
Investigating the effect of design patterns on energy consumption

Daniel Feitosa,†,1, Rutger Alders1, Apostolos Ampatzoglou1, Paris Avgeriou1, Elisa

Yumi Nakagawa2

1Department of Mathematics and Computer Science, University of Groningen, the Netherlands

2Department of Computer Systems, University of São Paulo, Brazil

ABSTRACT

GoF patterns are well-known best practices for the design of object-oriented systems. In this paper we aim at

empirically assessing their relationship to energy consumption, i.e., a performance indicator that has

recently attracted the attention of both researchers and practitioners. To achieve this goal, we investigate

pattern-participating methods (i.e., those that play a role within the pattern) and compare their energy

consumption to the consumption of functionally equivalent alternative (non-pattern) solutions. We obtained

the alternative solution by refactoring the pattern instances using well-known transformations (e.g., replace

polymorphism with conditional statements). The comparison is performed on 169 methods of two GoF

patterns (namely State/Strategy and Template Method), retrieved from two well-known open source

projects. The results suggest that for the majority of cases the alternative design excels in terms of energy

consumption. However, in some cases (e.g., when the method is large in size or invokes many methods) the

pattern solution presents similar or lower energy consumption. The outcome of our study can be useful to

both researchers and practitioners, since we: (a) provide evidence on a possible negative effect of GoF

patterns, and (b) can provide guidance on which cases the use of the pattern is not hurting energy

consumption.

KEY WORDS: energy efficiency; design patterns; GoF patterns; template method pattern; state pattern; strategy pattern

1. INTRODUCTION

There has been an increase of energy demand within the ICT domain [1]. This is a multi-faceted

problem, as one can consider the effects of networks, hardware, drivers, operating systems, and

applications on energy consumption. In this paper we focus on applications and, particularly, how they

can be optimized in terms of energy consumption. Software optimizations in this context have been

discussed at three levels of granularity:

 at architectural level, e.g., research that deals with energy efficient architectures for networked

systems (e.g., data centers, cloud computing, etc.) [1]–[3].

 at design level, e.g., identification of differences in energy efficiency when applying design

patterns (cf. Section 2).

 at source code level, discussions on topics such as multi-threading [4], [5], refactoring [6]–[9]

and related algorithms [10]–[13].

The scope of our work lies at the design level, as we look into the effect of GoF (Gang of Four)

design patterns and their alternative solutions on software energy consumption. GoF design patterns

are recurring solutions to common problems in object-oriented software design [14]. GoF design

patterns can be applied in almost any type of software, varying from small devices to large data-

centers. In Java applications it has been reported that up to 30% of system classes participate in one or

more GoF design pattern occurrences [15], [16], leading to a significant influence on overall energy

consumption. Solutions provided by these patterns exploit object-orientation mechanisms (e.g.,

polymorphism) to enforce more flexible and maintainable designs.

The effect of applying a pattern is not uniform across all of its instances, and all quality attributes

[17]. In particular, several studies [17]–[19] report that the effect of a pattern on a quality attribute

depends on certain pattern-related parameters, like the number of classes, number of methods invoked,

or number of polymorphic methods. Therefore, it is reasonable to expect that GoF design patterns have

a potential impact (positive or negative) on the energy consumption of software-intensive systems,

Correspondence to: Daniel Feitosa, Department of Mathematics and Computer Science, University of Groningen,
the Netherland
†E-mail: d.feitosa@rug.nl

depending on certain pattern-related parameters. In the case where a pattern is not the optimal design

solution, alternative (non-pattern) design solutions can be employed. Alternative design solutions have

been proposed by several authors, including GoF design pattern advocates [14], [20]–[23]. More

details on GoF design pattern alternatives can be found in a recent literature review [24]. We note that

knowing the impact of patterns on energy efficiency can be beneficial in both green- and brown-field

software development. In Greenfield projects (i.e., fresh development), such a knowledge can support

the monitoring of energy efficiency, whereas in Brownfield projects (e.g., refactoring of system to new

purpose), it can support the decision making process on what parts of the system to refactor and how.

In this paper we investigate the effect of GoF patterns and their alternatives on energy

consumption, as well as the pattern-related parameters that might influence this effect. Specifically, we

focus on two GoF design patterns, namely Template Method, and State/Strategy [14]; we note that

State and Strategy patterns have a similar structure [25] and, therefore, a similar expected effect on

energy consumption. Therefore, the two patterns are discussed as one (for more details, see Section

3.1). The rationale for selecting the specific patterns is twofold:

 Usage frequency: behavioral patterns are the most commonly used patterns, accounting for

about half of the design pattern usages in a system [26]. Additionally, State/Strategy patterns

are the most used patterns among all, and Template Method the third. Therefore, the

accumulated impact of these patterns on energy consumption is expected to be high;

 Main object-orientation mechanism: object-orientation has three pillars 1 : encapsulation,

inheritance, and polymorphism [27]. Polymorphism is the most commonly explored principle

within the GoF patterns (19 out of 23 patterns uses polymorphism). However, it is important to

highlight that encapsulation and inheritance, although less explored, are also present in the

solution of many patterns. From these mechanisms, polymorphism potentially influences energy

consumption the most, as it comprises a complex procedure to map the polymorphic calls to the

correct implementation [28]. Both State/Strategy and Template Method use polymorphism as

their main mechanism to provide the pattern solution and, therefore, have potentially high

impact on the energy consumption. The two studied patterns use polymorphism with different

goals: State/Strategy pattern uses it to define the interface to interact with the states/strategy,

while Template Method pattern uses it to define the points of specialization to be implemented

by the concrete classes. In particular, the State/Strategy pattern encapsulates the different

states/strategies, whereas the Template Method pattern exploits inheritance, since concrete

classes extend the functionality of the abstract class. For that reason, we point that other pillars

are part of our investigation, although polymorphism is the main mechanism.

To investigate the energy consumption, we compare the energy efficiency of pattern solutions with

the energy efficiency of their alternative designs (one for each pattern), through a crossover

experiment. We note that the alternative designs were developed in a standardized way (see Section

3.2 and 3.4). In the experiment, we focus our investigation on pattern-related methods2 so as to enable

a fine-grained analysis of the energy consumption. In addition to exploring the differences between

pattern and alternative solutions, we also investigate some pattern-related parameters that can cause the

pattern to be either beneficial or harmful with respect to energy consumption. For the experiment, we

selected two large well-known open source software (OSS) systems.

The remainder of this paper is organized as follows. In Section 2, an overview of the related work

on energy consumption in design patterns, and alternatives to design patterns is provided. Section 3

presents background information necessary for understanding the experiment, i.e., the selected design

patterns and their alternative solutions. Section 4 presents the experiment planning, which describes

the research questions, hypotheses, the used tool and collected variables. Section 5 overviews the

execution of the experiment (i.e., data collection and validation). In Section 6, we elaborate on our

analysis and answer the research questions. In Section 7, we discuss the obtained findings, by focusing

on the most important observations and presenting implication for researchers and practitioners. The

threats to the validity of our study are discussed in Section 8, followed by the conclusion of this paper

in Section 9.

2. RELATED WORK

This section presents research efforts that discuss the effects of design patterns on energy consumption.

We focus on the consumption of design patterns, the types of patterns being investigated, and the

1Some authors advocate a fourth pillar: abstraction. However, this is a higher level concept, which is provided as

combination of the other three pillars and, therefore, is not relevant for our argumentation.
2Pattern-related methods are methods that play a role within the design pattern.

proposed alternatives for patterns. After discussing the related work, an overview of how our research

compares to related work is provided.

In the work of Bunse et al. [29], a case study on the overhead of design patterns compared to “clean

software” is presented. In this context, “clean software” is a chunk of design that could be refactored

into a pattern solution. The software in this study mainly targets mobile devices. The design patterns

discussed are Facade, Abstract Factory, Observer, Decorator, Prototype, and Template Method. This

initial investigation shows that each of these design patterns has overhead when compared to their

“clean” counterparts. Most of the patterns have a relative small overhead, except for the Decorator

pattern, which, based on this study, consumes more than double the amount of energy compared to the

“clean” counterpart.

Additionally, Sahin et al. [30] performed a more extensive investigation on the impact of design

patterns on energy usage. In particular, this study takes into account the feasibility, impact,

consistency, and predictability of the energy consumption of 15 design patterns, from all GoF pattern

categories. The creational design patterns discussed are the Abstract Factory, Builder, Factory Method,

Prototype, and Singleton. The structural patterns discussed are the Bridge, Composite, Decorator,

Flyweight, and Proxy pattern. Finally, the behavioral patterns that were selected are the Command,

Mediator Observer, Strategy, and Visitor. Results of the study suggest that the use of design patterns,

either increases or decreases the amount of energy used. Additionally, there are no relations of the

category of the design pattern and the impact on energy usage. Finally, this study shows that it is not

possible to precisely estimate the impact of design patterns on energy consumption when only

considering artifacts on design level.

Litke et al. [31] conducted an initial exploration of the energy consumption of design patterns. This

paper includes an analysis of five design patterns, for which the energy consumption and performance

are described. These design patterns were tested by the use of six example applications written in C++.

These applications were first tested as clean, i.e., without the usage of design patterns, and then

transformed with the designated design pattern. The design patterns discussed are the Factory Method,

Adapter, Observer, Bridge, and Composite. For Factory Method, Adapter, and Observer, differences

were found between the original application and the one containing the specified design pattern. The

results show that applying Factory Method or Adapter patterns does not necessarily impose a serious

threat to the energy consumption. However, a significant overhead was identified by employing the

Observer pattern, but additional research is still required to investigate the cases when Observer is

indeed a threat to energy consumption. Since the Bridge and Composite pattern had no significant

difference in power consumption, the authors suggest further analysis.

In a recent paper, Noureddine and Rajan [32] performed a comparison on the energy consumption

overhead caused by 21 design patterns and explored in details the effects of two design patterns

(Observer and Decorator pattern). The effects discussed in this paper are the energy consumption of

applications using the pattern solution, the non-pattern solution, and an optimized alternative for the

design patterns. The optimized solutions for the alternatives are integrated into the applications by

making changes to compilers, so that the optimizations are automatically processed when compiling.

This study suggested that simple transformations to the Observer and Decorator patterns are able to

provide reductions in energy consumption in the range of 4.32% to 25.47%. We clarify that the

patterns investigated in our study are included among the 21 patterns initially investigated by

Noureddine and Rajan. However, the comparison of these results (from the initial investigation) to ours

is limited, since some extra details (e.g., implemented alternatives, source code properties) would be

necessary to further elaborate the discussion (see Section 7.1).

To ease the comparison of our work to the aforementioned studies, we summarize the main

differences in Table I, according to the following aspects: (a) Design patterns addressed; (b) Number

of non-trivial systems used; (c) Number of pattern instances analyzed; (d) Number of pattern-related

methods analyzed; (e) Level of energy measurement3 (process level or method level); (f) Level of

investigation 4 (instance level or method level); and (g) Number of investigated parameters that

influence energy consumption. Based on Table I, the main contributions of this study compared to the

research state-of-the-art are the following:

 Usage of non-trivial systems—our investigation is performed considering two non-trivial

systems and a considerable amount of pattern instances and pattern-related methods. This setup

allows allow us to observe realistic results that are more representative to the population of

existing software-intensive systems;

3Measurement at process level considers the energy consumed by the operating system process of the running software;

measurement at method level considers the energy consumed by a specific method within the software process.
4Investigation at instance level considers pattern instances as subjects for analysis while the method level considers the

pattern-related methods as subjects.

 Exploitation of a method-level approach for measuring energy consumption—in addition

to the more traditional approach of process-level measurement. Being able to isolate the energy

consumed by specific method calls, we obtain measurements with lower overhead, allowing a

more in-depth investigation of both pattern and alternative solutions, in the sense that we focus

on pattern-related methods of each pattern instance; and

 Exploration of parameters of the processed patterns—in this study, we investigate not only

the energy efficiency of State/ Strategy and the Template Method design pattern, comparing

them against their respective alternative (non-pattern) design solutions, but also the parameters

of their application that render them either beneficial or not. We clarify that related work has

indicated parameters as possible causes for greater energy consumption, but without any

investigation of these parameters.

Table I. Overview of related work

Reference
Design

patterns

Non-trivial

systems

of

instances

of

methods

Measurement

level

Investigation

level

of

parameters

[29] 6a 0 6 0 Process Instance 0

[30] 15b 0 15 0 Process Instance 0

[31] 5 c 0 5 0 Process Instance 0

[32] 21 d 0 N/A* 0 Process Instance 0

This study 3 e 2 21 169
Process and

Method
Method 3

a Facade, Abstract Factory, Template Method, Prototype, Decorator, and Observer.
b Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy,

Command, Mediator, Observer, Strategy, and Visitor.
c Factory Method, Observer, Adapter, Bridge, and Composite.
d Decorator, Observer, Mediator, Strategy, Template Method, Visitor, Abstract Factory, Builder, Factory Method,

Prototype, Singleton, Bridge, Flyweight, Proxy, Chain of Responsibilities, Command, Interpreter, Iterator, State,

Adapter, and Composite.
e State, Strategy, and Template Method.

* Not available, the authors only mention “several small examples”.

3. DESIGN PATTERNS AND ALTERNATIVES

In this section we present background concepts that facilitate the understanding of our experiment. In

particular, we discuss the GoF design patterns that are explored in this study (State, Strategy, and

Template Method), elaborating on their design structure and an overview of their uses and

consequences. Additionally, we present and discuss their alternative solutions (referred in this paper as

State/Strategy Alternative and Template Method Alternative). The identification of design pattern

alternatives can be a non-trivial activity, since some GoF design patterns have no reported alternatives

in the literature [24]. To consider a design as a design pattern alternative, it should:

 originate from the literature;

 provide exactly the same functionality as the pattern; and

 have notable structural differences compared to the pattern.

We used two main sources to find alternatives: the seminal book on design refactoring by Fowler et

al. [20] and a systematic literature review conducted by Ampatzoglou et al. [24], in which an overview

of GoF design pattern alternatives are presented and discussed. Based on the aforementioned criteria,

we selected well-known alternative solutions from the literature, as they are expected to be more

recurrent in existing software. Although we acknowledge the existence of design patterns and

alternatives that are optimized for energy efficiency (which would obviously lead to better solutions),

we have deliberately not included them in our study. The reason for this decision is that we intend to

focus on widely-known solutions that have been applied to various software projects, by developers

who are not aware of energy optimization mechanism. Investigating such optimized solutions can

potentially introduce bias to our results, since neither patterns nor alternatives would be in their

standard form.

3.1. State/Strategy

The State pattern allows an object to change its behavior by switching from one state to another [14].

One classic example for the State pattern are traffic lights that turn from green to yellow, yellow to red

and red back to green. The collection of all states defines the space in which the context (traffic light)

is able to change its behavior. This behavior is implemented by each of the states separately. The

context class has at least one state instance object (i.e., a concrete state) that represents its current state

and thus functions as a central interface for clients to communicate with (see model on the left in

Figure 1). This context delegates the handling of requests to its current state object. The State pattern is

used in scenarios where either the behavior of an object depends on its state and needs to be changed

during run-time, or the operations have large, multipart conditional statements that depend on the

object's state [14]. Applying the State pattern has a number of consequences: the specific behavior for

each state is localized; the state transitions are made explicit; and State objects can be shared when

they have no instance variables.

The Strategy pattern allows for the encapsulation of certain families (such as algorithms), allowing

them to be interchangeable depending on client requests or specific behaviors of the context [14]. The

context class has at least one object of the concrete strategy that provides its (unique) functionalities,

which are implemented according to a template defined by the strategy interface (see model on the

right in Figure 1). The Strategy pattern can be used in a number of different situations [14], e.g., when

a class has different behaviors (depending on a specific situation) or when there are multiple

implementation options to be chosen. Consequences of using this pattern include [14]: it becomes an

alternative for sub-classing the context directly or using conditional statements, by decoupling the

algorithms into their own family; and it may cause memory and computational overheads, because it

increases the number of used objects, and concrete strategies may not use all information they receive

when called.

Figure 1. UML model of State (on the left) and Strategy (on the right) patterns

By inspecting the class diagrams of State and Strategy patterns (see Figure 1), we observe that they

have an equivalent structure (i.e., skeleton design) [14], [25]. Both patterns have a context that is called

by an external client and a family that consists of an interface with concrete classes. Both contexts

contain an object that represents at least one or more states/strategies that can be uniformly handled.

The main difference is the logic beneath the patterns, i.e., the behavior is fundamentally different. In

the case of the State pattern, the current object (state) within the context is updated after the execution

of every behavior (the method handle, in the diagram). This is not necessary for the Strategy pattern, as

strategies may be interchangeable during runtime. Additionally, the change of strategies is more an

additional feature than a rule for the Strategy pattern, whereas for State this is the basic concept of the

pattern. In this study, we treat both patterns mutually, since the expected changes to measure energy

consumption is focused on the design, i.e., structure and the use of their common object-orientation

mechanisms. The aforementioned fundamental differences regard the behavior of the pattern instance

and, thus, are not expected to be a confounding factor for our study, unless these fundamental

differences systematically change design attributes (e.g., method size). Nevertheless, we have not

identified such cases in our dataset (see Section 5.2).

3.2. State/Strategy Alternative

In a literature review performed by Ampatzoglou et al. [24] many alternatives for the State/Strategy

pattern are presented [21], [22], [33]–[37]. Similarly, Fowler et al. [20] discuss several alternatives for

these two patterns. Among these available options, we have chosen to replace the use of polymorphism

with the use of conditional statements. In this solution, the entire structure of the State/Strategy pattern

is removed and the complete logic is implemented in the context, which now has a local enumerator

object that enables the shifting between the different behaviors. Listing I shows an example of

alternative implementation for a Strategy pattern instance. While implementing an alternative design,

the implementation of each concrete strategy would be replaced with the behavior of the corresponding

state and the state update.

Listing I. Example implementation of Strategy alternative

public class Strategy {

 public enum Strategies{

 Strategy1,

 Strategy2,

 Strategy3

 };

 private enum currentStrategy;

 public int[] sort(int[] list) {

 switch(currentStrategy) {

 case Strategy1:

 // Implementation of Strategy 1.

 break;

 case Strategy2:

 // Implementation of Strategy 2.

 break;

 case Strategy3:

 // Implementation of Strategy 3.

 break;

 case default:

 return 0;

 break;

 }

 }

}

Despite the simplicity of the recommended changes, creating alternatives requires some effort, as

design patterns may be implemented in various different ways. These variations should be reflected

into the alternative designs. Based on our experience, one specific type of variation had direct impact

in the implementation of the alternative: the structure of the implemented pattern may differ from the

originally proposed structure [25]. Specifically, the proposed structure of State/Strategy has a standard

Interface-Class (IC) hierarchical structure; however, it may also be implemented with an abstract class

between the interface and the class (an intermediate level of inheritance), becoming an Interface-

AbstractClass-Class (IAC) hierarchical structure. Such a structure may contain several abstracts classes

in the middle. To deal with abstract classes in the alternative, each behavior defined in a concrete class

would be combined with the abstract class behavior. If that is not possible, e.g., when a class or

abstract class is used from the Java library, an additional object would be created to be able to access

its functionalities. We clarify that other, less recurrent, variations are possible, but they are not handled

in this study. For example, a State/Strategy may comprise multiple interfaces, which are partial

responsibilities, and concrete classes may implement all or some of them.

3.3. Template Method

Similarly to Strategy, the Template Method isolates different algorithms or operations to their own

subclass. However, this pattern allows the subclasses to alter certain steps of an algorithm without

changing the structure of the algorithm. An abstract class has at least two operations, one primitive,

which is used by the concrete subclass to implement the steps of an algorithm, and a template method

that contains the default structure (see Figure 2). The Template Method pattern can be used to avoid

code duplication, and to control or restrict any extensions of an abstract class, so that an abstract

function or hook function can only be called on certain locations.

Figure 2. UML model of the Template Method pattern

3.4. Template Method Alternative

Fowler et al. [20] presents several alternatives for the Template Method and Ampatzoglou et al. [24]

discuss one alternative [23]. From these options, we chose the starting point from the Form Template

Method (FTM) refactoring, presented by Fowler et al. [20]. Generally, FTM transforms a non-pattern

code into a Template Method (see Figure 3). In contrast to State/Strategy alternative (Section 3.2), in

which we completely eliminated polymorphism, the alternative for Template Method does use

polymorphism, but in a different fashion. Therefore, this study design cannot be considered appropriate

for comparing the effect of using polymorphism on energy efficiency.

Figure 3. Comparison of the Template Method pattern (on the left) against its alternative (on the right)

By using this alternative, both primitive operations and specific behavioral operation now reside in

each concrete class. However, the Template Method also leaves room for variants in its

implementation. In such cases, the adjustments that would be applied in the alternative to handle these

variations are described below. Similarly to State/Strategy, the Template Method allows all or none of

these adjustments to be included.

 Depth of Inheritance Tree: Even though the Template Method uses only one abstract class, it

is possible that the methods are already defined in an interface. This makes it harder to remove

the primitive methods when creating the alternative implementation. In these cases, the

primitive method is not removed, but it is moved to the concrete class. This allows us to both

keep the IAC structure and to implement the alternative.

 Private methods: It is possible for a template method to call private methods within the

abstract class. If this is the only case, the private method is called, the private method is also

moved down to the concrete class. When this is not possible, the operations within the method

are moved inside the template method. This is not feasible in cases the operations rely on

multiple other methods or sources. In such a case, the private method is changed to protected.

As for State/Strategy, other, less recurrent, variations are possible, but are not handled in this study.

For example, a concrete class may aggregate the abstract class, possibly creating recursive calls, which

are not originally intended for template method pattern instances.

4. EXPERIMENTAL PLANNING

In this section we present the design and materials of the experiment reported in this paper. This

experiment is reported based on the guidelines of Wohlin et al. [38] and on the structure proposed by

Jedlitschka et al. [39]. Initially, the research objective, questions and respective hypotheses of the study

are discussed, followed by the process to select objects of study and experimental units. Next, an

overview of the variables and instruments used to the data collection are presented. Finally, the

analysis procedure is described. For presentation purposes, we report the data collection procedure

along with the execution process, in Section 5.

4.1. Objectives, Research Questions, and Hypotheses

The goal of this study is defined according to the Goal-Question-Metrics approach [40], as follows:

“Analyze instances of State, Strategy, and Template Method patterns for the purpose of evaluation with

respect to their energy consumption from the point of view of software developers in the context of

open source systems”. To achieve this goal, we set three research questions (RQs):

RQ1 What is the difference between the application of the Template Method pattern and an

alternative design solution in terms of energy consumption?

RQ2 What is the difference between the application of the State/Strategy pattern and an alternative

design solution in terms of energy consumption?

RQ3 What are the parameters that influence the energy consumption of State, Strategy, and

Template Method pattern instances?

RQ1 and RQ2 aim at investigating whether the energy consumption of patterns and alternative

solutions is significantly different. Such information is of paramount importance to make more

informed decisions when selecting patterns over alternatives, while developing energy efficient

software. To answer RQ1 and RQ2, we formulated the following hypotheses:

H0: There is no difference between the energy consumed by software using a design pattern

solution and software using an alternative design solution.

H1: The energy consumed by software using a design pattern solution is significantly lower than

the energy consumed by software using an alternative solution.

H2: The energy consumed by software using a design pattern solution is significantly higher than

the energy consumed by software using an alternative solution.

RQ3 aims at exploring if there are pattern-related parameters that affect the energy consumption of

the patterns, and for which ranges of these parameters the pattern can be characterized as beneficial or

harmful. Such thresholds can serve as guidance for decision making on when to apply a design pattern

or not. To answer this research question, we isolate groups (e.g., A and B) of pattern-participating

methods whose members have a similar difference in the energy consumption (compared to the

alternative solution) and investigate specific structural characteristics of the pattern solution (for more

details, see Section 4.4). To test the difference between every two groups, we formulated the following

hypotheses:

H3: There is no difference between the parameter values of the two groups (A and B).

H4: The parameter value of group A is higher than the value of group B.

H5: The parameter value of group B is higher than the value of group A.

4.2. Design Type and Experimental Units

To answer the research questions and test the hypotheses, we designed a crossover experiment [38], in

which pattern-related methods are the experimental units. Pattern-related methods are methods of

pattern instances that play a role within the design pattern. For our two selected patterns, these methods

are the template method (Template Method pattern) and the methods implementing the behavior of

states or strategies (States/Strategy pattern). We selected this unit for three reasons: (a) units with finer

granularity facilitate a more detailed investigation of parameters (i.e., design characteristics) that

influence the energy efficiency of design pattern solutions; (b) to standardize the data collection, since

patterns may have multiple pattern-related methods, each one implementing different responsibilities;

and (c) the alternative solutions provide the same functionality compared to pattern-related methods,

but with a different implementation, what also promotes standardization of the data collection. For

each experimental unit (i.e., a pair of pattern and alternative solutions), we record all data needed to

answer the research questions, i.e., the energy consumption measurements for both pattern and

alternative solutions, and design characteristics of the pattern solution.

To collect data for the experiment, it is necessary to select software systems and pattern instances

from which to sample pattern-related methods. Regarding software systems, we decided to use OSS

that met the following criteria:

 are written in the Java programming language, since the tool for retrieving design pattern

instances (see Section 4.3.1) is limited to Java;

 are non-trivial systems that are either widely used or known, so as to avoid the use of toy

examples; and

 contain instances of both the Template Method or the State/Strategy patterns.

Two OSS projects were selected for the study. Selecting more projects would be unrealistic as all

alternative solutions had to be manually implemented by us, which is a time-consuming task.

However, we do investigate a sufficient number of pattern instances (more than related work) and

pattern-related methods. For further discussion, please see how we deal with threats to validity

(Section 8). The first OSS system is JHotDraw5, a Graphical User Interface (GUI) framework written

in Java that allows the creation of technical and structured graphical images. The project started in

2000, having about 80,000 downloads at this point, and the current version (7.6) has 680 Java source

files, containing 80,535 SLOC. JHotDraw was developed as a design exercise, for applying GoF

design patterns, becoming a powerful framework that is acknowledged by the software engineering

community as a benchmark for GoF design patterns detectors [41], [42]. The second OSS system is

5http://www.jhotdraw.org/

Joda Time6, an Application Program Interface (API) that can replace the standard date and time

classes, providing better quality and in-depth functionalities. The project started in 2003, having almost

500K downloads at this point, and the current version (2.9.2) has 329 Java source files, containing 85K

SLOC. Joda Time has a high rating on GitHub and has also been used for research purposes [43].

Despite the careful selection of representative software for the study, we acknowledge that non-

trivial (complex) systems may have associated risks, in the sense that the transformation of a non-

trivial pattern instance to an alternative solution might not be uniform. To mitigate this risk, we

developed a strategy while selecting pattern instances / pattern-related methods, and implementing the

alternative solutions. Firstly, to select pattern instances for the study, we consider only those that meet

the following criteria:

 Used within the application: It is possible that the found pattern instances are not used within

the applications themselves, e.g., functionalities provided as an API, whose pattern instances

are partially implemented by the API user;

 Reachable: Some pattern instances are not reachable directly, imposing a long (and hard to

predict) sequence of calls, what may bias the measurement process. One option is to modify the

source code to make the pattern instance easier to reach, but it would bias the results as well;

 Performing deterministic tasks: Certain pattern instances may perform non-deterministic

tasks, such as saving data to files or transferring data over the network. This could interfere with

the actual measurement process; and

 Not too complex: In some cases, the pattern instances could have a relatively high number of

members, e.g., twenty or more concrete states/strategies or are variants of the original pattern

that are not handled in our study (see Sections 3.2. and 3.4). These pattern instances would

make the process of implementing the alternatives infeasible. On top of that, such pattern

instances would represent a threat to study validity, as these comprise exceptional cases.

Regarding method selection, the same criteria applied to pattern instances is used. We believe that

the pattern instances and pattern-related methods filtered by these criteria are representative of the

population, as excluded cases are mostly exceptional. Finally, concerning the implementation of

alternative solutions, we have to ensure that the original business logic is preserved, avoiding

unnecessary changes to the original source code. As the alternatives preserve the original business

logic and only the difference in the energy consumption is analyzed, we believe that we have mitigated

much of the risk associated with the usage of non-trivial programs.

4.3. Variables and Instrumentation

To answer the research questions and test the hypotheses stated in Section 4.1, a number of variables

are derived. These variables are divided into two distinct categories: (a) pattern-related information

(pattern, method and m-* in Table II, which are explained in Section 4.3.1); and (b) measurements of

energy consumption (*-ptt and *-alt in Table II, which are explained in Section 4.3.2). These variables

are recorded for each unit of analysis (i.e., pattern-related methods). The entire process of identifying

and measuring the units of analysis culminates in the creation of a dataset of all extracted variables for

each unit. This dataset is recorded as a table in which the columns correspond to collected variables. In

the following subsections, we present and discuss the variables and the tools used to extract them.

Table II. List of collected variables

Variable Description Tool

pattern Pattern Type (Template Method or State/Strategy)
SSA

method The pattern-related method that is measured

m-sloc SLOC of the pattern-related method
-

m-mpc MPC of the pattern-related method

papi-ptt Energy consumption (in Joules) of the pattern solution, at process level
PowerAPI

papi-alt Energy consumption (in Joules) of the alternative solution, at process level

jalen-ptt Energy consumption (in Joules) of the pattern solution, at method level
Jalen

jalen-alt Energy consumption (in Joules) of the alternative solution, at method level

ptop-ptt Energy consumption (in Joules) of the pattern solution for triangulation
pTop

ptop-alt Energy consumption (in Joules) of the alternative solution for triangulation

6http://www.joda.org/joda-time/

4.3.1. Pattern-related Information. To collect the necessary data for all units of analysis, we first find

all the pattern occurrences within the OSS applications. To detect the design patterns occurrences, we

use a tool developed by Tsantalis et al. [25]. This tool uses a Similarity Scoring Algorithm (SSA) for

detecting design structures similar to a desired GoF design pattern. Among the 12 detectable patterns

are Template Methods and State/Strategy (identified jointly due to structural similarity). The extraction

of the design patterns is done by isolating subsystems of a given application through static analysis,

which enables the identification of relationships between the elements of each separate subsystem. The

SSA tool has been assessed by several studies (such as Kniesel et al. [44] and Pettersson et al. [45]),

which have positively evaluated its performance, precision, and recall rates. SSA was, therefore,

selected for this study because of the following:

 it provides detection of the design patterns of interest, i.e., Template Method and State/Strategy;

and

 it provides acceptable performance, as described by Tsantalis et al. [25], also when compared

to similar tools [44], [45].

SSA is limited to the Java programming language, since the similarity analysis is performed on

compiled Java class files. After the application of the pattern detection tool on a project, the results are

compiled into one Extensible Markup Language (XML) file that contains all the instances found within

a given application.

Additionally, a set of metrics has to be extracted, which are used to investigate parameters that

influence the energy consumption of pattern instances (see Section 4.4). In order to select these

metrics, we considered the SQualE platform [46], as it summarizes a broad and comprehensive list of

metrics from the literature. From this list, we identified two metrics that could be measured at method

level: SLOC and MPC7. SLOC is measured as the amount of source line of code of the method, while

MPC is measured as the amount of calls, within the method, to other methods (these calls do not

include those to methods of the same class, even if inherited). We clarify that the parameters SLOC

and MPC are calculated for the pattern solution only. For answering RQ3, we are interested in

identifying characteristics of the pattern design solution that are related to energy efficiency. In

addition, SLOC and MPC do not change considerably in the alternative solution, since the

transformation mostly causes a reorganization of the code and how methods are called. In other words,

our goal is not to evaluate the change of complexity, but how the complexity of the pattern solution

influences the difference of energy consumption between the solutions, especially because this

complexity is dictated by the business logic, which is not modified.

4.3.2. Assessment of Energy Consumption. To measure the energy consumption of software

applications, there are multiple tools based on both software and hardware [47]. In this study we, opted

to use software tools, as they allow finer-grained measurements (i.e., at the method level) [47].

Although hardware measurement offers a higher precision, it estimates the energy consumed by the

whole machine, and our study investigates the consumption difference at the methods level. Therefore,

we prioritized a finer-grained technique over a more precise one. In addition, selecting and configuring

a hardware measurement tool may represent a complex and expensive task [48], which if not

accurately performed can introduce additional bias. In order to select the appropriate tools, we

searched the literature and identified nine software tools for measuring energy consumption. We

analyzed two comparative studies that included these tools [47], [49], in addition to other literature, so

as to verify their theoretical and empirical validity in scientific setups. Based on this analysis, two tools

presented the highest precision, namely PowerAPI and pTop; a third tool, namely Jalen, although with

lower precision, is able to deliver finer-grained measurements. Other tools that we considered either do

not have sufficient validation or present lower precision regarding their respective granularity of

measurement, or require additional hardware investments.

PowerAPI is an API that enables real-time profiling of the energy consumption at the level of

operating system (OS) processes [10]–[12], [47]. This tool currently supports measuring energy from

CPU and network, which are represented through power modules. The available implementations that

are provided for this tool are created for GNU/Linux distributions, but they are independent of the

hardware. To measure the energy consumption of the CPU, the Thermal Design Power (TDP) is taken

into account, which is the maximum amount of heat (which is generated by the CPU) that requires to

be dissipated by the cooling system. The precision for measuring the power consumption of software

applications with PowerAPI was estimated by Noureddine et al. [11] by comparing it against a power

meter. This estimation showed that the calculated margin of error vary from 0.5% to 3%.

7MPC consists of the number of invocations to methods that are not owned or inherited by the class being measured.

Jalen is an energy consumption profiler, which was created by the same developers of PowerAPI

[11], [12], [47], [50]. Jalen can collect energy consumption on different levels of granularity such as

the method level. Similarly to PowerAPI, Jalen is limited to the use on GNU/Linux distributions due to

the sensors used for the hardware components. Since Jalen injects monitoring code through the

bytecode instrumentation, it reduces the precision. In a comparison of tools performed by Noureddine

et al. [11], the measured time for individual Tomcat’s server requests was 57% higher in average.

However, since we are comparing two different versions of the same applications (i.e., pattern and

alternative solutions), this cannot be considered as a confounding factor.

pTop is a profiler that can determine energy consumption on the OS process-level and is designed

to work solely on GNU/Linux distributions [47], [51]. pTop calculates the energy consumption

through a daemon that profiles the resource utilizations for all processes, whereas the power

consumption of the system CPU, network interface, memory and hard drive are tracked. Each different

system component needs to be configured (possibly calibrated as well) according to its specifications.

Just like PowerAPI, it uses the TDP to calculate the energy consumed by the CPU. The precision of

pTop was analyzed by comparing its results to a wattmeter [47]. Results of this analysis show that the

average median error for pTop was less than 2 watts.

All the aforementioned energy measurement tools are suitable candidates to obtain reliable results.

However, PowerAPI and Jalen are designed to specifically measure the energy consumption of Java

applications, not including the overhead caused by the Java Virtual Machine (JVM). Due to the

granularity of the energy measurement of Jalen (i.e., method level), the output is not influenced by the

energy expenditure of other parts of the system, which makes it a more suitable tool. However, in order

to compare the related work to ours, it is also necessary to consider the same perspective used in

related work, i.e., process level measurements, in this case by using PowerAPI. Therefore, we decided

to use both PowerAPI and Jalen for the study. We clarify that both tools have a limitation of being able

to measure energy consumed by the CPU only. Therefore, among other reasons, we restricted the

experimental units to those that do not use extra resources (e.g., hard drive, or network). Additionally,

we decided to use pTop, which is more commonly known in the scientific community, for

triangulation purposes, to validate the measurements obtained from PowerAPI and Jalen, and to verify

the memory energy consumption (see Section 5.2).

4.4. Analysis Procedure

During the data analysis, the previously described variables (see Table II) are used to answer the

research questions. As mentioned in Section 4.3.2, we collect data using two different tools (PowerAPI

and Jalen) and, therefore, every task of the analysis is performed for the data of each tool separately,

and results are compared. In addition, the data regards two design patterns (Template Method and

State/Strategy) and every step of the analysis is repeated for both patterns separately. The data analysis

is twofold, described in the following.

4.4.1. General Analysis of Energy Consumption. Initially, we compare the energy measurements (*-ptt

and *-alt) to test the hypotheses posed by research questions RQ1 and RQ2. For evaluating whether or

not the pattern solution is significantly different from the alternative solution, we perform two steps:

1) Check distribution. To decide whether to use parametric or non-parametric tests, we verify the

distribution of each dependent variable metric (i.e., papi-ptt, papi-alt, jalen-ptt, and jalen-alt)

by employing the Shapiro–Wilk test [52]. If not normal, a Wilcoxon signed ranks test [52] is

used for assessing the difference between pattern and alternative solutions; otherwise, paired

sample t-test [52] is used; and

2) Compare energy consumption. Next, we compare whether the difference between pattern and

alternative solutions is statistically relevant. For that, we employ the dependent sample test for

investigating the data obtained by PowerAPI and Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt

vs. jalen-alt).

4.4.2. Analysis of Design Parameters. Once the difference in the energy consumption between pattern

and alternative solutions is observed, we want to investigate parameters that may influence this

difference. For that, we isolate controlled groups (i.e., clusters) with similar difference in the energy

consumption and test the hypotheses posed by RQ3. This analysis comprises the following steps:

1) Create clusters based on consumption. First, we create clusters based on the difference

between the energy measurements for PowerAPI (i.e., papi-diff = papi-ptt – papi-alt) and Jalen

(i.e., jalen-diff = jalen-ptt – jalen-alt). For that, we employ the agglomerative hierarchical

clustering technique, considering the average linkage method (or between-groups linkage) and

using squared Euclidian distance [53];

2) Merge clusters based on design parameters. Next, we investigate whether or not the clusters

are statistically different with regards to the analyzed design parameters (m-sloc and m-mpc).

As the clusters comprise independent samples, we employ Mann-Whitney tests [52] for this

investigation. The analysis for each parameter is performed separately and clusters that are not

statistically different are merged; and

3) Verify trends. Finally, based on the final disposition of the clusters, we verify trends with

regards to both SLOC and MPC.

It is important to clarify that during the analysis we noticed cases in which the pattern solution was

more energy efficient than the alternative solution and, however, the clustering algorithm did not

separate these units (see Section 6.4). Therefore, aiming at complementing the answer for RQ3, an

additional analysis is performed, which comprises the following steps:

1) Group units. Based again on the difference between the energy consumption, we separate the

experimental units into two categories: (a) pattern solution consumed more energy than the

alternative solution; and (b) pattern solution consumed less energy than the alternative

solution; and

2) Compare parameters. Next, we analyze if the design parameters (SLOC and MPC) may have

an influence on determining which solution is more energy-efficient. For that, we employ

Mann-Whitney tests for investigating whether each parameter is statistically differ between the

two groups created in the previous step.

5. EXECUTION

In this section we explain how data for the experiment was collected. Firstly, we describe the data

collection procedure, showing details of the most relevant aspects. Next, we present and discuss the

validation of the collected data according to the planned experiment.

5.1. Data Collection

The data collection is composed of four steps. Firstly, we extracted the pattern instances and selected

the pattern-related methods (i.e., experimental units). To collect the experimental units, a set of pattern

occurrences were extracted from JHotDraw and Joda Time, and were manually inspected to decide

whether pattern instances could be included or excluded (see Section 4.2). Table III distinguishes

between the number of pattern occurrences that were included and excluded (according to the process

described in Section 4.2) for each OSS and GoF design pattern. For each included pattern instance, a

set of units of analysis was collected. The total number of collected units for each OSS and GoF design

pattern is presented between parentheses in Table III. We clarify that, despite the limited number of

included pattern instances, we believe that the number of experimental units (95 and 74) is satisfactory,

providing statistically significant results (see Section 6). Moreover, the effort required to implement

the alternatives (as described in Sections 3.2 and 3.4) also restricted the amount of experimental units

that could be collected.

Table III. Descriptive of identified pattern occurrences and pattern-related methods

OSS
Included occurrences Excluded occurrences

TM SS TM SS

JHotDraw 7 (15) 6 (56) 5 25

Joda Time 7 (80) 1 (18) 5 17

TOTAL 14 (95) 7 (74) 10 42

TM = Template Method, SS = State/Strategy

Next, for each unit, we calculated the parameters SLOC and MPC (i.e., based on the pattern

solution, see Section 4.3.1). Before starting the measurement process, we implemented the alternative

solution for each pattern instance as described in Sections 3.2 and 3.4. Then, to measure the energy

consumption of the units, a standard measurement process was defined. This measurement process

needed to be consistent throughout the whole test run, so no external interference is introduced to the

results. First, a selection was done for the hardware system to be used for the analysis, along with the

OS and distribution. For the hardware system, we chose the MSI wind box DC100 minicomputer due

to its simplicity, availability, and compatibility with the measurement tools. The MSI wind box

contains the following components:

1) AMD Brazos Dual Core E-450 (1.65GHz) with a TDP of 18 Watts;

2) 4GB of DDR3 memory; and

3) AMD Radeon HD 6320 graphics adapter.

Since the measurement tools are tailored for GNU/Linux system, we used one of the distributions

released for that OS. As we wanted less interference during the measurement process, a clean

installation of Ubuntu is used, which contains only the essential packages and has no user interface.

However, since JHotDraw requires a graphical shell to call certain functionalities, a simplistic window

manager, i3 8 , was installed on top of this distribution. For orchestrating and standardizing the

execution of the measurement tools and pattern related methods, a script was created for performing

the following procedure: start the measurement tool, wait a few seconds for the tool to load, execute

the usage scenario containing the pattern-related method, wait for the application to finish and stop the

measurement tool. Each usage scenario embedded multiple executions of a part of the application that

called one pattern-related method (i.e., experimental unit), guaranteeing measurable energy

consumption (i.e., more than 30 seconds). Any selected part of the application was the simplest

possible and was fully checked to guarantee no hard external bias (e.g., read/write operations). Each

usage scenario was executed with the pattern solution and the alternative solution. For reliability

purposes, the aforementioned procedure was executed 100 times for every pair scenario-solution,

obtaining 100 measurements for each experimental unit. Finally, we obtained the final value for each

unit of analysis by excluding outlier measurements and calculating the average between the remaining

measurements.

5.2. Validation of the Collected Data

There were three main assumptions in the experimental design that needed validation. Firstly, two

researchers verified every manual data collection task. These tasks were the selection of the patterns

instances and pattern-related methods, the calculation of the SLOC and MPC parameters, and

measurement of energy consumption. Secondly, as we considered experimental units from State and

Strategy pattern instances mutually, we verified whether there was a difference between the energy

consumed by them. Our results suggest no visual or statistically relevant differences. Last, the energy

consumption data was validated by triangulation.

As mentioned in Section 4.3.2, the energy consumption was obtained by two tools, one working at

process level (PowerAPI) and another working at method level (Jalen). Our motivation for selecting

these two tools was that they both estimate the energy consumption based on the JVM, therefore,

reducing the bias from the overhead caused by the OS. In addition, PowerAPI has higher precision

when compared to other tools, while Jalen, although having a lower precision, provides more fine-

grained measurements (as it captures only the energy consumption of the method). By obtaining the

two different perspectives, we aimed at comparing our study to related work, as well as verifying the

results w.r.t. the different levels of measurements.

As expected, the tools provided measurements of different magnitudes, which are related to the

different characteristics of the tools. In addition, PowerAPI and Jalen use a similar mechanism for

exploring the JVM to calculate the results, which could be biased. Besides, both tools can collect the

energy consumed by the CPU only and, although we restricted the experimental units to those not

requiring additional resources (e.g., hard-drive, network), not considering the energy consumed by the

memory could still represent a bias. Therefore, we sought to provide further validation of the estimated

measurements. To this end, we selected a process level tool, pTop, which can estimate the energy

consumed by both CPU and memory, as well as has a higher precision, but estimates measurements by

exploring the process management of the OS.

The data collected by pTop suggest that the energy consumed by the memory is negligible (approx.

0.0001% of the total energy consumed for every experimental unit). In addition, to verify that our data

collection was consistent, we triangulated the measurements. For that, we performed eight Spearman

correlation tests. For each pattern (pattern = Template/Method or State/Strategy), we tested the

correlation between each design solution (pattern and alternative) of PowerAPI/Jalen and pTop (i.e.,

papi-ptt vs. ptop-ptt; papi-alt vs. ptop-alt; jalen-ptt vs. ptop-ptt; and jalen-alt vs. ptop-alt) . By

observing that all tests proved a rather very strong correlation (see Table IV), we considered all the

measured data to be consistent and reliable for data analysis. Finally, it is interesting to notice that

Jalen has a lower correlation to pTop, compared against PowerAPI. This is yet another evidence of the

8https://i3wm.org/

consistency of the results, as Jalen is a method level tool and, thus, do not have the overhead caused by

the rest of the application.

Table IV. Pearson correlation test for validating estimated measurements from PowerAPI and Jalen

Pattern Tool

Pattern solution (pTop) Alternative solution (pTop)

N
Correlation

Coefficient
Sig. N

Correlation

Coefficient
Sig.

Template

Method

PowerAPI 95 0.946 < 0.01 95 0.947 < 0.01

Jalen 89 0.893 < 0.01 87 0.877 < 0.01

State/Strategy
PowerAPI 74 0.963 < 0.01 74 0.929 < 0.01

Jalen 71 0.933 < 0.01 71 0.791 < 0.01

6. ANALYSIS

In this section we present the results of the experiment. Firstly, we show the descriptive statistics of the

dataset. Next, we present the results of the analysis carried out for each research question, which was

executed as described in Section 4.4. We clarify that every statistical test was performed using the tool

IBM SPSS Statistics9 and are reported based on the guidelines suggested by Field [52].

6.1. Descriptive Statistics

For every experimental unit, pattern-related variables were collected (variables pattern, method, m-sloc

and m-mpc), and an alternative solution was implemented as described in Section 3. Afterwards, the

tools PowerApi, Jalen, and pTop were used to collect the energy consumption from both pattern and

alternative solutions (*-ptt and *-alt). We remind that an experimental unit comprises a pair of pattern

and alternative design solutions. A summary of all numeric variables (i.e., SLOC, MPC, and energy

consumption measurements) is presented in Table V and Table VI, showing relevant descriptive

statistics for Template Method and State/Strategy, respectively. As can be seen in Table V and Table

VI, few measurements were performed by Jalen for the pattern and/or the alternative solution. This is

due to a limitation from Jalen, which tries to measure a specific method, but it is unable to encapsulate

the entire process. This is caused when either the length in time that the method uses is too little, or

when the method delegates its functionality in a way that Jalen cannot track. Such cases were properly

treated during the statistical analyses, which are discussed in the following subsections.

Table V. Descriptive statics of numeric variables for the Template Method pattern (pattern = Template Method)

Variable N Min Max Mean
Std. Error

(Mean)

Std.

Deviation

m-sloca 95 2.00 36.00 6.03 0.59 5.75

m-mpcb 95 0.00 12.00 1.33 0.20 1.97

papi-pttc 95 92.30 1086.77 327.88 27.11 264.23

papi-altc 95 92.12 924.09 270.84 23.77 231.67

jalen-pttc 89 43.85 799.88 200.38 14.57 137.47

jalen-altc 87 22.58 777.32 150.13 10.38 96.84

ptop-pttc 95 189.78 2198.84 719.86 59.68 581.72

ptop-altc 95 193.85 2185.72 594.85 47.37 461.66
a Measured in number of uncommented lines in the pattern solution
b Measured in number of method invocations in the pattern solution
c Measured in Joules

Before performing the data analysis based on the energy measurements from PowerAPI (papi-*)

and Jalen (jalen-*), these measurements were checked against the measurements from pTop (ptop-*).

The details of this validation process are presented and discussed in Section 5.2. When observing the

measurement from the three tools, one can notice that they are different, following the order Jalen <

PowerAPI < pTop. This difference in the measurements is expected. Jalen measures the consumption

at a method level (i.e., not considering the consumption of the whole program); PowerAPI measures

9http://www-03.ibm.com/software/products/en/spss-statistics

the consumption of the Java process (i.e., the program); and pTop measures the consumption of the

OS’s process (i.e., which also include the overhead of the JVM). When ordering the values, it is

possible to notice that greater overheads result in greater values, i.e., Jalen < PowerAPI < pTop.

Table VI. Descriptive statics of numeric variables for the State/Strategy pattern (pattern = State/Strategy)

Variable N Min Max Mean
Std. Error

(Mean)

Std.

Deviation

m-sloca 74 0.00 36.00 5.68 0.69 5.93

m-mpcb 74 0.00 29.00 2.13 0.54 4.66

papi-pttc 74 157.58 1664.17 738.17 56.51 499.11

papi-altc 74 136.37 1002.25 341.95 19.88 175.54

jalen-pttc 68 27.38 1260.11 486.34 42.54 350.75

jalen-altc 66 20.20 635.89 186.96 14,72 119,56

ptop-pttc 74 316.08 4124.87 1640.06 129.72 1145.63

ptop-altc 74 273.21 2260.22 786.15 46.77 413.04
a Measured in number of uncommented lines in the pattern solution
b Measured in number of method invocations in the pattern solution
c Measured in Joules

6.2. RQ1: Template Method

The first research question aims at exploring the energy consumption of Template Method pattern

instances and their alternative solutions, focusing on identifying if there is a statistically significant

difference between the solutions (pattern and alternative) regarding energy consumption. For that, we

considered the energy consumption measured by two different tools, one at process level (papi-*) and

one at method level (jalen-*). While the former tool provides a more traditional and system-wide

measurement, the latter provides a more fine-grained measurement allowing us to focus on the point of

interest (pattern-related method), excluding any interference from the rest of the system. Although we

did not expect to find differences in the results obtained from the two tools (because both pattern and

alternative solutions are subject to the same interference), the method-level measurements should

provide lower overhead (i.e., smaller energy measurements).

To answer this research question, we examined the pair of variables obtained from PowerAPI and

Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt vs. jalen-alt). In order to decide if we were using

parametric or non-parametric tests for assessing the statistical significance of the differences between

the pair of variables, we employed the Shapiro–Wilk test to check the distribution of data for each

variable. The results of the test suggest that data were not following the normal distribution and, thus, a

non-parametric test had to be employed. Therefore, we used the Wilcoxon signed ranks test to evaluate

the hypotheses posed for RQ1 (see Section 4.1) and, thus, investigate the energy consumption data

from PowerAPI and Jalen. In addition, to support visualizing the difference in the energy consumption,

Figure 4 shows the box-plot for each compared variable.

Figure 4. Visual comparison of the energy consumption for Template Method

From the analysis results, two main findings can be highlighted. First, pattern solutions consumed

more energy than their alternatives based on the results of both PowerAPI (p < 0.01, z = -4.92) and

Jalen (p < 0.01, z = -5.57). This is evident in the results from both tools (following the result of the

descriptive statistics—Table V), which suggest a decrease of 17.4% (PowerAPI) and 24.34% (Jalen)

on the energy consumption of the alternative solution. Second, Jalen showed a greater difference than

PowerAPI (by comparing the z-score), which also follows the trend observed by comparing their

descriptive statistics. It is also important to highlight that, as expected, method level measurements

(from Jalen) showed lower consumption then process level (from PowerAPI). These findings

corroborate that: (a) method level measurements have lower overhead, since they isolate application

and OS noises, and (b) pattern solutions indeed show increased energy consumption when compared

against their alternatives. Summarizing, we can answer RQ1 by affirming that, for Template Method,

pattern solutions tend to consume more energy than the alternative solutions (implemented as

described in Section 3) and that this observation becomes more evident when analyzing at method

level. However, further investigation on this assertion is presented in Section 6.4 (see RQ3).

6.3. RQ2: State/Strategy

Next, we explored the energy consumption of State/Strategy pattern instances and their alternative

solutions, focusing on identifying whether or not there is a statistically significant difference between

the solutions (pattern and alternative) regarding energy consumption. For that, we followed the same

process as described for RQ1, using, however, data related to State/Strategy (pattern = State/Strategy).

Thus, first we performed the Shapiro–Wilk test to confirm that the data was not normal, as expected

due to the result from the previous data analysis. As the variables were not normal, we used Wilcoxon

signed ranks test to investigate the energy consumption data from PowerAPI and Jalen. In addition, to

support visualizing the difference in the energy consumption, Figure 5 shows the box-plot for each

compared variable.

Figure 5. Visual comparison of the energy consumption for State/Strategy

Similarly to RQ1, the pattern solutions consumed more energy than their alternatives based on the

results of both PowerAPI (p < 0.01, z = -6.19) and Jalen (p < 0.01, z = -6.8). This result is in

accordance with what we expected from observing the descriptive statistics in Table VI and the box-

plots in Figure 5. However, when looking at the differences between each pair of pattern and

alternative solutions, we can highlight some notable aspects. First, results obtained from PowerAPI and

Jalen are very close to each other, as it can be observed by the mean value in Table VI and z-score of

the test. Second, the average results from Jalen are lower than those from PowerAPI, but still similar,

especially by taking into consideration that Jalen only measures the energy consumption at method

level. Even though these values are very close, the standard deviation and standard error mean (see

Table VI) from Jalen are proportionally higher (in comparison with the mean) than those of PowerAPI.

The relatively high standard deviation and standard error for the Jalen pair is caused by differences in

measurements on method level. The method level measurements seem to be significantly distant from

the mean. Nonetheless, the drop in energy consumption for both pairs is remarkable, as the average

decrease in energy consumption is 53.68% for PowerAPI and 55.51% for Jalen. Summarizing, we can

answer RQ2 by affirming that, concerning State/Strategy, pattern solutions tend to consume more

energy than the alternative solution (implemented as described in Section 3), although method level

measurements show that this result requires further investigation (due to the high standard

deviation and error). We present this further analysis in the next section, in which we discuss

parameters that influence energy consumption.

6.4. RQ3: Influence of Source Code Parameters

The third research question aims at investigating parameters that influence the energy consumption of

design pattern instances. To achieve this goal, we considered two metrics (SLOC and MPC) collected

from every pattern-related method (i.e., based on the pattern solution, see Section 4.3.1) to investigate

clusters of experimental units via a three-step analysis. First, to cluster the experimental units, we

performed an agglomerative hierarchical clustering (using between-groups linkage and squared

Euclidean distance, see Section 4.4.2) based on the difference in energy consumption (i.e., *-diff =

*-ptt – *-alt). Second, we employed Mann-Whitney tests to evaluate the hypotheses posed for RQ3

(see Section 4.1), verifying whether neighbor clusters (i.e., that are at the same level in the hierarchical

tree) are statistically different w.r.t. SLOC and MPC. If no statistically significant difference was

found, we merged the clusters and performed the test again with the neighbor of the merged cluster.

Finally, we investigated the final clusters to identify trends regarding the studied metrics (SLOC and

MPC).

In Figure 6 we present the outcome of the hierarchical clustering for Template Method data. The

two charts on the top show the distribution of the experimental units among the clusters. Each point

consists of a pair <pattern solution; alternative solution>, in which the Y axis is the energy

consumption of the pattern solution and the X axis is the energy consumption of the alternative. The

clusters can be identified by the different shape and color presented in the legend. The two charts on

the bottom of Figure 6 show the centroids of the clusters with regards to SLOC and MPC. The values

for SLOC and MPC of each cluster are obtained as the average of the units of the cluster. By checking

these charts, it is already possible to notice some separation between clusters w.r.t. the two metrics.

Figure 6. Hierarchical clustering of Template Method units of analysis

We investigated the separation between clusters, and the results of the statistical tests are presented

in Table VII (along with the tests for State/Strategy data). As multiple tests were performed for

investigating every pair of cluster regarding every metric, we report only the statistically significant

results. Based on these tests, one can see which clusters were merged. For example, when comparing

the clusters of Template Method (see upper charts of Figure 6) one can see four clusters (1.1; 1.2.1;

1.2.2; 2), from which two are very close (1.2.1; 1.2.2) and the separation was not statistically relevant

w.r.t. to SLOC and MPC, forming a merged cluster (1.2). By further inspecting the statistical tests and

charts, one can see three clusters distant from each other (1.1; 1.2; 2) w.r.t. to both SLOC and MPC,

and that they follow a trend in which clusters that group more energy-efficient solutions (e.g. 1.1) have

bigger SLOC and MPC scores. This observation suggests that the higher the SLOC and MPC, the less

advantageous the alternative solutions.

Table VII. Mann-Whitney test for comparing clusters

Pattern Tool Metric
Mann-Whitney test

Clusters Z Sig.

Template

Method

PowerAPI SLOC 1.1 & 1.2 -2.46 0.02

Jalen SLOC 1.1 & 1.2 -2.94 < 0.01

S
ta

te
/S

tr
at

eg
y

PowerAPI

SLOC 2.1 & 2.2 -3.62 < 0.01

MPC 2.1 & 2.2 -2.86 < 0.01

SLOC 1 & 2.1 -4.77 < 0.01

MPC 1 & 2.1 -5.03 < 0.01

SLOC 1 & 2 -4.31 < 0.01

MPC 1 & 2 -4.70 < 0.01

Jalen

SLOC 1.1.1 & 1.1.2 -2.91 < 0.01

MPC 1.1.1 & 1.1.2 -2.16 0.03

SLOC 1.1 & 1.2 -2.46 0.01

MPC 1.1 & 1.2 -3.83 < 0.01

SLOC 1 & 2 -3.62 < 0.01

MPC 1 & 2 -3.63 < 0.01

Figure 7 shows the scatterplots that concern the State/Strategy pattern, on which we performed the

same analysis described for Template Method. When investigating the clusters (based on the statistical

tests—see Table VII), one can deduce that three clusters remain for PowerAPI (1; 2.1; 2.2) and four for

Jalen (1.1.1; 1.1.2; 1.2; 2). Although the data of the two tools led to slightly different clusters, the

results suggest the same trends, which are similar to the ones observed for the Template Method

pattern. In particular, both SLOC and MPC influence the benefit of using an alternative instance

instead of the pattern solution. Moreover, the cluster 1.1 from the PowerAPI data (which is similar to

cluster 1.1.1 from Jalen) is the closest to the bisect line (i.e., pattern solution = alternative solution)

and, by checking the metrics chart, it is clear that this cluster has much higher SLOC and MPC when

compared to the others.

The performed analysis is so far able to provide evidence that both SLOC and MPC influence the

energy efficiency of a pattern solution and that both parameters should be taken into account when

deciding between using a pattern solution or an alternative solution. However, there is one interesting

question that has not been answered by the clustering, yet. By observing all the scatterplots that were

presented until this point, it is clear that in some cases pattern solutions were more energy efficient

than the alternative solutions (i.e., experimental units below the bisect line in the upper charts of

Figures 6 and 7). However, the use of automated clustering algorithms did not separate these units.

Therefore, we decided to perform a second analysis. We grouped the experimental units into the two

categories (pattern > alternative; and pattern < alternative). Next, we were able to investigate whether

or not SLOC and MPC may have an influence on determining if a pattern solution is more energy-

efficient than the alternative solution. To explore the differences between these groups, in terms of

SLOC and MPC, we employed Mann-Whitney tests. Table VIII shows the results of the test for both

Template Method and State/Strategy.

Based on the results of Table VIII, it becomes clear that SLOC has a significant influence on the

energy efficiency of the pattern instance for both GoF design patterns, suggesting that the longer the

method is, the more possible it becomes that the pattern solution is more energy efficient. For the

State/Strategy pattern, it is also statistically evident that the number of calls to other methods

influences the energy efficiency of the solution, suggesting that more calls are related to a higher

possibility of the pattern solution being more efficient than the alternative.

Figure 7. Hierarchical clustering of State/Strategy units of analysis

Table VIII. Mann-Whitney test for comparing most energy efficient solutions

Pattern Tool Metric
Mann-Whitney test

Z Sig.

T
em

p
la

te

M
et

h
o

d
 PowerAPI

SLOC -4.06 0.00

MPC -0.03 0.98

Jalen
SLOC -3.75 < 0.01

MPC -1.71 0.09

S
ta

te
/S

tr
at

eg
y

PowerAPI
SLOC -4.05 < 0.01

MPC -3.57 < 0.01

Jalen
SLOC -2.15 0.03

MPC -2.49 0.01

Summarizing the evidence so far, it is possible to answer RQ3 by affirming that both parameters,

i.e., number of source lines of code and the number of invoked methods, influence the energy

efficiency of a pattern solution, suggesting that higher SLOC and/or MPC are related to more

energy efficient pattern solutions when compared against their alternative solutions.

7. DISCUSSION

In this section we discuss the main outcomes of this study. First, we discuss the findings of the

experiment, comparing them with related work. Second, we discuss the implications to researchers and

practitioners. However, we need to clarify that the discussion presented in this section regards only the

Template Method and State/Strategy patterns, as well as that our observations and interpretations are

constrained by the limitations of the experimental settings and threats to validity (see Section 8).

7.1. Interpretation of Results

The results of our experiment suggest that the alternative solutions are more energy efficient than the

pattern solutions for both Template Method and State/Strategy. This difference is higher for

State/Strategy (approx. 54% for PowerAPI and 56% for Jalen) than to Template Method (approx. 17%

for PowerAPI and 24% for Jalen). These results are in accordance to related studies (see Section 2),

which have reached similar conclusions, i.e., that the alternative solutions tend to be more energy

efficient. Specifically, Bunse et al. [29], as well as Noureddine and Rajan [32], also report on the

Template Method pattern, and suggest that this pattern presents a small, yet significant, overhead.

Noureddine and Rajan [32] also investigate State and Strategy patterns separately, and report a smaller

overhead for State (approx. 3%) and an equally small improvement for Strategy (approx. 3%). This

difference between results may be related to certain characteristics of the study design (e.g., the used

pattern alternative or subjects of the study), but more details regarding these characteristics would be

necessary to elaborate on the rationale. To sum up, the differences between pattern and alternative

solutions observed in our study are likely to be influenced by the overhead caused by employing

polymorphism (i.e., the main mechanism of both patterns). When calling polymorphic methods, the

JVM has to dynamically indicate the correct implementation to be used. Commonly, this indication is

done by moving the instruction pointer10 to the memory address containing the right method. Although

simple, this kind of operation can become computationally expensive if overused.

While investigating the influence of SLOC and MPC on the energy consumption of pattern

solutions, we were able to notice that both GoF patterns tend to provide a slightly more energy-

efficient solution when used to implement more complex behaviors (i.e., with longer methods and

multiple calls to method of external classes). This observation is also intuitive from three perspectives:

1) GoF design patterns are not beneficial in simple/non-complex design problems (even w.r.t.

other quality attributes [18][19]), since the extra complexity that they introduce is higher than

the one that they resolve;

2) The effect of polymorphism weakens when these patterns are handling complex situations. The

longer the method, the lower the ratio of method localization compared to the overall

computation and, therefore, the overall overhead caused by the polymorphic mechanism of

Template Method or State/Strategy; and

3) It is understandable that patterns promote improved structuring of the source code, which may

sometimes lead to a smaller and/or more efficient bytecode (for the JVM), which in turn leads

to slightly more energy-efficient software. We observed such cases, e.g., when the pattern-

related method comprises a set of external invocations (i.e., to methods that are not owned or

inherited by the class being measured). In such cases, the JVM might be applying internal

optimizations, which would not be possible in the alternative, as the structure pattern-related

method is altered.

Although we have provided evidence that alternative solutions are in most of the cases more energy

efficient than pattern solutions (approx. 79% of the cases), there are cases in which the opposite holds.

Sahin et al. [30] have also reported on pattern instances that can be more energy efficient compared to

alternative solutions. In comparison to Sahin et al., we provide a more fine-grained analysis by relating

this differentiation to two metrics (i.e., SLOC and MPC). This finding can also be possibly explained

by the overhead caused by polymorphism, as we were able to identify statistically significant

differences on the metrics between pattern-efficient (i.e., pattern solution consumed less energy than

the alternative solution) cases and alternative-efficient cases. On average, pattern-efficient solutions

have 65.83% more source lines of code and 43.37% more method invocations than the alternative-

efficient solutions.

Finally, there is a crosscutting observation to all findings in this paper, which deals with differences

in energy consumption at method and process levels. The measurements from Jalen were lower than

the measurements from PowerAPI (40.42% on average). This observation is intuitively correct since

the measurements from Jalen are more localized (focused on only one method). Furthermore, it is

interesting to notice that differences between pattern and alternative solution were smaller for Jalen

(12.11% in average), a fact that suggests that the remaining parts of the applications (i.e., not the

pattern-related methods) were, to some extent, biasing the analysis. Another possible explanation could

be that the dynamic binding procedure11 may not be fully captured by Jalen at times, as it focuses on

the pattern-related method being measured. However, we sought to mitigate this threat by: (a)

verifying cases of dynamic biding while selecting experimental units (i.e., pattern related methods); (b)

10Also known as program counter, instruction address register, instruction counter and instruction sequencer, instruction

pointer is a processor register that indicates the current assembly command to be executed.
11Dynamic binding procedure refers to the action of resolving a binding (e.g., decide which method or variables with

same names to use) at runtime, when it is not possible at compile time.

looking for outlier measurements; and (c) checking the correlation of the measurements against pTop

(see Section 5.2).

7.2. Implications to Researchers and Practitioners

The findings of this paper suggest that pattern solutions are less harmful or even beneficial to energy

consumption when the responsibility assigned to the pattern instance (i.e., the implemented behavior)

is non-trivial. Therefore, we advise practitioners on considering this parameter when deciding whether

or not to apply Template Method or State/Strategy patterns. GoF patterns serve several purposes:

structuring and organizing source code; supporting quality attributes, such as maintainability and

reusability; and improving communication between stakeholders by providing a common language.

For these reasons, GoF patterns have become a common practice in software development. Several

studies that have investigated only a subset of the GoF patterns report that approx. 30% of the classes

of a system may participate in pattern instances [15], [16], [54]. However, as studies have shown, there

are also side effects on using GoF patterns [17], and energy efficiency is one of the aspects in which

the software is negatively affected. Thus, we also advocate the careful consideration of drivers (e.g.,

energy efficiency) of the software project, balancing them against the forces (e.g., complexity of the

behavior to be implemented) that influence the decision on applying a certain pattern or not.

Based on the aforementioned negative relationship between GoF patterns and energy efficiency,

one may wonder why using GoF patterns in systems that have energy efficiency as a main concern.

Nevertheless, GoF patterns are widely adopted and, therefore, we expect that even systems that have

energy as a concern may have a non-negligible amount of GoF pattern instances, either intentionally

(to promote other quality attributes) or unintentionally. Therefore, the results of our study can be used

to help control a system’s efficiency in different situations. On the one hand, while developing

software, our findings may support the management of unintentional harm to energy efficiency (via not

necessary use of GoF patterns), as well as intentional use to balance various quality attributes. On the

other hand, when refactoring a system for a new purpose, the findings of this study may support the

decision making process on what parts of the system to refactor and how.

This study has three main implications to researchers. First, the usage of non-trivial systems for

investigating patterns energy consumption is a challenging task, since researchers need to a) deal with

pattern variants, b) decide which variants have to be investigated, c) incorporate these variations into

the alternative solution, and d) measure the energy consumption of the pattern instance by executing

the same scenario for which the pattern instance was intended to. However, the obtained evidence can

be very insightful as shown by this study. Therefore, we do suggest that when investigating the energy

consumption of GoF patterns, non-trivial systems should be used. Second, the use of method level

energy measurements has proven to provide extra information for investigating the hypotheses both

visually and statistically. It also contributed to the reliability of our findings by triangulating results of

process and method level measurements. Third, when investigating the energy efficiency of GoF

patterns, exploring design parameters (e.g., SLOC and MPC) proved to be highly relevant. By

investigating the parameters, we were able to not only suggest whether or not the pattern solution is

worse than the alternative solution, but also, and most importantly, we were able to interpret this

phenomenon. By further investigating this hypothesis and observing the magnitude of the influence of

these parameters, we were able to highlight the circumstances under which the patterns are more

efficient than the alternative. Therefore, we suggest exploring similar parameters and other design and

source code properties when investigating the influence of GoF design patterns to energy consumption.

8. THREATS TO VALIDITY

In this section, threats to construct validity, internal validity, reliability, and external validity of this

study are discussed. Construct validity reflects how far the studied phenomenon is connected to the

intended studied objectives. Internal validity expresses to what extent the observed results are

attributed to the performed intervention, and not to other factors. Reliability is linked to whether the

experiment is conducted and presented in such a way that others can replicate it with the same results.

Finally, external validity deals with possible threats when generalizing the findings derived from

sample to the entire population.

Concerning construct validity, one threat is that the transformation of non-trivial systems may be

risky since, due to their complexity, it is more error-prone. Although “synthetic” programs could

facilitate the control over external factors, we believe that non-trivial programs were imperative to

investigate pattern-related methods. Thus, to mitigate this bias, we took several measures while

selecting experimental units (see Sections 4.2 and 4.3). The collected energy measurements pose

another threat, as we consider consumption only by the CPU. If we included energy consumed by other

resources, such as hard drive and network, the results might change. First, by only looking at CPU

consumption, it enabled us to use three different measurement tools to increase the confidence on the

obtained measurements. To mitigate this threat further, we verified that the energy consumed by the

memory was negligible and do not represent a considerable bias (see Section 5.2), as well as restricted

the selection of pattern instances to those that do not require operations such as writing to or reading

from files and communicating through network. Another threat concerns the level of measurement

(i.e., process or method level), which can be a source of bias to the study as different perspectives

could lead to different results. For that reason, we performed the analysis at both levels (process and

method), and checked their correlation. Additionally, some lack of precision could have been

introduced by a limitation of the used energy measurement tools. To mitigate this threat, we selected

tools that have been validated in different studies. In addition to that, we performed data triangulation

for all measurements by using three different tools. Moreover, the measured data may also be slightly

biased, since small environmental changes might exist between different executions, leading to

different values. To mitigate this threat, we used a basic OS, installing only strictly required

dependencies, and every measurement was performed multiple times, using the average value for the

analysis.

The main threat to the internal validity of our experiment is related to whether the observed

differences in the energy consumption were caused by the implemented alternatives, and not by other

factors. To mitigate this threat, we acted from measurement and implementation perspectives. On the

one hand, we used Jalen, which is able to measure only the energy consumed by the experimental unit

(i.e., pattern related-method), discarding the energy consumed by the rest of the application, JVM, and

OS. In addition, the procedure to measure the energy consumed by pattern and alternative solutions

was identical. On the other hand, while implementing the alternatives, we assured that only the design

changes proposed for the alternatives (see Sections 3.2 and 3.4) were implemented, not altering the

behavior of the pattern-related method. Another threat to this category is the fact that the set of

parameters that we investigated for answering RQ3 is not exhaustive, and we cannot guarantee that

differences in energy consumption have been comprehensively explained, since there might be other

parameters that influence the energy consumption of design patterns.

In order to mitigate reliability threats, two different researchers were involved in the data

collection, double-checking all outputs. In addition to the two researchers, a third one was involved in

the analysis procedure. To implement the alternative solutions, the provided guidelines are sufficient

and any replication should lead to the same results. To complement that, all scripts and source code are

available on-line12 and, therefore, all raw data can be reproduced with small variations by using the

same energy measurement tools and environment setup. Finally, data analysis bias is limited in this

study, since no subjectivity was involved.

Finally, concerning external validity, we have identified four possible threats. First, we investigated

a limited number of OSS projects. However, the two selected projects are very different, both in terms

of domains and characteristics (e.g., Joda Time has more than the double of SLOC per class when

compared to JHotDraw); this partially alleviates this threat. Second, we investigate a limited number of

pattern instances, as well as a limited range of pattern variants. However, we evaluate a fair number of

pattern-related methods (i.e., units of analysis), what partially alleviates this threat. Nevertheless, a

larger sample could strengthen the results, and increase our confidence on generalizing our findings.

Next, the presented results are dependent on the used alternatives and pattern solutions. Thus, different

alternatives or pattern variations could lead to altered results. For example, alternative and/or pattern

solutions optimized for energy efficiency may increase the observed difference between the solutions,

or even invert it. However, the focus of our study was to analyze representatives of existing and

commonly used non-trivial software, in terms of both pattern and alternative design solutions, as such

investigation would impact a plethora of software. Therefore, we selected the alternatives that we

believe to be the most common, as well as considered the original definition of the studied patterns

(also with small and similarly common variations), so as to have a more representative sample of

solutions that exist in practice. Finally, the results of this study cannot be directly generalized to other

GoF patterns, especially those that do not use polymorphism as their main mechanism.

9. CONCLUSIONS

In this paper we investigated the effect of Template Method, and State/Strategy GoF design patterns on

energy consumption. In particular, we conducted an experiment on two non-trivial OSSs, JHotDraw

and Joda Time, from which we identified 21 pattern instances and 169 pattern-related methods (i.e.,

methods that use the pattern structure), implemented an alternative (non-pattern) solution for each

12http://www.cs.rug.nl/search/uploads/Resources/JSEP_Feitosa_etal_resources.zip

instance (which contained the alternative implementation of the pattern-related methods), and

measured the energy consumption of both solutions using tools at both process and method levels.

Based on the collected data, we identified which solution was more energy-efficient and what

parameters affect the efficiency of the pattern solution. To this end, we collected two metrics from

every pattern-related method, SLOC and MPC, and correlated them to the efficiency of the pattern

solution. The results of the study suggest that the alternative solution excels the pattern solution in

most cases. However, in some cases the pattern solution had similar or even slightly lower energy

consumption than the alternative solution. Since these cases were identified in large pattern-related

methods and/or methods with high number of method invocations, it is suggested that these patterns

are more suitable when more complex behaviors have to be implemented. We clarify that some factors,

such as the considered design pattern alternatives, may have influence on the aforementioned

observations, and that altering these factors may change the aforementioned observations (for more

details, see Section 8).

The findings of this study have value for both practitioners and researchers. On the one hand,

practitioners can reuse this knowledge to perform more informed decision-making when applying GoF

patterns. On the other hand, researchers can learn from the reported experiences and reproduce aspects

of this study when investigating GoF design patterns and/or energy consumption. Finally, there are

several opportunities of future work. This study can be replicated with more experimental units or

more source code metrics. Different tools, especially hardware tools, can be used to not only

triangulate the results but also investigate other effects (e.g., from the remainder of the OS or the

computer itself). In addition, the same or improved setup can be used to investigate other GoF design

patterns, specially focusing on the other two pillars of object-orientation that have not been

investigated in depth by this study (i.e., encapsulation and inheritance). Lastly, a case study can be

carried out on systems that have energy efficiency among their main concerns, investigating how GoF

patterns and alternatives are used within such context and comparing these systems with other kinds of

systems.

ACKNOLEDGEMENTS

The authors would like to thank the financial support from the Brazilian and Dutch agencies

CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.: 204607/2013-2), as well as the INCT-SEC (Grant

N.: 573963/2008-8 and 2008/57870-9).

REFERENCES

1. Procaccianti G, Lago P, Bevini S. A systematic literature review on energy efficiency in cloud software

architectures. Sustainable Computing: Informatics and Systems 2015; 7:2–10, doi:10.1016/j.suscom.2014.11.004.

2. Hammadi A, Mhamdi L. A survey on architectures and energy efficiency in data center networks. Computer

Communications 2014; 40:1–21, doi:10.1016/j.comcom.2013.11.005.

3. Zhang Z, Cai YY, Zhang Y, Gu DJ, Liu YF. A distributed architecture based on microbank modules with self-

reconfiguration control to improve the energy efficiency in the battery energy storage system. IEEE Transactions on

Power Electronics 2016; 31(1):304–317, doi:10.1109/TPEL.2015.2406773.

4. Pinto G, Castor F, Liu YD. Understanding energy behaviors of thread management constructs. Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages & Applications, ACM, 2014;

345–360, doi:10.1145/2714064.2660235.

5. Liu YD. Energy-efficient synchronization through program patterns. Proceedings of the First International

Workshop on Green and Sustainable Software, IEEE, 2012; 35–40, doi:10.1109/GREENS.2012.6224253.

6. Peréz-Castillo R, Piattini M. Analyzing the harmful effect of god class refactoring on power consumption. IEEE

Software 2014; 31(3):48–54, doi:10.1109/MS.2014.23.

7. Sahin C, Pollock L, Clause J. How do code refactorings affect energy usage? Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, ACM, 2014; 1–10, doi:10.1145/

2652524.2652538.

8. Johann T, Dick M, Naumann S, Kern E. How to measure energy-efficiency of software: Metrics and measurement

results. Proceedings of the First International Workshop on Green and Sustainable Software, 2012; 51–54.

9. Tiwari V, Malik S, Wolfe A, Lee MTC. Instruction level power analysis and optimization of software. Technologies

for Wireless Computing. Springer US, 1996; 139–154, doi:10.1007/978-1-4613-1453-0\ 9.

10. Noureddine A, Bourdon A, Rouvoy R, Seinturier L. A preliminary study of the impact of software engineering on

GreenIT. Proceedings of the First International Workshop on Green and Sustainable Software, IEEE, 2012; 21–27.

11. Noureddine A, Rouvoy R, Seinturier L. Monitoring energy hotspots in software. Automated Software Engineering

2015; 22(3):291–332, doi:10.1007/s10515-014-0171-1.

12. Noureddine A, Bourdon A, Rouvoy R, Seinturier L. Runtime monitoring of software energy hotspots. Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engineering, ACM, 2012; 160–169, doi:

10.1145/2351676.2351699.

13. Jain R, Molnar D, Ramzan Z. Towards understanding algorithmic factors affecting energy consumption: switching

complexity, randomness, and preliminary experiments. Proceedings of the 2005 Joint Workshop on Foundations of

Mobile Computing, 2005; 70–79, doi:10.1145/1080810.1080823.

14. Gamma E, Helm R, Johnson RE, Vlissides J. Design patterns: elements of reusable object-oriented software. 1995.

15. Khomh F, Gueheneuc YG, Antoniol G. Playing roles in design patterns: An empirical descriptive and analytic study.

Proceedings of the IEEE International Conference on Software Maintenance, IEEE, 2009; 83–92,

doi:10.1109/ICSM.2009.5306327.

16. Ampatzoglou A, Chatzigeorgiou A, Charalampidou S, Avgeriou P. The effect of GoF design patterns on stability: A

case study. IEEE Transactions on Software Engineering 2015; 41(8):781–802, doi:10.1109/TSE.2015.2414917.

17. Ampatzoglou A, Charalampidou S, Stamelos I. Research state of the art on GoF design patterns: A mapping study.

Journal of Systems and Software 2013; 86(7):1945–1964, doi:10.1016/j.jss.2013.03.063.

18. Huston B. The effects of design pattern application on metric scores. Journal of Systems and Software 2001;

58(3):261–269, doi:10.1016/S0164-1212(01)00043-7.

19. Hsueh NL, Chu PH, Chu W. A quantitative approach for evaluating the quality of design patterns. Journal of

Systems and Software 2008; 81(8):1430–1439, doi:10.1016/j.jss.2007.11.724.

20. Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code. Object

technology series, Addison-Wesley, 1999.

21. Adamczyk P. Selected patterns for implementing finite state machines. Proceedings of the 11th Conference on

Pattern Languages of Programs, 2004; 1–41.

22. Saúde AV, Victório RASS, Coutinho GCA. Persistent state pattern. Proceedings of the 17th Conference on Pattern

Languages of Programs, ACM, 2010; 1–16, doi:10.1145/2493288.2493293.

23. Lyardet FD. The dynamic template pattern. Proceedings of the Conference on Pattern Languages of Design, 1997;

1–8.

24. Ampatzoglou A, Charalampidou S, Stamelos I. Design pattern alternatives. Proceedings of the 17th Panhellenic

Conference on Informatics, ACM, 2013; 122–127, doi:10.1145/2491845.2491857.

25. Tsantalis N, Chatzigeorgiou A, Stephanides G, Halkidis ST. Design pattern detection using similarity scoring. IEEE

Transactions on Software Engineering 2006; 32(11):896–909, doi:10.1109/TSE.2006.112.

26. Ampatzoglou A, Charalampidou S, Stamelos I. Investigating the use of object-oriented design patterns in open-

source software: A case study. Proceedings of the International Conference on Evaluation of Novel Approaches to

Software Engineering. Springer Berlin Heidelberg, 2011; 106–120, doi:10.1007/978-3-642-23391-3\ 8.

27. Weisfeld M. The Object-Oriented Thought Process. 4th edn., Addison-Wesley Professional, 2013.

28. Harper R, Morrisett G. Compiling polymorphism using intensional type analysis. Proceedings of the 22nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, 1995; 130–141,

doi:10.1145/199448.199475.

29. Bunse SSC, Schwedenschanze Z, Stiemer S. On the energy consumption of design patterns. Proceedings of the 2nd

Workshop EASED@ BUIS Energy Aware Software-Engineering and Development, 2013; 7–8.

30. Sahin C, Cayci F, Gutierrez ILM, Clause J, Kiamilev F, Pollock L, Winbladh K. Initial explorations on design

pattern energy usage. Proceedings of the First International Workshop on Green and Sustainable Software, IEEE,

2012; 55–61, doi:10.1109/GREENS.2012.6224257.

31. Litke A, Zotos K, Chatzigeorgiou A, Stephanides G. Energy consumption analysis of design patterns. Proceedings of

the International Conference on Machine Learning and Software Engineering, 2005; 86–90.

32. Noureddine A, Rajan A. Optimising energy consumption of design patterns. Proceedings of the 37th International

Conference on Software Engineering, IEEE, 2015; 623–626.

33. Adamczyk P. The anthology of the finite state machine design patterns. Proceedings of the 10th Conference on

Pattern Languages of Programs, 2003; 1–25.

34. Ferreira LL, Rubira CMF. The reflective state pattern. Proceedings of the Pattern Languages of Program Design,

1998; 1–18.

35. Henney K. Collections for states. Proceedings of the European Conference on Pattern Languages of Programs,

1999; 57–64.

36. Henney K. Methods for states. Proceedings of the First Nordic Conference on Pattern Languages of Programming,

2002; 1–13.

37. Sobajic O, Moussavi M, Far B. Extending the strategy pattern for parameterized algorithms. Proceedings of the 17th

Conference on Pattern Languages of Programs, 2010; 1–11.

38. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering.

Springer Berlin Heidelberg, 2012, doi:10.1007/978-3-642-29044-2.

39. Jedlitschka A, Ciolkowski M, Pfahl D. Reporting experiments in software engineering. Guide to Advanced Empirical

Software Engineering. Springer London, 2008; 201–228, doi:10.1007/978-1-84800-044-5 8.

40. Basili VR, Caldiera G, Rombach HD. Goal question metric paradigm. Encyclopedia of Software Engineering. Wiley

& Sons, 1994; 528–532.

41. Seng O, Stammel J, Burkhart D. Search-based determination of refactorings for improving the class structure of

object-oriented systems. Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,

ACM, 2006; 1909–1916, doi:10.1145/1143997.1144315.

42. Aversano L, Canfora G, Cerulo L, Del Grosso C, Di Penta M. An empirical study on the evolution of design

patterns. Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, ACM, 2007; 385–394,

doi:10.1145/1287624.1287680.

43. Manotas I, Pollock L, Clause J. SEEDS: a software engineer’s energy-optimization decision support framework.

Proceedings of the 36th International Conference on Software Engineering, ACM, 2014; 503–514, doi:10.1145/

2568225.2568297.

44. Kniesel G, Binun A. Standing on the shoulders of giants-a data fusion approach to design pattern detection.

Proceedings of the 17th IEEE International Conference on Program Comprehension, IEEE, 2009; 208–217, doi:

10.1109/ICPC.2009.5090044.

45. Pettersson N, Lowe W, Nivre J. Evaluation of accuracy in design pattern occurrence detection. IEEE Transactions

on Software Engineering 2010; 36(4):575–590, doi:10.1109/TSE.2009.92.

46. Balmas F, Bergel A, Denier S, Ducasse S, Laval J, Mordal-Manet K, Abdeen H, Bellingard F. SQualE - software

metric for Java and C++ practices. Technical Report, INRIA 2010.

47. Noureddine A, Rouvoy R, Seinturier L. A review of energy measurement approaches. ACM SIGOPS Operating

Systems Review 2013; 47(3):42–49, doi:10.1145/2553070.2553077.

48. Diouri MEM, Dolz MF, Glück O, Lefèvre L, Alonso P, Catalán S, Mayo R, Quintana-Ortí ES. Assessing power

monitoring approaches for energy and power analysis of computers. Sustainable Computing: Informatics and

Systems 2014; 4(2):68–82, doi:10.1016/j.suscom.2014.03.006.

49. Chen H, Li Y, Shi W. Fine-grained power management using process-level profiling. Sustainable Computing:

Informatics and Systems 2012; 2(1):33–42, doi:10.1016/j.suscom.2012.01.002.

50. Noureddine A, Rouvoy R, Seinturier L. Unit testing of energy consumption of software libraries. Proceedings of the

29th Annual ACM Symposium on Applied Computing, ACM, 2014; 1200–1205, doi:10.1145/2554850.2554932.

51. Do T, Rawshdeh S, Shi W. pTop: a process-level power profiling tool. Proceedings of the 2nd Workshop on Power

Aware Computing and Systems, 2009; 1–5.

52. Field A. Discovering Statistics Using SPSS. 3rd edn., SAGE Publications Ltd, 2009.

53. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer Series in Statistics, Springer New

York, 2009, doi:10.1007/978-0-387-84858-7.

54. Ampatzoglou A, Kritikos A, Arvanitou EM, Gortzis A, Chatziasimidis F, Stamelos I. An empirical investigation on

the impact of design pattern application on computer game defects. Proceedings of the 15th International Academic

MindTrek Conference on Envisioning Future Media Environments, ACM, 2011; 214–221, doi:10.1145/2181037.

2181074.

