The Evolution of Design Pattern Grime: An Industrial
Case Study

Daniel Feitosa] [0000-0001-9371-232X] , Paris AVgeri ou] [0000-0002-7101-0754] ,

Apostolos Ampatzogloy'l0000-0002-5764+73021 "apq Elisa Yumi Nakagawa®

'Department of Mathematics and Computer Science, University of Groningen, the Netherlands
*Department of Computer Systems, University of Sdo Paulo, Brazil

d.feitosa@rug.nl, paris@cs.rug.nl, a.ampatzoglou@rug.nl,
elisa@icmc.usp.br

Abstract. Context: GoF design patterns are popular among both researchers
and practitioners, in the sense that software can be largely comprised of pattern
instances. However, there are concerns regarding the efficacy with which soft-
ware engineers maintain pattern instances, which tend to decay over the soft-
ware lifetime if no special emphasis is placed on them. Pattern grime (i.e., deg-
radation of the instance due to buildup of unrelated artifacts) has been pointed
out as one recurrent reason for the decay of GoF pattern instances. Goal: Seek-
ing to explore this issue, we investigate the existence of relations between the
accumulation of grime in pattern instances and various related factors: (a) pro-
jects, (b) pattern types, (c) developers, and (d) the structural characteristics of
the pattern participating classes. Method: For that, we empirically assessed the-
se relations through an industrial exploratory case study involving five projects
(approx. 260,000 lines of code). Results: Our findings suggest a linear accumu-
lation of pattern grime, which may depend on pattern type and developer.
Moreover, we present and discuss a series of correlations between the accumu-
lation of pattern grime and structural characteristics. Conclusions: The outcome
of our study can benefit both researchers and practitioners, as it points to inter-
esting future work opportunities and also implications relevant to the refine-
ment of best practices, the raise awareness among developers, and the monitor-
ing of pattern grime accumulation.

Keywords: design patterns; pattern grime; industrial case study

1 Introduction

The most popular catalogue of design patterns among practitioners consists of the
23 GoF design patterns (from the Gang of Four—Gamma, Johnson, Helm, and Vlis-
sides) [1]. In Java applications, it has been reported that the number of classes that
participate in GoF pattern occurrences can vary from 15% to 65% (e.g., in software
libraries) [2, 3], leading to a significant influence on the overall quality of the system.
However, the effect of patterns on quality is not uniform [4]; the same pattern can

have both a positive and a negative effect on the quality of a software product. There-
fore, gaining more insights on how exactly patterns have an impact on quality is of
paramount importance. A significant parameter that determines how pattern instances
affect quality is the amount of artifacts (e.g., methods and attributes) that exist in the
pattern-participant classes, which however, are not compliant to the original pattern
definition [5]. Izurieta and Bieman [5] named this phenomenon pattern grime and
defined it as the degradation of design pattern instance due to buildup of unrelated
artifacts in pattern instances. For example, grime can be introduced to a Template
Method pattern instance by adding public methods that are not invoked inside the
template method. Similarly, grime is introduced to a concrete state class of a State
pattern instantiation when adding public methods other than those defined in the state
interface. For both the aforementioned examples, such changes would lead to a re-
duced cohesion for the specific class, as well as reduced levels of source code under-
standing. Thus, the accumulation of grime can certainly be harmful to the quality of
pattern instances and the overall system [5-7].

Despite the potential effect of pattern grime on software quality, there is currently a
lack of studies that investigate factors related to the accumulation of pattern grime.
Therefore, in this study, we take a first step by exploring two types of factors related
to the accumulation of pattern grime, i.c., different: projects, pattern types, develop-
ers, and structural characteristics of pattern-participating classes (e.g., coupling and
lack of cohesion). To this end, we performed an industrial case study, in which we
analyzed five projects (that sum up to approx. 260,000 source lines of code) contain-
ing eight different GoF pattern types and implemented by 16 developers. To measure
grime, we provide an open-source tool that automates the assessment of several pat-
tern grime metrics. The outcome of this study sheds light on the factors that influence
the accumulation of grime in pattern instances. Our results can be used by architects
and designers to develop best practices while using design patterns, but also to moni-
tor the evolution of grime and its respective effect on software quality.

The remainder of this paper is organized as follows. In Section 2, we present work
related to ours. The design of the case study is presented in Section 3, reported ac-
cording to the guidelines of Runeson et al. [8], i.e., the Linear Analytic Structure. In
Sections 4 and 5 we present the results of our study and discuss the most important
findings, respectively. We report on the identified threats to validity and actions taken
to mitigate them in Section 6. Finally, in Section 7 we conclude the paper and present
some interesting extensions for this study.

2 Related Work

In this section, we present work reporting on empirical studies on the evolution of
grime and / or its relation to other characteristics of software pattern instances (e.g.,
quality attributes and metrics).

Izurieta and Bieman [9] investigated the evolution of various design pattern in-
stances from an open-source project to understand how patterns decay. The results
suggest that the main reason for pattern instances to decay is due to grime. Schanz

and Izurieta [10] proposed a taxonomy for subtypes of modular grime (one type of
grime) and performed a pilot study on nine pattern instances evolving throughout
eight versions of one industrial software. The study validated the proposed classifica-
tion, as well as suggested an increase of pattern grime. Regarding how the accumula-
tion of grime correlates to other characteristics of the system, Griffith and Izurieta
[11] proposed a taxonomy for one type of grime, class grime, and performed a pilot
study on randomly selected pattern instances from open-source projects to investigate
the effects of class grime on design pattern understandability, and found this quality
attribute to be negatively affected by the accumulation of class grime. In another
study, Izurieta and Bieman [6] evaluated the testability of design pattern instances
from three different patterns and found that as grime is accumulated, other issues such
as code smells also appears, and the testability of the pattern instances decreases.

Izurieta and Bieman [5] studied the accumulation of grime and rot (another form of
pattern decay, due to deterioration of the structural or functional integrity) during the
evolution of pattern instances of three open-source systems. The study also correlated
grime to testability, adaptability and pattern instability. The results are similar to those
observed in the aforementioned studies, including increase of pattern grime and nega-
tive correlation with testability and adaptability. The authors also reported that they
could not identify rot of pattern instances nor correlation between grime and pattern
instability. Dale and Izurieta [7] reported an experiment to study the correlation be-
tween three subtypes of modular grime and technical debt. Pattern instances of three
example systems were used and modular grime was systematically injected in the
instances. The results suggest that one subtype of modular grime (i.e., strength) is
more strongly correlated to technical debt, in the sense that strong coupling (through
class attributes) is correlated with stable grime, while weak coupling (other kinds of
coupling) is correlated to increased technical debt.

In comparison to related work, we contribute the following: (a) we studied five in-
dustrial non-trivial projects that collectively provided 36,571 units of analysis (i.e.,
editions to pattern instances’ source code, see Section 3). Therefore, we can compare
our results with those obtained from the analysis of open-source projects and toy ex-
amples; (b) among other facets, we investigated how pattern grime is accumulated by
different developers (16 in total), which has not been considered in previous studies;
and (c) we studied the correlation between pattern grime and multiple structural met-
rics of pattern instances, which has not been thoroughly explored in previous studies.

3 Study Design

Objectives and Research Questions (RQs): The goal of this study, described using
the Goal-Question-Metric (GQM) approach [12], is formulated as follows: “analyze
instances of GoF design patterns for the purpose of investigating the factors of pro-
ject, pattern type, developers and structural characteristics of pattern participants with
respect to their relationship with pattern grime, from the point of view of software
designers in the context of industrial software development”. Based on this goal, we
defined the following research questions—RQs:

RQ,: How does grime accumulate in pattern instances?

RQ, ;: Are there differences in accumulated grime among different projects?

RQ, ,: Are there differences in accumulated grime among different pattern types?
RQ, ;: Are there differences in accumulated grime among different developers?

RQ, aims at assessing pattern grime within the five projects and exploring differences
across three different factors: projects, types of pattern (e.g., Observer, Template
Method) and developers. We chose these factors as they may potentially influence the
accumulation of grime: the projects vary in requirements, design, size, scope etc. and
may thus influence grime accumulation; the types of patterns exhibit different solu-
tions and may allow or inhibit the accumulation of grime; the developers have diverse
backgrounds and experience thus knowingly or inadvertently accumulating grime
differently.

RQ,: Are structural characteristics of the pattern participants related to the accu-
mulation of grime?

RQ), aims at investigating the relationship between levels of grime and a different type
of factor: the structural characteristics of pattern-participating classes. This helps to
further understand the details of how the structure of the pattern itself relates to accu-
mulating grime, and can thus inform best practices on the usage of design patterns.

Case Selection, Unit of Analysis, and Subjects: To answer the research questions,
we designed an exploratory case study [8], in which we analyze five industrial pro-
jects from one company in the domain of web and mobile applications development.
Two projects were developed by two independent teams, whereas the remaining three
projects were developed by a third team. We selected an industrial case study, since
there is a lack of empirical studies on pattern grime for such projects; most of the
previous studies have been performed on toy examples or open-source projects.

As cases, we used the pattern instances of the explored projects. From each case,
we recorded multiple units of analysis, based on the evolution of the specific instance.
In particular, we recorded a unit of analysis for every change in the instance (i.e., pair
of successive commits). We decided to focus on pairs of commits to isolate and as-
sess events (changes to pattern instances) performed by a single developer. This al-
lows to investigate developers as a potential factor influencing grime (see RQ1.3).

Variables and Data Collection: To answer the research questions, we extracted four
groups of variables:

1/ Identification of unit of analysis (commit, developer). To identify every unit of
analysis, we queried the git repository and extracted the author information and
files that were changed for every commit. We ignored merge commits, as they do
not provide new information regarding changes to files. In addition, we considered
only changes to java classes that participate in a pattern instance.

2/ Pattern information (instance-id, pattern). The collection of the pattern instances is
a time-consuming task. For that reason, we used two tools, namely SSA (Similari-
ty Score Analysis, v4.12) [13] and SSA+ (v1.0.0), to detect pattern instances and
performed a series of validations. In short, these tools allow us to detect pattern in-

stances of 12 types: Adapter / Command, Composite, Decorator, Factory Method,
Observer, Prototype, Singleton, State / Strategy, Template Method, and Visitor.
Due to space limitations, we do not elaborate on the SSA tool nor its validation.
However, we used a similar design setup to detect patterns in a previous study
[14], in which all relevant information can be found. We note that we manually
verified various (randomly selected) outputs. Regarding SSA+, it detects 10 ex-
tended pattern-participant classes, i.e., that participate in the pattern but it is not
part of the main pattern structure (e.g., Concrete State / Strategy). The full list of
detected extended pattern participants is available in the tool’s website'. To vali-
date SSA+, we also manually verified randomly selected outputs.

3/ Assessment of grime change (cg-*, mg-*, 0g-*) between a pair of successive com-

mits. According to Izurieta and Bieman [9], there are three types of grime, which
can be assessed independently: class, modular and organizational. To measure the-
se types, we selected six metrics, as shown in Table I. Each metric is estimated
based on diverse design elements of pattern-participating classes: (a) class grime
metrics are based on attributes and public methods; (b) modular grime metrics are
based on incoming and outgoing dependencies; and (c) organization grime metrics
are based on package and their dependencies. Due to space limitations, we do not
elaborate further on the metrics, which are calculated as described by Izurieta and
Bieman [9]. We chose these metrics because they allow us to assess different as-
pects of each type of grime, and they were previously used and validated to assess
pattern grime in non-trivial systems [5]. To automate the calculation of the metrics,
we created an open-source tool, spoon-pttgrime* (v0.1.0), available online as a
public repository, which also contains further information on how the metrics are
calculated. To validate the tool, we manually verified the output for 20 pattern in-
stances (randomly selected) over five consecutive commits. Bugs were fixed and
additional verification rounds showed no errors. As we are interested in assessing
the change of grime in pattern instances for a pair of commits, we subtracted the
grime estimation at the current commit (identified by the unit of analysis) from the
estimation of the immediate previous commit (i.e., its parent).

4/ Assessment of structural change (s-*) between a pair of successive commits. To

assess structural change, we selected three sets of metrics, proposed by Chidamber
and Kemerer [15], Li and Henry [16], and Bansiya and Davis [17], accounting for
the 21 metrics presented in Table 1. We selected these metrics because they allow
us to investigate many characteristics of the structure of pattern participants, and
because they are well-known by both researchers and practitioners. To calculate
the metrics, we used Percerons Client, i.e., a tool developed in our research group
that automates the assessment of these metrics for Java classes. Percerons is a
software engineering platform [18] to facilitate empirical research in software en-
gineering and has been used for similar reasons in [11] and [19].

1

2

https://github.com/search-rug/ssap
https://github.com/search-rug/spoon-pttgrime

Presented in Table 1, these variables are recorded for each unit of analysis (i.e.,
change to pattern instance). The entire process of identifying and measuring the units
of analysis culminates in the creation of a dataset of all extracted variables for each
unit. This dataset is recorded as a table in which the columns correspond to collected
variables. We clarify that due to a non-disclosure agreement signed with the company
in this case study we cannot share the created dataset.

Analysis Procedure: To answer RQ,, we analyze the descriptive statistics of the
variables for unit identification, pattern information, and assessment of grime change.
As our study comprises several projects / subjects and encompasses several GoF
patterns, we derive data subsets, so as to group the units of analysis based on the
different analyzed factors (i.e., project, pattern and developer). When necessary we
also perform linear regressions and parametric or non-parametric tests [20] in order to
devise trends and test differences between groups. To answer RQ,, we first analyze
whether the distribution of all measurements for each metric is normally distributed.
If true, we can select the Pearson correlation method [20], otherwise the Spearman’s
rank correlation method [20]. For each pattern grime metric, we perform the analysis
as follows: first we calculate the correlation between the grime metric and all
structural metrics; next, we identify strong correlations (> 0.8) that are statistically
significant, and discuss the results from the perspective of grime accumulation.

Table 1. List of collected variables

Group Variable Description
. project Project from which the pattern instance was extracted
Unit . commit Hash of the commit in the git repository
Information
dev Developer author of the commit
Pattern inst_id ID of the pattern instance the class belongs to
Information pattern GoF design pattern of the instance
Difference in the total number of alien public methods in all classes
g C&MPM f the pattern instance (Class grime)
'é cg-na Differel?ce in the total nurpber of alien attributes in all classes of the
s 8 pattern instance (Class grime)
% S_:% mg-ca Difference in the pattern instance afferent coupling (Modular grime)
g0 mg-ce Difference in the pattern instance efferent coupling (Modular grime)
3] og-np Difference in the number of packages within the pattern instance
< (Organizational grime)
og-ca Difference in the fan-in at the package level (Organizational grime)
— S-wmc Difference in the average weighted methods per class
g s-dit Difference in the maximum depth of inheritance tree
é s-noc Difference in the average number of children
f 9 s-cbo Difference in the average coupling between object classes
° i:% s-rfc Difference in the average response for a class
g O s-lcom Difference in the average lack of cohesion in methods
% s-nom Difference in the average number of methods
2 s-mpc Difference in the average message-passing coupling

s-dac Difference in the average data abstraction coupling

Group Variable Description

s-sizel Difference in the lines of code

s-size2 Difference in the number of properties

s-dsc Difference in the design size in classes

s-noh Difference in the number of hierarchies

s-ana Difference in the average number of ancestors
s-dam Difference in the data access metric

s-camc Difference in the cohesion among methods of class
s-moa Difference in the measure of aggregation

s-mfa Difference in the measure of functional abstraction
s-nop Difference in the number of polymorphic methods
s-cis Difference in the class interface size

s-fan-in Difference in the afferent couplings

4 Results

In this section, first we briefly describe the collected data and subsequently address
each research question independently. We note that we investigated six metrics for
pattern grime, and therefore report the results for all metrics and highlight findings
independently for each one, when this is relevant. We collected a total of 1,422 com-
mits, from the five studied projects, that include the creation or modification of pat-
tern-participating classes. From these commits, 94% (i.e., 1,341) include modifica-
tions to one or more pattern instances. We identified 2,349 pattern instances of eight
different GoF patterns: (Object) Adapter-Command, Factory Method, Observer, Sin-
gleton, State-Strategy, and Template Method. Each pattern instance was created and
then modified up to 178 times (i.e., the maximum number of modifications for a sin-
gle instance). From the total number of pattern instances, 87% (i.e., 2,039) were mod-
ified at least once after being created, and 64% (i.e., 1,500) at least five times. The
data collection resulted in the identification of 36,571 units of analysis (i.e., creation /
modification of a pattern instance in a commit).

RQ1 - Accumulation of Grime: To study the differences in accumulated grime
among different projects, types of patterns and developers, we first present how the
assessed pattern grime metrics change within the instances’ evolution. Table 2 shows
the following descriptive statistics for the six metrics (previously presented in Table
1): minimum and maximum values, mean value among all units of analysis and
standard deviation (i.e., how much measurements vary from the mean value). Based
on the Table 2, we notice that grime can either reduce (i.c., negative measurement) or
increase. However, the data suggest that on average, grime in pattern instances tends
to increase during the instance’s evolution. Another observation is that the number of
packages in a pattern instance (og-np) seems to be the grime indicator that is less
likely to change, which is a probable sign of common design practices. Moreover,
despite considerably higher maximum values, we notice that the measurements are
consistently close to the mean, since the standard deviation is not much higher than
the mean (especially compared to maximum values).

Table 2. Amount of grime accumulated per commit

Metric Minimum Maximum Mean Std. Deviation

cg-npm -1.00 15.00 0.28 0.64
cg-na -1.50 9.50 0.12 045
mg-ca -3.75 44.00 0.21 1.18
mg-ce -10.00 85.00 1.61 453
og-np -0.25 2.00 0.02 0.14
og-ca -2.00 35.00 0.14 1.13

Next, we are interested in investigating how grime accumulated in different pro-
jects (RQ,). Fig. 1 depicts this information for the six metrics. P1 is the project with
most collected commits (605), while P5 provided the least commits (76). The y-axis
represents the mean amount of grime accumulated per modified instance in a given
commit. The x-axis represents consecutive commits. We note that the x-axis does not
represent the full history of commits. Our goal is to investigate the evolution of pat-
tern instances and, thus, we considered only commits that include the modification of
pattern-participant classes. By inspecting Fig. 1, we observe that every project indi-
vidually reflects the trend of the population, i.e., pattern grime linearly increases dur-
ing the project evolution. To verify this, we performed linear regression for every pair
<metric, project> and assessed how well the calculated equation fits the data.

project: —p1 - - -P2 P3 —--P4 P5
accumulated cg-na (mean) accumulated cg-npm (mean) accumulated mg-ca (mean)
0 100

607

80 507

40

1 T T T T 07 T T T T f T T T T
c0 cl150 c300 450 ¢600 c0 c150 300 450 c600 c0 cl150 300 450 ¢600
accumulated mg-ce (mean) accumulated og-ca (mean) accumulated og-np (mean)

8001 24 6
19 d
6007
-
141

4001

2001

i
-1 (=

T T T T T T T T T T 071 T T T T
c0 c150 300 c450 c600 c0 cl50 c300 450 <600 c0 c150 c300 450 c600
commit history commit history commit history

Fig. 1. Accumulation of grime per project for each grime metric

In Table 3, we present the results, which are all statistically significant. We notice
that the vast majority of the equations are powerful descriptors, since R* (i.e., how
close the data fit the regression line) is close to 1. The exceptions are the tuples <og-
np, PI1>, <og-np, P5>, and <og-ca, P5>, which regard metrics of organization
grime. This is due to the drastic change in the accumulated grime observed for these
tuples, which may reflect systematic changes in the design (e.g., package renaming).

Table 3. Linear regression of pattern grime accumulation per project

Metric Project Equation R? | Metric Project Equation R?
P1 1391 +0.15x 091 P1 547 +0.07x 0.93
P2 -0.28 +0.19x 0.99 P2 -0.59 + 0.08x 0.92
cg-npm P3 -1.79+0.24x 099 | cg-na P3 -0.51 +0.11x 0.99
P4 744 +0.24x 095 P4 1.89 + 0.13x 0.95
P5 532+0.37x 0.95 P5 344 +0.17x 0.89
P1 227+0.04x 0.90 P1 129.84 + 1.40x 0.89
P2 -1.72+034x 099 P2 -9.04 + 1.00x 0.99
mg-ca P3 -224+0.17x 093 | mg-ce P3 -1542+134x 099
P4 568+0.11x 0.92 P4 1536 + 1.21x 0.96
P5 0.71 +0.04x 0.87 P5 2647 + 1.20x 0.89
P1 2.00+0.01x 0.58 P1 1.09 + 0.03x 0.92
P2 -0.06 + 0.00x 0.82 P2 3.114+0.12x 0.95
og-np P3 -020+0.02x 0.96 | og-ca P3 -3.86 + 0.08x 0.90
P4 -0.02+0.01x 0.89 P4 2.61 +0.03x 0.81
P5 0.12+0.01x 0.61 P5 1.04 + 0.00x 0.64

Further, we analyzed the dataset regarding different GoF patterns (RQ),,). In Table
4, we show the descriptive statistics for each metric and identified pattern. Due to
space limitations, we do not report the results for the Observer and Template Method
patterns, as the number of units of analysis for them is negligible (18 and 5, respec-
tively). The results suggest that different patterns are subject to different levels of
grime. For example, it seems that little grime is accumulated in instances of Singleton
after their creation, whilst instances of Factory Method tend to accumulate the most
amount of grime. To statistically investigate the difference between patterns, we per-
formed pairwise comparisons (Mann-Whitney tests), which, due to lack space, are
reported within the supplementary material [21]. The results showed that the differ-
ences in most comparisons (86% of the 36 tests) is statistically significant, thus sup-
porting our findings.

Table 4. Amount of grime accumulated per pattern

Metric Pattern %\Ium. of - Num. of Min. Max. Mean Std',)
instances changes Deviation
Adapter-Command 770 13225 -3.00 17.00 0.12 0.53
co-na Factory Method 61 776 -342 13.00 0.15 0.78
Singleton 83 281 -1.00 1.00 0.01 0.16
State-Strategy 1121 19937 -4.00 13.00 0.10 0.44

Num. of Num. of Std.

Metric Pattern . Min. Max. Mean .
instances changes Deviation
Adapter-Command 770 13225 -300 26.00 0.21 0.77
Factory Method 61 776 -7.58 21.67 0.35 142
P Gingleton 83 281 200 400 006 0.44
State-Strategy 1121 19937 -8.00 2133 0.21 0.80
Adapter-Command 770 13225 -200 44.00 0.08 0.89
Factory Method 61 776~ -700 102,00 0.59 4.15
M Singleton 83 281 <100 700 049 0.96
State-Strategy 1121 19937 -1500 4400 0.12 0.87
Adapter-Command 770 13,225 -20.00 197.00 1.19 5.60
Factory Method 61 776 -13.00 60.00 144 440
e Singleton 83 281 -400 1700 047 1.85
State-Strategy 1121 19,937 -30.00 159.00 1.23 5.66
Adapter-Command 770 13225 -200 35.00 0.06 0.75
Factory Method 61 776 -36.00 36.00 0.17 2.32
98 Singleton 83 281 -100 2700 041 2.19
State-Strategy 1121 19937 -6.00 34.00 0.06 0.62
Adapter-Command 770 13,225 0.00 2.00 0.01 0.13
Factory Method 61 776 -1.00 3.00 0.03 0.21
98P Singleton 83 281 000 100 00l 0.10
State-Strategy 1121 19937 -1.00 3.00 0.01 0.15

The last facet we investigated was how different developers accumulate grime
(RQ;). Due to space limitations, we do not report the complete descriptive statistics
for each metric and developer, which are available within the supplementary material
[21]. In Table 5, we present the number of pattern instances maintained by the 16
developers, changes to pattern instances and mean value of the grime metrics. By
analyzing the results, we notice that some developers seem to consistently accumulate
more grime than others (e.g., D7, D8 and D9), or less grime than others (e.g., D1 and
D3), with respect to most metrics. Furthermore, we can observe that developers that
changed pattern instances more often tend to accumulate less grime. Seeking to sup-
port our observations statistically, we compared pairs of developers based on every
metric using the Mann-Whitney test. By observing the findings of the test, we suggest
that 73% of the 396 tests are statistically significant, and that the non-significant tests
regard mostly the number of packages (og-np). Due to lack space, detailed results are
reported on the supplementary material [21].

Table 5. Average amount of grime accumulated per developer

Num. of Num. of

Developer instances changes cg-na cg-npm mg-ca mg-ce 0g-ca 0g-np
D1 465 7,525 008 0.17 0.04 0.93 0.04 0.00
D2 1,132 6,232 0.12 034 0.20 1.25 0.05 0.00
D3 549 5,232 0.07 0.07 0.04 0.85 0.01 0.00
D4 837 5,141 0.10 0.14 0.13 0.96 0.04 001

D5 335 3,442 0.10 023 0.04 135 0.02 002

Num. of Num. of

Developer instances changes cg-na cg-npm mg-ca mg-ce 0g-ca 0g-np
D6 469 1,554 0.13 024 0.14 2.28 024 0.00
D7 292 1,406 0.17 029 0.23 2.54 0.19 005
D8 326 1,346 020 026 0.21 1.72 0.18 0.02
D9 161 697 0.13 0.38 0.27 1.68 020 0.02
D10 225 636 007 037 0.24 1.05 027 001
D11 233 515 001 0.19 0.34 0.37 0.06 0.00
D12 170 431 023 028 0.06 1.89 0.00 0.00
D13 41 56 0.79 1.64 0.89 8.04 029 021
D14 13 17 000 0.00 0.00 2.06 0.00 0.00
D15 3 8 0.00 0.03 -0.25 0.00 038 0.00
D16 2 4 0.00 0.00 0.00 0.75 0.00 0.00

Summarizing the results for RQ,, pattern grime: (a) is likely to increase linearly
over system evolution; (b) grows similarly across different projects; (¢) accumulates
at different paces depending on the pattern type and the individual developer. The
interpretation of all findings reported in this section, as well as their implications to
researchers and practitioners are discussed in Section 5.

RQ2 - Structural Characteristics and Pattern Grime: To assess the correlation
between pattern grime and structural metrics, we first verified whether all measure-
ments for each metric are normally distributed. We found that not all are normally
distributed and, thus, we decided to use a non-parametric method to study the metrics:
Spearman’s rank correlation. All assessed correlations are presented in Table 6, and
are all statistically significant.

Table 6. Correlation between grime and structural metrics

cg-npm __cg-na__mg-ca__mg-ce 0og-np og-ca
ss-wme 0.86 044 038 048 046 0.38
s-dit 0.44 053 055 043 099 071
s-noc 045 052 0.60 041 099 073
s-cho 047 0.67 050 0.73 0.46 041
s-rfc 0.65 054 031 0.65 041 0.33
s-lcom 0.70 035 032 0.36 0.35 0.31
s-nom 0.86 044 038 048 046 0.38
s-mpc 043 044 022 0.55 0.35 0.27
s-dac 0.36 087 034 0.59 0.56 042
s-sizel 0.69 053 031 0.58 041 0.35
s-size2 0.79 0.65 0.38 0.58 044 038
s-dsc 0.44 053 056 043 099 0.0
s-noh 0.38 043 050 0.35 0.77 0.60
s-ana 045 053 051 043 0.93 0.66
s-dam 0.34 056 042 043 0.76 0.54
s-camc¢ -0.14 0.16 0.17 0.03 045 0.30
s-moa 0.37 090 036 0.61 0.58 0.44

cg-npm __ cg-na _mg-ca__mg-ce 0og-np og-ca

s-mfa 0.03 0.11 0.03 0.08 0.21 0.07
s-nop 0.71 0.35 0.48 0.34 0.51 043
s-cis 0.97 0.41 0.41 0.44 0.48 0.41

s-fan-in 0.46 0.42 0.90 0.36 0.70 0.63

Regarding the metrics for class grime, we make the following observations. The
metric cg-npm is strongly correlated (> 0.8) to s-wmc, s-nom, and s-cis. This may be
an indication that when many methods are added to pattern-related classes it is com-
mon that a large portion of them are not related to the pattern realization. The metric
cg-na is strongly correlated to s-dac and s-moa. This may be an indication that a con-
siderable part of the pattern instance coupling is coming from added attributes. This
may not be necessarily an alert for bad design, but it rather depends on how many
attributes are added. Regarding modular grime, we notice that the metric mg-ca is
strongly correlated to s-fan-in only, which is a metric that is similar to mg-ca, but at
class level. This suggests that most of the pattern instance afferent coupling comes
from regular afferent coupling of the pattern participants. This may indicate that pat-
tern instances tend to evolve by adding functionality not related to the pattern. The
metric mg-ce is not strongly correlated to any metrics, whereas the strongest correla-
tions are with s-rfc and s-cbo. These moderate correlations also indicate that, to some
extent, the introduction of coupling in pattern instances is also introducing grime.
Finally, regarding organizational grime, the metric og-np is strongly correlated to s-
dit, s-noc, s-dsc, and s-ana. Despite the strong correlations, this finding may be incon-
clusive as og-np rarely changes and this is probably the main reason for such high
correlations. Finally, the metric og-ca is not strongly correlated to any metrics, where-
as the strongest correlations are with s-noc, s-dit and s-dsc. These moderate correla-
tions may indicate that, to some extent, the addition of new classes to the pattern in-
stance is to serve a new purpose, i.e., serve a class not served before.

5 Discussion

In this section, we discuss the findings of our case study, as well as their implica-
tions. First, we interpret our findings, elaborating on explanations and consequences
for the observed results. Next, we present how our findings can benefit both research-
ers and practitioners.

Interpretation of Results: In Section 4, we reported the raw findings of our case
study, whereas in this section, we interpret them and compare them against the state-
of-the-art. First, regarding the evolution of grime, we observed that pattern grime is
constantly increasing along the versions of a system. This result can be considered
intuitive as it aligns with Lehman’s laws on software evolution: software quality dete-
riorates as the software becomes larger and more complex. However, there is an inter-
esting aspect of this finding: the amount of grime that is accumulated in pattern in-
stances clearly suggests that pattern-participating classes are not “closed to modifica-
tions”, in the sense that they are continuously “polluted” with artifacts (e.g., methods,

dependencies, etc.) that are not pattern-related. This pollution potentially influences
how the application of design patterns affects quality attribute indicators of a system.
Thus, pattern instantiation does not have a constant effect on quality, but it changes
along evolution. This finding is in accordance to the literature, which suggests that the
effect of GoF design patterns on product quality is not uniform along different pattern
instances [4], and aligns with results of studies with similar setups [5-7]. In particular,
Izurieta and Bieman [5] used the same pattern grime metrics and investigated some
patterns in common (e.g., Singleton and Factory Method), but by inspecting open-
source systems. The results of both studies agree on the increase of grime metrics.

Regarding the three parameters that were investigated in RQ, (i.e., grime in differ-
ent projects, patterns, and developers), the results suggested that the levels of grime
are similar at the different projects of the same company despite the little overlap of
developers among projects. This outcome can be potentially explained by the fact that
the developers were guided by the same practices, since they usually follow the same
company process. Nevertheless, this finding needs to be further validated through a
follow-up study conducted in different companies. Another finding is that the levels
of grime are different among pattern types, which complies with the literature sug-
gesting that different patterns have different effect on quality attributes (e.g., [3] on
stability). In particular, we noticed that instances of the Singleton pattern are the least
likely to accumulate grime, whereas instances of Factory Method are the most grime-
prone. The acknowledgement of certain good practices (e.g., avoid creation of God
Classes) can lead to more “grime-free” Singleton instances. However, if not careful,
developers may enlarge the responsibility of classes unnecessarily, as observed with
Factory Method instances, which may include methods that suffer from the Feature
Envy, Shotgun Surgery, or Divergent Change smells. Therefore, we suggest monitor-
ing pattern grime to identify spots of bad quality in the system. Such a practice may
support the preservation of quality indicators (such as understandability and testabil-
ity) at acceptable levels and thus increase productivity. Moreover, in comparison with
related work, Izurieta and Bieman [5] also show that Singleton pattern instances tend
to accumulate less grime, whereas on the contrary Factory Method instances tend to
accumulate grime faster than other investigated patterns. This observation further
supports that open-source and industrial systems have similarities with regards to the
accumulation of pattern grime.

From the last investigated parameter, we found that the levels of grime also differ
among developers. Their tendency to accumulate grime likely depends on diverse
factors. In particular, varied levels of programming skills, knowledge of the system
and of GoF patterns can explain the different tendency to accumulate grime. This
finding supports the belief that personalized quality assessments are required in indus-
try [22]. Furthermore, we observed that developers that performed more changes are
related to lower levels of accumulated grime, suggesting that most tasks (resulting in
more changes) are assigned to more experienced developers, inclined to accumulate
less grime. We suggest using such information about developers in order to improve
the software development process. For example, since our industrial partner use agile
methodologies, such information can be considered in daily Scrum meetings in which
issues are assigned to individual developers. The personalization of software devel-

opment and the effect on human factors in the quality of the software have been ex-
tensively studied in the last years, underlying the importance of such strategies.
Finally, regarding the relation of structural metrics with grime metrics, the results
point out that some of the most established structural quality metrics are related to the
grime metrics. For example, the fan-in metric is at least moderately correlated to all
grime metrics. This finding may be explained by the fact that pattern grime is calcu-
lated at the detailed-design level. Since class dependencies consist one of the main
elements of object-oriented design, it is intuitive to expect the obtained correlations,
e.g., between two metrics that are calculated based on class dependencies. However,
we note that the strength of the correlations varies among pattern instances, which
shows that structural metrics can be adequate predictors of grime accumulation.

Implications to Researchers and Practitioners: Researchers can benefit from our
results from several perspectives. We presented a thorough exploration of the accu-
mulation of pattern grime and we identified several factors that influence how pattern
grime grows during the evolution of pattern instances. This exploration not only rein-
forces the importance of investigating pattern grime, but also suggests several oppor-
tunities of future work, e.g., investigate characteristics of developers that tend to ac-
cumulate grime. In addition, the identified correlations between pattern grime and
structural metrics help on understanding how pattern grime is introduced, as well as
open further possibilities to investigate other relevant aspects of software systems and
processes, for example technical debt. We also foresee benefits of our results to prac-
titioners. Because we investigated five non-trivial projects, our findings can help
practitioners improve best practices on the usage of design patterns, e.g., by warning
developers to avoid accumulating grime on Singletons pattern instances. Moreover,
the metrics and correlations that we present can be considered in processes for moni-
toring the evolution of the software systems, e.g., high levels of fan-in in pattern-
participating classes may indicate that considerable grime is being inserted.

6 Threats to Validity

In this section, we discuss threats to construct validity (i.e., if the studied phenom-
enon is connected to the set objectives), reliability (if the study can be replicated), and
external validity (i.e., generalizability). We do not analyze internal validity, as we do
not try to establish causal relationships.

Concerning construct validity, the tool SSA is limited by its precision and recall:
false positives and negatives may bias the presented results. However, to the best of
our knowledge the used tool is among the most reputed in the community, and has
adequate performance (see Section 3). For mitigating this threat, we verified its preci-
sion and recall manually by checking 30 random pattern instances for each GoF pat-
tern that was detected (i.e., over 100 instances in total), which were all successful.
Additionally, regarding SSA+ and spoon-pttgrime, we acknowledge that the tools
may have bugs. However, we verified over 50 random outputs of each tool and, to the
best of our knowledge, no bugs were found.

In order to mitigate reliability threats, two different researchers performed the col-
lection and analysis, double-checking sample outputs. Besides that, we acknowledge
that non-disclosure agreements do not allow us to share the collected dataset. Howev-
er, all used tools are freely available and replication studies can be carried out. Final-
ly, the external validity of our study is threatened by the fact that we analyzed projects
of the same company, thus, our findings may not be generalizable to other projects
nor teams. However, our results relate to those obtained in other studies with similar
setup, e.g., we expected modular grime to be the main contributor for the pattern
grime, and we found mg-ce to clearly grow at a faster pace. In addition, our results are
bounded by our study design. Adding other GoF patterns, pattern grime metrics, or
structural metrics could lead to adjustments in our findings.

7 Conclusion

In this paper, we presented an exploratory case study on how grime accumulates in
pattern instances and its correlation to structural characteristics of the pattern partici-
pants. To this end, we investigated the evolution of 2,349 pattern instances of eight
patterns, assessing six grime metrics of three types of grime (class, modular and or-
ganization), as well as 21 structural metrics. We explored how grime is distributed
according to: (a) projects, pattern types, and developers, and (b) structural characteris-
tics of pattern-participating classes. The results suggest that pattern grime tends to
increase linearly, it is likely independent of project but depends on pattern type and
developer. Moreover, we identified a series of correlations between metrics for pat-
tern grime and structural characteristics, e.g., the coupling added to pattern partici-
pants tend to also introduce grime. Based on our results and observations, we envis-
age several opportunities for future work. First, some of the investigated facets on
how pattern grime accumulates can and should be further explored, e.g., what factors
may be related to developers that tend to accumulate more or less grime. Furthermore,
our observations based on the correlation between pattern grime and structural metrics
raised questions that can be investigated in confirmatory studies, e.g., whether most
introduced afferent coupling is indeed resulting in the accumulation of grime.

Acknowledgements. The authors would like to thank the financial support from the
Brazilian and Dutch agencies CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.:
204607/2013-2), as well as INCT-SEC (Grant N.: 573963/2008-8 and 2008/57870-9).

References

1. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc. (1995).

2. Khomh, F., Gueheneuc, Y .-G., Antoniol, G.: Playing roles in design patterns: An empirical
descriptive and analytic study. In: 25th IEEE International Conference on Software
Maintenance. pp. 83-92. IEEE (2009).

3. Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., Avgeriou, P.: The Effect of GoF
Design Patterns on Stability: A Case Study. IEEE Trans. Softw. Eng. 41, 781-802 (2015).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

Ampatzoglou, A., Charalampidou, S., Stamelos, I.: Research state of the art on GoF design
patterns: A mapping study. J. Syst. Softw. 86, 1945-1964 (2013).

Izurieta, C., Bieman, J.M.: A multiple case study of design pattern decay, grime, and rot in
evolving software systems. Softw. Qual. J. 21, 289-323 (2013).

Izurieta, C., Bieman, J.M.: Testing Consequences of Grime Buildup in Object Oriented
Design Patterns. In: First International Conference on Software Testing, Verification, and
Validation. pp. 171-179. IEEE (2008).

Dale, M.R., Izurieta, C.: Impacts of design pattern decay on system quality. In: Eighth
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. pp. 1-4. ACM Press, New York, New York, USA (2014).

Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley Blackwell (2012).

Izurieta, C., Bieman, J.M.: How Software Designs Decay: A Pilot Study of Pattern
Evolution. In: First International Symposium on Empirical Software Engineering and
Measurement. pp. 449—451. IEEE (2007).

Schanz, T., Izurieta, C.: Object oriented design pattern decay. In: Fourth ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement. pp. 1--8.
ACM Press, New York, New York, USA (2010).

Griffith, I., Izurieta, C.: Design pattern decay: the case for class grime. In: Eighth
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. pp. 1-4. ACM Press, New York, New York, USA (2014).

Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric paradigm. In:
Encyclopedia of Software Engineering. pp. 528-532. Wiley & Sons (1994).

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pattern detection
using similarity scoring. Softw. Eng. IEEE Trans. 32, 896-909 (2006).

Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investigating the
effect of design patterns on energy consumption. J. Softw. Evol. Process. 29, e1851 (2017).
Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20, 476-493 (1994).

Li, W., Henry, S.: Object-oriented metrics that predict maintainability. J. Syst. Softw. 23,
111-122 (1993).

Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28, 4-17 (2002).

Ampatzoglou, A., Michou, O., Stamelos, I.: Building and mining a repository of design
pattern instances: Practical and research benefits. Entertain. Comput. 4, 131-142 (2013).
Alhusain, S., Coupland, S., John, R., Kavanagh, M.: Towards machine learning based
design pattern recognition. In: 13th UK Workshop on Computational Intelligence. pp. 244—
251.IEEE (2013).

Field, A.: Discovering Statistics Using SPSS. SAGE Publications Ltd (2009).

. Feitosa, D., Avgeriou, P., Ampatzoglou, A., Nakagawa, E.Y.: Supplementary Material:

“The Evolution of Design Pattern Grime: An Industrial Case Study,”
https://doi.org/10.5281/zenodo.806800.

Amanatidis, T., Chatzigeorgiou, A., Ampatzoglou, A., Stamelos, I.: Who is producing more
technical debt? A personalized assessment of TD principal. In: Nineth International
Workshop on Managing Technical Debt. pp. 1--8. ACM (2017).

