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ABSTRACT 

 

GoF patterns are well-known best practices for the design of object-oriented systems. In this paper we aim at 

empirically assessing their relationship to energy consumption, i.e., a performance indicator that has 

recently attracted the attention of both researchers and practitioners. To achieve this goal, we investigate 

pattern-participating methods (i.e., those that play a role within the pattern) and compare their energy 

consumption to the consumption of functionally equivalent alternative (non-pattern) solutions. We obtained 

the alternative solution by refactoring the pattern instances using well-known transformations (e.g., replace 

polymorphism with conditional statements). The comparison is performed on 169 methods of two GoF 

patterns (namely State/Strategy and Template Method), retrieved from two well-known open source 

projects. The results suggest that for the majority of cases the alternative design excels in terms of energy 

consumption. However, in some cases (e.g., when the method is large in size or invokes many methods) the 

pattern solution presents similar or lower energy consumption. The outcome of our study can be useful to 

both researchers and practitioners, since we: (a) provide evidence on a possible negative effect of GoF 

patterns, and (b) can provide guidance on which cases the use of the pattern is not hurting energy 

consumption. 
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1. INTRODUCTION 

There has been an increase of energy demand within the ICT domain [1]. This is a multi-faceted 

problem, as one can consider the effects of networks, hardware, drivers, operating systems, and 

applications on energy consumption. In this paper we focus on applications and, particularly, how they 

can be optimized in terms of energy consumption. Software optimizations in this context have been 

discussed at three levels of granularity:  

 at architectural level, e.g., research that deals with energy efficient architectures for networked 

systems (e.g., data centers, cloud computing, etc.) [1]–[3].  

 at design level, e.g., identification of differences in energy efficiency when applying design 

patterns (cf. Section 2).  

 at source code level, discussions on topics such as multi-threading [4], [5], refactoring [6]–[9] 

and related algorithms [10]–[13].  

The scope of our work lies at the design level, as we look into the effect of GoF (Gang of Four) 

design patterns and their alternative solutions on software energy consumption. GoF design patterns 

are recurring solutions to common problems in object-oriented software design [14]. GoF design 

patterns can be applied in almost any type of software, varying from small devices to large data-

centers. In Java applications it has been reported that up to 30% of system classes participate in one or 

more GoF design pattern occurrences [15], [16], leading to a significant influence on overall energy 

consumption. Solutions provided by these patterns exploit object-orientation mechanisms (e.g., 

polymorphism) to enforce more flexible and maintainable designs.  

The effect of applying a pattern is not uniform across all of its instances, and all quality attributes 

[17]. In particular, several studies [17]–[19] report that the effect of a pattern on a quality attribute 

depends on certain pattern-related parameters, like the number of classes, number of methods invoked, 

or number of polymorphic methods. Therefore, it is reasonable to expect that GoF design patterns have 

a potential impact (positive or negative) on the energy consumption of software-intensive systems, 
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depending on certain pattern-related parameters. In the case where a pattern is not the optimal design 

solution, alternative (non-pattern) design solutions can be employed. Alternative design solutions have 

been proposed by several authors, including GoF design pattern advocates [14], [20]–[23]. More 

details on GoF design pattern alternatives can be found in a recent literature review [24]. We note that 

knowing the impact of patterns on energy efficiency can be beneficial in both green- and brown-field 

software development. In Greenfield projects (i.e., fresh development), such a knowledge can support 

the monitoring of energy efficiency, whereas in Brownfield projects (e.g., refactoring of system to new 

purpose), it can support the decision making process on what parts of the system to refactor and how. 

In this paper we investigate the effect of GoF patterns and their alternatives on energy 

consumption, as well as the pattern-related parameters that might influence this effect. Specifically, we 

focus on two GoF design patterns, namely Template Method, and State/Strategy [14]; we note that 

State and Strategy patterns have a similar structure [25] and, therefore, a similar expected effect on 

energy consumption. Therefore, the two patterns are discussed as one (for more details, see Section 

3.1). The rationale for selecting the specific patterns is twofold: 

 Usage frequency: behavioral patterns are the most commonly used patterns, accounting for 

about half of the design pattern usages in a system [26]. Additionally, State/Strategy patterns 

are the most used patterns among all, and Template Method the third. Therefore, the 

accumulated impact of these patterns on energy consumption is expected to be high;  

 Main object-orientation mechanism: object-orientation has three pillars 1 : encapsulation, 

inheritance, and polymorphism [27]. Polymorphism is the most commonly explored principle 

within the GoF patterns (19 out of 23 patterns uses polymorphism). However, it is important to 

highlight that encapsulation and inheritance, although less explored, are also present in the 

solution of many patterns. From these mechanisms, polymorphism potentially influences energy 

consumption the most, as it comprises a complex procedure to map the polymorphic calls to the 

correct implementation [28]. Both State/Strategy and Template Method use polymorphism as 

their main mechanism to provide the pattern solution and, therefore, have potentially high 

impact on the energy consumption. The two studied patterns use polymorphism with different 

goals: State/Strategy pattern uses it to define the interface to interact with the states/strategy, 

while Template Method pattern uses it to define the points of specialization to be implemented 

by the concrete classes. In particular, the State/Strategy pattern encapsulates the different 

states/strategies, whereas the Template Method pattern exploits inheritance, since concrete 

classes extend the functionality of the abstract class. For that reason, we point that other pillars 

are part of our investigation, although polymorphism is the main mechanism. 

To investigate the energy consumption, we compare the energy efficiency of pattern solutions with 

the energy efficiency of their alternative designs (one for each pattern), through a crossover 

experiment. We note that the alternative designs were developed in a standardized way (see Section 

3.2 and 3.4). In the experiment, we focus our investigation on pattern-related methods2 so as to enable 

a fine-grained analysis of the energy consumption. In addition to exploring the differences between 

pattern and alternative solutions, we also investigate some pattern-related parameters that can cause the 

pattern to be either beneficial or harmful with respect to energy consumption. For the experiment, we 

selected two large well-known open source software (OSS) systems.  

The remainder of this paper is organized as follows. In Section 2, an overview of the related work 

on energy consumption in design patterns, and alternatives to design patterns is provided. Section 3 

presents background information necessary for understanding the experiment, i.e., the selected design 

patterns and their alternative solutions. Section 4 presents the experiment planning, which describes 

the research questions, hypotheses, the used tool and collected variables. Section 5 overviews the 

execution of the experiment (i.e., data collection and validation). In Section 6, we elaborate on our 

analysis and answer the research questions. In Section 7, we discuss the obtained findings, by focusing 

on the most important observations and presenting implication for researchers and practitioners. The 

threats to the validity of our study are discussed in Section 8, followed by the conclusion of this paper 

in Section 9. 

2. RELATED WORK 

This section presents research efforts that discuss the effects of design patterns on energy consumption. 

We focus on the consumption of design patterns, the types of patterns being investigated, and the 
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proposed alternatives for patterns. After discussing the related work, an overview of how our research 

compares to related work is provided. 

In the work of Bunse et al. [29], a case study on the overhead of design patterns compared to “clean 

software” is presented. In this context, “clean software” is a chunk of design that could be refactored 

into a pattern solution. The software in this study mainly targets mobile devices. The design patterns 

discussed are Facade, Abstract Factory, Observer, Decorator, Prototype, and Template Method. This 

initial investigation shows that each of these design patterns has overhead when compared to their 

“clean” counterparts. Most of the patterns have a relative small overhead, except for the Decorator 

pattern, which, based on this study, consumes more than double the amount of energy compared to the 

“clean” counterpart.  

Additionally, Sahin et al. [30] performed a more extensive investigation on the impact of design 

patterns on energy usage. In particular, this study takes into account the feasibility, impact, 

consistency, and predictability of the energy consumption of 15 design patterns, from all GoF pattern 

categories. The creational design patterns discussed are the Abstract Factory, Builder, Factory Method, 

Prototype, and Singleton. The structural patterns discussed are the Bridge, Composite, Decorator, 

Flyweight, and Proxy pattern. Finally, the behavioral patterns that were selected are the Command, 

Mediator Observer, Strategy, and Visitor. Results of the study suggest that the use of design patterns, 

either increases or decreases the amount of energy used. Additionally, there are no relations of the 

category of the design pattern and the impact on energy usage. Finally, this study shows that it is not 

possible to precisely estimate the impact of design patterns on energy consumption when only 

considering artifacts on design level. 

Litke et al. [31] conducted an initial exploration of the energy consumption of design patterns. This 

paper includes an analysis of five design patterns, for which the energy consumption and performance 

are described. These design patterns were tested by the use of six example applications written in C++. 

These applications were first tested as clean, i.e., without the usage of design patterns, and then 

transformed with the designated design pattern. The design patterns discussed are the Factory Method, 

Adapter, Observer, Bridge, and Composite. For Factory Method, Adapter, and Observer, differences 

were found between the original application and the one containing the specified design pattern. The 

results show that applying Factory Method or Adapter patterns does not necessarily impose a serious 

threat to the energy consumption. However, a significant overhead was identified by employing the 

Observer pattern, but additional research is still required to investigate the cases when Observer is 

indeed a threat to energy consumption. Since the Bridge and Composite pattern had no significant 

difference in power consumption, the authors suggest further analysis. 

In a recent paper, Noureddine and Rajan [32] performed a comparison on the energy consumption 

overhead caused by 21 design patterns and explored in details the effects of two design patterns 

(Observer and Decorator pattern). The effects discussed in this paper are the energy consumption of 

applications using the pattern solution, the non-pattern solution, and an optimized alternative for the 

design patterns. The optimized solutions for the alternatives are integrated into the applications by 

making changes to compilers, so that the optimizations are automatically processed when compiling. 

This study suggested that simple transformations to the Observer and Decorator patterns are able to 

provide reductions in energy consumption in the range of 4.32% to 25.47%. We clarify that the 

patterns investigated in our study are included among the 21 patterns initially investigated by 

Noureddine and Rajan. However, the comparison of these results (from the initial investigation) to ours 

is limited, since some extra details (e.g., implemented alternatives, source code properties) would be 

necessary to further elaborate the discussion (see Section 7.1).  

To ease the comparison of our work to the aforementioned studies, we summarize the main 

differences in Table I, according to the following aspects: (a) Design patterns addressed; (b) Number 

of non-trivial systems used; (c) Number of pattern instances analyzed; (d) Number of pattern-related 

methods analyzed; (e) Level of energy measurement3 (process level or method level); (f) Level of 

investigation 4  (instance level or method level); and (g) Number of investigated parameters that 

influence energy consumption. Based on Table I, the main contributions of this study compared to the 

research state-of-the-art are the following:  

 Usage of non-trivial systems—our investigation is performed considering two non-trivial 

systems and a considerable amount of pattern instances and pattern-related methods. This setup 

allows allow us to observe realistic results that are more representative to the population of 

existing software-intensive systems; 
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 Exploitation of a method-level approach for measuring energy consumption—in addition 

to the more traditional approach of process-level measurement. Being able to isolate the energy 

consumed by specific method calls, we obtain measurements with lower overhead, allowing a 

more in-depth investigation of both pattern and alternative solutions, in the sense that we focus 

on pattern-related methods of each pattern instance; and 

 Exploration of parameters of the processed patterns—in this study, we investigate not only 

the energy efficiency of State/ Strategy and the Template Method design pattern, comparing 

them against their respective alternative (non-pattern) design solutions, but also the parameters 

of their application that render them either beneficial or not. We clarify that related work has 

indicated parameters as possible causes for greater energy consumption, but without any 

investigation of these parameters.  

Table I. Overview of related work 

Reference 
Design 

patterns 

Non-trivial 

systems 

# of 

instances 

# of 

methods 

Measurement 

level 

Investigation 

level 

# of 

parameters 

[29] 6a 0 6 0 Process Instance 0 

[30] 15b 0 15 0 Process Instance 0 

[31] 5 c 0 5 0 Process Instance 0 

[32] 21 d 0 N/A* 0 Process Instance 0 

This study 3 e 2 21 169 
Process and 

Method 
Method 3 

a  Facade, Abstract Factory, Template Method, Prototype, Decorator, and Observer. 
b  Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy, 

Command, Mediator, Observer, Strategy, and Visitor. 
c  Factory Method, Observer, Adapter, Bridge, and Composite. 
d  Decorator, Observer, Mediator, Strategy, Template Method, Visitor, Abstract Factory, Builder, Factory Method, 

Prototype, Singleton, Bridge, Flyweight, Proxy, Chain of Responsibilities, Command, Interpreter, Iterator, State, 

Adapter, and Composite. 
e  State, Strategy, and Template Method.  

*  Not available, the authors only mention “several small examples”.  

3. DESIGN PATTERNS AND ALTERNATIVES 

In this section we present background concepts that facilitate the understanding of our experiment. In 

particular, we discuss the GoF design patterns that are explored in this study (State, Strategy, and 

Template Method), elaborating on their design structure and an overview of their uses and 

consequences. Additionally, we present and discuss their alternative solutions (referred in this paper as 

State/Strategy Alternative and Template Method Alternative). The identification of design pattern 

alternatives can be a non-trivial activity, since some GoF design patterns have no reported alternatives 

in the literature [24]. To consider a design as a design pattern alternative, it should:  

 originate from the literature; 

 provide exactly the same functionality as the pattern; and 

 have notable structural differences compared to the pattern. 

We used two main sources to find alternatives: the seminal book on design refactoring by Fowler et 

al. [20] and a systematic literature review conducted by Ampatzoglou et al. [24], in which an overview 

of GoF design pattern alternatives are presented and discussed. Based on the aforementioned criteria, 

we selected well-known alternative solutions from the literature, as they are expected to be more 

recurrent in existing software. Although we acknowledge the existence of design patterns and 

alternatives that are optimized for energy efficiency (which would obviously lead to better solutions), 

we have deliberately not included them in our study. The reason for this decision is that we intend to 

focus on widely-known solutions that have been applied to various software projects, by developers 

who are not aware of energy optimization mechanism. Investigating such optimized solutions can 

potentially introduce bias to our results, since neither patterns nor alternatives would be in their 

standard form. 

3.1. State/Strategy  

The State pattern allows an object to change its behavior by switching from one state to another [14]. 

One classic example for the State pattern are traffic lights that turn from green to yellow, yellow to red 

and red back to green. The collection of all states defines the space in which the context (traffic light) 



is able to change its behavior. This behavior is implemented by each of the states separately. The 

context class has at least one state instance object (i.e., a concrete state) that represents its current state 

and thus functions as a central interface for clients to communicate with (see model on the left in 

Figure 1). This context delegates the handling of requests to its current state object. The State pattern is 

used in scenarios where either the behavior of an object depends on its state and needs to be changed 

during run-time, or the operations have large, multipart conditional statements that depend on the 

object's state [14]. Applying the State pattern has a number of consequences: the specific behavior for 

each state is localized; the state transitions are made explicit; and State objects can be shared when 

they have no instance variables. 

The Strategy pattern allows for the encapsulation of certain families (such as algorithms), allowing 

them to be interchangeable depending on client requests or specific behaviors of the context [14]. The 

context class has at least one object of the concrete strategy that provides its (unique) functionalities, 

which are implemented according to a template defined by the strategy interface (see model on the 

right in Figure 1). The Strategy pattern can be used in a number of different situations [14], e.g., when 

a class has different behaviors (depending on a specific situation) or when there are multiple 

implementation options to be chosen. Consequences of using this pattern include [14]: it becomes an 

alternative for sub-classing the context directly or using conditional statements, by decoupling the 

algorithms into their own family; and it may cause memory and computational overheads, because it 

increases the number of used objects, and concrete strategies may not use all information they receive 

when called. 

 

 

Figure 1. UML model of State (on the left) and Strategy (on the right) patterns 

By inspecting the class diagrams of State and Strategy patterns (see Figure 1), we observe that they 

have an equivalent structure (i.e., skeleton design) [14], [25]. Both patterns have a context that is called 

by an external client and a family that consists of an interface with concrete classes. Both contexts 

contain an object that represents at least one or more states/strategies that can be uniformly handled. 

The main difference is the logic beneath the patterns, i.e., the behavior is fundamentally different. In 

the case of the State pattern, the current object (state) within the context is updated after the execution 

of every behavior (the method handle, in the diagram). This is not necessary for the Strategy pattern, as 

strategies may be interchangeable during runtime. Additionally, the change of strategies is more an 

additional feature than a rule for the Strategy pattern, whereas for State this is the basic concept of the 

pattern. In this study, we treat both patterns mutually, since the expected changes to measure energy 

consumption is focused on the design, i.e., structure and the use of their common object-orientation 

mechanisms. The aforementioned fundamental differences regard the behavior of the pattern instance 

and, thus, are not expected to be a confounding factor for our study, unless these fundamental 

differences systematically change design attributes (e.g., method size). Nevertheless, we have not 

identified such cases in our dataset (see Section 5.2). 

3.2. State/Strategy Alternative 

In a literature review performed by Ampatzoglou et al. [24] many alternatives for the State/Strategy 

pattern are presented [21], [22], [33]–[37].  Similarly, Fowler et al. [20] discuss several alternatives for 

these two patterns. Among these available options, we have chosen to replace the use of polymorphism 

with the use of conditional statements. In this solution, the entire structure of the State/Strategy pattern 

is removed and the complete logic is implemented in the context, which now has a local enumerator 

object that enables the shifting between the different behaviors. Listing I shows an example of 

alternative implementation for a Strategy pattern instance. While implementing an alternative design, 

the implementation of each concrete strategy would be replaced with the behavior of the corresponding 

state and the state update. 

 

 



Listing I. Example implementation of Strategy alternative 

public class Strategy { 

 public enum Strategies{ 

  Strategy1, 

  Strategy2, 

  Strategy3 

 }; 

 

 private enum currentStrategy; 

 

 public int[] sort(int[] list) { 

  switch(currentStrategy) { 

   case Strategy1: 

    // Implementation of Strategy 1. 

   break; 

   case Strategy2: 

    // Implementation of Strategy 2. 

   break; 

   case Strategy3: 

    // Implementation of Strategy 3. 

   break; 

   case default: 

    return 0; 

   break; 

  } 

 } 

} 

 

Despite the simplicity of the recommended changes, creating alternatives requires some effort, as 

design patterns may be implemented in various different ways. These variations should be reflected 

into the alternative designs. Based on our experience, one specific type of variation had direct impact 

in the implementation of the alternative: the structure of the implemented pattern may differ from the 

originally proposed structure [25]. Specifically, the proposed structure of State/Strategy has a standard 

Interface-Class (IC) hierarchical structure; however, it may also be implemented with an abstract class 

between the interface and the class (an intermediate level of inheritance), becoming an Interface-

AbstractClass-Class (IAC) hierarchical structure. Such a structure may contain several abstracts classes 

in the middle. To deal with abstract classes in the alternative, each behavior defined in a concrete class 

would be combined with the abstract class behavior. If that is not possible, e.g., when a class or 

abstract class is used from the Java library, an additional object would be created to be able to access 

its functionalities. We clarify that other, less recurrent, variations are possible, but they are not handled 

in this study. For example, a State/Strategy may comprise multiple interfaces, which are partial 

responsibilities, and concrete classes may implement all or some of them.  

3.3. Template Method 

Similarly to Strategy, the Template Method isolates different algorithms or operations to their own 

subclass. However, this pattern allows the subclasses to alter certain steps of an algorithm without 

changing the structure of the algorithm. An abstract class has at least two operations, one primitive, 

which is used by the concrete subclass to implement the steps of an algorithm, and a template method 

that contains the default structure (see Figure 2). The Template Method pattern can be used to avoid 

code duplication, and to control or restrict any extensions of an abstract class, so that an abstract 

function or hook function can only be called on certain locations. 

 

 

Figure 2. UML model of the Template Method pattern 

 



3.4. Template Method Alternative 

Fowler et al. [20] presents several alternatives for the Template Method and Ampatzoglou et al. [24]  

discuss one alternative [23]. From these options, we chose the starting point from the Form Template 

Method (FTM) refactoring, presented by Fowler et al. [20]. Generally, FTM transforms a non-pattern 

code into a Template Method (see Figure 3). In contrast to State/Strategy alternative (Section 3.2), in 

which we completely eliminated polymorphism, the alternative for Template Method does use 

polymorphism, but in a different fashion. Therefore, this study design cannot be considered appropriate 

for comparing the effect of using polymorphism on energy efficiency. 

 

 

Figure 3. Comparison of the Template Method pattern (on the left) against its alternative (on the right) 

By using this alternative, both primitive operations and specific behavioral operation now reside in 

each concrete class. However, the Template Method also leaves room for variants in its 

implementation. In such cases, the adjustments that would be applied in the alternative to handle these 

variations are described below. Similarly to State/Strategy, the Template Method allows all or none of 

these adjustments to be included. 

 Depth of Inheritance Tree: Even though the Template Method uses only one abstract class, it 

is possible that the methods are already defined in an interface. This makes it harder to remove 

the primitive methods when creating the alternative implementation. In these cases, the 

primitive method is not removed, but it is moved to the concrete class. This allows us to both 

keep the IAC structure and to implement the alternative. 

 Private methods: It is possible for a template method to call private methods within the 

abstract class. If this is the only case, the private method is called, the private method is also 

moved down to the concrete class. When this is not possible, the operations within the method 

are moved inside the template method. This is not feasible in cases the operations rely on 

multiple other methods or sources. In such a case, the private method is changed to protected. 

As for State/Strategy, other, less recurrent, variations are possible, but are not handled in this study. 

For example, a concrete class may aggregate the abstract class, possibly creating recursive calls, which 

are not originally intended for template method pattern instances.  

4. EXPERIMENTAL PLANNING 

In this section we present the design and materials of the experiment reported in this paper. This 

experiment is reported based on the guidelines of Wohlin et al. [38] and on the structure proposed by 

Jedlitschka et al. [39]. Initially, the research objective, questions and respective hypotheses of the study 

are discussed, followed by the process to select objects of study and experimental units. Next, an 

overview of the variables and instruments used to the data collection are presented. Finally, the 

analysis procedure is described. For presentation purposes, we report the data collection procedure 

along with the execution process, in Section 5.  

4.1. Objectives, Research Questions, and Hypotheses 

The goal of this study is defined according to the Goal-Question-Metrics approach [40], as follows: 

“Analyze instances of State, Strategy, and Template Method patterns for the purpose of evaluation with 

respect to their energy consumption from the point of view of software developers in the context of 

open source systems”. To achieve this goal, we set three research questions (RQs): 

RQ1 What is the difference between the application of the Template Method pattern and an 

alternative design solution in terms of energy consumption? 

RQ2 What is the difference between the application of the State/Strategy pattern and an alternative 

design solution in terms of energy consumption? 



RQ3 What are the parameters that influence the energy consumption of State, Strategy, and 

Template Method pattern instances? 

RQ1 and RQ2 aim at investigating whether the energy consumption of patterns and alternative 

solutions is significantly different. Such information is of paramount importance to make more 

informed decisions when selecting patterns over alternatives, while developing energy efficient 

software. To answer RQ1 and RQ2, we formulated the following hypotheses: 

H0: There is no difference between the energy consumed by software using a design pattern 

solution and software using an alternative design solution. 

H1: The energy consumed by software using a design pattern solution is significantly lower than 

the energy consumed by software using an alternative solution.  

H2: The energy consumed by software using a design pattern solution is significantly higher than 

the energy consumed by software using an alternative solution. 

RQ3 aims at exploring if there are pattern-related parameters that affect the energy consumption of 

the patterns, and for which ranges of these parameters the pattern can be characterized as beneficial or 

harmful. Such thresholds can serve as guidance for decision making on when to apply a design pattern 

or not. To answer this research question, we isolate groups (e.g., A and B) of pattern-participating 

methods whose members have a similar difference in the energy consumption (compared to the 

alternative solution) and investigate specific structural characteristics of the pattern solution (for more 

details, see Section 4.4). To test the difference between every two groups, we formulated the following 

hypotheses: 

H3: There is no difference between the parameter values of the two groups (A and B).  

H4: The parameter value of group A is higher than the value of group B. 

H5: The parameter value of group B is higher than the value of group A. 

4.2. Design Type and Experimental Units 

To answer the research questions and test the hypotheses, we designed a crossover experiment [38], in 

which pattern-related methods are the experimental units. Pattern-related methods are methods of 

pattern instances that play a role within the design pattern. For our two selected patterns, these methods 

are the template method (Template Method pattern) and the methods implementing the behavior of 

states or strategies (States/Strategy pattern). We selected this unit for three reasons: (a) units with finer 

granularity facilitate a more detailed investigation of parameters (i.e., design characteristics) that 

influence the energy efficiency of design pattern solutions; (b) to standardize the data collection, since 

patterns may have multiple pattern-related methods, each one implementing different responsibilities; 

and (c) the alternative solutions provide the same functionality compared to pattern-related methods, 

but with a different implementation, what also promotes standardization of the data collection. For 

each experimental unit (i.e., a pair of pattern and alternative solutions), we record all data needed to 

answer the research questions, i.e., the energy consumption measurements for both pattern and 

alternative solutions, and design characteristics of the pattern solution.  

To collect data for the experiment, it is necessary to select software systems and pattern instances 

from which to sample pattern-related methods. Regarding software systems, we decided to use OSS 

that met the following criteria: 

 are written in the Java programming language, since the tool for retrieving design pattern 

instances (see Section 4.3.1) is limited to Java; 

 are non-trivial systems that are either widely used or known, so as to avoid the use of toy 

examples; and 

 contain instances of both the Template Method or the State/Strategy patterns.  

Two OSS projects were selected for the study. Selecting more projects would be unrealistic as all 

alternative solutions had to be manually implemented by us, which is a time-consuming task. 

However, we do investigate a sufficient number of pattern instances (more than related work) and 

pattern-related methods. For further discussion, please see how we deal with threats to validity 

(Section 8). The first OSS system is JHotDraw5, a Graphical User Interface (GUI) framework written 

in Java that allows the creation of technical and structured graphical images. The project started in 

2000, having about 80,000 downloads at this point, and the current version (7.6) has 680 Java source 

files, containing 80,535 SLOC. JHotDraw was developed as a design exercise, for applying GoF 

design patterns, becoming a powerful framework that is acknowledged by the software engineering 

community as a benchmark for GoF design patterns detectors [41], [42]. The second OSS system is 
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Joda Time6, an Application Program Interface (API) that can replace the standard date and time 

classes, providing better quality and in-depth functionalities. The project started in 2003, having almost 

500K downloads at this point, and the current version (2.9.2) has 329 Java source files, containing 85K 

SLOC. Joda Time has a high rating on GitHub and has also been used for research purposes [43]. 

Despite the careful selection of representative software for the study, we acknowledge that non-

trivial (complex) systems may have associated risks, in the sense that the transformation of a non-

trivial pattern instance to an alternative solution might not be uniform. To mitigate this risk, we 

developed a strategy while selecting pattern instances / pattern-related methods, and implementing the 

alternative solutions. Firstly, to select pattern instances for the study, we consider only those that meet 

the following criteria: 

 Used within the application: It is possible that the found pattern instances are not used within 

the applications themselves, e.g., functionalities provided as an API, whose pattern instances 

are partially implemented by the API user; 

 Reachable: Some pattern instances are not reachable directly, imposing a long (and hard to 

predict) sequence of calls, what may bias the measurement process. One option is to modify the 

source code to make the pattern instance easier to reach, but it would bias the results as well; 

 Performing deterministic tasks: Certain pattern instances may perform non-deterministic 

tasks, such as saving data to files or transferring data over the network. This could interfere with 

the actual measurement process; and 

 Not too complex: In some cases, the pattern instances could have a relatively high number of 

members, e.g., twenty or more concrete states/strategies or are variants of the original pattern 

that are not handled in our study (see Sections 3.2. and 3.4). These pattern instances would 

make the process of implementing the alternatives infeasible. On top of that, such pattern 

instances would represent a threat to study validity, as these comprise exceptional cases.  

Regarding method selection, the same criteria applied to pattern instances is used. We believe that 

the pattern instances and pattern-related methods filtered by these criteria are representative of the 

population, as excluded cases are mostly exceptional. Finally, concerning the implementation of 

alternative solutions, we have to ensure that the original business logic is preserved, avoiding 

unnecessary changes to the original source code. As the alternatives preserve the original business 

logic and only the difference in the energy consumption is analyzed, we believe that we have mitigated 

much of the risk associated with the usage of non-trivial programs.  

4.3. Variables and Instrumentation 

To answer the research questions and test the hypotheses stated in Section 4.1, a number of variables 

are derived. These variables are divided into two distinct categories: (a) pattern-related information 

(pattern, method and m-* in Table II, which are explained in Section 4.3.1); and (b) measurements of 

energy consumption (*-ptt and *-alt in Table II, which are explained in Section 4.3.2). These variables 

are recorded for each unit of analysis (i.e., pattern-related methods). The entire process of identifying 

and measuring the units of analysis culminates in the creation of a dataset of all extracted variables for 

each unit. This dataset is recorded as a table in which the columns correspond to collected variables. In 

the following subsections, we present and discuss the variables and the tools used to extract them. 

Table II. List of collected variables 

Variable Description Tool 

pattern Pattern Type (Template Method or State/Strategy) 
SSA 

method The pattern-related method that is measured 

m-sloc SLOC of the pattern-related method 
- 

m-mpc MPC of the pattern-related method 

papi-ptt Energy consumption (in Joules) of the pattern solution, at process level  
PowerAPI 

papi-alt Energy consumption (in Joules) of the alternative solution, at process level  

jalen-ptt Energy consumption (in Joules) of the pattern solution, at method level  
Jalen 

jalen-alt Energy consumption (in Joules) of the alternative solution, at method level  

ptop-ptt Energy consumption (in Joules) of the pattern solution for triangulation  
pTop 

ptop-alt Energy consumption (in Joules) of the alternative solution for triangulation 
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4.3.1. Pattern-related Information. To collect the necessary data for all units of analysis, we first find 

all the pattern occurrences within the OSS applications. To detect the design patterns occurrences, we 

use a tool developed by Tsantalis et al. [25]. This tool uses a Similarity Scoring Algorithm (SSA) for 

detecting design structures similar to a desired GoF design pattern. Among the 12 detectable patterns 

are Template Methods and State/Strategy (identified jointly due to structural similarity). The extraction 

of the design patterns is done by isolating subsystems of a given application through static analysis, 

which enables the identification of relationships between the elements of each separate subsystem. The 

SSA tool has been assessed by several studies (such as Kniesel et al. [44] and Pettersson et al. [45]), 

which have positively evaluated its performance, precision, and recall rates. SSA was, therefore, 

selected for this study because of the following: 

 it provides detection of the design patterns of interest, i.e., Template Method and State/Strategy; 

and 

 it provides acceptable performance, as described by Tsantalis et al. [25], also when compared 

to similar tools [44], [45]. 

SSA is limited to the Java programming language, since the similarity analysis is performed on 

compiled Java class files. After the application of the pattern detection tool on a project, the results are 

compiled into one Extensible Markup Language (XML) file that contains all the instances found within 

a given application. 

Additionally, a set of metrics has to be extracted, which are used to investigate parameters that 

influence the energy consumption of pattern instances (see Section 4.4). In order to select these 

metrics, we considered the SQualE platform [46], as it summarizes a broad and comprehensive list of 

metrics from the literature. From this list, we identified two metrics that could be measured at method 

level: SLOC and MPC7. SLOC is measured as the amount of source line of code of the method, while 

MPC is measured as the amount of calls, within the method, to other methods (these calls do not 

include those to methods of the same class, even if inherited). We clarify that the parameters SLOC 

and MPC are calculated for the pattern solution only. For answering RQ3, we are interested in 

identifying characteristics of the pattern design solution that are related to energy efficiency. In 

addition, SLOC and MPC do not change considerably in the alternative solution, since the 

transformation mostly causes a reorganization of the code and how methods are called. In other words, 

our goal is not to evaluate the change of complexity, but how the complexity of the pattern solution 

influences the difference of energy consumption between the solutions, especially because this 

complexity is dictated by the business logic, which is not modified.  

 

4.3.2. Assessment of Energy Consumption. To measure the energy consumption of software 

applications, there are multiple tools based on both software and hardware [47]. In this study we, opted 

to use software tools, as they allow finer-grained measurements (i.e., at the method level) [47]. 

Although hardware measurement offers a higher precision, it estimates the energy consumed by the 

whole machine, and our study investigates the consumption difference at the methods level. Therefore, 

we prioritized a finer-grained technique over a more precise one. In addition, selecting and configuring 

a hardware measurement tool may represent a complex and expensive task [48], which if not 

accurately performed can introduce additional bias. In order to select the appropriate tools, we 

searched the literature and identified nine software tools for measuring energy consumption. We 

analyzed two comparative studies that included these tools [47], [49], in addition to other literature, so 

as to verify their theoretical and empirical validity in scientific setups. Based on this analysis, two tools 

presented the highest precision, namely PowerAPI and pTop; a third tool, namely Jalen, although with 

lower precision, is able to deliver finer-grained measurements. Other tools that we considered either do 

not have sufficient validation or present lower precision regarding their respective granularity of 

measurement, or require additional hardware investments. 

PowerAPI is an API that enables real-time profiling of the energy consumption at the level of 

operating system (OS)  processes [10]–[12], [47]. This tool currently supports measuring energy from 

CPU and network, which are represented through power modules. The available implementations that 

are provided for this tool are created for GNU/Linux distributions, but they are independent of the 

hardware. To measure the energy consumption of the CPU, the Thermal Design Power (TDP) is taken 

into account, which is the maximum amount of heat (which is generated by the CPU) that requires to 

be dissipated by the cooling system. The precision for measuring the power consumption of software 

applications with PowerAPI was estimated by Noureddine et al. [11] by comparing it against a power 

meter. This estimation showed that the calculated margin of error vary from 0.5% to 3%. 
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Jalen is an energy consumption profiler, which was created by the same developers of PowerAPI 

[11], [12], [47], [50]. Jalen can collect energy consumption on different levels of granularity such as 

the method level. Similarly to PowerAPI, Jalen is limited to the use on GNU/Linux distributions due to 

the sensors used for the hardware components. Since Jalen injects monitoring code through the 

bytecode instrumentation, it reduces the precision. In a comparison of tools performed by Noureddine 

et al. [11], the measured time for individual Tomcat’s server requests was 57% higher in average. 

However, since we are comparing two different versions of the same applications (i.e., pattern and 

alternative solutions), this cannot be considered as a confounding factor. 

pTop is a profiler that can determine energy consumption on the OS process-level and is designed 

to work solely on GNU/Linux distributions [47], [51]. pTop calculates the energy consumption 

through a daemon that profiles the resource utilizations for all processes, whereas the power 

consumption of the system CPU, network interface, memory and hard drive are tracked. Each different 

system component needs to be configured (possibly calibrated as well) according to its specifications. 

Just like PowerAPI, it uses the TDP to calculate the energy consumed by the CPU. The precision of 

pTop was analyzed by comparing its results to a wattmeter [47]. Results of this analysis show that the 

average median error for pTop was less than 2 watts. 

All the aforementioned energy measurement tools are suitable candidates to obtain reliable results. 

However, PowerAPI and Jalen are designed to specifically measure the energy consumption of Java 

applications, not including the overhead caused by the Java Virtual Machine (JVM). Due to the 

granularity of the energy measurement of Jalen (i.e., method level), the output is not influenced by the 

energy expenditure of other parts of the system, which makes it a more suitable tool. However, in order 

to compare the related work to ours, it is also necessary to consider the same perspective used in 

related work, i.e., process level measurements, in this case by using PowerAPI. Therefore, we decided 

to use both PowerAPI and Jalen for the study. We clarify that both tools have a limitation of being able 

to measure energy consumed by the CPU only. Therefore, among other reasons, we restricted the 

experimental units to those that do not use extra resources (e.g., hard drive, or network). Additionally, 

we decided to use pTop, which is more commonly known in the scientific community, for 

triangulation purposes, to validate the measurements obtained from PowerAPI and Jalen, and to verify 

the memory energy consumption (see Section 5.2).   

4.4. Analysis Procedure 

During the data analysis, the previously described variables (see Table II) are used to answer the 

research questions. As mentioned in Section 4.3.2, we collect data using two different tools (PowerAPI 

and Jalen) and, therefore, every task of the analysis is performed for the data of each tool separately, 

and results are compared. In addition, the data regards two design patterns (Template Method and 

State/Strategy) and every step of the analysis is repeated for both patterns separately. The data analysis 

is twofold, described in the following. 

 

4.4.1. General Analysis of Energy Consumption. Initially, we compare the energy measurements (*-ptt 

and *-alt) to test the hypotheses posed by research questions RQ1 and RQ2. For evaluating whether or 

not the pattern solution is significantly different from the alternative solution, we perform two steps: 

1) Check distribution. To decide whether to use parametric or non-parametric tests, we verify the 

distribution of each dependent variable metric (i.e., papi-ptt, papi-alt, jalen-ptt, and jalen-alt) 

by employing the Shapiro–Wilk test [52]. If not normal, a Wilcoxon signed ranks test [52] is 

used for assessing the difference between pattern and alternative solutions; otherwise, paired 

sample t-test [52] is used; and 

2) Compare energy consumption. Next, we compare whether the difference between pattern and 

alternative solutions is statistically relevant. For that, we employ the dependent sample test for 

investigating the data obtained by PowerAPI and Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt 

vs. jalen-alt). 

 

4.4.2. Analysis of Design Parameters. Once the difference in the energy consumption between pattern 

and alternative solutions is observed, we want to investigate parameters that may influence this 

difference. For that, we isolate controlled groups (i.e., clusters) with similar difference in the energy 

consumption and test the hypotheses posed by RQ3. This analysis comprises the following steps: 

 

1) Create clusters based on consumption. First, we create clusters based on the difference 

between the energy measurements for PowerAPI (i.e., papi-diff = papi-ptt – papi-alt) and Jalen 

(i.e., jalen-diff = jalen-ptt – jalen-alt). For that, we employ the agglomerative hierarchical 



clustering technique, considering the average linkage method (or between-groups linkage) and 

using squared Euclidian distance [53];  

2) Merge clusters based on design parameters. Next, we investigate whether or not the clusters 

are statistically different with regards to the analyzed design parameters (m-sloc and m-mpc). 

As the clusters comprise independent samples, we employ Mann-Whitney tests [52] for this 

investigation. The analysis for each parameter is performed separately and clusters that are not 

statistically different are merged; and 

3) Verify trends. Finally, based on the final disposition of the clusters, we verify trends with 

regards to both SLOC and MPC. 

It is important to clarify that during the analysis we noticed cases in which the pattern solution was 

more energy efficient than the alternative solution and, however, the clustering algorithm did not 

separate these units (see Section 6.4). Therefore, aiming at complementing the answer for RQ3, an 

additional analysis is performed, which comprises the following steps: 

1) Group units. Based again on the difference between the energy consumption, we separate the 

experimental units into two categories: (a) pattern solution consumed more energy than the 

alternative solution; and (b) pattern solution consumed less energy than the alternative 

solution; and 

2) Compare parameters. Next, we analyze if the design parameters (SLOC and MPC) may have 

an influence on determining which solution is more energy-efficient. For that, we employ 

Mann-Whitney tests for investigating whether each parameter is statistically differ between the 

two groups created in the previous step. 

5. EXECUTION 

In this section we explain how data for the experiment was collected. Firstly, we describe the data 

collection procedure, showing details of the most relevant aspects. Next, we present and discuss the 

validation of the collected data according to the planned experiment.  

5.1. Data Collection 

The data collection is composed of four steps. Firstly, we extracted the pattern instances and selected 

the pattern-related methods (i.e., experimental units). To collect the experimental units, a set of pattern 

occurrences were extracted from JHotDraw and Joda Time, and were manually inspected to decide 

whether pattern instances could be included or excluded (see Section 4.2). Table III distinguishes 

between the number of pattern occurrences that were included and excluded (according to the process 

described in Section 4.2) for each OSS and GoF design pattern. For each included pattern instance, a 

set of units of analysis was collected. The total number of collected units for each OSS and GoF design 

pattern is presented between parentheses in Table III. We clarify that, despite the limited number of 

included pattern instances, we believe that the number of experimental units (95 and 74) is satisfactory, 

providing statistically significant results (see Section 6). Moreover, the effort required to implement 

the alternatives (as described in Sections 3.2 and 3.4) also restricted the amount of experimental units 

that could be collected. 

Table III. Descriptive of identified pattern occurrences and pattern-related methods 

OSS 
Included occurrences Excluded occurrences 

TM SS TM SS 

JHotDraw 7 (15) 6 (56) 5 25 

Joda Time 7 (80) 1 (18) 5 17 

TOTAL 14 (95) 7 (74) 10 42 

TM = Template Method, SS = State/Strategy 

 

Next, for each unit, we calculated the parameters SLOC and MPC (i.e., based on the pattern 

solution, see Section 4.3.1). Before starting the measurement process, we implemented the alternative 

solution for each pattern instance as described in Sections 3.2 and 3.4. Then, to measure the energy 

consumption of the units, a standard measurement process was defined. This measurement process 

needed to be consistent throughout the whole test run, so no external interference is introduced to the 

results. First, a selection was done for the hardware system to be used for the analysis, along with the 

OS and distribution. For the hardware system, we chose the MSI wind box DC100 minicomputer due 



to its simplicity, availability, and compatibility with the measurement tools. The MSI wind box 

contains the following components: 

1) AMD Brazos Dual Core E-450 (1.65GHz) with a TDP of 18 Watts; 

2) 4GB of DDR3 memory; and 

3) AMD Radeon HD 6320 graphics adapter. 

Since the measurement tools are tailored for GNU/Linux system, we used one of the distributions 

released for that OS. As we wanted less interference during the measurement process, a clean 

installation of Ubuntu is used, which contains only the essential packages and has no user interface. 

However, since JHotDraw requires a graphical shell to call certain functionalities, a simplistic window 

manager, i3 8 , was installed on top of this distribution. For orchestrating and standardizing the 

execution of the measurement tools and pattern related methods, a script was created for performing 

the following procedure: start the measurement tool, wait a few seconds for the tool to load, execute 

the usage scenario containing the pattern-related method, wait for the application to finish and stop the 

measurement tool. Each usage scenario embedded multiple executions of a part of the application that 

called one pattern-related method (i.e., experimental unit), guaranteeing measurable energy 

consumption (i.e., more than 30 seconds). Any selected part of the application was the simplest 

possible and was fully checked to guarantee no hard external bias (e.g., read/write operations). Each 

usage scenario was executed with the pattern solution and the alternative solution. For reliability 

purposes, the aforementioned procedure was executed 100 times for every pair scenario-solution, 

obtaining 100 measurements for each experimental unit. Finally, we obtained the final value for each 

unit of analysis by excluding outlier measurements and calculating the average between the remaining 

measurements. 

5.2. Validation of the Collected Data 

There were three main assumptions in the experimental design that needed validation. Firstly, two 

researchers verified every manual data collection task. These tasks were the selection of the patterns 

instances and pattern-related methods, the calculation of the SLOC and MPC parameters, and 

measurement of energy consumption. Secondly, as we considered experimental units from State and 

Strategy pattern instances mutually, we verified whether there was a difference between the energy 

consumed by them. Our results suggest no visual or statistically relevant differences. Last, the energy 

consumption data was validated by triangulation.  

As mentioned in Section 4.3.2, the energy consumption was obtained by two tools, one working at 

process level (PowerAPI) and another working at method level (Jalen). Our motivation for selecting 

these two tools was that they both estimate the energy consumption based on the JVM, therefore, 

reducing the bias from the overhead caused by the OS. In addition, PowerAPI has higher precision 

when compared to other tools, while Jalen, although having a lower precision, provides more fine-

grained measurements (as it captures only the energy consumption of the method). By obtaining the 

two different perspectives, we aimed at comparing our study to related work, as well as verifying the 

results w.r.t. the different levels of measurements.  

As expected, the tools provided measurements of different magnitudes, which are related to the 

different characteristics of the tools. In addition, PowerAPI and Jalen use a similar mechanism for 

exploring the JVM to calculate the results, which could be biased. Besides, both tools can collect the 

energy consumed by the CPU only and, although we restricted the experimental units to those not 

requiring additional resources (e.g., hard-drive, network), not considering the energy consumed by the 

memory could still represent a bias. Therefore, we sought to provide further validation of the estimated 

measurements. To this end, we selected a process level tool, pTop, which can estimate the energy 

consumed by both CPU and memory, as well as has a higher precision, but estimates measurements by 

exploring the process management of the OS.  

The data collected by pTop suggest that the energy consumed by the memory is negligible (approx. 

0.0001% of the total energy consumed for every experimental unit). In addition, to verify that our data 

collection was consistent, we triangulated the measurements. For that, we performed eight Spearman 

correlation tests. For each pattern (pattern = Template/Method or State/Strategy), we tested the 

correlation between each design solution (pattern and alternative) of PowerAPI/Jalen and pTop (i.e., 

papi-ptt vs. ptop-ptt; papi-alt vs. ptop-alt; jalen-ptt vs. ptop-ptt; and jalen-alt vs. ptop-alt) . By 

observing that all tests proved a rather very strong correlation (see Table IV), we considered all the 

measured data to be consistent and reliable for data analysis. Finally, it is interesting to notice that 

Jalen has a lower correlation to pTop, compared against PowerAPI. This is yet another evidence of the 
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consistency of the results, as Jalen is a method level tool and, thus, do not have the overhead caused by 

the rest of the application. 

Table IV. Pearson correlation test for validating estimated measurements from PowerAPI and Jalen 

Pattern Tool 

Pattern solution (pTop) Alternative solution (pTop) 

N 
Correlation 

Coefficient 
Sig. N 

Correlation 

Coefficient 
Sig. 

Template 

Method 

PowerAPI 95 0.946 < 0.01 95 0.947 < 0.01 

Jalen 89 0.893 < 0.01 87 0.877 < 0.01 

State/Strategy 
PowerAPI 74 0.963 < 0.01 74 0.929 < 0.01 

Jalen 71 0.933 < 0.01 71 0.791 < 0.01 

6. ANALYSIS 

In this section we present the results of the experiment. Firstly, we show the descriptive statistics of the 

dataset. Next, we present the results of the analysis carried out for each research question, which was 

executed as described in Section 4.4. We clarify that every statistical test was performed using the tool 

IBM SPSS Statistics9 and are reported based on the guidelines suggested by Field [52].  

6.1. Descriptive Statistics 

For every experimental unit, pattern-related variables were collected (variables pattern, method, m-sloc 

and m-mpc), and an alternative solution was implemented as described in Section 3. Afterwards, the 

tools PowerApi, Jalen, and pTop were used to collect the energy consumption from both pattern and 

alternative solutions (*-ptt and *-alt). We remind that an experimental unit comprises a pair of pattern 

and alternative design solutions. A summary of all numeric variables (i.e., SLOC, MPC, and energy 

consumption measurements) is presented in Table V and Table VI, showing relevant descriptive 

statistics for Template Method and State/Strategy, respectively. As can be seen in Table V and Table 

VI, few measurements were performed by Jalen for the pattern and/or the alternative solution. This is 

due to a limitation from Jalen, which tries to measure a specific method, but it is unable to encapsulate 

the entire process. This is caused when either the length in time that the method uses is too little, or 

when the method delegates its functionality in a way that Jalen cannot track. Such cases were properly 

treated during the statistical analyses, which are discussed in the following subsections.  

Table V. Descriptive statics of numeric variables for the Template Method pattern (pattern = Template Method) 

Variable N Min Max Mean 
Std. Error 

(Mean) 

Std. 

Deviation 

m-sloca 95 2.00 36.00 6.03 0.59 5.75 

m-mpcb 95 0.00 12.00 1.33 0.20 1.97 

papi-pttc 95 92.30 1086.77 327.88 27.11 264.23 

papi-altc 95 92.12 924.09 270.84 23.77 231.67 

jalen-pttc 89 43.85 799.88 200.38 14.57 137.47 

jalen-altc 87 22.58 777.32 150.13 10.38 96.84 

ptop-pttc 95 189.78 2198.84 719.86 59.68 581.72 

ptop-altc 95 193.85 2185.72 594.85 47.37 461.66 
a Measured in number of uncommented lines in the pattern solution 
b Measured in number of method invocations in the pattern solution 
c Measured in Joules 

 

Before performing the data analysis based on the energy measurements from PowerAPI (papi-*) 

and Jalen (jalen-*), these measurements were checked against the measurements from pTop (ptop-*). 

The details of this validation process are presented and discussed in Section 5.2. When observing the 

measurement from the three tools, one can notice that they are different, following the order Jalen < 

PowerAPI < pTop. This difference in the measurements is expected. Jalen measures the consumption 

at a method level (i.e., not considering the consumption of the whole program); PowerAPI measures 
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the consumption of the Java process (i.e., the program); and pTop measures the consumption of the 

OS’s process (i.e., which also include the overhead of the JVM). When ordering the values, it is 

possible to notice that greater overheads result in greater values, i.e., Jalen < PowerAPI < pTop. 

Table VI. Descriptive statics of numeric variables for the State/Strategy pattern (pattern = State/Strategy) 

Variable N Min Max Mean 
Std. Error 

(Mean) 

Std. 

Deviation 

m-sloca 74 0.00 36.00 5.68 0.69 5.93 

m-mpcb 74 0.00 29.00 2.13 0.54 4.66 

papi-pttc 74 157.58 1664.17 738.17 56.51 499.11 

papi-altc 74 136.37 1002.25 341.95 19.88 175.54 

jalen-pttc 68 27.38 1260.11 486.34 42.54 350.75 

jalen-altc 66 20.20 635.89 186.96 14,72 119,56 

ptop-pttc 74 316.08 4124.87 1640.06 129.72 1145.63 

ptop-altc 74 273.21 2260.22 786.15 46.77 413.04 
a Measured in number of uncommented lines in the pattern solution 
b Measured in number of method invocations in the pattern solution  
c Measured in Joules 

6.2. RQ1: Template Method 

The first research question aims at exploring the energy consumption of Template Method pattern 

instances and their alternative solutions, focusing on identifying if there is a statistically significant 

difference between the solutions (pattern and alternative) regarding energy consumption. For that, we 

considered the energy consumption measured by two different tools, one at process level (papi-*) and 

one at method level (jalen-*). While the former tool provides a more traditional and system-wide 

measurement, the latter provides a more fine-grained measurement allowing us to focus on the point of 

interest (pattern-related method), excluding any interference from the rest of the system. Although we 

did not expect to find differences in the results obtained from the two tools (because both pattern and 

alternative solutions are subject to the same interference), the method-level measurements should 

provide lower overhead (i.e., smaller energy measurements). 

To answer this research question, we examined the pair of variables obtained from PowerAPI and 

Jalen (i.e., papi-ptt vs. papi-alt and jalen-ptt vs. jalen-alt). In order to decide if we were using 

parametric or non-parametric tests for assessing the statistical significance of the differences between 

the pair of variables, we employed the Shapiro–Wilk test to check the distribution of data for each 

variable. The results of the test suggest that data were not following the normal distribution and, thus, a 

non-parametric test had to be employed. Therefore, we used the Wilcoxon signed ranks test to evaluate 

the hypotheses posed for RQ1 (see Section 4.1) and, thus, investigate the energy consumption data 

from PowerAPI and Jalen. In addition, to support visualizing the difference in the energy consumption, 

Figure 4 shows the box-plot for each compared variable. 

 

 

Figure 4. Visual comparison of the energy consumption for Template Method  

From the analysis results, two main findings can be highlighted. First, pattern solutions consumed 

more energy than their alternatives based on the results of both PowerAPI (p < 0.01, z = -4.92) and 



Jalen (p < 0.01, z = -5.57). This is evident in the results from both tools (following the result of the 

descriptive statistics—Table V), which suggest a decrease of 17.4% (PowerAPI) and 24.34% (Jalen) 

on the energy consumption of the alternative solution. Second, Jalen showed a greater difference than 

PowerAPI (by comparing the z-score), which also follows the trend observed by comparing their 

descriptive statistics. It is also important to highlight that, as expected, method level measurements 

(from Jalen) showed lower consumption then process level (from PowerAPI). These findings 

corroborate that: (a) method level measurements have lower overhead, since they isolate application 

and OS noises, and (b) pattern solutions indeed show increased energy consumption when compared 

against their alternatives. Summarizing, we can answer RQ1 by affirming that, for Template Method, 

pattern solutions tend to consume more energy than the alternative solutions (implemented as 

described in Section 3) and that this observation becomes more evident when analyzing at method 

level. However, further investigation on this assertion is presented in Section 6.4 (see RQ3). 

6.3. RQ2: State/Strategy 

Next, we explored the energy consumption of State/Strategy pattern instances and their alternative 

solutions, focusing on identifying whether or not there is a statistically significant difference between 

the solutions (pattern and alternative) regarding energy consumption. For that, we followed the same 

process as described for RQ1, using, however, data related to State/Strategy (pattern = State/Strategy). 

Thus, first we performed the Shapiro–Wilk test to confirm that the data was not normal, as expected 

due to the result from the previous data analysis. As the variables were not normal, we used Wilcoxon 

signed ranks test to investigate the energy consumption data from PowerAPI and Jalen. In addition, to 

support visualizing the difference in the energy consumption, Figure 5 shows the box-plot for each 

compared variable. 

 

 

Figure 5. Visual comparison of the energy consumption for State/Strategy 

Similarly to RQ1, the pattern solutions consumed more energy than their alternatives based on the 

results of both PowerAPI (p < 0.01, z = -6.19) and Jalen (p < 0.01, z = -6.8). This result is in 

accordance with what we expected from observing the descriptive statistics in Table VI and the box-

plots in Figure 5. However, when looking at the differences between each pair of pattern and 

alternative solutions, we can highlight some notable aspects. First, results obtained from PowerAPI and 

Jalen are very close to each other, as it can be observed by the mean value in Table VI and z-score of 

the test. Second, the average results from Jalen are lower than those from PowerAPI, but still similar, 

especially by taking into consideration that Jalen only measures the energy consumption at method 

level. Even though these values are very close, the standard deviation and standard error mean (see 

Table VI) from Jalen are proportionally higher (in comparison with the mean) than those of PowerAPI. 

The relatively high standard deviation and standard error for the Jalen pair is caused by differences in 

measurements on method level. The method level measurements seem to be significantly distant from 

the mean. Nonetheless, the drop in energy consumption for both pairs is remarkable, as the average 

decrease in energy consumption is 53.68% for PowerAPI and 55.51% for Jalen. Summarizing, we can 

answer RQ2 by affirming that, concerning State/Strategy, pattern solutions tend to consume more 

energy than the alternative solution (implemented as described in Section 3), although method level 

measurements show that this result requires further investigation (due to the high standard 

deviation and error). We present this further analysis in the next section, in which we discuss 

parameters that influence energy consumption. 



6.4. RQ3: Influence of Source Code Parameters 

The third research question aims at investigating parameters that influence the energy consumption of 

design pattern instances. To achieve this goal, we considered two metrics (SLOC and MPC) collected 

from every pattern-related method (i.e., based on the pattern solution, see Section 4.3.1) to investigate 

clusters of experimental units via a three-step analysis. First, to cluster the experimental units, we 

performed an agglomerative hierarchical clustering (using between-groups linkage and squared 

Euclidean distance, see Section 4.4.2) based on the difference in energy consumption (i.e., *-diff =     

*-ptt – *-alt). Second, we employed Mann-Whitney tests to evaluate the hypotheses posed for RQ3 

(see Section 4.1), verifying whether neighbor clusters (i.e., that are at the same level in the hierarchical 

tree) are statistically different w.r.t. SLOC and MPC. If no statistically significant difference was 

found, we merged the clusters and performed the test again with the neighbor of the merged cluster. 

Finally, we investigated the final clusters to identify trends regarding the studied metrics (SLOC and 

MPC). 

In Figure 6 we present the outcome of the hierarchical clustering for Template Method data. The 

two charts on the top show the distribution of the experimental units among the clusters. Each point 

consists of a pair <pattern solution; alternative solution>, in which the Y axis is the energy 

consumption of the pattern solution and the X axis is the energy consumption of the alternative. The 

clusters can be identified by the different shape and color presented in the legend. The two charts on 

the bottom of Figure 6 show the centroids of the clusters with regards to SLOC and MPC. The values 

for SLOC and MPC of each cluster are obtained as the average of the units of the cluster. By checking 

these charts, it is already possible to notice some separation between clusters w.r.t. the two metrics.  

 

 

Figure 6. Hierarchical clustering of Template Method units of analysis 

We investigated the separation between clusters, and the results of the statistical tests are presented 

in Table VII (along with the tests for State/Strategy data). As multiple tests were performed for 

investigating every pair of cluster regarding every metric, we report only the statistically significant 

results. Based on these tests, one can see which clusters were merged. For example, when comparing 

the clusters of Template Method (see upper charts of Figure 6) one can see four clusters (1.1; 1.2.1; 

1.2.2; 2), from which two are very close (1.2.1; 1.2.2) and the separation was not statistically relevant 

w.r.t. to SLOC and MPC, forming a merged cluster (1.2). By further inspecting the statistical tests and 



charts, one can see three clusters distant from each other (1.1; 1.2; 2) w.r.t. to both SLOC and MPC, 

and that they follow a trend in which clusters that group more energy-efficient solutions (e.g. 1.1) have 

bigger SLOC and MPC scores. This observation suggests that the higher the SLOC and MPC, the less 

advantageous the alternative solutions. 

Table VII. Mann-Whitney test for comparing clusters 

Pattern Tool Metric 
Mann-Whitney test 

Clusters Z Sig. 

Template 

Method 

PowerAPI SLOC 1.1 & 1.2 -2.46 0.02 

Jalen SLOC 1.1 & 1.2 -2.94 < 0.01 

S
ta

te
/S

tr
at

eg
y

 

PowerAPI 

SLOC 2.1 & 2.2 -3.62 < 0.01 

MPC 2.1 & 2.2 -2.86 < 0.01 

SLOC 1 & 2.1 -4.77 < 0.01 

MPC 1 & 2.1 -5.03 < 0.01 

SLOC 1 & 2 -4.31 < 0.01 

MPC 1 & 2 -4.70 < 0.01 

Jalen 

SLOC 1.1.1 & 1.1.2 -2.91 < 0.01 

MPC 1.1.1 & 1.1.2 -2.16 0.03 

SLOC 1.1 & 1.2 -2.46 0.01 

MPC 1.1 & 1.2 -3.83 < 0.01 

SLOC 1 & 2 -3.62 < 0.01 

MPC 1 & 2 -3.63 < 0.01 

 

Figure 7 shows the scatterplots that concern the State/Strategy pattern, on which we performed the 

same analysis described for Template Method. When investigating the clusters (based on the statistical 

tests—see Table VII), one can deduce that three clusters remain for PowerAPI (1; 2.1; 2.2) and four for 

Jalen (1.1.1; 1.1.2; 1.2; 2). Although the data of the two tools led to slightly different clusters, the 

results suggest the same trends, which are similar to the ones observed for the Template Method 

pattern. In particular, both SLOC and MPC influence the benefit of using an alternative instance 

instead of the pattern solution. Moreover, the cluster 1.1 from the PowerAPI data (which is similar to 

cluster 1.1.1 from Jalen) is the closest to the bisect line (i.e., pattern solution = alternative solution) 

and, by checking the metrics chart, it is clear that this cluster has much higher SLOC and MPC when 

compared to the others.  

The performed analysis is so far able to provide evidence that both SLOC and MPC influence the 

energy efficiency of a pattern solution and that both parameters should be taken into account when 

deciding between using a pattern solution or an alternative solution. However, there is one interesting 

question that has not been answered by the clustering, yet. By observing all the scatterplots that were 

presented until this point, it is clear that in some cases pattern solutions were more energy efficient 

than the alternative solutions (i.e., experimental units below the bisect line in the upper charts of 

Figures 6 and 7). However, the use of automated clustering algorithms did not separate these units. 

Therefore, we decided to perform a second analysis. We grouped the experimental units into the two 

categories (pattern > alternative; and pattern < alternative). Next, we were able to investigate whether 

or not SLOC and MPC may have an influence on determining if a pattern solution is more energy-

efficient than the alternative solution. To explore the differences between these groups, in terms of 

SLOC and MPC, we employed Mann-Whitney tests. Table VIII shows the results of the test for both 

Template Method and State/Strategy.  

Based on the results of Table VIII, it becomes clear that SLOC has a significant influence on the 

energy efficiency of the pattern instance for both GoF design patterns, suggesting that the longer the 

method is, the more possible it becomes that the pattern solution is more energy efficient. For the 

State/Strategy pattern, it is also statistically evident that the number of calls to other methods 

influences the energy efficiency of the solution, suggesting that more calls are related to a higher 

possibility of the pattern solution being more efficient than the alternative.  



 

Figure 7. Hierarchical clustering of State/Strategy units of analysis 

Table VIII. Mann-Whitney test for comparing most energy efficient solutions 

Pattern Tool Metric 
Mann-Whitney test 

Z Sig. 

T
em

p
la

te
 

M
et

h
o

d
 PowerAPI 

SLOC -4.06 0.00 

MPC -0.03 0.98 

Jalen 
SLOC -3.75 < 0.01 

MPC -1.71 0.09 

S
ta

te
/S

tr
at

eg
y

 

PowerAPI 
SLOC -4.05 < 0.01 

MPC -3.57 < 0.01 

Jalen 
SLOC -2.15 0.03 

MPC -2.49 0.01 

 

Summarizing the evidence so far, it is possible to answer RQ3 by affirming that both parameters, 

i.e., number of source lines of code and the number of invoked methods, influence the energy 

efficiency of a pattern solution, suggesting that higher SLOC and/or MPC are related to more 

energy efficient pattern solutions when compared against their alternative solutions.  

7. DISCUSSION 

In this section we discuss the main outcomes of this study. First, we discuss the findings of the 

experiment, comparing them with related work. Second, we discuss the implications to researchers and 

practitioners. However, we need to clarify that the discussion presented in this section regards only the 

Template Method and State/Strategy patterns, as well as that our observations and interpretations are 

constrained by the limitations of the experimental settings and threats to validity (see Section 8).  



7.1. Interpretation of Results 

The results of our experiment suggest that the alternative solutions are more energy efficient than the 

pattern solutions for both Template Method and State/Strategy. This difference is higher for 

State/Strategy (approx. 54% for PowerAPI and 56% for Jalen) than to Template Method (approx. 17% 

for PowerAPI and 24% for Jalen). These results are in accordance to related studies (see Section 2), 

which have reached similar conclusions, i.e., that the alternative solutions tend to be more energy 

efficient. Specifically, Bunse et al. [29], as well as Noureddine and Rajan [32], also report on the 

Template Method pattern, and suggest that this pattern presents a small, yet significant, overhead. 

Noureddine and Rajan [32] also investigate State and Strategy patterns separately, and report a smaller 

overhead for State (approx. 3%) and an equally small improvement for Strategy (approx. 3%). This 

difference between results may be related to certain characteristics of the study design (e.g., the used 

pattern alternative or subjects of the study), but more details regarding these characteristics would be 

necessary to elaborate on the rationale. To sum up, the differences between pattern and alternative 

solutions observed in our study are likely to be influenced by the overhead caused by employing 

polymorphism (i.e., the main mechanism of both patterns). When calling polymorphic methods, the 

JVM has to dynamically indicate the correct implementation to be used. Commonly, this indication is 

done by moving the instruction pointer10 to the memory address containing the right method. Although 

simple, this kind of operation can become computationally expensive if overused.  

While investigating the influence of SLOC and MPC on the energy consumption of pattern 

solutions, we were able to notice that both GoF patterns tend to provide a slightly more energy-

efficient solution when used to implement more complex behaviors (i.e., with longer methods and 

multiple calls to method of external classes). This observation is also intuitive from three perspectives:  

1) GoF design patterns are not beneficial in simple/non-complex design problems (even w.r.t. 

other quality attributes [18][19]), since the extra complexity that they introduce is higher than 

the one that they resolve;  

2) The effect of polymorphism weakens when these patterns are handling complex situations. The 

longer the method, the lower the ratio of method localization compared to the overall 

computation and, therefore, the overall overhead caused by the polymorphic mechanism of 

Template Method or State/Strategy; and 

3) It is understandable that patterns promote improved structuring of the source code, which may 

sometimes lead to a smaller and/or more efficient bytecode (for the JVM), which in turn leads 

to slightly more energy-efficient software. We observed such cases, e.g., when the pattern-

related method comprises a set of external invocations (i.e., to methods that are not owned or 

inherited by the class being measured). In such cases, the JVM might be applying internal 

optimizations, which would not be possible in the alternative, as the structure pattern-related 

method is altered. 

Although we have provided evidence that alternative solutions are in most of the cases more energy 

efficient than pattern solutions (approx. 79% of the cases), there are cases in which the opposite holds. 

Sahin et al. [30] have also reported on pattern instances that can be more energy efficient compared to 

alternative solutions. In comparison to Sahin et al., we provide a more fine-grained analysis by relating 

this differentiation to two metrics (i.e., SLOC and MPC). This finding can also be possibly explained 

by the overhead caused by polymorphism, as we were able to identify statistically significant 

differences on the metrics between pattern-efficient (i.e., pattern solution consumed less energy than 

the alternative solution) cases and alternative-efficient cases. On average, pattern-efficient solutions 

have 65.83% more source lines of code and 43.37% more method invocations than the alternative-

efficient solutions. 

Finally, there is a crosscutting observation to all findings in this paper, which deals with differences 

in energy consumption at method and process levels. The measurements from Jalen were lower than 

the measurements from PowerAPI (40.42% on average). This observation is intuitively correct since 

the measurements from Jalen are more localized (focused on only one method). Furthermore, it is 

interesting to notice that differences between pattern and alternative solution were smaller for Jalen 

(12.11% in average), a fact that suggests that the remaining parts of the applications (i.e., not the 

pattern-related methods) were, to some extent, biasing the analysis. Another possible explanation could 

be that the dynamic binding procedure11 may not be fully captured by Jalen at times, as it focuses on 

the pattern-related method being measured. However, we sought to mitigate this threat by: (a) 

verifying cases of dynamic biding while selecting experimental units (i.e., pattern related methods); (b) 

                                                             
10Also known as program counter, instruction address register, instruction counter and instruction sequencer, instruction 

pointer is a processor register that indicates the current assembly command to be executed. 
11Dynamic binding procedure refers to the action of resolving a binding (e.g., decide which method or variables with 

same names to use) at runtime, when it is not possible at compile time.  



looking for outlier measurements; and (c) checking the correlation of the measurements against pTop 

(see Section 5.2). 

7.2. Implications to Researchers and Practitioners 

The findings of this paper suggest that pattern solutions are less harmful or even beneficial to energy 

consumption when the responsibility assigned to the pattern instance (i.e., the implemented behavior) 

is non-trivial. Therefore, we advise practitioners on considering this parameter when deciding whether 

or not to apply Template Method or State/Strategy patterns. GoF patterns serve several purposes: 

structuring and organizing source code; supporting quality attributes, such as maintainability and 

reusability; and improving communication between stakeholders by providing a common language. 

For these reasons, GoF patterns have become a common practice in software development. Several 

studies that have investigated only a subset of the GoF patterns report that approx. 30% of the classes 

of a system may participate in pattern instances [15], [16], [54]. However, as studies have shown, there 

are also side effects on using GoF patterns [17], and energy efficiency is one of the aspects  in which 

the software is negatively affected. Thus, we also advocate the careful consideration of drivers (e.g., 

energy efficiency) of the software project, balancing them against the forces (e.g., complexity of the 

behavior to be implemented) that influence the decision on applying a certain pattern or not.  

Based on the aforementioned negative relationship between GoF patterns and energy efficiency, 

one may wonder why using GoF patterns in systems that have energy efficiency as a main concern. 

Nevertheless, GoF patterns are widely adopted and, therefore, we expect that even systems that have 

energy as a concern may have a non-negligible amount of GoF pattern instances, either intentionally 

(to promote other quality attributes) or unintentionally. Therefore, the results of our study can be used 

to help control a system’s efficiency in different situations. On the one hand, while developing 

software, our findings may support the management of unintentional harm to energy efficiency (via not 

necessary use of GoF patterns), as well as intentional use to balance various quality attributes. On the 

other hand, when refactoring a system for a new purpose, the findings of this study may support the 

decision making process on what parts of the system to refactor and how. 

This study has three main implications to researchers. First, the usage of non-trivial systems for 

investigating patterns energy consumption is a challenging task, since researchers need to a) deal with 

pattern variants, b) decide which variants have to be investigated, c) incorporate these variations into 

the alternative solution, and d) measure the energy consumption of the pattern instance by executing 

the same scenario for which the pattern instance was intended to. However, the obtained evidence can 

be very insightful as shown by this study. Therefore, we do suggest that when investigating the energy 

consumption of GoF patterns, non-trivial systems should be used. Second, the use of method level 

energy measurements has proven to provide extra information for investigating the hypotheses both 

visually and statistically. It also contributed to the reliability of our findings by triangulating results of 

process and method level measurements. Third, when investigating the energy efficiency of GoF 

patterns, exploring design parameters (e.g., SLOC and MPC) proved to be highly relevant. By 

investigating the parameters, we were able to not only suggest whether or not the pattern solution is 

worse than the alternative solution, but also, and most importantly, we were able to interpret this 

phenomenon. By further investigating this hypothesis and observing the magnitude of the influence of 

these parameters, we were able to highlight the circumstances under which the patterns are more 

efficient than the alternative. Therefore, we suggest exploring similar parameters and other design and 

source code properties when investigating the influence of GoF design patterns to energy consumption. 

8. THREATS TO VALIDITY 

In this section, threats to construct validity, internal validity, reliability, and external validity of this 

study are discussed. Construct validity reflects how far the studied phenomenon is connected to the 

intended studied objectives. Internal validity expresses to what extent the observed results are 

attributed to the performed intervention, and not to other factors. Reliability is linked to whether the 

experiment is conducted and presented in such a way that others can replicate it with the same results. 

Finally, external validity deals with possible threats when generalizing the findings derived from 

sample to the entire population. 

Concerning construct validity, one threat is that the transformation of non-trivial systems may be 

risky since, due to their complexity, it is more error-prone. Although “synthetic” programs could 

facilitate the control over external factors, we believe that non-trivial programs were imperative to 

investigate pattern-related methods. Thus, to mitigate this bias, we took several measures while 

selecting experimental units (see Sections 4.2 and 4.3). The collected energy measurements pose 

another threat, as we consider consumption only by the CPU. If we included energy consumed by other 



resources, such as hard drive and network, the results might change. First, by only looking at CPU 

consumption, it enabled us to use three different measurement tools to increase the confidence on the 

obtained measurements. To mitigate this threat further, we verified that the energy consumed by the 

memory was negligible and do not represent a considerable bias (see Section 5.2), as well as restricted 

the selection of pattern instances to those that do not require operations such as writing to or reading 

from files and communicating through network. Another threat concerns the level of measurement 

(i.e., process or method level), which can be a source of bias to the study as different perspectives 

could lead to different results. For that reason, we performed the analysis at both levels (process and 

method), and checked their correlation. Additionally, some lack of precision could have been 

introduced by a limitation of the used energy measurement tools. To mitigate this threat, we selected 

tools that have been validated in different studies. In addition to that, we performed data triangulation 

for all measurements by using three different tools. Moreover, the measured data may also be slightly 

biased, since small environmental changes might exist between different executions, leading to 

different values. To mitigate this threat, we used a basic OS, installing only strictly required 

dependencies, and every measurement was performed multiple times, using the average value for the 

analysis. 

The main threat to the internal validity of our experiment is related to whether the observed 

differences in the energy consumption were caused by the implemented alternatives, and not by other 

factors. To mitigate this threat, we acted from measurement and implementation perspectives. On the 

one hand, we used Jalen, which is able to measure only the energy consumed by the experimental unit 

(i.e., pattern related-method), discarding the energy consumed by the rest of the application, JVM, and 

OS. In addition, the procedure to measure the energy consumed by pattern and alternative solutions 

was identical. On the other hand, while implementing the alternatives, we assured that only the design 

changes proposed for the alternatives (see Sections 3.2 and 3.4) were implemented, not altering the 

behavior of the pattern-related method. Another threat to this category is the fact that the set of 

parameters that we investigated for answering RQ3 is not exhaustive, and we cannot guarantee that 

differences in energy consumption have been comprehensively explained, since there might be other 

parameters that influence the energy consumption of design patterns.  

In order to mitigate reliability threats, two different researchers were involved in the data 

collection, double-checking all outputs. In addition to the two researchers, a third one was involved in 

the analysis procedure. To implement the alternative solutions, the provided guidelines are sufficient 

and any replication should lead to the same results. To complement that, all scripts and source code are 

available on-line12 and, therefore, all raw data can be reproduced with small variations by using the 

same energy measurement tools and environment setup. Finally, data analysis bias is limited in this 

study, since no subjectivity was involved. 

Finally, concerning external validity, we have identified four possible threats. First, we investigated 

a limited number of OSS projects. However, the two selected projects are very different, both in terms 

of domains and characteristics (e.g., Joda Time has more than the double of SLOC per class when 

compared to JHotDraw); this partially alleviates this threat. Second, we investigate a limited number of 

pattern instances, as well as a limited range of pattern variants. However, we evaluate a fair number of 

pattern-related methods (i.e., units of analysis), what partially alleviates this threat. Nevertheless, a 

larger sample could strengthen the results, and increase our confidence on generalizing our findings. 

Next, the presented results are dependent on the used alternatives and pattern solutions. Thus, different 

alternatives or pattern variations could lead to altered results. For example, alternative and/or pattern 

solutions optimized for energy efficiency may increase the observed difference between the solutions, 

or even invert it. However, the focus of our study was to analyze representatives of existing and 

commonly used non-trivial software, in terms of both pattern and alternative design solutions, as such 

investigation would impact a plethora of software. Therefore, we selected the alternatives that we 

believe to be the most common, as well as considered the original definition of the studied patterns 

(also with small and similarly common variations), so as to have a more representative sample of 

solutions that exist in practice. Finally, the results of this study cannot be directly generalized to other 

GoF patterns, especially those that do not use polymorphism as their main mechanism. 

9. CONCLUSIONS 

In this paper we investigated the effect of Template Method, and State/Strategy GoF design patterns on 

energy consumption. In particular, we conducted an experiment on two non-trivial OSSs, JHotDraw 

and Joda Time, from which we identified 21 pattern instances and 169 pattern-related methods (i.e., 

methods that use the pattern structure), implemented an alternative (non-pattern) solution for each 

                                                             
12http://www.cs.rug.nl/search/uploads/Resources/JSEP_Feitosa_etal_resources.zip 



instance (which contained the alternative implementation of the pattern-related methods), and 

measured the energy consumption of both solutions using tools at both process and method levels. 

Based on the collected data, we identified which solution was more energy-efficient and what 

parameters affect the efficiency of the pattern solution. To this end, we collected two metrics from 

every pattern-related method, SLOC and MPC, and correlated them to the efficiency of the pattern 

solution. The results of the study suggest that the alternative solution excels the pattern solution in 

most cases. However, in some cases the pattern solution had similar or even slightly lower energy 

consumption than the alternative solution. Since these cases were identified in large pattern-related 

methods and/or methods with high number of method invocations, it is suggested that these patterns 

are more suitable when more complex behaviors have to be implemented. We clarify that some factors, 

such as the considered design pattern alternatives, may have influence on the aforementioned 

observations, and that altering these factors may change the aforementioned observations (for more 

details, see Section 8). 

The findings of this study have value for both practitioners and researchers. On the one hand, 

practitioners can reuse this knowledge to perform more informed decision-making when applying GoF 

patterns. On the other hand, researchers can learn from the reported experiences and reproduce aspects 

of this study when investigating GoF design patterns and/or energy consumption. Finally, there are 

several opportunities of future work. This study can be replicated with more experimental units or 

more source code metrics. Different tools, especially hardware tools, can be used to not only 

triangulate the results but also investigate other effects (e.g., from the remainder of the OS or the 

computer itself). In addition, the same or improved setup can be used to investigate other GoF design 

patterns, specially focusing on the other two pillars of object-orientation that have not been 

investigated in depth by this study (i.e., encapsulation and inheritance). Lastly, a case study can be 

carried out on systems that have energy efficiency among their main concerns, investigating how GoF 

patterns and alternatives are used within such context and comparing these systems with other kinds of 

systems.  
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