on the 
fact that non-critical QAs are more often compromised than 
critical QAs.  

As interesting pointers for future work, the results of our study 
highlight the relevance of investigating trade-offs involving 
critical QAs from a more detailed perspective, exploring the bug 
patterns entangled in the trade-offs, therefore, identifying possible 
connections between patterns and specific trade-offs. 
Furthermore, in order to support the high level findings presented 
in this study, it is interesting to consider additional QAs, 
especially critical ones. Finally, as an interesting replication we 
consider the execution of this study with projects written in other 
languages often used for developing embedded systems, such as C 
and C++. 
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