Investigating the effect of design patterns on energy consumption

Daniel Feitosa®™!, Rutger Alders', Apostolos Ampatzoglou', Paris Avgeriou', Elisa
Yumi Nakagawa?

!Department of Mathematics and Computer Science, University of Groningen, the Netherlands
’Department of Computer Systems, University of Sdo Paulo, Brazil

ABSTRACT

GoF patterns are well-known best practices for the design of object-oriented systems. In this paper we aim at
empirically assessing their relationship to energy consumption, i.e., a performance indicator that has
recently attracted the attention of both researchers and practitioners. To achieve this goal, we investigate
pattern-participating methods (i.e., those that play a role within the pattern) and compare their energy
consumption to the consumption of functionally equivalent alternative (non-pattern) solutions. We obtained
the alternative solution by refactoring the pattern instances using well-known transformations (e.g., replace
polymorphism with conditional statements). The comparison is performed on 169 methods of two GoF
patterns (namely State/Strategy and Template Method), retrieved from two well-known open source
projects. The results suggest that for the majority of cases the alternative design excels in terms of energy
consumption. However, in some cases (e.g., when the method is large in size or invokes many methods) the
pattern solution presents similar or lower energy consumption. The outcome of our study can be useful to
both researchers and practitioners, since we: (a) provide evidence on a possible negative effect of GoF
patterns, and (b) can provide guidance on which cases the use of the pattern is not hurting energy
consumption.

KEY WORDS: energy efficiency; design patterns; GoF patterns; template method pattern; state pattern; strategy pattern

1. INTRODUCTION

There has been an increase of energy demand within the ICT domain [1]. This is a multi-faceted
problem, as one can consider the effects of networks, hardware, drivers, operating systems, and
applications on energy consumption. In this paper we focus on applications and, particularly, how they
can be optimized in terms of energy consumption. Software optimizations in this context have been
discussed at three levels of granularity:
o at architectural level, ¢.g., research that deals with energy efficient architectures for networked
systems (e.g., data centers, cloud computing, etc.) [1]-[3].
o at design level, e.g., identification of differences in energy efficiency when applying design
patterns (cf. Section 2).
e at source code level, discussions on topics such as multi-threading [4], [5], refactoring [6]-[9]
and related algorithms [10]-[13].

The scope of our work lies at the design level, as we look into the effect of GoF (Gang of Four)
design patterns and their alternative solutions on software energy consumption. GoF design patterns
are recurring solutions to common problems in object-oriented software design [14]. GoF design
patterns can be applied in almost any type of software, varying from small devices to large data-
centers. In Java applications it has been reported that up to 30% of system classes participate in one or
more GoF design pattern occurrences [15], [16], leading to a significant influence on overall energy
consumption. Solutions provided by these patterns exploit object-orientation mechanisms (e.g.,
polymorphism) to enforce more flexible and maintainable designs.

The effect of applying a pattern is not uniform across all of its instances, and all quality attributes
[17]. In particular, several studies [17]-[19] report that the effect of a pattern on a quality attribute
depends on certain pattern-related parameters, like the number of classes, number of methods invoked,
or number of polymorphic methods. Therefore, it is reasonable to expect that GoF design patterns have
a potential impact (positive or negative) on the energy consumption of software-intensive systems,

*Correspondence to: Daniel Feitosa, Department of Mathematics and Computer Science, University of Groningen,
the Netherland
tE-mail: d.feitosa@rug.nl

depending on certain pattern-related parameters. In the case where a pattern is not the optimal design
solution, alternative (non-pattern) design solutions can be employed. Alternative design solutions have
been proposed by several authors, including GoF design pattern advocates [14], [20]-[23]. More
details on GoF design pattern alternatives can be found in a recent literature review [24]. We note that
knowing the impact of patterns on energy efficiency can be beneficial in both green- and brown-field
software development. In Greenfield projects (i.e., fresh development), such a knowledge can support
the monitoring of energy efficiency, whereas in Brownfield projects (e.g., refactoring of system to new
purpose), it can support the decision making process on what parts of the system to refactor and how.

In this paper we investigate the effect of GoF patterns and their alternatives on energy

consumption, as well as the pattern-related parameters that might influence this effect. Specifically, we
focus on two GoF design patterns, namely Template Method, and State/Strategy [14]; we note that
State and Strategy patterns have a similar structure [25] and, therefore, a similar expected effect on
energy consumption. Therefore, the two patterns are discussed as one (for more details, see Section
3.1). The rationale for selecting the specific patterns is twofold:

o Usage frequency: behavioral patterns are the most commonly used patterns, accounting for
about half of the design pattern usages in a system [26]. Additionally, State/Strategy patterns
are the most used patterns among all, and Template Method the third. Therefore, the
accumulated impact of these patterns on energy consumption is expected to be high;

e Main object-orientation mechanism: object-orientation has three pillars !: encapsulation,
inheritance, and polymorphism [27]. Polymorphism is the most commonly explored principle
within the GoF patterns (19 out of 23 patterns uses polymorphism). However, it is important to
highlight that encapsulation and inheritance, although less explored, are also present in the
solution of many patterns. From these mechanisms, polymorphism potentially influences energy
consumption the most, as it comprises a complex procedure to map the polymorphic calls to the
correct implementation [28]. Both State/Strategy and Template Method use polymorphism as
their main mechanism to provide the pattern solution and, therefore, have potentially high
impact on the energy consumption. The two studied patterns use polymorphism with different
goals: State/Strategy pattern uses it to define the interface to interact with the states/strategy,
while Template Method pattern uses it to define the points of specialization to be implemented
by the concrete classes. In particular, the State/Strategy pattern encapsulates the different
states/strategies, whereas the Template Method pattern exploits inheritance, since concrete
classes extend the functionality of the abstract class. For that reason, we point that other pillars
are part of our investigation, although polymorphism is the main mechanism.

To investigate the energy consumption, we compare the energy efficiency of pattern solutions with
the energy efficiency of their alternative designs (one for each pattern), through a crossover
experiment. We note that the alternative designs were developed in a standardized way (see Section
3.2 and 3.4). In the experiment, we focus our investigation on pattern-related methods? so as to enable
a fine-grained analysis of the energy consumption. In addition to exploring the differences between
pattern and alternative solutions, we also investigate some pattern-related parameters that can cause the
pattern to be either beneficial or harmful with respect to energy consumption. For the experiment, we
selected two large well-known open source software (OSS) systems.

The remainder of this paper is organized as follows. In Section 2, an overview of the related work
on energy consumption in design patterns, and alternatives to design patterns is provided. Section 3
presents background information necessary for understanding the experiment, i.e., the selected design
patterns and their alternative solutions. Section 4 presents the experiment planning, which describes
the research questions, hypotheses, the used tool and collected variables. Section 5 overviews the
execution of the experiment (i.e., data collection and validation). In Section 6, we elaborate on our
analysis and answer the research questions. In Section 7, we discuss the obtained findings, by focusing
on the most important observations and presenting implication for researchers and practitioners. The
threats to the validity of our study are discussed in Section 8, followed by the conclusion of this paper
in Section 9.

2. RELATED WORK

This section presents research efforts that discuss the effects of design patterns on energy consumption.
We focus on the consumption of design patterns, the types of patterns being investigated, and the

ISome authors advocate a fourth pillar: abstraction. However, this is a higher level concept, which is provided as
combination of the other three pillars and, therefore, is not relevant for our argumentation.
ZPattern-related methods are methods that play a role within the design pattern.

proposed alternatives for patterns. After discussing the related work, an overview of how our research
compares to related work is provided.

In the work of Bunse et al. [29], a case study on the overhead of design patterns compared to “clean
software” is presented. In this context, “clean software” is a chunk of design that could be refactored
into a pattern solution. The software in this study mainly targets mobile devices. The design patterns
discussed are Facade, Abstract Factory, Observer, Decorator, Prototype, and Template Method. This
initial investigation shows that each of these design patterns has overhead when compared to their
“clean” counterparts. Most of the patterns have a relative small overhead, except for the Decorator
pattern, which, based on this study, consumes more than double the amount of energy compared to the
“clean” counterpart.

Additionally, Sahin et al. [30] performed a more extensive investigation on the impact of design
patterns on energy usage. In particular, this study takes into account the feasibility, impact,
consistency, and predictability of the energy consumption of 15 design patterns, from all GoF pattern
categories. The creational design patterns discussed are the Abstract Factory, Builder, Factory Method,
Prototype, and Singleton. The structural patterns discussed are the Bridge, Composite, Decorator,
Flyweight, and Proxy pattern. Finally, the behavioral patterns that were selected are the Command,
Mediator Observer, Strategy, and Visitor. Results of the study suggest that the use of design patterns,
either increases or decreases the amount of energy used. Additionally, there are no relations of the
category of the design pattern and the impact on energy usage. Finally, this study shows that it is not
possible to precisely estimate the impact of design patterns on energy consumption when only
considering artifacts on design level.

Litke et al. [31] conducted an initial exploration of the energy consumption of design patterns. This
paper includes an analysis of five design patterns, for which the energy consumption and performance
are described. These design patterns were tested by the use of six example applications written in C++.
These applications were first tested as clean, i.e., without the usage of design patterns, and then
transformed with the designated design pattern. The design patterns discussed are the Factory Method,
Adapter, Observer, Bridge, and Composite. For Factory Method, Adapter, and Observer, differences
were found between the original application and the one containing the specified design pattern. The
results show that applying Factory Method or Adapter patterns does not necessarily impose a serious
threat to the energy consumption. However, a significant overhead was identified by employing the
Observer pattern, but additional research is still required to investigate the cases when Observer is
indeed a threat to energy consumption. Since the Bridge and Composite pattern had no significant
difference in power consumption, the authors suggest further analysis.

In a recent paper, Noureddine and Rajan [32] performed a comparison on the energy consumption
overhead caused by 21 design patterns and explored in details the effects of two design patterns
(Observer and Decorator pattern). The effects discussed in this paper are the energy consumption of
applications using the pattern solution, the non-pattern solution, and an optimized alternative for the
design patterns. The optimized solutions for the alternatives are integrated into the applications by
making changes to compilers, so that the optimizations are automatically processed when compiling.
This study suggested that simple transformations to the Observer and Decorator patterns are able to
provide reductions in energy consumption in the range of 4.32% to 25.47%. We clarify that the
patterns investigated in our study are included among the 21 patterns initially investigated by
Noureddine and Rajan. However, the comparison of these results (from the initial investigation) to ours
is limited, since some extra details (e.g., implemented alternatives, source code properties) would be
necessary to further elaborate the discussion (see Section 7.1).

To ease the comparison of our work to the aforementioned studies, we summarize the main
differences in Table I, according to the following aspects: (a) Design patterns addressed; (b) Number
of non-trivial systems used; (c) Number of pattern instances analyzed; (d) Number of pattern-related
methods analyzed; (e) Level of energy measurement® (process level or method level); (f) Level of
investigation* (instance level or method level); and (g) Number of investigated parameters that
influence energy consumption. Based on Table I, the main contributions of this study compared to the
research state-of-the-art are the following:

e Usage of non-trivial systems—our investigation is performed considering two non-trivial
systems and a considerable amount of pattern instances and pattern-related methods. This setup
allows allow us to observe realistic results that are more representative to the population of
existing software-intensive systems;

3Measurement at process level considers the energy consumed by the operating system process of the running software;
measurement at method level considers the energy consumed by a specific method within the software process.
“Investigation at instance level considers pattern instances as subjects for analysis while the method level considers the
pattern-related methods as subjects.

o Exploitation of a method-level approach for measuring energy consumption—in addition
to the more traditional approach of process-level measurement. Being able to isolate the energy
consumed by specific method calls, we obtain measurements with lower overhead, allowing a
more in-depth investigation of both pattern and alternative solutions, in the sense that we focus
on pattern-related methods of each pattern instance; and

o Exploration of parameters of the processed patterns—in this study, we investigate not only
the energy efficiency of State/ Strategy and the Template Method design pattern, comparing
them against their respective alternative (non-pattern) design solutions, but also the parameters
of their application that render them either beneficial or not. We clarify that related work has
indicated parameters as possible causes for greater energy consumption, but without any
investigation of these parameters.

Table I. Overview of related work

Reference Design Non-trivial # of # of Measurement Investigation # of
patterns systems instances methods level level parameters
29 6° 0 6 0 Process Instance
[
30 15° 0 15 0 Process Instance 0
[
31 5¢ 0 5 0 Process Instance 0
[
[32] 214 0 N/A* 0 Process Instance 0
This study 3¢ 2 21 jg9 ~ Processand Method 3

Method

®

Facade, Abstract Factory, Template Method, Prototype, Decorator, and Observer.

Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy,
Command, Mediator, Observer, Strategy, and Visitor.

Factory Method, Observer, Adapter, Bridge, and Composite.

Decorator, Observer, Mediator, Strategy, Template Method, Visitor, Abstract Factory, Builder, Factory Method,
Prototype, Singleton, Bridge, Flyweight, Proxy, Chain of Responsibilities, Command, Interpreter, Iterator, State,
Adapter, and Composite.

State, Strategy, and Template Method.

Not available, the authors only mention “several small examples”.

a o o

* ©

3. DESIGN PATTERNS AND ALTERNATIVES

In this section we present background concepts that facilitate the understanding of our experiment. In
particular, we discuss the GoF design patterns that are explored in this study (State, Strategy, and
Template Method), elaborating on their design structure and an overview of their uses and
consequences. Additionally, we present and discuss their alternative solutions (referred in this paper as
State/Strategy Alternative and Template Method Alternative). The identification of design pattern
alternatives can be a non-trivial activity, since some GoF design patterns have no reported alternatives
in the literature [24]. To consider a design as a design pattern alternative, it should:

e originate from the literature;

o provide exactly the same functionality as the pattern; and

o have notable structural differences compared to the pattern.

We used two main sources to find alternatives: the seminal book on design refactoring by Fowler et
al. [20] and a systematic literature review conducted by Ampatzoglou et al. [24], in which an overview
of GoF design pattern alternatives are presented and discussed. Based on the aforementioned criteria,
we selected well-known alternative solutions from the literature, as they are expected to be more
recurrent in existing software. Although we acknowledge the existence of design patterns and
alternatives that are optimized for energy efficiency (which would obviously lead to better solutions),
we have deliberately not included them in our study. The reason for this decision is that we intend to
focus on widely-known solutions that have been applied to various software projects, by developers
who are not aware of energy optimization mechanism. Investigating such optimized solutions can
potentially introduce bias to our results, since neither patterns nor alternatives would be in their
standard form.

3.1. State/Strategy

The State pattern allows an object to change its behavior by switching from one state to another [14].
One classic example for the State pattern are traffic lights that turn from green to yellow, yellow to red
and red back to green. The collection of all states defines the space in which the context (traffic light)

is able to change its behavior. This behavior is implemented by each of the states separately. The
context class has at least one state instance object (i.e., a concrete state) that represents its current state
and thus functions as a central interface for clients to communicate with (see model on the left in
Figure 1). This context delegates the handling of requests to its current state object. The State pattern is
used in scenarios where either the behavior of an object depends on its state and needs to be changed
during run-time, or the operations have large, multipart conditional statements that depend on the
object's state [14]. Applying the State pattern has a number of consequences: the specific behavior for
each state is localized; the state transitions are made explicit; and State objects can be shared when
they have no instance variables.

The Strategy pattern allows for the encapsulation of certain families (such as algorithms), allowing
them to be interchangeable depending on client requests or specific behaviors of the context [14]. The
context class has at least one object of the concrete strategy that provides its (unique) functionalities,
which are implemented according to a template defined by the strategy interface (see model on the
right in Figure 1). The Strategy pattern can be used in a number of different situations [14], e.g., when
a class has different behaviors (depending on a specific situation) or when there are multiple
implementation options to be chosen. Consequences of using this pattern include [14]: it becomes an
alternative for sub-classing the context directly or using conditional statements, by decoupling the
algorithms into their own family; and it may cause memory and computational overheads, because it
increases the number of used objects, and concrete strategies may not use all information they receive
when called.

Context | - <<mtse:rf?ce>> ‘ Context | 1 <<interface>>
ate .n
+ handleRequest() - object: Strategy Io_ Strategy
+ handle |
0 + request() +execute()
ConcreteStateA | ConcreteStateB | ConcreteStrategyA | ConcreteStrategyB |
+ handle() | + handle() | + execute() | + execute() |

Figure 1. UML model of State (on the left) and Strategy (on the right) patterns

By inspecting the class diagrams of State and Strategy patterns (see Figure 1), we observe that they
have an equivalent structure (i.e., skeleton design) [14], [25]. Both patterns have a context that is called
by an external client and a family that consists of an interface with concrete classes. Both contexts
contain an object that represents at least one or more states/strategies that can be uniformly handled.
The main difference is the logic beneath the patterns, i.e., the behavior is fundamentally different. In
the case of the State pattern, the current object (state) within the context is updated after the execution
of every behavior (the method Aandle, in the diagram). This is not necessary for the Strategy pattern, as
strategies may be interchangeable during runtime. Additionally, the change of strategies is more an
additional feature than a rule for the Strategy pattern, whereas for State this is the basic concept of the
pattern. In this study, we treat both patterns mutually, since the expected changes to measure energy
consumption is focused on the design, i.e., structure and the use of their common object-orientation
mechanisms. The aforementioned fundamental differences regard the behavior of the pattern instance
and, thus, are not expected to be a confounding factor for our study, unless these fundamental
differences systematically change design attributes (e.g., method size). Nevertheless, we have not
identified such cases in our dataset (see Section 5.2).

3.2. State/Strategy Alternative

In a literature review performed by Ampatzoglou et al. [24] many alternatives for the State/Strategy
pattern are presented [21], [22], [33]-[37]. Similarly, Fowler et al. [20] discuss several alternatives for
these two patterns. Among these available options, we have chosen to replace the use of polymorphism
with the use of conditional statements. In this solution, the entire structure of the State/Strategy pattern
is removed and the complete logic is implemented in the context, which now has a local enumerator
object that enables the shifting between the different behaviors. Listing I shows an example of
alternative implementation for a Strategy pattern instance. While implementing an alternative design,
the implementation of each concrete strategy would be replaced with the behavior of the corresponding
state and the state update.

Listing I. Example implementation of Strategy alternative

public class Strategy {
public enum Strategies{
Strategyl,
Strategy2,
Strategy3
}i

private enum currentStrategy;

public int[] sort(int[] list) {
switch (currentStrategy) {
case Strategyl:
// Implementation of Strategy 1.
break;
case Strategy?2:
// Implementation of Strategy 2.
break;
case Strategy3:
// Implementation of Strategy 3.
break;
case default:
return 0;
break;

Despite the simplicity of the recommended changes, creating alternatives requires some effort, as
design patterns may be implemented in various different ways. These variations should be reflected
into the alternative designs. Based on our experience, one specific type of variation had direct impact
in the implementation of the alternative: the structure of the implemented pattern may differ from the
originally proposed structure [25]. Specifically, the proposed structure of State/Strategy has a standard
Interface-Class (IC) hierarchical structure; however, it may also be implemented with an abstract class
between the interface and the class (an intermediate level of inheritance), becoming an Interface-
AbstractClass-Class (IAC) hierarchical structure. Such a structure may contain several abstracts classes
in the middle. To deal with abstract classes in the alternative, each behavior defined in a concrete class
would be combined with the abstract class behavior. If that is not possible, e.g., when a class or
abstract class is used from the Java library, an additional object would be created to be able to access
its functionalities. We clarify that other, less recurrent, variations are possible, but they are not handled
in this study. For example, a State/Strategy may comprise multiple interfaces, which are partial
responsibilities, and concrete classes may implement all or some of them.

3.3. Template Method

Similarly to Strategy, the Template Method isolates different algorithms or operations to their own
subclass. However, this pattern allows the subclasses to alter certain steps of an algorithm without
changing the structure of the algorithm. An abstract class has at least two operations, one primitive,
which is used by the concrete subclass to implement the steps of an algorithm, and a template method
that contains the default structure (see Figure 2). The Template Method pattern can be used to avoid
code duplication, and to control or restrict any extensions of an abstract class, so that an abstract
function or hook function can only be called on certain locations.

AbstractClass

+ templateMethod()
+ operation()

(—h

ConcreteClassA ConcreteClassB

+ operation() + operation()

Figure 2. UML model of the Template Method pattern

3.4. Template Method Alternative

Fowler et al. [20] presents several alternatives for the Template Method and Ampatzoglou et al. [24]
discuss one alternative [23]. From these options, we chose the starting point from the Form Template
Method (FTM) refactoring, presented by Fowler et al. [20]. Generally, FTM transforms a non-pattern
code into a Template Method (see Figure 3). In contrast to State/Strategy alternative (Section 3.2), in
which we completely eliminated polymorphism, the alternative for Template Method does use
polymorphism, but in a different fashion. Therefore, this study design cannot be considered appropriate
for comparing the effect of using polymorphism on energy efficiency.

AbstractClass AbstractClass
+ templateMethod() + templateMethod()
+ operation()
ConcreteClassA ConcreteClassB ConcreteClassA ConcreteClassB
+ operation() + operation() + templateMethod() + templateMethod()

Figure 3. Comparison of the Template Method pattern (on the left) against its alternative (on the right)

By using this alternative, both primitive operations and specific behavioral operation now reside in
each concrete class. However, the Template Method also leaves room for variants in its
implementation. In such cases, the adjustments that would be applied in the alternative to handle these
variations are described below. Similarly to State/Strategy, the Template Method allows all or none of
these adjustments to be included.

e Depth of Inheritance Tree: Even though the Template Method uses only one abstract class, it
is possible that the methods are already defined in an interface. This makes it harder to remove
the primitive methods when creating the alternative implementation. In these cases, the
primitive method is not removed, but it is moved to the concrete class. This allows us to both
keep the TAC structure and to implement the alternative.

e Private methods: It is possible for a template method to call private methods within the
abstract class. If this is the only case, the private method is called, the private method is also
moved down to the concrete class. When this is not possible, the operations within the method
are moved inside the template method. This is not feasible in cases the operations rely on
multiple other methods or sources. In such a case, the private method is changed to protected.

As for State/Strategy, other, less recurrent, variations are possible, but are not handled in this study.
For example, a concrete class may aggregate the abstract class, possibly creating recursive calls, which
are not originally intended for template method pattern instances.

4. EXPERIMENTAL PLANNING

In this section we present the design and materials of the experiment reported in this paper. This
experiment is reported based on the guidelines of Wohlin et al. [38] and on the structure proposed by
Jedlitschka et al. [39]. Initially, the research objective, questions and respective hypotheses of the study
are discussed, followed by the process to select objects of study and experimental units. Next, an
overview of the variables and instruments used to the data collection are presented. Finally, the
analysis procedure is described. For presentation purposes, we report the data collection procedure
along with the execution process, in Section 5.

4.1. Objectives, Research Questions, and Hypotheses

The goal of this study is defined according to the Goal-Question-Metrics approach [40], as follows:
“Analyze instances of State, Strategy, and Template Method patterns for the purpose of evaluation with
respect to their energy consumption from the point of view of software developers in the context of
open source systems”. To achieve this goal, we set three research questions (RQs):
RQ1 What is the difference between the application of the Template Method pattern and an
alternative design solution in terms of energy consumption?
RQ2 What is the difference between the application of the State/Strategy pattern and an alternative
design solution in terms of energy consumption?

RQ3 What are the parameters that influence the energy consumption of State, Strategy, and
Template Method pattern instances?

RQ1 and RQ2 aim at investigating whether the energy consumption of patterns and alternative
solutions is significantly different. Such information is of paramount importance to make more
informed decisions when seclecting patterns over alternatives, while developing energy efficient
software. To answer RQ1 and RQ2, we formulated the following hypotheses:

HO: There is no difference between the energy consumed by software using a design pattern

solution and software using an alternative design solution.

HI:The energy consumed by software using a design pattern solution is significantly lower than

the energy consumed by software using an alternative solution.

H?2:The energy consumed by software using a design pattern solution is significantly higher than

the energy consumed by software using an alternative solution.

RQ3 aims at exploring if there are pattern-related parameters that affect the energy consumption of
the patterns, and for which ranges of these parameters the pattern can be characterized as beneficial or
harmful. Such thresholds can serve as guidance for decision making on when to apply a design pattern
or not. To answer this research question, we isolate groups (e.g., A and B) of pattern-participating
methods whose members have a similar difference in the energy consumption (compared to the
alternative solution) and investigate specific structural characteristics of the pattern solution (for more
details, see Section 4.4). To test the difference between every two groups, we formulated the following
hypotheses:

H3: There is no difference between the parameter values of the two groups (A and B).

H4: The parameter value of group A is higher than the value of group B.

H5: The parameter value of group B is higher than the value of group A.

4.2. Design Type and Experimental Units

To answer the research questions and test the hypotheses, we designed a crossover experiment [38], in
which pattern-related methods are the experimental units. Pattern-related methods are methods of
pattern instances that play a role within the design pattern. For our two selected patterns, these methods
are the template method (Template Method pattern) and the methods implementing the behavior of
states or strategies (States/Strategy pattern). We selected this unit for three reasons: (a) units with finer
granularity facilitate a more detailed investigation of parameters (i.e., design characteristics) that
influence the energy efficiency of design pattern solutions; (b) to standardize the data collection, since
patterns may have multiple pattern-related methods, each one implementing different responsibilities;
and (c) the alternative solutions provide the same functionality compared to pattern-related methods,
but with a different implementation, what also promotes standardization of the data collection. For
each experimental unit (i.e., a pair of pattern and alternative solutions), we record all data needed to
answer the research questions, i.e., the energy consumption measurements for both pattern and
alternative solutions, and design characteristics of the pattern solution.

To collect data for the experiment, it is necessary to select software systems and pattern instances
from which to sample pattern-related methods. Regarding software systems, we decided to use OSS
that met the following criteria:

e are written in the Java programming language, since the tool for retrieving design pattern

instances (see Section 4.3.1) is limited to Java;

e are non-trivial systems that are either widely used or known, so as to avoid the use of toy

examples; and

e contain instances of both the Template Method or the State/Strategy patterns.

Two OSS projects were selected for the study. Selecting more projects would be unrealistic as all
alternative solutions had to be manually implemented by us, which is a time-consuming task.
However, we do investigate a sufficient number of pattern instances (more than related work) and
pattern-related methods. For further discussion, please see how we deal with threats to validity
(Section 8). The first OSS system is JHotDraw’, a Graphical User Interface (GUI) framework written
in Java that allows the creation of technical and structured graphical images. The project started in
2000, having about 80,000 downloads at this point, and the current version (7.6) has 680 Java source
files, containing 80,535 SLOC. JHotDraw was developed as a design exercise, for applying GoF
design patterns, becoming a powerful framework that is acknowledged by the software engineering
community as a benchmark for GoF design patterns detectors [41], [42]. The second OSS system is

Shttp://www.jhotdraw.org/

Joda Time®, an Application Program Interface (API) that can replace the standard date and time
classes, providing better quality and in-depth functionalities. The project started in 2003, having almost
500K downloads at this point, and the current version (2.9.2) has 329 Java source files, containing 85K
SLOC. Joda Time has a high rating on GitHub and has also been used for research purposes [43].

Despite the careful selection of representative software for the study, we acknowledge that non-

trivial (complex) systems may have associated risks, in the sense that the transformation of a non-
trivial pattern instance to an alternative solution might not be uniform. To mitigate this risk, we
developed a strategy while selecting pattern instances / pattern-related methods, and implementing the
alternative solutions. Firstly, to select pattern instances for the study, we consider only those that meet
the following criteria:

e Used within the application: It is possible that the found pattern instances are not used within
the applications themselves, e.g., functionalities provided as an API, whose pattern instances
are partially implemented by the API user;

e Reachable: Some pattern instances are not reachable directly, imposing a long (and hard to
predict) sequence of calls, what may bias the measurement process. One option is to modify the
source code to make the pattern instance easier to reach, but it would bias the results as well;

e Performing deterministic tasks: Certain pattern instances may perform non-deterministic
tasks, such as saving data to files or transferring data over the network. This could interfere with
the actual measurement process; and

e Not too complex: In some cases, the pattern instances could have a relatively high number of
members, e.g., twenty or more concrete states/strategies or are variants of the original pattern
that are not handled in our study (see Sections 3.2. and 3.4). These pattern instances would
make the process of implementing the alternatives infeasible. On top of that, such pattern
instances would represent a threat to study validity, as these comprise exceptional cases.

Regarding method selection, the same criteria applied to pattern instances is used. We believe that
the pattern instances and pattern-related methods filtered by these criteria are representative of the
population, as excluded cases are mostly exceptional. Finally, concerning the implementation of
alternative solutions, we have to ensure that the original business logic is preserved, avoiding
unnecessary changes to the original source code. As the alternatives preserve the original business
logic and only the difference in the energy consumption is analyzed, we believe that we have mitigated
much of the risk associated with the usage of non-trivial programs.

4.3. Variables and Instrumentation

To answer the research questions and test the hypotheses stated in Section 4.1, a number of variables
are derived. These variables are divided into two distinct categories: (a) pattern-related information
(pattern, method and m-* in Table II, which are explained in Section 4.3.1); and (b) measurements of
energy consumption (*-ptt and *-alt in Table II, which are explained in Section 4.3.2). These variables
are recorded for each unit of analysis (i.e., pattern-related methods). The entire process of identifying
and measuring the units of analysis culminates in the creation of a dataset of all extracted variables for
each unit. This dataset is recorded as a table in which the columns correspond to collected variables. In
the following subsections, we present and discuss the variables and the tools used to extract them.

Table II. List of collected variables

Variable Description Tool
pattern Pattern Type (Template Method or State/Strategy) SSA
method The pattern-related method that is measured
m-sloc SLOC of the pattern-related method
m-mpc MPC of the pattern-related method)
papi-ptt Energy consumption (in Joules) of the pattern solution, at process level PowerAPI
papi-alt Energy consumption (in Joules) of the alternative solution, at process level

jalen-ptt Energy consumption (in Joules) of the pattern solution, at method level Talen

jalen-alt Energy consumption (in Joules) of the alternative solution, at method level
ptop-ptt Energy consumption (in Joules) of the pattern solution for triangulation pTop

ptop-alt Energy consumption (in Joules) of the alternative solution for triangulation

Ohttp://www.joda.org/joda-time/

4.3.1. Pattern-related Information. To collect the necessary data for all units of analysis, we first find
all the pattern occurrences within the OSS applications. To detect the design patterns occurrences, we
use a tool developed by Tsantalis et al. [25]. This tool uses a Similarity Scoring Algorithm (SSA) for
detecting design structures similar to a desired GoF design pattern. Among the 12 detectable patterns
are Template Methods and State/Strategy (identified jointly due to structural similarity). The extraction
of the design patterns is done by isolating subsystems of a given application through static analysis,
which enables the identification of relationships between the elements of each separate subsystem. The
SSA tool has been assessed by several studies (such as Kniesel et al. [44] and Pettersson et al. [45]),
which have positively evaluated its performance, precision, and recall rates. SSA was, therefore,
selected for this study because of the following:
e it provides detection of the design patterns of interest, i.c., Template Method and State/Strategy;
and
e it provides acceptable performance, as described by Tsantalis et al. [25], also when compared
to similar tools [44], [45].

SSA is limited to the Java programming language, since the similarity analysis is performed on
compiled Java class files. After the application of the pattern detection tool on a project, the results are
compiled into one Extensible Markup Language (XML) file that contains all the instances found within
a given application.

Additionally, a set of metrics has to be extracted, which are used to investigate parameters that
influence the energy consumption of pattern instances (see Section 4.4). In order to select these
metrics, we considered the SQualE platform [46], as it summarizes a broad and comprehensive list of
metrics from the literature. From this list, we identified two metrics that could be measured at method
level: SLOC and MPC’. SLOC is measured as the amount of source line of code of the method, while
MPC is measured as the amount of calls, within the method, to other methods (these calls do not
include those to methods of the same class, even if inherited). We clarify that the parameters SLOC
and MPC are calculated for the pattern solution only. For answering RQ3, we are interested in
identifying characteristics of the pattern design solution that are related to energy efficiency. In
addition, SLOC and MPC do not change considerably in the alternative solution, since the
transformation mostly causes a reorganization of the code and how methods are called. In other words,
our goal is not to evaluate the change of complexity, but how the complexity of the pattern solution
influences the difference of energy consumption between the solutions, especially because this
complexity is dictated by the business logic, which is not modified.

4.3.2. Assessment of Energy Consumption. To measure the energy consumption of software
applications, there are multiple tools based on both software and hardware [47]. In this study we, opted
to use software tools, as they allow finer-grained measurements (i.e., at the method level) [47].
Although hardware measurement offers a higher precision, it estimates the energy consumed by the
whole machine, and our study investigates the consumption difference at the methods level. Therefore,
we prioritized a finer-grained technique over a more precise one. In addition, selecting and configuring
a hardware measurement tool may represent a complex and expensive task [48], which if not
accurately performed can introduce additional bias. In order to select the appropriate tools, we
searched the literature and identified nine software tools for measuring energy consumption. We
analyzed two comparative studies that included these tools [47], [49], in addition to other literature, so
as to verify their theoretical and empirical validity in scientific setups. Based on this analysis, two tools
presented the highest precision, namely PowerAPI and pTop; a third tool, namely Jalen, although with
lower precision, is able to deliver finer-grained measurements. Other tools that we considered either do
not have sufficient validation or present lower precision regarding their respective granularity of
measurement, or require additional hardware investments.

PowerAPI is an API that enables real-time profiling of the energy consumption at the level of
operating system (OS) processes [10]-[12], [47]. This tool currently supports measuring energy from
CPU and network, which are represented through power modules. The available implementations that
are provided for this tool are created for GNU/Linux distributions, but they are independent of the
hardware. To measure the energy consumption of the CPU, the Thermal Design Power (TDP) is taken
into account, which is the maximum amount of heat (which is generated by the CPU) that requires to
be dissipated by the cooling system. The precision for measuring the power consumption of software
applications with PowerAPI was estimated by Noureddine et al. [11] by comparing it against a power
meter. This estimation showed that the calculated margin of error vary from 0.5% to 3%.

"MPC consists of the number of invocations to methods that are not owned or inherited by the class being measured.

Jalen is an energy consumption profiler, which was created by the same developers of PowerAPI
[11], [12], [47], [50]. Jalen can collect energy consumption on different levels of granularity such as
the method level. Similarly to PowerAPI, Jalen is limited to the use on GNU/Linux distributions due to
the sensors used for the hardware components. Since Jalen injects monitoring code through the
bytecode instrumentation, it reduces the precision. In a comparison of tools performed by Noureddine
et al. [11], the measured time for individual Tomcat’s server requests was 57% higher in average.
However, since we are comparing two different versions of the same applications (i.e., pattern and
alternative solutions), this cannot be considered as a confounding factor.

pTop is a profiler that can determine energy consumption on the OS process-level and is designed
to work solely on GNU/Linux distributions [47], [51]. pTop calculates the energy consumption
through a daemon that profiles the resource utilizations for all processes, whereas the power
consumption of the system CPU, network interface, memory and hard drive are tracked. Each different
system component needs to be configured (possibly calibrated as well) according to its specifications.
Just like PowerAP]I, it uses the TDP to calculate the energy consumed by the CPU. The precision of
pTop was analyzed by comparing its results to a wattmeter [47]. Results of this analysis show that the
average median error for pTop was less than 2 watts.

All the aforementioned energy measurement tools are suitable candidates to obtain reliable results.
However, PowerAPI and Jalen are designed to specifically measure the energy consumption of Java
applications, not including the overhead caused by the Java Virtual Machine (JVM). Due to the
granularity of the energy measurement of Jalen (i.e., method level), the output is not influenced by the
energy expenditure of other parts of the system, which makes it a more suitable tool. However, in order
to compare the related work to ours, it is also necessary to consider the same perspective used in
related work, i.e., process level measurements, in this case by using PowerAPI. Therefore, we decided
to use both PowerAPI and Jalen for the study. We clarify that both tools have a limitation of being able
to measure energy consumed by the CPU only. Therefore, among other reasons, we restricted the
experimental units to those that do not use extra resources (e.g., hard drive, or network). Additionally,
we decided to use pTop, which is more commonly known in the scientific community, for
triangulation purposes, to validate the measurements obtained from PowerAPI and Jalen, and to verify
the memory energy consumption (see Section 5.2).

4.4. Analysis Procedure

During the data analysis, the previously described variables (see Table II) are used to answer the
research questions. As mentioned in Section 4.3.2, we collect data using two different tools (PowerAPI
and Jalen) and, therefore, every task of the analysis is performed for the data of each tool separately,
and results are compared. In addition, the data regards two design patterns (Template Method and
State/Strategy) and every step of the analysis is repeated for both patterns separately. The data analysis
is twofold, described in the following.

4.4.1. General Analysis of Energy Consumption. Initially, we compare the energy measurements (*-ptt
and *-alf) to test the hypotheses posed by research questions RQ1 and RQ2. For evaluating whether or
not the pattern solution is significantly different from the alternative solution, we perform two steps:

1) Check distribution. To decide whether to use parametric or non-parametric tests, we verify the
distribution of each dependent variable metric (i.e., papi-ptt, papi-alt, jalen-ptt, and jalen-alf)
by employing the Shapiro—Wilk test [52]. If not normal, a Wilcoxon signed ranks test [52] is
used for assessing the difference between pattern and alternative solutions; otherwise, paired
sample t-test [52] is used; and

2) Compare energy consumption. Next, we compare whether the difference between pattern and
alternative solutions is statistically relevant. For that, we employ the dependent sample test for
investigating the data obtained by PowerAPI and Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt
vs. jalen-alt).

4.4.2. Analysis of Design Parameters. Once the difference in the energy consumption between pattern
and alternative solutions is observed, we want to investigate parameters that may influence this
difference. For that, we isolate controlled groups (i.e., clusters) with similar difference in the energy
consumption and test the hypotheses posed by RQ3. This analysis comprises the following steps:

1) Create clusters based on consumption. First, we create clusters based on the difference
between the energy measurements for PowerAPI (i.e., papi-diff = papi-ptt — papi-alt) and Jalen
(i.e., jalen-diff = jalen-ptt — jalen-alt). For that, we employ the agglomerative hierarchical

clustering technique, considering the average linkage method (or between-groups linkage) and
using squared Euclidian distance [53];

2) Merge clusters based on design parameters. Next, we investigate whether or not the clusters
are statistically different with regards to the analyzed design parameters (m-sloc and m-mpc).
As the clusters comprise independent samples, we employ Mann-Whitney tests [52] for this
investigation. The analysis for each parameter is performed separately and clusters that are not
statistically different are merged; and

3) Verify trends. Finally, based on the final disposition of the clusters, we verify trends with
regards to both SLOC and MPC.

It is important to clarify that during the analysis we noticed cases in which the pattern solution was
more energy efficient than the alternative solution and, however, the clustering algorithm did not
separate these units (see Section 6.4). Therefore, aiming at complementing the answer for RQ3, an
additional analysis is performed, which comprises the following steps:

1) Group units. Based again on the difference between the energy consumption, we separate the
experimental units into two categories: (a) pattern solution consumed more energy than the
alternative solution; and (b) pattern solution consumed less energy than the alternative
solution; and

2) Compare parameters. Next, we analyze if the design parameters (SLOC and MPC) may have
an influence on determining which solution is more energy-efficient. For that, we employ
Mann-Whitney tests for investigating whether each parameter is statistically differ between the
two groups created in the previous step.

5. EXECUTION

In this section we explain how data for the experiment was collected. Firstly, we describe the data
collection procedure, showing details of the most relevant aspects. Next, we present and discuss the
validation of the collected data according to the planned experiment.

5.1. Data Collection

The data collection is composed of four steps. Firstly, we extracted the pattern instances and selected
the pattern-related methods (i.e., experimental units). To collect the experimental units, a set of pattern
occurrences were extracted from JHotDraw and Joda Time, and were manually inspected to decide
whether pattern instances could be included or excluded (see Section 4.2). Table III distinguishes
between the number of pattern occurrences that were included and excluded (according to the process
described in Section 4.2) for each OSS and GoF design pattern. For each included pattern instance, a
set of units of analysis was collected. The total number of collected units for each OSS and GoF design
pattern is presented between parentheses in Table III. We clarify that, despite the limited number of
included pattern instances, we believe that the number of experimental units (95 and 74) is satisfactory,
providing statistically significant results (see Section 6). Moreover, the effort required to implement
the alternatives (as described in Sections 3.2 and 3.4) also restricted the amount of experimental units
that could be collected.

Table III. Descriptive of identified pattern occurrences and pattern-related methods

Included occurrences Excluded occurrences

0SS

™ SS ™ SS
JHotDraw 7 (15) 6 (56) 5 25
Joda Time 7 (80) 1 (18) 5 17

TOTAL 14 (95) 7 (74) 10 42

TM = Template Method, SS = State/Strategy

Next, for each unit, we calculated the parameters SLOC and MPC (i.e., based on the pattern
solution, see Section 4.3.1). Before starting the measurement process, we implemented the alternative
solution for each pattern instance as described in Sections 3.2 and 3.4. Then, to measure the energy
consumption of the units, a standard measurement process was defined. This measurement process
needed to be consistent throughout the whole test run, so no external interference is introduced to the
results. First, a selection was done for the hardware system to be used for the analysis, along with the
OS and distribution. For the hardware system, we chose the MSI wind box DC100 minicomputer due

to its simplicity, availability, and compatibility with the measurement tools. The MSI wind box
contains the following components:

1) AMD Brazos Dual Core E-450 (1.65GHz) with a TDP of 18 Watts;

2) 4GB of DDR3 memory; and

3) AMD Radeon HD 6320 graphics adapter.

Since the measurement tools are tailored for GNU/Linux system, we used one of the distributions
released for that OS. As we wanted less interference during the measurement process, a clean
installation of Ubuntu is used, which contains only the essential packages and has no user interface.
However, since JHotDraw requires a graphical shell to call certain functionalities, a simplistic window
manager, i3%, was installed on top of this distribution. For orchestrating and standardizing the
execution of the measurement tools and pattern related methods, a script was created for performing
the following procedure: start the measurement tool, wait a few seconds for the tool to load, execute
the usage scenario containing the pattern-related method, wait for the application to finish and stop the
measurement tool. Each usage scenario embedded multiple executions of a part of the application that
called one pattern-related method (i.e., experimental unit), guaranteeing measurable energy
consumption (i.e., more than 30 seconds). Any selected part of the application was the simplest
possible and was fully checked to guarantee no hard external bias (e.g., read/write operations). Each
usage scenario was executed with the pattern solution and the alternative solution. For reliability
purposes, the aforementioned procedure was executed 100 times for every pair scenario-solution,
obtaining 100 measurements for each experimental unit. Finally, we obtained the final value for each
unit of analysis by excluding outlier measurements and calculating the average between the remaining
measurements.

5.2. Validation of the Collected Data

There were three main assumptions in the experimental design that needed validation. Firstly, two
researchers verified every manual data collection task. These tasks were the selection of the patterns
instances and pattern-related methods, the calculation of the SLOC and MPC parameters, and
measurement of energy consumption. Secondly, as we considered experimental units from State and
Strategy pattern instances mutually, we verified whether there was a difference between the energy
consumed by them. Our results suggest no visual or statistically relevant differences. Last, the energy
consumption data was validated by triangulation.

As mentioned in Section 4.3.2, the energy consumption was obtained by two tools, one working at
process level (PowerAPI) and another working at method level (Jalen). Our motivation for selecting
these two tools was that they both estimate the energy consumption based on the JVM, therefore,
reducing the bias from the overhead caused by the OS. In addition, PowerAPI has higher precision
when compared to other tools, while Jalen, although having a lower precision, provides more fine-
grained measurements (as it captures only the energy consumption of the method). By obtaining the
two different perspectives, we aimed at comparing our study to related work, as well as verifying the
results w.r.t. the different levels of measurements.

As expected, the tools provided measurements of different magnitudes, which are related to the
different characteristics of the tools. In addition, PowerAPI and Jalen use a similar mechanism for
exploring the JVM to calculate the results, which could be biased. Besides, both tools can collect the
energy consumed by the CPU only and, although we restricted the experimental units to those not
requiring additional resources (e.g., hard-drive, network), not considering the energy consumed by the
memory could still represent a bias. Therefore, we sought to provide further validation of the estimated
measurements. To this end, we selected a process level tool, pTop, which can estimate the energy
consumed by both CPU and memory, as well as has a higher precision, but estimates measurements by
exploring the process management of the OS.

The data collected by pTop suggest that the energy consumed by the memory is negligible (approx.
0.0001% of the total energy consumed for every experimental unit). In addition, to verify that our data
collection was consistent, we triangulated the measurements. For that, we performed eight Spearman
correlation tests. For each pattern (pattern = Template/Method or State/Strategy), we tested the
correlation between each design solution (pattern and alternative) of PowerAPI/Jalen and pTop (i.e.,
papi-ptt vs. ptop-ptt; papi-alt vs. ptop-alt; jalen-ptt vs. ptop-ptt; and jalen-alt vs. ptop-alt) . By
observing that all tests proved a rather very strong correlation (see Table IV), we considered all the
measured data to be consistent and reliable for data analysis. Finally, it is interesting to notice that
Jalen has a lower correlation to pTop, compared against PowerAPI. This is yet another evidence of the

8https://i3wm.org/

consistency of the results, as Jalen is a method level tool and, thus, do not have the overhead caused by
the rest of the application.

Table IV. Pearson correlation test for validating estimated measurements from PowerAPI and Jalen

Pattern solution (pTop) Alternative solution (pTop)

Pattern Tool Correlation Si N Correlation Si
Coefficient & Coefficient &
Template PowerAPI 95 0.946 <0.01 95 0.947 <0.01
Method Jalen 89 0.893 <0.01 87 0.877 <0.01
PowerAPI 74 0.963 <001 74 0.929 <0.01
State/Strategy
Jalen 71 0.933 <001 71 0.791 <0.01
6. ANALYSIS

In this section we present the results of the experiment. Firstly, we show the descriptive statistics of the
dataset. Next, we present the results of the analysis carried out for each research question, which was
executed as described in Section 4.4. We clarify that every statistical test was performed using the tool
IBM SPSS Statistics® and are reported based on the guidelines suggested by Field [52].

6.1. Descriptive Statistics

For every experimental unit, pattern-related variables were collected (variables pattern, method, m-sloc
and m-mpc), and an alternative solution was implemented as described in Section 3. Afterwards, the
tools PowerApi, Jalen, and pTop were used to collect the energy consumption from both pattern and
alternative solutions (*-ptt and *-alf). We remind that an experimental unit comprises a pair of pattern
and alternative design solutions. A summary of all numeric variables (i.e., SLOC, MPC, and energy
consumption measurements) is presented in Table V and Table VI, showing relevant descriptive
statistics for Template Method and State/Strategy, respectively. As can be seen in Table V and Table
VI, few measurements were performed by Jalen for the pattern and/or the alternative solution. This is
due to a limitation from Jalen, which tries to measure a specific method, but it is unable to encapsulate
the entire process. This is caused when either the length in time that the method uses is too little, or
when the method delegates its functionality in a way that Jalen cannot track. Such cases were properly
treated during the statistical analyses, which are discussed in the following subsections.

Table V. Descriptive statics of numeric variables for the Template Method pattern (pattern = Template Method)

Variable N Min Max Mean St(?\;[E;;;) r De\Srit:t‘ion
m-sloc® 95 2.00 36.00 6.03 0.59 5.75
m-mpc® 95 0.00 12.00 1.33 0.20 1.97
papi-pttc 95 9230 1086.77 327.88 27.11 264.23
papi-alt® 95 92.12 924.09 270.84 23.77 231.67
jalen-pttt 89 43.85 799.88 200.38 14.57 137.47
jalen-altt 87 22.58 777.32 150.13 10.38 96.84
ptop-ptt® 95 189.78 2198.84 719.86 59.68 581.72
ptop-alt® 95 193.85 2185.72 594.85 47.37 461.66

* Measured in number of uncommented lines in the pattern solution
b Measured in number of method invocations in the pattern solution
¢ Measured in Joules

Before performing the data analysis based on the energy measurements from PowerAPI (papi-*)
and Jalen (jalen-*), these measurements were checked against the measurements from pTop (ptop-*).
The details of this validation process are presented and discussed in Section 5.2. When observing the
measurement from the three tools, one can notice that they are different, following the order Jalen <
PowerAPI < pTop. This difference in the measurements is expected. Jalen measures the consumption
at a method level (i.e., not considering the consumption of the whole program); PowerAPI measures

“http://www-03.ibm.com/software/products/en/spss-statistics

the consumption of the Java process (i.c., the program); and pTop measures the consumption of the
OS’s process (i.e., which also include the overhead of the JVM). When ordering the values, it is
possible to notice that greater overheads result in greater values, i.e., Jalen < PowerAPI < pTop.

Table VI. Descriptive statics of numeric variables for the State/Strategy pattern (pattern = State/Strategy)
Std. Error Std.

Variable N Min Max Mean (Mean) Deviation
m-sloc® 74 0.00 36.00 5.68 0.69 5.93
m-mpc® 74 0.00 29.00 2.13 0.54 4.66
papi-ptt® 74 157.58 1664.17 738.17 56.51 499.11
papi-alt® 74 136.37 1002.25 341.95 19.88 175.54

jalen-ptt® 68 27.38 1260.11 486.34 42.54 350.75
jalen-alt® 66 20.20 635.89 186.96 14,72 119,56
ptop-ptt® 74 316.08 4124.87 1640.06 129.72 1145.63
ptop-alt® 74 27321 2260.22 786.15 46.77 413.04

2 Measured in number of uncommented lines in the pattern solution
® Measured in number of method invocations in the pattern solution
¢ Measured in Joules

6.2. RQI1: Template Method

The first research question aims at exploring the energy consumption of Template Method pattern
instances and their alternative solutions, focusing on identifying if there is a statistically significant
difference between the solutions (pattern and alternative) regarding energy consumption. For that, we
considered the energy consumption measured by two different tools, one at process level (papi-*) and
one at method level (jalen-*). While the former tool provides a more traditional and system-wide
measurement, the latter provides a more fine-grained measurement allowing us to focus on the point of
interest (pattern-related method), excluding any interference from the rest of the system. Although we
did not expect to find differences in the results obtained from the two tools (because both pattern and
alternative solutions are subject to the same interference), the method-level measurements should
provide lower overhead (i.e., smaller energy measurements).

To answer this research question, we examined the pair of variables obtained from PowerAPI and
Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt vs. jalen-alf). In order to decide if we were using
parametric or non-parametric tests for assessing the statistical significance of the differences between
the pair of variables, we employed the Shapiro—Wilk test to check the distribution of data for each
variable. The results of the test suggest that data were not following the normal distribution and, thus, a
non-parametric test had to be employed. Therefore, we used the Wilcoxon signed ranks test to evaluate
the hypotheses posed for RQ1 (see Section 4.1) and, thus, investigate the energy consumption data
from PowerAPI and Jalen. In addition, to support visualizing the difference in the energy consumption,
Figure 4 shows the box-plot for each compared variable.

1250
'q‘”j -
= 1000
=} —_
=
§ 750 T
a
£
>
wv)
S 500
o
> —
2
'% 250 [| [|
0
papi-ptt papi-alt jalen-ptt jalen-alt

Figure 4. Visual comparison of the energy consumption for Template Method

From the analysis results, two main findings can be highlighted. First, pattern solutions consumed
more energy than their alternatives based on the results of both PowerAPI (p < 0.01, z = -4.92) and

Jalen (p < 0.01, z = -5.57). This is evident in the results from both tools (following the result of the
descriptive statistics—Table V), which suggest a decrease of 17.4% (PowerAPI) and 24.34% (Jalen)
on the energy consumption of the alternative solution. Second, Jalen showed a greater difference than
PowerAPI (by comparing the z-score), which also follows the trend observed by comparing their
descriptive statistics. It is also important to highlight that, as expected, method level measurements
(from Jalen) showed lower consumption then process level (from PowerAPI). These findings
corroborate that: (a) method level measurements have lower overhead, since they isolate application
and OS noises, and (b) pattern solutions indeed show increased energy consumption when compared
against their alternatives. Summarizing, we can answer RQ1 by affirming that, for Template Method,
pattern solutions tend to consume more energy than the alternative solutions (implemented as
described in Section 3) and that this observation becomes more evident when analyzing at method
level. However, further investigation on this assertion is presented in Section 6.4 (see RQ3).

6.3. RQ2: State/Strategy

Next, we explored the energy consumption of State/Strategy pattern instances and their alternative
solutions, focusing on identifying whether or not there is a statistically significant difference between
the solutions (pattern and alternative) regarding energy consumption. For that, we followed the same
process as described for RQ1, using, however, data related to State/Strategy (pattern = State/Strategy).
Thus, first we performed the Shapiro—Wilk test to confirm that the data was not normal, as expected
due to the result from the previous data analysis. As the variables were not normal, we used Wilcoxon
signed ranks test to investigate the energy consumption data from PowerAPI and Jalen. In addition, to
support visualizing the difference in the energy consumption, Figure 5 shows the box-plot for each
compared variable.

2000

1500

1000 ——

Energy consumption (in Joules)

papi-ptt papi-alt jalen-ptt jalen-alt

Figure 5. Visual comparison of the energy consumption for State/Strategy

Similarly to RQI, the pattern solutions consumed more energy than their alternatives based on the
results of both PowerAPI (p < 0.01, z = -6.19) and Jalen (p < 0.01, z = -6.8). This result is in
accordance with what we expected from observing the descriptive statistics in Table VI and the box-
plots in Figure 5. However, when looking at the differences between each pair of pattern and
alternative solutions, we can highlight some notable aspects. First, results obtained from PowerAPI and
Jalen are very close to each other, as it can be observed by the mean value in Table VI and z-score of
the test. Second, the average results from Jalen are lower than those from PowerAPI, but still similar,
especially by taking into consideration that Jalen only measures the energy consumption at method
level. Even though these values are very close, the standard deviation and standard error mean (see
Table VI) from Jalen are proportionally higher (in comparison with the mean) than those of PowerAPI.
The relatively high standard deviation and standard error for the Jalen pair is caused by differences in
measurements on method level. The method level measurements seem to be significantly distant from
the mean. Nonetheless, the drop in energy consumption for both pairs is remarkable, as the average
decrease in energy consumption is 53.68% for PowerAPI and 55.51% for Jalen. Summarizing, we can
answer RQ2 by affirming that, concerning State/Strategy, pattern solutions tend to consume more
energy than the alternative solution (implemented as described in Section 3), although method level
measurements show that this result requires further investigation (due to the high standard
deviation and error). We present this further analysis in the next section, in which we discuss
parameters that influence energy consumption.

6.4. RQ3: Influence of Source Code Parameters

The third research question aims at investigating parameters that influence the energy consumption of
design pattern instances. To achieve this goal, we considered two metrics (SLOC and MPC) collected
from every pattern-related method (i.e., based on the pattern solution, see Section 4.3.1) to investigate
clusters of experimental units via a three-step analysis. First, to cluster the experimental units, we
performed an agglomerative hierarchical clustering (using between-groups linkage and squared
Euclidean distance, see Section 4.4.2) based on the difference in energy consumption (i.e., *-diff =
*-ptt — *-alf). Second, we employed Mann-Whitney tests to evaluate the hypotheses posed for RQ3
(see Section 4.1), verifying whether neighbor clusters (i.e., that are at the same level in the hierarchical
tree) are statistically different w.r.t. SLOC and MPC. If no statistically significant difference was
found, we merged the clusters and performed the test again with the neighbor of the merged cluster.
Finally, we investigated the final clusters to identify trends regarding the studied metrics (SLOC and
MPC).

In Figure 6 we present the outcome of the hierarchical clustering for Template Method data. The
two charts on the top show the distribution of the experimental units among the clusters. Each point
consists of a pair <pattern solution; alternative solution>, in which the Y axis is the energy
consumption of the pattern solution and the X axis is the energy consumption of the alternative. The
clusters can be identified by the different shape and color presented in the legend. The two charts on
the bottom of Figure 6 show the centroids of the clusters with regards to SLOC and MPC. The values
for SLOC and MPC of each cluster are obtained as the average of the units of the cluster. By checking
these charts, it is already possible to notice some separation between clusters w.r.t. the two metrics.

PowerAPI Jalen

~ =
Wi a
< 1000 2 800
o -_
- c
£ =
‘; c
S 800 2
E; = 600
2 C ”
£ £
& 600 £ -
=y -3
3 < 400
5 z .
3 400 3 $
£ E .
z £ 200
5 8
S 200 =
5 s
L) [=
[= w
w

0 0

0 200 400 500 800 1000 0 200 400 600 800

Energy consumed by alternative solution (in Joules) Energy consumed by alternative solution (in Joules)

SLOC

Clusters

N
+ 1.2
W 1.2.2
2

MPC

sSLoC

-0.5

0.5
MPC

Clusters

1.1
¢ 1.2.1
W 1.22
2

Figure 6. Hierarchical clustering of Template Method units of analysis

We investigated the separation between clusters, and the results of the statistical tests are presented
in Table VII (along with the tests for State/Strategy data). As multiple tests were performed for
investigating every pair of cluster regarding every metric, we report only the statistically significant
results. Based on these tests, one can see which clusters were merged. For example, when comparing
the clusters of Template Method (see upper charts of Figure 6) one can see four clusters (1.1; 1.2.1;
1.2.2; 2), from which two are very close (1.2.1; 1.2.2) and the separation was not statistically relevant
w.r.t. to SLOC and MPC, forming a merged cluster (1.2). By further inspecting the statistical tests and

charts, one can see three clusters distant from each other (1.1; 1.2; 2) w.r.t. to both SLOC and MPC,
and that they follow a trend in which clusters that group more energy-efficient solutions (e.g. 1.1) have
bigger SLOC and MPC scores. This observation suggests that the higher the SLOC and MPC, the less
advantageous the alternative solutions.

Table VII. Mann-Whitney test for comparing clusters

Mann-Whitney test
Clusters Z Sig.

Pattern Tool Metric

Template PowerAPI SLOC 1.1 & 1.2 -2.46 0.02
Method Jalen SLOC 1.1 & 12 294 <0.01
SLOC 21 & 22 362 <001

MPC 21 & 22 28 <0.01

SLOC 1 & 21 477 <001

PowerAPI

MPC 1 & 21 -503 <001

§ SLOC 1 & 2 431 <0.01

g MPC 1 & 2 470 <0.0l

§ SLOC 1.1.1 & 112 291 <0.01

=2 MPC 1.1.1 & 1.12 -2.16 0.03
SLOC 1.1 & 12 246 0.01

Jalen

MPC 1.1 & 12 -383 <001

SLOC 1 & 2 362 <0.01

MPC 1 & 3.63 <0.01

Figure 7 shows the scatterplots that concern the State/Strategy pattern, on which we performed the
same analysis described for Template Method. When investigating the clusters (based on the statistical
tests—see Table VII), one can deduce that three clusters remain for PowerAPI (1; 2.1; 2.2) and four for
Jalen (1.1.1; 1.1.2; 1.2; 2). Although the data of the two tools led to slightly different clusters, the
results suggest the same trends, which are similar to the ones observed for the Template Method
pattern. In particular, both SLOC and MPC influence the benefit of using an alternative instance
instead of the pattern solution. Moreover, the cluster 1.1 from the PowerAPI data (which is similar to
cluster 1.1.1 from Jalen) is the closest to the bisect line (i.e., pattern solution = alternative solution)
and, by checking the metrics chart, it is clear that this cluster has much higher SLOC and MPC when
compared to the others.

The performed analysis is so far able to provide evidence that both SLOC and MPC influence the
energy efficiency of a pattern solution and that both parameters should be taken into account when
deciding between using a pattern solution or an alternative solution. However, there is one interesting
question that has not been answered by the clustering, yet. By observing all the scatterplots that were
presented until this point, it is clear that in some cases pattern solutions were more energy efficient
than the alternative solutions (i.e., experimental units below the bisect line in the upper charts of
Figures 6 and 7). However, the use of automated clustering algorithms did not separate these units.
Therefore, we decided to perform a second analysis. We grouped the experimental units into the two
categories (pattern > alternative; and pattern < alternative). Next, we were able to investigate whether
or not SLOC and MPC may have an influence on determining if a pattern solution is more energy-
efficient than the alternative solution. To explore the differences between these groups, in terms of
SLOC and MPC, we employed Mann-Whitney tests. Table VIII shows the results of the test for both
Template Method and State/Strategy.

Based on the results of Table VIII, it becomes clear that SLOC has a significant influence on the
energy efficiency of the pattern instance for both GoF design patterns, suggesting that the longer the
method is, the more possible it becomes that the pattern solution is more energy efficient. For the
State/Strategy pattern, it is also statistically evident that the number of calls to other methods
influences the energy efficiency of the solution, suggesting that more calls are related to a higher
possibility of the pattern solution being more efficient than the alternative.

PowerAPI

1600

1200

800

400

Energy consumed by pattern solution (in Joules)

0 400 800 1200 1600
Energy consumed by alternative solution (in Joules)

Clusters

1.1
*

[SESENE
N —= N
R —

SLOC

1200

800

400

Energy consumed by pattern solution (in Joules)

7.5

SLOC

Jalen

0

400
Energy consumed by alternative solution (in Joules)

MPC

800

1200

*

Clusters

1.1.1
1.2
2.1
2.2
1
1.2
.2

PN N — — —

Figure 7. Hierarchical clustering of State/Strategy units of analysis

Table VIII. Mann-Whitney test for comparing most energy efficient solutions

Mann-Whitney test

Pattern Tool Metric -
Sig.
SLOC -4.06 0.00
8 PowerAPI
= 9 MPC -0.03 0.98
=
52 SLOC 375 <001
&= Jalen
MPC -1.71 0.09
> SLOC -4.05 <0.01
& PowerAPI
§ MPC -3.57 <0.01
S SLOC 215 0.03
s Jalen
2 MPC -2.49 0.01

Summarizing the evidence so far, it is possible to answer RQ3 by affirming that both parameters,
i.e., number of source lines of code and the number of invoked methods, influence the energy
efficiency of a pattern solution, suggesting that higher SLOC and/or MPC are related to more
energy efficient pattern solutions when compared against their alternative solutions.

7. DISCUSSION

In this section we discuss the main outcomes of this study. First, we discuss the findings of the
experiment, comparing them with related work. Second, we discuss the implications to researchers and
practitioners. However, we need to clarify that the discussion presented in this section regards only the
Template Method and State/Strategy patterns, as well as that our observations and interpretations are
constrained by the limitations of the experimental settings and threats to validity (see Section 8).

7.1. Interpretation of Results

The results of our experiment suggest that the alternative solutions are more energy efficient than the
pattern solutions for both Template Method and State/Strategy. This difference is higher for
State/Strategy (approx. 54% for PowerAPI and 56% for Jalen) than to Template Method (approx. 17%
for PowerAPI and 24% for Jalen). These results are in accordance to related studies (see Section 2),
which have reached similar conclusions, i.e., that the alternative solutions tend to be more energy
efficient. Specifically, Bunse et al. [29], as well as Noureddine and Rajan [32], also report on the
Template Method pattern, and suggest that this pattern presents a small, yet significant, overhead.
Noureddine and Rajan [32] also investigate State and Strategy patterns separately, and report a smaller
overhead for State (approx. 3%) and an equally small improvement for Strategy (approx. 3%). This
difference between results may be related to certain characteristics of the study design (e.g., the used
pattern alternative or subjects of the study), but more details regarding these characteristics would be
necessary to elaborate on the rationale. To sum up, the differences between pattern and alternative
solutions observed in our study are likely to be influenced by the overhead caused by employing
polymorphism (i.e., the main mechanism of both patterns). When calling polymorphic methods, the
JVM has to dynamically indicate the correct implementation to be used. Commonly, this indication is
done by moving the instruction pointer'® to the memory address containing the right method. Although
simple, this kind of operation can become computationally expensive if overused.

While investigating the influence of SLOC and MPC on the energy consumption of pattern
solutions, we were able to notice that both GoF patterns tend to provide a slightly more energy-
efficient solution when used to implement more complex behaviors (i.e., with longer methods and
multiple calls to method of external classes). This observation is also intuitive from three perspectives:

1) GoF design patterns are not beneficial in simple/non-complex design problems (even w.r.t.
other quality attributes [18][19]), since the extra complexity that they introduce is higher than
the one that they resolve;

2) The effect of polymorphism weakens when these patterns are handling complex situations. The
longer the method, the lower the ratio of method localization compared to the overall
computation and, therefore, the overall overhead caused by the polymorphic mechanism of
Template Method or State/Strategy; and

3) It is understandable that patterns promote improved structuring of the source code, which may
sometimes lead to a smaller and/or more efficient bytecode (for the JVM), which in turn leads
to slightly more energy-efficient software. We observed such cases, e.g., when the pattern-
related method comprises a set of external invocations (i.e., to methods that are not owned or
inherited by the class being measured). In such cases, the JVM might be applying internal
optimizations, which would not be possible in the alternative, as the structure pattern-related
method is altered.

Although we have provided evidence that alternative solutions are in most of the cases more energy
efficient than pattern solutions (approx. 79% of the cases), there are cases in which the opposite holds.
Sahin et al. [30] have also reported on pattern instances that can be more energy efficient compared to
alternative solutions. In comparison to Sahin et al., we provide a more fine-grained analysis by relating
this differentiation to two metrics (i.e., SLOC and MPC). This finding can also be possibly explained
by the overhead caused by polymorphism, as we were able to identify statistically significant
differences on the metrics between pattern-efficient (i.e., pattern solution consumed less energy than
the alternative solution) cases and alternative-efficient cases. On average, pattern-efficient solutions
have 65.83% more source lines of code and 43.37% more method invocations than the alternative-
efficient solutions.

Finally, there is a crosscutting observation to all findings in this paper, which deals with differences
in energy consumption at method and process levels. The measurements from Jalen were lower than
the measurements from PowerAPI (40.42% on average). This observation is intuitively correct since
the measurements from Jalen are more localized (focused on only one method). Furthermore, it is
interesting to notice that differences between pattern and alternative solution were smaller for Jalen
(12.11% in average), a fact that suggests that the remaining parts of the applications (i.e., not the
pattern-related methods) were, to some extent, biasing the analysis. Another possible explanation could
be that the dynamic binding procedure!! may not be fully captured by Jalen at times, as it focuses on
the pattern-related method being measured. However, we sought to mitigate this threat by: (a)
verifying cases of dynamic biding while selecting experimental units (i.e., pattern related methods); (b)

10A1s0 known as program counter, instruction address register, instruction counter and instruction sequencer, instruction
pointer is a processor register that indicates the current assembly command to be executed.

"Dynamic binding procedure refers to the action of resolving a binding (e.g., decide which method or variables with
same names to use) at runtime, when it is not possible at compile time.

looking for outlier measurements; and (c) checking the correlation of the measurements against pTop
(see Section 5.2).

7.2. Implications to Researchers and Practitioners

The findings of this paper suggest that pattern solutions are less harmful or even beneficial to energy
consumption when the responsibility assigned to the pattern instance (i.e., the implemented behavior)
is non-trivial. Therefore, we advise practitioners on considering this parameter when deciding whether
or not to apply Template Method or State/Strategy patterns. GoF patterns serve several purposes:
structuring and organizing source code; supporting quality attributes, such as maintainability and
reusability; and improving communication between stakeholders by providing a common language.
For these reasons, GoF patterns have become a common practice in software development. Several
studies that have investigated only a subset of the GoF patterns report that approx. 30% of the classes
of a system may participate in pattern instances [15], [16], [54]. However, as studies have shown, there
are also side effects on using GoF patterns [17], and energy efficiency is one of the aspects in which
the software is negatively affected. Thus, we also advocate the careful consideration of drivers (e.g.,
energy efficiency) of the software project, balancing them against the forces (e.g., complexity of the
behavior to be implemented) that influence the decision on applying a certain pattern or not.

Based on the aforementioned negative relationship between GoF patterns and energy efficiency,
one may wonder why using GoF patterns in systems that have energy efficiency as a main concern.
Nevertheless, GoF patterns are widely adopted and, therefore, we expect that even systems that have
energy as a concern may have a non-negligible amount of GoF pattern instances, either intentionally
(to promote other quality attributes) or unintentionally. Therefore, the results of our study can be used
to help control a system’s efficiency in different situations. On the one hand, while developing
software, our findings may support the management of unintentional harm to energy efficiency (via not
necessary use of GoF patterns), as well as intentional use to balance various quality attributes. On the
other hand, when refactoring a system for a new purpose, the findings of this study may support the
decision making process on what parts of the system to refactor and how.

This study has three main implications to researchers. First, the usage of non-trivial systems for
investigating patterns energy consumption is a challenging task, since researchers need to a) deal with
pattern variants, b) decide which variants have to be investigated, c) incorporate these variations into
the alternative solution, and d) measure the energy consumption of the pattern instance by executing
the same scenario for which the pattern instance was intended to. However, the obtained evidence can
be very insightful as shown by this study. Therefore, we do suggest that when investigating the energy
consumption of GoF patterns, non-trivial systems should be used. Second, the use of method level
energy measurements has proven to provide extra information for investigating the hypotheses both
visually and statistically. It also contributed to the reliability of our findings by triangulating results of
process and method level measurements. Third, when investigating the energy efficiency of GoF
patterns, exploring design parameters (e.g., SLOC and MPC) proved to be highly relevant. By
investigating the parameters, we were able to not only suggest whether or not the pattern solution is
worse than the alternative solution, but also, and most importantly, we were able to interpret this
phenomenon. By further investigating this hypothesis and observing the magnitude of the influence of
these parameters, we were able to highlight the circumstances under which the patterns are more
efficient than the alternative. Therefore, we suggest exploring similar parameters and other design and
source code properties when investigating the influence of GoF design patterns to energy consumption.

8. THREATS TO VALIDITY

In this section, threats to construct validity, internal validity, reliability, and external validity of this
study are discussed. Construct validity reflects how far the studied phenomenon is connected to the
intended studied objectives. Internal validity expresses to what extent the observed results are
attributed to the performed intervention, and not to other factors. Reliability is linked to whether the
experiment is conducted and presented in such a way that others can replicate it with the same results.
Finally, external validity deals with possible threats when generalizing the findings derived from
sample to the entire population.

Concerning construct validity, one threat is that the transformation of non-trivial systems may be
risky since, due to their complexity, it is more error-prone. Although “synthetic” programs could
facilitate the control over external factors, we believe that non-trivial programs were imperative to
investigate pattern-related methods. Thus, to mitigate this bias, we took several measures while
selecting experimental units (see Sections 4.2 and 4.3). The collected energy measurements pose
another threat, as we consider consumption only by the CPU. If we included energy consumed by other

resources, such as hard drive and network, the results might change. First, by only looking at CPU
consumption, it enabled us to use three different measurement tools to increase the confidence on the
obtained measurements. To mitigate this threat further, we verified that the energy consumed by the
memory was negligible and do not represent a considerable bias (see Section 5.2), as well as restricted
the selection of pattern instances to those that do not require operations such as writing to or reading
from files and communicating through network. Another threat concerns the level of measurement
(i.e., process or method level), which can be a source of bias to the study as different perspectives
could lead to different results. For that reason, we performed the analysis at both levels (process and
method), and checked their correlation. Additionally, some lack of precision could have been
introduced by a limitation of the used energy measurement tools. To mitigate this threat, we selected
tools that have been validated in different studies. In addition to that, we performed data triangulation
for all measurements by using three different tools. Moreover, the measured data may also be slightly
biased, since small environmental changes might exist between different executions, leading to
different values. To mitigate this threat, we used a basic OS, installing only strictly required
dependencies, and every measurement was performed multiple times, using the average value for the
analysis.

The main threat to the internal validity of our experiment is related to whether the observed
differences in the energy consumption were caused by the implemented alternatives, and not by other
factors. To mitigate this threat, we acted from measurement and implementation perspectives. On the
one hand, we used Jalen, which is able to measure only the energy consumed by the experimental unit
(i.e., pattern related-method), discarding the energy consumed by the rest of the application, JVM, and
OS. In addition, the procedure to measure the energy consumed by pattern and alternative solutions
was identical. On the other hand, while implementing the alternatives, we assured that only the design
changes proposed for the alternatives (see Sections 3.2 and 3.4) were implemented, not altering the
behavior of the pattern-related method. Another threat to this category is the fact that the set of
parameters that we investigated for answering RQ3 is not exhaustive, and we cannot guarantee that
differences in energy consumption have been comprehensively explained, since there might be other
parameters that influence the energy consumption of design patterns.

In order to mitigate reliability threats, two different researchers were involved in the data
collection, double-checking all outputs. In addition to the two researchers, a third one was involved in
the analysis procedure. To implement the alternative solutions, the provided guidelines are sufficient
and any replication should lead to the same results. To complement that, all scripts and source code are
available on-line'? and, therefore, all raw data can be reproduced with small variations by using the
same energy measurement tools and environment setup. Finally, data analysis bias is limited in this
study, since no subjectivity was involved.

Finally, concerning external validity, we have identified four possible threats. First, we investigated
a limited number of OSS projects. However, the two selected projects are very different, both in terms
of domains and characteristics (e.g., Joda Time has more than the double of SLOC per class when
compared to JHotDraw); this partially alleviates this threat. Second, we investigate a limited number of
pattern instances, as well as a limited range of pattern variants. However, we evaluate a fair number of
pattern-related methods (i.e., units of analysis), what partially alleviates this threat. Nevertheless, a
larger sample could strengthen the results, and increase our confidence on generalizing our findings.
Next, the presented results are dependent on the used alternatives and pattern solutions. Thus, different
alternatives or pattern variations could lead to altered results. For example, alternative and/or pattern
solutions optimized for energy efficiency may increase the observed difference between the solutions,
or even invert it. However, the focus of our study was to analyze representatives of existing and
commonly used non-trivial software, in terms of both pattern and alternative design solutions, as such
investigation would impact a plethora of software. Therefore, we selected the alternatives that we
believe to be the most common, as well as considered the original definition of the studied patterns
(also with small and similarly common variations), so as to have a more representative sample of
solutions that exist in practice. Finally, the results of this study cannot be directly generalized to other
GoF patterns, especially those that do not use polymorphism as their main mechanism.

9. CONCLUSIONS

In this paper we investigated the effect of Template Method, and State/Strategy GoF design patterns on
energy consumption. In particular, we conducted an experiment on two non-trivial OSSs, JHotDraw
and Joda Time, from which we identified 21 pattern instances and 169 pattern-related methods (i.e.,
methods that use the pattern structure), implemented an alternative (non-pattern) solution for each

Phttp://www.cs.rug.nl/search/uploads/Resources/JTSEP_Feitosa_etal resources.zip

instance (which contained the alternative implementation of the pattern-related methods), and
measured the energy consumption of both solutions using tools at both process and method levels.
Based on the collected data, we identified which solution was more energy-efficient and what
parameters affect the efficiency of the pattern solution. To this end, we collected two metrics from
every pattern-related method, SLOC and MPC, and correlated them to the efficiency of the pattern
solution. The results of the study suggest that the alternative solution excels the pattern solution in
most cases. However, in some cases the pattern solution had similar or even slightly lower energy
consumption than the alternative solution. Since these cases were identified in large pattern-related
methods and/or methods with high number of method invocations, it is suggested that these patterns
are more suitable when more complex behaviors have to be implemented. We clarify that some factors,
such as the considered design pattern alternatives, may have influence on the aforementioned
observations, and that altering these factors may change the aforementioned observations (for more
details, see Section 8).

The findings of this study have value for both practitioners and researchers. On the one hand,
practitioners can reuse this knowledge to perform more informed decision-making when applying GoF
patterns. On the other hand, researchers can learn from the reported experiences and reproduce aspects
of this study when investigating GoF design patterns and/or energy consumption. Finally, there are
several opportunities of future work. This study can be replicated with more experimental units or
more source code metrics. Different tools, especially hardware tools, can be used to not only
triangulate the results but also investigate other effects (e.g., from the remainder of the OS or the
computer itself). In addition, the same or improved setup can be used to investigate other GoF design
patterns, specially focusing on the other two pillars of object-orientation that have not been
investigated in depth by this study (i.e., encapsulation and inheritance). Lastly, a case study can be
carried out on systems that have energy efficiency among their main concerns, investigating how GoF
patterns and alternatives are used within such context and comparing these systems with other kinds of
systems.

ACKNOLEDGEMENTS

The authors would like to thank the financial support from the Brazilian and Dutch agencies
CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.: 204607/2013-2), as well as the INCT-SEC (Grant
N.: 573963/2008-8 and 2008/57870-9).

REFERENCES

1. Procaccianti G, Lago P, Bevini S. A systematic literature review on energy efficiency in cloud software
architectures. Sustainable Computing: Informatics and Systems 2015; 7:2—10, doi:10.1016/j.suscom.2014.11.004.

2. Hammadi A, Mhamdi L. A survey on architectures and energy efficiency in data center networks. Computer
Communications 2014; 40:1-21, doi:10.1016/j.comcom.2013.11.005.

3. Zhang Z, Cai YY, Zhang Y, Gu DJ, Liu YF. A distributed architecture based on microbank modules with self-
reconfiguration control to improve the energy efficiency in the battery energy storage system. [EEE Transactions on
Power Electronics 2016; 31(1):304-317, doi:10.1109/TPEL.2015.2406773.

4. Pinto G, Castor F, Liu YD. Understanding energy behaviors of thread management constructs. Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages & Applications, ACM, 2014;
345-360, doi:10.1145/2714064.2660235.

5. Liu YD. Energy-efficient synchronization through program patterns. Proceedings of the First International
Workshop on Green and Sustainable Software, IEEE, 2012; 35-40, doi:10.1109/GREENS.2012.6224253.

6. Peréz-Castillo R, Piattini M. Analyzing the harmful effect of god class refactoring on power consumption. /EEE
Software 2014; 31(3):48-54, doi:10.1109/MS.2014.23.

7. Sahin C, Pollock L, Clause J. How do code refactorings affect energy usage? Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ACM, 2014; 1-10, doi:10.1145/
2652524.2652538.

8. Johann T, Dick M, Naumann S, Kern E. How to measure energy-efficiency of software: Metrics and measurement
results. Proceedings of the First International Workshop on Green and Sustainable Software, 2012; 51-54.

9. Tiwari V, Malik S, Wolfe A, Lee MTC. Instruction level power analysis and optimization of software. Technologies
Jfor Wireless Computing. Springer US, 1996; 139—154, doi:10.1007/978-1-4613-1453-0\ 9.

10. Noureddine A, Bourdon A, Rouvoy R, Seinturier L. A preliminary study of the impact of software engineering on

GreenlT. Proceedings of the First International Workshop on Green and Sustainable Software, IEEE, 2012; 21-27.
. Noureddine A, Rouvoy R, Seinturier L. Monitoring energy hotspots in software. Automated Sofiware Engineering
2015; 22(3):291-332, doi:10.1007/s10515-014-0171-1.

12. Noureddine A, Bourdon A, Rouvoy R, Seinturier L. Runtime monitoring of software energy hotspots. Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering, ACM, 2012; 160-169, doi:
10.1145/2351676.2351699.

13. Jain R, Molnar D, Ramzan Z. Towards understanding algorithmic factors affecting energy consumption: switching
complexity, randomness, and preliminary experiments. Proceedings of the 2005 Joint Workshop on Foundations of

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Mobile Computing, 2005; 70-79, doi:10.1145/1080810.1080823.

Gamma E, Helm R, Johnson RE, Vlissides J. Design patterns: elements of reusable object-oriented software. 1995.
Khomh F, Gueheneuc YG, Antoniol G. Playing roles in design patterns: An empirical descriptive and analytic study.
Proceedings of the IEEE International Conference on Sofiware Maintenance, 1EEE, 2009; 83-92,
doi:10.1109/ICSM.2009.5306327.

Ampatzoglou A, Chatzigeorgiou A, Charalampidou S, Avgeriou P. The effect of GoF design patterns on stability: A
case study. /[EEE Transactions on Software Engineering 2015; 41(8):781-802, doi:10.1109/TSE.2015.2414917.
Ampatzoglou A, Charalampidou S, Stamelos I. Research state of the art on GoF design patterns: A mapping study.
Journal of Systems and Sofiware 2013; 86(7):1945—-1964, doi:10.1016/j.jss.2013.03.063.

Huston B. The effects of design pattern application on metric scores. Journal of Systems and Software 2001;
58(3):261-269, doi:10.1016/S0164-1212(01)00043-7.

Hsueh NL, Chu PH, Chu W. A quantitative approach for evaluating the quality of design patterns. Journal of
Systems and Software 2008; 81(8):1430—1439, doi:10.1016/j.jss.2007.11.724.

Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code. Object
technology series, Addison-Wesley, 1999.

Adamczyk P. Selected patterns for implementing finite state machines. Proceedings of the 11th Conference on
Pattern Languages of Programs, 2004; 1-41.

Saude AV, Victorio RASS, Coutinho GCA. Persistent state pattern. Proceedings of the 17th Conference on Pattern
Languages of Programs, ACM, 2010; 1-16, doi:10.1145/2493288.2493293.

Lyardet FD. The dynamic template pattern. Proceedings of the Conference on Pattern Languages of Design, 1997,
1-8.

Ampatzoglou A, Charalampidou S, Stamelos 1. Design pattern alternatives. Proceedings of the 17th Panhellenic
Conference on Informatics, ACM, 2013; 122—127, doi:10.1145/2491845.2491857.

Tsantalis N, Chatzigeorgiou A, Stephanides G, Halkidis ST. Design pattern detection using similarity scoring. /EEE
Transactions on Software Engineering 2006; 32(11):896-909, doi:10.1109/TSE.2006.112.

Ampatzoglou A, Charalampidou S, Stamelos I. Investigating the use of object-oriented design patterns in open-
source software: A case study. Proceedings of the International Conference on Evaluation of Novel Approaches to
Software Engineering. Springer Berlin Heidelberg, 2011; 106—120, doi:10.1007/978-3-642-23391-3\ 8.

Weisfeld M. The Object-Oriented Thought Process. 4th edn., Addison-Wesley Professional, 2013.

Harper R, Morrisett G. Compiling polymorphism using intensional type analysis. Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, 1995; 130-141,
doi:10.1145/199448.199475.

Bunse SSC, Schwedenschanze Z, Stiemer S. On the energy consumption of design patterns. Proceedings of the 2nd
Workshop EASED@, BUIS Energy Aware Software-Engineering and Development, 2013; 7-8.

Sahin C, Cayci F, Gutierrez ILM, Clause J, Kiamilev F, Pollock L, Winbladh K. Initial explorations on design
pattern energy usage. Proceedings of the First International Workshop on Green and Sustainable Software, 1EEE,
2012; 55-61, doi:10.1109/GREENS.2012.6224257.

Litke A, Zotos K, Chatzigeorgiou A, Stephanides G. Energy consumption analysis of design patterns. Proceedings of
the International Conference on Machine Learning and Software Engineering, 2005; 86-90.

Noureddine A, Rajan A. Optimising energy consumption of design patterns. Proceedings of the 37th International
Conference on Software Engineering, IEEE, 2015; 623-626.

Adamczyk P. The anthology of the finite state machine design patterns. Proceedings of the 10th Conference on
Pattern Languages of Programs, 2003; 1-25.

Ferreira LL, Rubira CMF. The reflective state pattern. Proceedings of the Pattern Languages of Program Design,
1998; 1-18.

Henney K. Collections for states. Proceedings of the European Conference on Pattern Languages of Programs,
1999; 57-64.

Henney K. Methods for states. Proceedings of the First Nordic Conference on Pattern Languages of Programming,
2002; 1-13.

Sobajic O, Moussavi M, Far B. Extending the strategy pattern for parameterized algorithms. Proceedings of the 17th
Conference on Pattern Languages of Programs, 2010; 1-11.

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering.
Springer Berlin Heidelberg, 2012, doi:10.1007/978-3-642-29044-2.

Jedlitschka A, Ciolkowski M, Pfahl D. Reporting experiments in software engineering. Guide to Advanced Empirical
Software Engineering. Springer London, 2008; 201-228, doi:10.1007/978-1-84800-044-5 8.

Basili VR, Caldiera G, Rombach HD. Goal question metric paradigm. Encyclopedia of Software Engineering. Wiley
& Sons, 1994; 528-532.

Seng O, Stammel J, Burkhart D. Search-based determination of refactorings for improving the class structure of
object-oriented systems. Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
ACM, 2006; 1909-1916, doi:10.1145/1143997.1144315.

Aversano L, Canfora G, Cerulo L, Del Grosso C, Di Penta M. An empirical study on the evolution of design
patterns. Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ACM, 2007; 385-394,
doi:10.1145/1287624.1287680.

Manotas I, Pollock L, Clause J. SEEDS: a software engineer’s energy-optimization decision support framework.
Proceedings of the 36th International Conference on Software Engineering, ACM, 2014; 503-514, doi:10.1145/
2568225.2568297.

Kniesel G, Binun A. Standing on the shoulders of giants-a data fusion approach to design pattern detection.
Proceedings of the 17th IEEE International Conference on Program Comprehension, IEEE, 2009; 208-217, doi:
10.1109/ICPC.2009.5090044.

Pettersson N, Lowe W, Nivre J. Evaluation of accuracy in design pattern occurrence detection. /EEE Transactions
on Software Engineering 2010; 36(4):575-590, doi:10.1109/TSE.2009.92.

46.

47.

48.

49.

50.

51.

52.
53.

54.

Balmas F, Bergel A, Denier S, Ducasse S, Laval J, Mordal-Manet K, Abdeen H, Bellingard F. SQualE - software
metric for Java and C++ practices. Technical Report, INRIA 2010.

Noureddine A, Rouvoy R, Seinturier L. A review of energy measurement approaches. ACM SIGOPS Operating
Systems Review 2013; 47(3):42—49, doi:10.1145/2553070.2553077.

Diouri MEM, Dolz MF, Gliick O, Lefévre L, Alonso P, Catalan S, Mayo R, Quintana-Orti ES. Assessing power
monitoring approaches for energy and power analysis of computers. Sustainable Computing: Informatics and
Systems 2014; 4(2):68-82, doi:10.1016/j.suscom.2014.03.006.

Chen H, Li Y, Shi W. Fine-grained power management using process-level profiling. Sustainable Computing:
Informatics and Systems 2012; 2(1):33-42, doi:10.1016/j.suscom.2012.01.002.

Noureddine A, Rouvoy R, Seinturier L. Unit testing of energy consumption of software libraries. Proceedings of the
29th Annual ACM Symposium on Applied Computing, ACM, 2014; 1200-1205, doi:10.1145/2554850.2554932.

Do T, Rawshdeh S, Shi W. pTop: a process-level power profiling tool. Proceedings of the 2nd Workshop on Power
Aware Computing and Systems, 2009; 1-5.

Field A. Discovering Statistics Using SPSS. 3rd edn., SAGE Publications Ltd, 2009.

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer Series in Statistics, Springer New
York, 2009, doi:10.1007/978-0-387-84858-7.

Ampatzoglou A, Kritikos A, Arvanitou EM, Gortzis A, Chatziasimidis F, Stamelos I. An empirical investigation on
the impact of design pattern application on computer game defects. Proceedings of the 15th International Academic
MindTrek Conference on Envisioning Future Media Environments, ACM, 2011; 214-221, doi:10.1145/2181037.
2181074.

