This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2829895, IEEE Access
IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Correlating Pattern Grime and Quality
Attributes

Daniel Feitosa1, Apostolos Ampatzoglou1, Paris Avgeriou1, Senior Member, IEEE, and Elisa
Y. Nakagawaz, Member, IEEE

'Department of Mathematics and Computing Science, University of Groningen, Groningen 9700 AK, The Netherlands
*Department of Computer Systems, University of Sdo Paulo, Sio Carlos - Sdo Paulo, Brazil

Corresponding author: Daniel Feitosa (e-mail: d.feitosa@rug.nl).

This work was financially supported by the Brazilian and Dutch agencies CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.:
204607/2013-2), as well as the INCT-SEC (Grant N.: 573963/2008-8 and 2008/57870-9).

ABSTRACT The GoF design patterns are widely adopted in industry as best practices and their effect on
software quality has been long investigated in academia, with both positive and negative consequences
being observed. One important parameter that relates to the effect of patterns on quality is the deterioration
of pattern instances due to the buildup of artifacts unrelated to the pattern structure. This is called pattern
grime and can potentially diminish some of the benefits of using patterns in the first place. In this paper we
investigate the relation between pattern grime and three qualities, namely performance, security and
correctness. To this end, we conducted a case study with five industrial projects (approx. 260,000 lines of
code) implemented by 16 developers. Our findings suggest a correlation between the accumulation of grime
and decreased levels of performance, security, and correctness. Moreover, factors such as the project itself,
pattern type and the developer can influence this relation. The obtained results can benefit both researchers
and practitioners, as we provide evidence on the accumulation of pattern grime and its correlation to

performance, security and correctness, and how different factors affect these correlations.

INDEX TERMS Design patterns, pattern grime, quality attributes, industrial case study

. INTRODUCTION
The popular GoF (Gang of Four - Gamma, Johnson, Helm,
and Vlissides) design patterns catalog consists of 23 solutions
to recurring problems of object-oriented design [1].
Practitioners often adopt them as good design practices, but
at the same time they are concerned with their impact on the
system under development, particularly their effect on quality
attributes [2]. This concern is reasonable, as patterns can
occur in a significant part of software systems (from 15% to
65% of the classes) [3], [4]. Additionally, the state of the
research suggests that this effect of patterns on software
quality is not uniform, but it depends on a number of
parameters [5]. Several works have concluded that a pattern
can be beneficial in some cases and harmful in others, with
respect to a specific quality attribute, by studying the
structural characteristics of patterns, such as the number of
pattern participating classes, number of methods, etc [6]-[9].
One significant aspect of patterns’ instantiation that might
incurs negative consequences on software quality is the
presence of artifacts (e.g., methods or classes) that are not
related to the pattern rationale. This phenomenon has been

defined by Izurieta and Bieman [10] as pattern grime,
which is the “degradation of a design pattern instance due to
accumulation of artifacts unrelated to the instance”. For
example, in a Decorator pattern instance, the addition of
public methods to the class playing the Decorator role that
are not invoked inside the class playing the Component role
introduces grime into the instance as this new responsibility
is not compliant with the original definition of the pattern [1].
Such a change could reduce the cohesion of the class, as well
as hinder its understandability [9]. In general, accumulating
pattern grime contributes to the degradation of quality in
pattern instances [10]-[12]. Given the aforementioned high
percentage of class participation in GoF patterns, the effects
of ever-growing grime can be detrimental to the overall
quality of those systems.

Despite ongoing research on identifying the impact of
pattern grime on software quality [10], [11], [13], there are
still three shortcomings. First, only a few quality attributes
have been addressed so far, namely testability, adaptability
and understandability. Second, despite the existence of
industrial case studies examining how pattern grime

2169-3536 © 2017 |EEE. Translations and content mining are permitted for academic research only.

VOLUME XX, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission. 1

See http:/lwww.ieee.org/ ublications_standards/publications/rights/index.html for more information.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitte

or academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

accumulates [14], [15], there is a lack of industrial studies
regarding how the accumulation of grime relate to levels of
quality attributes; the existing studies are limited to open
source software. Finally, even these studies on open source
have limited depth regarding the investigation of factors that
contribute to this relation between grime and qualities. For
example, developers with different levels of involvement in a
project may accumulate grime differently. Identifying the
factors related to higher levels of grime can improve the
impact of design patterns on quality, as well as to a more
adequate allocation of resources in a project.

In this paper, we address the aforementioned shortcomings
through an industrial case study that examines the relation
between the accumulation of pattern grime and quality. The
study was designed according to the guidelines of Runeson et
al. [16], reported based on the Linear Analytic Structure [16].
Thus, we offer three advancements compared to the state of
the art (which is further elaborated in Section II). First, we
focus on three qualities that have not been studied:
performance, correctness and security. Second, we consider
five industrial software systems for our investigation, instead
of open source. Finally, we investigate three factors that may
influence the underlying relations:

e the projects under development have several
characteristics such as application domain and type of
systems (e.g., user application, library), which may
influence the usage of patterns and development
practices. Studies have already shown that projects
can accumulate pattern grime differently [10], [15].
Thus, we seek to investigate if this may reflect on the
relation between grime and levels of quality as well;

o the tpes of pattern (e.g., Template Method,
Singleton, etc.) have also been pointed out as a factor
on how pattern grime is accumulated [10], [14], [15].
The different structural and behavioral characteristics
of patterns may also be related to how exactly quality
is affected; and

o the developers often have different traits such as
background and experience, which may affect their
behavior and productivity [17]. Besides, developers
have also been found to accumulate grime differently
[15], which corroborates the relevance of also
investigating if this factor relates to a varying level of
quality.

The study is executed based on the commits performed by 16
developers during the implementation of five projects that
sum up to approx. 260,000 source lines of code. The studied
qualities are assessed through the number of violations of
various coding practices, each one mapped to one of the
qualities (for more details see Section I11.C.4).

The remainder of this paper is organized as follows. In
Section II, we present related work. The design of our case
study is described in Section III. In Sections IV and V, we
report on our results and discuss the most important findings.
We present the identified threats to validity in Section VI,

VOLUME XX, 2017

together with actions taken to mitigate them. In Section VII,
we conclude the paper and present some interesting
extensions for this study.

Il. RELATED WORK

In this section, we focus on the terminology related to pattern
grime, and address empirical studies that investigate the
relation between accumulation of grime and quality
attributes.

A. DESIGN PATTERN GRIME AND QUALITY
ATTRIBUTES

Pattern grime concerns the degradation of pattern instances
without breaking down the original structure on the pattern
definition [10]. This degradation occurs through the addition
of associations that do not comply with patterns’
responsibilities (e.g., addition of a public method that is not
in the definition), which can accumulate along the evolution
of the instance and obscure their design [11]. Izurieta and
Bieman [18] established that the added associations can be
assessed from three base perspectives, i.e., there are three
forms of pattern grime. Class grime regards class-related
elements (e.g., number of attributes, methods, or children)
that are unrelated to the role of a class in the pattern instance.
Modular grime regards relationships (e.g., dependency,
generalization) between classes of the pattern instance and
other classes, which are not predicted in the definition of the
pattern. Organizational grime regards how pattern-
participant classes are distributed into packages and/or
namespaces. This threefold classification was further refined
by Schanz and Izurieta [14], who provided a taxonomy of
subtypes for modular grime, and by Griffith and Izurieta
[13], with a taxonomy of subtypes for class grime.

Regarding the relation between the accumulation of
pattern grime and the levels of quality attributes, we
identified three empirical studies. Izurieta and Bieman [11]
investigated how grime is associated with the testability of
pattern instances. For that, they considered instances of
Singleton, Visitor and State patterns obtained from an open-
source system and assessed their testability by the number of
test cases necessary to cover them. By analyzing the
testability against the accumulation of modular grime,
Izurieta and Bieman found that testability decreases (i.e.,
more test cases are needed) as grime accumulates. Moreover,
other issues such as the appearance of code smells also
aggravate. In a complementary study, Izurieta and Bieman
[10] explored how pattern grime affects the testability and
adaptability (measured by pattern instability) of instances
from three open-source systems. They examined all three
forms of pattern grime (i.e., class, modular and
organizational) and again observed a negative impact. Both
testability and adaptability decreased with the accumulation
of grime, although the results regarding organizational grime
were inconclusive due to lack of more data. Finally, Griffith
and Izurieta [13] investigated how the understandability of

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

pattern instances changes due to the accumulation of grime.
To this end, they focused on class grime and randomly
collected pattern instances from a database of open-source
components [19]. By correlating the accumulated grime with
understandability (assessed according to the QMOOD quality
model [20]), they found that this quality attribute is also
affected negatively.

B. COMPARISON TO STATE OF THE RESEARCH

In Table I, we compare the main parameters that differentiate
our study from related work. In particular, we emphasize
that: (a) we investigated three quality attributes (i.e.,
performance, security and correctness) that have not been
addressed in this context; (b) we studied five industrial non-
trivial ~ projects (in contrast to open-source ones) that
collectively provided 36,571 wunits of analysis (i.e.,
modifications to the source code of pattern instances, see
Section III); and (c¢) we investigated factors that, although
have been explored with regards to the accumulation of
grime, have not still been examined with regards to the
relation between grime and quality attributes.

RQ; Does the accumulation of pattern grime correlate with
changes in the investigated quality attributes?

RQ;; Is a correlation observed for class grime?
RQ;, Is a correlation observed for modular grime?

RQ;3 Is a correlation observed for organizational
grime?

RQ; aims at acquiring initial evidence of the relationship
between the accumulation of pattern grime and changes in
the levels of correctness, performance and security. We note
that we address each quality attribute in isolation. To more
comprehensively answer this question, we investigated all
three forms of grime proposed by Izurieta and Bieman [18],
i.e., class, modular and organizational grime.

RQ, Which factors affect the aforementioned relation?
RQ,; Does it vary for different projects?
RQ;, Does it vary for different patterns?
RQ,3 Does it vary for different developers?

TABLE1
COMPARISON WITH RELATED WORK
Study

Parameter |, [10] [13] Ours
Context open-source Open-source open-source industrial
Projects 1 3 not clear 5
Patterns 3 7 16 9
Instances 2 small " not clear 2,329

number
Forms of class, class, modular

. modular modularand class and

grime S o

organizational organizational

. . correctness,
Qu{lhty testability teStablh.ty and understandability performance
attributes adaptability .
and security

Factors pattern lines of code none project, pattern,

developer

lll. STUDY DESIGN

In this section, we present the protocol of our case study,
designed according to the guidelines of Runeson et al. [16],
reported based on the Linear Analytic Structure [16].

A. OBJECTIVES AND RESEARCH QUESTIONS

We formulated the goal of this study using the Goal-
Question-Metric (GQM) approach [21], as follows: “analyze
the accumulation of grime on GoF pattern instances for the
purpose of evaluation with respect to its relationship with the
levels of performance, security and correctness, from the
point of view of software designers in the context of industrial
software development”. To accomplish this goal, we
proposed three research questions (RQs), which are
elaborated as follows.

VOLUME XX, 2017

Next, we extend our analysis to factors that may influence
the relation between pattern grime and quality attributes. In
this study, we examined three factors. First, we investigated
if the correlation between grime and quality attributes differs
for different projects (RQ,;). Second, we were interested in
answering this question, but for different patterns (RQ,,).
Although these two factors were briefly addressed in related
work, they have not been empirically explored so far. To
complement the analysis, we also investigated whether the
relationship varies depending on the developer (RQ,3), in the
sense that the expertise or experience of developers may be
reflected in the accumulated grime and/or quality attribute.

B. CASE SELECTION AND UNIT OF ANALYSIS

To answer the posed research questions, we designed an
exploratory case study [16]. Since related work is limited to
studying only open-source applications, we decided to fill the
gap and perform an industrial case study with five industrial
projects from a company in the domain of web and mobile
applications development. Moreover, these projects provided
us with a diverse and comprehensive sample of developers
(and projects) to investigate: one team of six people worked
on three of the projects, while the other two projects were
developed by two other teams (of five people each)
independently.

The cases of our study comprise pattern instances of the
aforementioned projects. Based on the evolution of these
instances, we assemble our units of analysis, which consist of
the changes that they undergo (i.e., the source code change
between two successive commits). We perform our analyses
and answer our research questions based on this unit of
analysis and, thus, we selected this particular unit due to its
granularity, which allows us to isolate all necessary variables.
In particular, collecting data regarding individual developers

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

is facilitated,
distinctively.

We clarify that the usage of such unit of analysis entail the
collection of multiple data points for individual pattern
instances. However, each data point concerns a different
snapshot of the pattern instance, i.e., there is no repetition.
Moreover, the snapshot of a pattern instance is collected only
when a change is made, i.c., the collection is not made for
every commit. Nevertheless, it is paramount to avoid bias by
having an excessive number of units from a few instances.
For that, we verified the balance of our population on this
regard (see Section IV).

Other main sources of bias regard the authoring of
commits and the size of change, which may compromise our
analyses. To address these concerns, we consulted with the
company, which informed us that their developers are not
allowed to commit for each other neither exchange source
code to commit it. Moreover, a practice of small commits is
encouraged to avoid the aforementioned bad practices.

as commits regard changes authored

C. VARIABLES AND DATA COLLECTION

To address the research questions, we recorded four sets of
variables for each unit of analysis. Each set regards one of
the major steps in the data collection: 1) Characterize
commits; 2) Collect patterns instances; 3) Assess pattern
grime; 4) Assess quality attributes. In the following we
describe each step, the variables collected in them
(highlighted between parentheses), and tools we used. A
summary of the recoded variables is presented in Table II.

TABLE II
LIST OF RECORDED VARIABLES

Step Variable Description

project Project from which the PI was extracted
1 commit Hash of the commit in the git repository
dev Developer author of the commit

inst id ID of the PI that the class belongs to
2 - .
pattern GoF design pattern of the instance
cg-napm # alien public methods in all PI classes (Class grime)
cg-naa # alien attributes in all PI classes (Class grime)
3 mg-ca Afferent coupling of the PI (Modular grime)
mg-ce Efferent coupling of the PI (Modular grime)

og-np # packages within the PI (Organizational grime)

og-ca Afferent coupling at the package level (Organizational grime)

cor-viol # correctness violations in all PI classes
4 per-viol # performance violations in all PI classes
sec-viol # security violations in all PI classes

PI stands for “pattern instance”

stands for “Number of”

1) STEP 1: CHARACTERIZE COMMITS

The versioning of the five projects was managed using Git.
For each commit we recorded the project name (project), the
commit hashcode (commit) and the developer responsible for
the commit (dev). We also recorded the files that were
modified in order to filter out undesired commits. In
particular, we ignored merges (as no modifications to source
code are applied) and commits that did not modify pattern

VOLUME XX, 2017

instances. We clarify that the latter filtering is performed in
the next step.

2) STEP 2: COLLECT PATTERN INSTANCES

This collection was performed for every commit, which is a
time-consuming task. Hence, we automated this task using
two tools. We first used the Design Pattern Detector (DPD,
v4.12) [22], which is able to identify 12 GoF patterns:
Adapter/Command, Composite, Decorator, Factory Method,
Observer, Prototype, Singleton, State/Strategy, Template
Method, and Visitor. We selected this tool because it covers a
fair amount of design patterns that can be detected and it has
adequate performance, as reported in Tsantalis et al. [22],
also when compared to similar tools [23], [24]. To further
validate the performance of the tool, we manually assessed
50 instances, which were all true positives.

Despite the performance of DPD, it detects only the main
pattern-participant classes (i.e., those that provide the main
structure of the pattern solution, commonly abstract classes).
To detect the extended pattern-participants classes (i.e., the
other classes that play a role in the pattern), we employed a
tool developed in our group, name SSA+' (v1.0). This tool
can detect and complement the output of DPD with ten
extended pattern participants: Concrete Creator and Product,
for Factory Method pattern; Concrete Prototype, for
Prototype pattern; Leaf, for Composite pattern; Concrete
Decorator and Concrete Component, for Decorator pattern;
Concrete Observer, for Observer pattern; Concrete
State/Strategy, for State/Strategy pattern; Concrete Class, for
Template Method pattern; and Subject, for Proxy pattern. For
that, SSA+ queries the abstract syntax tree (AST) of the
system according to a set of rules to identify each extended
pattern participant (e.g., inherit from a main pattern-
participant class). As the task performed by SSA+ is
deterministic (i.e., it identifies classes that comply with a set
of rules), we validated it by manually checking the output for
50 randomly selected pattern instances, and no error was
detected. In addition, SSA+ was similarly validated in
another study [15].

Based on the collected information, we assign an ID
(inst_id) for every instance and record it together with the
type of the pattern (pattern). We note that IDs are assigned
when instances are first detected and then reused when the
same instance is detected again in later versions, i.e., they are
persistent across versions of the project. Instances were
considered equivalent if the main pattern participants had the
same class name or matched a renamed version of the class
(obtained from Git).

3) STEP 3: ASSESS PATTERN GRIME

For every unit of analysis (i.e., change to a pattern instance),
we assessed the amount of pattern grime accumulated with
regards to its three forms (i.e., class, modular and

! https://github.com/search-rug/ssap

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

organizational). For that, we selected six metrics, two for
each form of grime, which were previously used and
validated to assess pattern grime in non-trivial systems [10],
allowing us to analyze its accumulation from various
perspectives.

To assess class grime, we calculate: (a) number of alien
attributes (cg-naa), i.e., that are not described in the original
pattern; and (b) number of alien public methods (cg-napm).
We clarify that we consider only public methods, as they are
responsible for exposing functionality of the pattern instance
to the whole system. For modular grime, we calculate: (a)
afferent pattern coupling (mg-ca) that is the amount of in-
coming dependencies (or fan-in), representing the
responsibility of the pattern instance [10]; and (b) efferent
pattern coupling (mg-ce) that is the amount of dependencies
on classes external to the pattern instance (or fan-out),
representing the instability of the pattern instance [10].
Organizational grime is assessed by calculating: (a) number
of packages (og-np) that contain classes participating on the
pattern instance; and (b) afferent coupling at package level
(og-ca). Although afferent coupling is also calculated for
modular grime (mg-ca), og-ca will depict the responsibility at
a higher level of abstraction. For example, mg-ca may
increase within the same package containing the pattern
instance, which would not affect og-ca.

To automate the data collection of the aforementioned
metrics, we used a tool developed in our group, namely
spoon-pttgrime” (v0.1.0). This tool takes as input Java source
files of a project and an XML file describing the pattern
instances in the project (i.e., the output from SSA+). For each
pattern instance, spoon-pttgrime calculates the six
aforementioned metrics by querying the project’s AST using
the Spoon library [25]. To validate the tool, we verified the
calculated metrics for 50 pattern instances that were
randomly selected, and the results were all correct. Based on
the collected information, we record the amount of grime
accumulated according to each metric, i.e., the difference
between two consecutive versions of the pattern instance.

We note that other indicators of grime have been proposed
in the literature, which are based on taxonomies of modular
and class grime [13, 14]. However, they are not independent
grime indicators in the sense that they are subtypes of the
indicators that we already investigate. Moreover, these
additional indicators have been so far validated only through
synthetic experiments [12, 13, 14], and there is no tool to
automate their measurement. At the same time, the size of
the population of our study makes it infeasible to assess them
manually. Therefore, we decided to consider such indicators
in our future work, and not include them in this study setup.

4) STEP 4: ASSESS QUALITY ATTRIBUTES
As mentioned in Section I, we estimated the studied quality
attributes based on the number of violations of various

? https://github.com/search-rug/spoon-pttgrime

VOLUME XX, 2017

coding practices. For that, we used FindBugs (v3.0.1), which
considers bug patterns as rules to identify violation of good
coding practices [26]. In particular, FindBugs organizes its
rules (i.e., bug patterns) into nine high-level categories®, from
which five can be mapped into the studied quality attributes:
correctness (Correctness and Multithreaded Correctness
categories), performance (Performance category), and
security (Security and Malicious Code categories). We note
that, despite the name of the tool, we do not consider its
output as bugs but simply as warnings, i.c., violations of
good coding practices, and take them as indicators of quality.
A similar approach was used by Kahlid et al. [27], who
correlated the violations of three categories (one being
performance) to quality as perceived by end-users. They
found the data to be closely related, which supports the
violations as quality indicators.

We selected FindBugs due to its collection of rules (252 of
them regarding the considered categories), the possibility to
map them into the studied quality attributes, as well as due to
its adequate precision when compared to similar tools [26],
[28], [29], which reflects on the relevance of the offered
rules. Moreover, we analyzed and validated FindBugs in a
previous study [30] and found that the precision can be
noticeably improved by excluding violations with low level
of confidence. To estimate the level for each quality attribute,
we calculate the amount of rules violations in the pattern-
participant classes of a unit of analysis (cor-viol, per-viol,
and sec-viol). We clarify that lower numbers of violations
reflect a higher level of quality.

D. ANALYSIS PROCEDURE

To investigate the collected data, we performed various
statistical analyses. First, to answer RQ;, we calculated the
correlation between every pair of <grime metric, quality
indicator> (e.g., pattern efferent coupling vs. performance
violations). We assess the strength of the correlation
according to the guidelines of Evans [31]: ‘very weak’ (0.00-
0.19); ‘weak’ (0.20-0.39); ‘moderate’ (0.40-0.59); ‘strong’
(0.60-0.79); and ‘very strong’ (0.80-1.00). To select the most
fitting method for correlation analysis, we first tested the
normality of our data, using the Kolmogorov-Smirnov test
[32], which is more appropriate for large samples. We clarify
that for normally distributed variables, we used Pearson
correlation method [32], otherwise, we used the Spearman’s
rank correlation method [32]. Moreover, the correlations
calculated in this study do not entail bias from consecutive
measurements with same value, also known as artificial
boost. This is because every unit of analysis regards different
states of a particular pattern instance. Therefore, consecutive
measures with same value suggest that a specific metric is
not designed to capture this particular change, and this
information is relevant to our study.

? The categories are: Security, Correctness, Multithreaded Correctness,
Performance, Malicious Code, Bad Practice, Internationalization,
Experimental and Dodgy Code

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

To answer RQ,, we performed the following steps for each
factor (i.e., project, pattern, developer) that might affect the
relation between pattern grime and quality. First, we grouped
the dataset according to the factor. Next, we verified whether
the groups differentiate between themselves with regards to
the measured variables. For that, we performed an Analysis
of Variance (ANOVA) [32] to confirm a disparity among
groups, followed by post-hoc tests for pairwise comparisons.
We note that we applied Levene’s test [32] to assess the
assumption of equal variances of the tested populations.
When the assumption was met, we used regular ANOVA,
followed by Tukey’s Honestly Significant Differences (HSD)
tests [32]. Otherwise, we used Welch’s ANOVA, followed
by Games-Howell tests (which are more appropriate for large
samples). Finally, for the groups that are statistically
different, we calculate the correlation for each pair of grime
and quality metrics and identify statistically relevant
correlations.

IV. RESULTS

In this section, we present a summary of the collected data,
as well as the results of the analysis performed to answer the
research questions posed in Section III.A. During the data
collection, we identified 1,422 commits that contain the
creation or modification of pattern-participating classes of
the five investigated projects, from which the majority (94%)
regard the modification of one or more pattern instances.
Based on the commits, we isolated 2,329 pattern instances of
eight different GoF patterns: (Object) Adapter / Command,
Decorator, Factory Method, Observer, Singleton, State /
Strategy, and Template Method. In Table III we present a
summary of the units of analysis by project and patterns.

TABLE III
SUMMARY OF DATASET
Number of Number of
instances units of analysis

Project Pattern

(Object) Adapter/Command 284 8150
Pl Singleton 80 155
State/Strategy 351 11586
(Object) Adapter/Command 86 484
Observer 3 21
P2 Singleton 16 42
State/Strategy 275 2113
Template Method 1 6
(Object) Adapter/Command 327 3090
P3 Factory Method 53 545
Singleton 29 152
State/Strategy 375 3995
(Object) Adapter/Command 136 2144
Decorator 1 1
P4 Factory Method 13 266
Singleton 21 73
State/Strategy 230 3275
(Object) Adapter/Command 16 206
P5 Factory Method 2 33
Singleton 5 10
State/Strategy 25 224

In Section III.B, we highlighted the necessity of having a
balanced population (i.e., pattern instances should have

VOLUME XX, 2017

similar number of modifications) to avoid bias from pattern
instances with excessive number of units of analysis. After
studying the history of commits, we assessed that each
pattern instance underwent a maximum of 178 modifications.
Moreover, 87% of the pattern instances (i.e., 2,039) were
modified at least once, and 64% (i.e., 1,500) at least five
times. Our analysis suggests that although the population is
not evenly balanced, the discrepancies are not enough to
harm the statistical analysis of our study nor the answers to
the research questions.

In summary, we collected a total of 36,571 units of
analysis (i.e., creation/modification of a pattern instance in a
commit). For each unit, we recorded the amount of pattern
grime that was accumulated according to six metrics (cg-*,
mg-* and og-*) and the number of violations regarding the
three studied quality attributes (*-viol). We clarify that due to
a non-disclosure agreement signed with the company in this
case study, we cannot share the created dataset, nor certain
details regarding specific projects and developers.

To characterize our population, in Table IV we present the
descriptive statistics for these variables. We notice that
pattern efferent coupling (mg-ce) is the grime metric that
changes the most, which may be a sign of bad practices since
it represents the dependency of the pattern instance on other
classes. On the counterpart, number of packages (og-np) is
the metric that changes the least, which is expected given that
pattern instances normally grow within the same package.
Furthermore, we notice that violations of good practices
regarding correctness appear to be considerably more
frequent than regarding performance and security. This
observation may be partially related to the fact that the
majority of the rules checked by FindBugs concern
correctness: out of all the rules for the three studied qualities,
correctness accounts for approx. 70%, while performance
and security correspond to approx. 15% each. Nevertheless,
we could detect considerably fewer violations concerning
security rather than performance, which suggest that other
parameters are also relevant, such as the type of application
or even the specific security-related violations that FindBugs
checks.

TABLE IV
DESCRIPTIVE STATISTICS PER COMMIT

Variable Minimum Maximum Mean Std. Deviation
cg-napm 0.00 52.80 13.66 8.27
cg-naa 0.00 41.50 7.95 5.00
mg-ca 0.00 107.00 8.01 10.72
mg-ce 0.00 325.00 100.18 61.22
og-np 1.00 5.00 2.34 0.53
og-ca 0.00 54.00 6.75 8.06
cor-viol 0.00 35.00 2.39 3.19
per-viol 0.00 8.00 0.97 1.45
sec-viol 0.00 20.00 0.25 1.40

A. RQ: - CORRELATION BETWEEN GRIME AND
QUALITY ATTRIBUTES

To answer RQ);, we calculated the correlation between all
pairs of <grime metric, quality indicator> (e.g., cg-ce Vs.

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

per-viol) as explained in Section II1.D. We note that we could
not assume normal distribution for all variables and, thus, we
used Spearman’s rank correlation method. Moreover,
‘artificial boost’ is not a concern in this population (see
Section II1.D). Fig. 1 depicts a heatmap with the results of
our analysis, in which darker shades of gray denote stronger
correlation. The coefficients are written within each cell
except for correlations that are not statistically significant
(which are blank). Based on Fig. 1 we can make several
observations.

cg-napm cg-naa mg-ca mg-ce 0g-np og-ca

cor-viol - 0013 0.017

per-viol 0310 - 0.090 - 0.064 0.069

sec-viol 0046 0.103 -0093 0.117 0.145
Correlation
very very
weak weak moderate strong strong
[
0 0.2 04 0.6 0.8 1

FIGURE 1. Correlation between grime metrics (cg-*, mg-* og-*) and
quality attributes indicators (*-viol).

The accumulation of grime seems to be related with the
depreciation of correctness and performance (i.e., more
violations), as we observed strong correlations (i.e., above
0.6) and moderate correlations (i.e., between 0.4 and 0.59)
respectively [31]. Furthermore, the very weak correlation
with security violations (i.e., below 0.2) does not imply that a
link does not exist. This only shows a lack of evidence.

Another observation is that metrics for assessing class
grime, namely number of alien public methods (cg-napm),
alien attributes (cg-naa), and pattern efferent coupling
(mg-ce) displayed the strongest correlations regarding
every quality attribute. This outcome can be considered
intuitive in the sense that, as structural elements at the class
level, patterns are expected to be more influential at lower
levels of granularity (e.g., class rather than module). The
degradation of another quality, namely maintainability, due
to the existence of alien methods is also reported in related
work [9].

The aforementioned observations are based on how grime
accumulates in pattern instances. However, one may wonder
if changes in the quality levels can be simply explained by
natural evolution of the source code, i.e., any type of change
to the pattern instance rather than pattern grime. To
investigate this possibility, we assessed the correlation
between lines of code (LOC) and both grime metrics and
quality indicators. The results show that grime is strongly
correlated (0.81) with LOC, i.e., most maintenance activities
in pattern instances entail accumulation of grime. However,
the correlation between grime and quality indicators was
often slightly stronger compared to the correlation between
LOC and quality indicators. For example, the correlation
between cor-viol vs. mg-ce (0.792) is marginally stronger
than cor-viol vs. LOC (0.785), per-viol vs. mg-ce (0.414) is

VOLUME XX, 2017

stronger than per-viol vs. LOC (0.359), and sec-viol vs. mg-
ce (-0.093) is stronger than sec-viol vs. LOC (-0.074).
Therefore, although the difference between correlation values
may be marginal at times, the overall analysis consistently
shows that grime matches the degradation of quality better
than natural evolution.

B. RQ;—- ANALYSIS OF FACTORS

To further explore the relation between the accumulation of
pattern and the three studied quality attributes, we
investigated three factors that may influence the observed
correlations as described in Section III.D: projects, patterns
and developers.

1) COMPARISON OF PROJECTS

We collected data from five different industrial projects, here
referred to as P1 to P5. From the 36,571 units of analysis,
19,891 regard P1, 2,667 regard P2, 7,781 regard P3, 5,759
regard P4, and 473 regard P5. Moreover, P1 and P2 were
developed by two different teams of developers while a third
team developed P3, P4 and P5. In Table V, we show the
descriptive statistics of all variables for each project
independently.

We notice that the projects are considerably distinct from
each other with regard to these variables. For example, P2
has the highest mean for most grime metrics but not for
quality indicators, while P5 has the lowest means for grime
metrics but present the highest average of performance
violations. To verify the observed differences, we compared
the means between projects by performing an analysis of
variances (ANOVA) for each variable, followed by one post-
hoc test for each pairwise comparison (i.e., 90 in total). The
results of the tests are publicly available online in a
supplementary material®. The results show that 91% of the
tests are statistically significant, i.e., the means differ
between the two compared projects. Based on these findings,
we hypothesize that the different characteristics of projects
are indeed reflected on the relationship between the
accumulation of pattern grime and the indicators of
correctness, performance and security.

To verify how the accumulation of grime in projects
relates to the levels of quality, we calculated the correlation
between every pair of grime metric and quality indicator for
each project. The results are presented in Fig. 2 (which is
interpreted as Fig. 1), from which we observe that the
correlations are noticeably different based on the projects.
For example, similar to the results observed for the general
population, P1 exhibits a strong correlation (i.e., above 0.6)
between class grime metrics and the correctness indicator
(cor-viol). The opposite is observed for P2, for which the
data suggest a correlation between pattern grime and the
security indicator (sec-viol), which have not been observed
for the general population.

* https://doi.org/10.5281/zenodo. 1133552

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Mulidisciplinary | Rapid Review | Open Access Journal

TABLE V
DESCRIPTIVE STATISTICS PER PROJECT
Variable Project Minimum Maximum Mean Std'. .
Deviation
P1 0.00 44,67 13.94 8.26
P2 0.00 48.00 14.92 11.90
cg-napm P3 0.00 52.80 11.79 6.47
P4 0.00 42.00 14.89 8.13
P5 0.00 29.75 10.36 5.73
P1 0.00 22.33 8.97 4.87
P2 0.00 30.33 5.87 3.72
cg-naa P3 0.00 30.50 5.90 3.81
P4 0.00 41.50 8.45 6.13
P5 0.00 13.75 4.72 2.50
P1 0.00 49.00 6.52 8.48
P2 0.00 78.00 17.69 18.65
mg-ca P3 0.00 107.00 7.44 10.29
P4 0.00 102.00 10.02 10.85
P5 0.00 5.00 1.00 1.07
P1 0.00 325.00 132.05 6291
P2 0.00 140.00 55.07 28.23
mg-ce P3 0.00 162.00 63.31 29.65
P4 0.00 141.00 65.50 27.99
P5 0.00 95.00 43.13 19.02
P1 1.00 3.00 2.31 0.48
P2 1.00 3.00 2.64 0.53
og-np P3 1.00 5.00 2.30 0.60
P4 1.00 4.00 2.35 0.54
P5 1.00 3.00 2.21 0.46
P1 0.00 54.00 5.55 8.32
P2 0.00 29.00 15.42 8.98
og-ca P3 0.00 44.00 7.71 7.50
P4 0.00 19.00 6.03 3.95
P5 0.00 5.00 0.88 0.55
P1 0.00 35.00 3.74 3.68
P2 0.00 5.00 0.16 0.55
cor-viol P3 0.00 7.00 0.66 1.19
P4 0.00 10.00 1.24 1.25
P5 0.00 2.00 0.63 0.65
P1 0.00 7.00 1.16 1.58
P2 0.00 8.00 1.12 1.50
per-viol P3 0.00 6.00 0.72 1.15
P4 0.00 5.00 0.57 1.10
P5 0.00 8.00 1.16 1.66
P1 0.00 2.00 0.03 0.18
P2 0.00 14.00 1.31 2.65
sec-viol P3 0.00 14.00 0.31 1.33
P4 0.00 20.00 0.42 241
P5 0.00 8.00 0.28 0.89
However, we also noticed that higher values of

accumulated grime are related to higher depreciation of
quality (i.e., higher number of violations), which is often
reflected in higher correlation coefficients. This evidence
strengthens our finding that the relationship between
pattern grime and quality attribute indicators is project-
dependent. 1t also suggests that the observed difference is
connected to how grime accumulates in the different projects.
This finding is in accordance to those of Vasquez et al. [33],
which suggest that other indirect quality indicators (such as
anti-patterns or code smells) vary among projects of different
application domains, as well as with Izurieta and Bieman
[10], who observed varied levels of grime and quality on the
studied projects.

VOLUME XX, 2017

cg-napm cg-naa mg-ca mg-ce og-np 0g-ca

P1 0.059 0.117 0.290
s P2 0083 0087 0.63 0071 0.193
i P3 0345 0279 o0.01 0316 0.157
SRR 0675 ORES 0035 0.170

P5 o0.176 -0.340 0.229

Pl 0.148 0319 0033 0.151
S P2 0105 0220 0299 0392 0346 0231
; P30
2 P4 008 0076 0130 0255 0.118 0.050

P5 0.100 0.159 -0.117

P1 -0073 0.090 -0.044 0.143
< P2 0487 104067 [0548Y 0283 0289 0274
Z P3 008 0084 -0027 0034 0.159
% P4 0057 0084 -0036 -0094 0064 0048

P5 0.161 0.152

very Correlation very
weak weak moderate strong strong
L ' |

0 0.2 0.4 0.6 0.8 1

FIGURE 2. Correlation between grime metrics (cg-* mg-* og-*) and
quality attributes indicators (*-viol) for individual projects (P*).

2) COMPARISON OF PATTERNS

During the data collection, we identified instances of eight
different patterns. From the 36,571 units of analysis, 14,074
regard the (Object) Adapter / Command (AC) patterns, 844
regard the Factory Method (FM) pattern, 432 regard the
Singleton (Si) pattern, 21,193 regard the State/Strategy (SS)
patterns, 21 regard the Observer pattern, six regard the
Template Method pattern, and one regards the Decorator
pattern. Due to the limited amount of units, we do not present
results concerning the last three patterns, which are available
in the supplementary material.

In Table VI, we present the descriptive statistics of all
variables for each pattern independently. We notice that this
factor also seems to influence the relations between pattern
grime and indicators of the studied quality attributes. In
particular, we observe that the means for every metric varies
considerably among patterns. Moreover, we could not
observe clear trends, i.e., patterns that consistently display
the highest or lower means. For example, Factory Method
displays the highest mean of security violations (sec-viol) but
one of the lowest of correctness violations (cor-viol).

To verify our observations, we computed the ANOVA for
each variable and performed the post-hoc tests (i.e., 48 in
total). The results of the tests are available in the
supplementary material. We note that Singleton instances
had no variance with regards to number of packages (og-np)
and security indicator (sec-viol), and, thus, these variables
were not considered in the analyses for this pattern. The
results show that 93% of the tests are statistically significant.

To further investigate this factor, we calculated the
correlation between every pair of grime metric and quality
indicator for the investigated patterns. In Fig. 3 (which is

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Mulidisciplinary | Rapid Review | Open Access Journal

interpreted as Fig. 1), we present the results of the
calculations, which show clearly varying correlations
depending on the pattern. We notice that, as for projects, we
could identify a pattern, namely Factory Method, for which
the accumulation of grime is moderately correlated with the
depreciation of quality indicators. Again, we observed that
the combination of higher accumulation of grime and
quality indicators often reflects in higher correlation
coefficients. All this information suggests that the
relationship between pattern grime and quality attribute
indicators also depends on the pattern type of the instance.
This finding is in accordance with the literature, which
suggests that different patterns have different effects on the
same quality attribute (e.g., [4], [34]).

TABLE VI
DESCRIPTIVE STATISTICS PER PATTERN

Variable Pattern Minimum Maximum Mean Std'. .
Deviation
AC 0.00 43.00 12.59 7.70
cg-napm FM 2.40 52.80 15.63 8.89
Si 0.00 6.00 0.82 1.35
SS 0.67 48.00 14.55 8.39
AC 0.50 41.50 8.53 5.78
cg-naa FM 1.00 23.20 6.86 4.43
Si 0.00 3.00 0.44 0.73
SS 0.00 30.33 7.77 4.32
AC 0.00 49.00 6.57 8.71
mg-ca FM 1.00 107.00 19.70 23.46
Si 0.00 52.00 7.39 10.54
SS 0.00 78.00 8.51 10.80
AC 5.00 236.00 90.24 51.97
mg-ce FM 10.00 129.00 58.00 25.67
Si 0.00 17.00 1.68 2.52
SS 1.00 325.00 110.56 64.80
AC 1.00 2.00 1.99 0.10
og-np FM 1.00 5.00 3.37 0.68
Si 1.00 1.00 1.00 0.00
SS 1.00 4.00 2.56 0.50
AC 0.00 46.00 5.82 7.72
osch FM 1.00 44.00 13.34 8.15
Si 0.00 54.00 13.06 8.03
SS 0.00 46.00 6.96 8.07
AC 0.00 13.00 2.19 2.84
cor-viol FM 0.00 5.00 0.69 1.02
Si 0.00 3.00 0.02 0.21
SS 0.00 35.00 2.64 3.44
AC 0.00 5.00 0.82 1.30
per-viol FM 0.00 6.00 0.56 1.22
Si 0.00 0.00 0.00 0.00
SS 0.00 8.00 1.11 1.54
AC 0.00 6.00 0.04 0.26
sec-viol FM 0.00 20.00 471 5.81
Si 0.00 12.00 0.48 1.67
SS 0.00 14.00 0.21 1.05

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy

3) COMPARISON OF DEVELOPERS

The case study involved 16 developers, here referred to as
D1 to D16, which account for various amounts of units of
analysis’. Due to the low number of data points, we did not

* The number of units by each developer is: D1 - 810; D2 - 5662; D3 -
1535; D4 - 8; D5 - 470; D6 - 5368; D7 - 21; D8 - 62; D9 - 1464; D10 - 11;
D11-811; D12 - 1648; D13 - 3565; D14 - 6748; D15 - 7825; D16 - 563.

VOLUME XX, 2017

include D4, D7, D8 and D10 in our analyses. In Table VII,
we show the mean value of all variables, for each developer.
We note that we do not present the complete descriptive
statistics, which are available in the supplementary material.
Similar to the previous factors, we observe that mean values
regarding all variables differ among developers, i.e., they
exhibit different characteristics. For example, both D11 and
D15 show higher tendency to pollute pattern instances with
alien methods (i.e., higher cg-napm values) than other
developers. However, D11 seems much less prone to pollute
instances with external dependencies (i.c., lower mg-ce).

cg-napm cg-naa mg-ca mg-ce og-np 0g-ca

- AC TSI oo 00530130
FM 0173 0324 0.130 -

Si 0201 0.142 0.104
0014

1

COr-vio!

E

-0.020 -0.028

_ AC 0243 0359 -0018 0378 0.049
=]
£ FM PO 055N 0.2+ POMEON 0280 0134
g si
SS 0328 - 0.154 - 0.108
_ AC 0093 0051 -0.12 -009 0019 -0.020
=]
£ M [0S R05000 0345 MOSEM 0310 0287
g Si 0218 0218 0.144
SS 0069 0030 0136 -0084 0.142
Correlation
very very
weak weak moderate strong strong
e | |
0 02 04 0.6 0.8 1

FIGURE 3. Correlation between grime metrics (cg-* mg-* og-*) and
quality attributes indicators (*-viol) for individual patterns (AC, FM, Si,
and SS).

TABLE VII
DESCRIPTIVE STATISTICS PER DEVELOPER
cg- cg- mg- mg- og- 0g- CcOr- per- sec-
napm_naa _ ca ce np ca viol viol viol

D1 950 3.17 840
D2 1253 7.17 8.02

38.09 228 7.07 047 000 025
63.75 232 721 103 056 0.34
D3 983 7.1 7.68 70.78 230 859 026 1.14 029
D5 1258 584 548 5639 227 508 045 097 027
D6 14.01 9.5 7.00 127.50 230 565 357 159 0.05
D9 9.62 676 641 9990 227 502 221 0.87 0.00
D11 1636 588 1427 51.18 259 13.07 0.07 0.83 0.96
D12 1283 792 803 12220 238 720 299 1.11 0.0I
D13 1242 836 7.21 11266 226 549 261 183 0.08
D14 1481 699 11.12 6440 240 806 089 0.88 0.65
D15 15.65 9.78 557 15228 234 528 483 0.64 0.01
D16 1431 566 1625 53.53 2.60 1548 0.17 0.75 0.96

To validate the differences observed in the measurements,
we performed ANOVA on all variables, followed by the
post-hoc tests (583 in total), which are all available in the
supplementary material. We note that no variance in the
security indicator (sec-viol) was observed for D9 and, thus,
we discarded this variable for analyses regarding the
developer. The results show that 80% of the tests are
statistically significant. The majority of the comparisons that
were not significant, concern the number of packages, which
is intuitive, as pattern instances do not tend to be spread
across multiple packages/namespaces.

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Mulidisciplinary | Rapid Review | Open Access Journal

We also calculated the correlation between variables,
which are shown in Fig. 4 (which is interpreted as Fig. 1).
The results suggest that developers accumulate grime
differently and that this may reflect on the quality indicators.
We also observed that although we found that correlations
differ among developers, they are mostly consistent in the
sense that more grime is correlated with more violations
(i.e., depreciated quality). In summary, all collected
information strengthens our finding that developers comprise
a factor to how the accumulation is related to the depreciation
of correctness, performance and security in pattern instances.
Our results are in accordance with those by Amanatidis et al.
[17], who studied the accumulation of technical debt and
observed an imbalance regarding the number of violations
among developers.

cg-napm cg-naa mg-ca mg-ce og-np 0g-ca

DI04 05
D2 o302 656N 0090 0.098

D3 0254 0263 0157 0221 0.221
D5 0293 | 0414 0375 0.130

D6 0.053 0.106 0238
2 DO 0094 -0.135
é D11
D12 0.089
D13 0.083 0.240
D14 JOHOGHIOBIEN 0057 0536 0024 0034
D15 0.153 o170 [IGHETN
_M6 0093 0.195 0.105 0.152
D1 o118 0.2l 0.121 0.079
D2 0214 0299 -0053 [HOHORM 0051
D3 NI o009 -0.085
D5 0315
D6 [0 NOEEN o.1 JOEEN 0.137
£ Do oSN BO5530 0085 -0.166
5 D11 0128 0.8 0272 0265 0285 0277
= D12 [Jodeo) hous 0456 -0.087
D13 0,079 0033 | 0271
DI4 o008 0289 0.12 039 0.167 0.155
D15 JOM6IN 0394 0216 0350 0.136 = 0330
D16 0222 0362 m
D1 0221 0283 0.124 0.115
D2 -0.031 0.114 0.057
D3 0193 0.31 0093 0.156
D5 -0.091 0.100
D6 0119 0029 0074 -0.063 0.171
= D9
; DIl 0367 0393 JOS42N 0259 0270 0287
2 DI12 0.056 0.062
D13 -0.106 0.085 -0.037 0.257
D14 o0.146 0081 0.160 0212 0206
D15 0058 0052 0092 0053 0063 0072
D16 03838 0353 0225 0254 0.115
very Correlation very
weak weak moderate strong strong
[
0 02 04 0.6 0.8 1

FIGURE 4. Correlation between grime metrics (cg-*, mg-* og-*) and
quality attributes indicators (*-viol) for individual developers (D*).

VOLUME XX, 2017

V. DISCUSSION

In this section, we revisit the findings of our study and
present their connection to related work. Next, we elaborate
on the main implications to researchers and practitioners.

A. INTERPRETATIONS OF RESULTS

1) CORRELATION BETWEEN GRIME AND ATTRIBUTES
The findings discussed in this paper suggest that, as pattern
grime accumulates, classes that participate in pattern
instances become more prone to quality depreciation. In
particular, such classes are more susceptible to source code
that violates good practices that promote correctness,
performance and security of software systems. These
findings corroborate those by related work that analyzes the
relations between grime and quality [10], [11], [13], in the
sense that we also found that grime goes hand in hand with
diminished quality.

In our study, we noticed that three metrics, namely
number alien attributes (cg-naa), number of alien public
methods (cg-napm) and instance efferent coupling (mg-ce),
were the most likely to be appropriate indicators of bad
quality; these same metrics have shown similar relevance in
the related work. Moreover, these metrics correspond to
structural characteristics of pattern instances (e.g., efferent
coupling), and similar metrics (at class level rather than
instance level) have been largely explored in the literature
(e.g. [6]-]9]) and found to be good estimators of the benefit
(or harmfulness) of pattern instances to quality attributes. In a
previous study, we found that the degradation of certain well-
known design metrics can be used as hints of the
accumulation of pattern grime [15], as it is assessed based on
design propertied of pattern participants. In particular, we
investigated the metric suits proposed by Chidamber and
Kemerer [35], Li and Henry [36], and Bansiya and Davis
[20]. Results of that study showed that the metrics data
abstraction coupling (DAC) [36] and measure of aggregation
(MOA) [20] may help identifying accumulation of cg-naa;
the metrics weighted methods per class (WMC) [35] and
class interface size (CIS) [20] may help identifying
accumulation of cg-napm; and the metrics coupling between
object classes (CBO) [35] and response for a class (RFC)
[35] may help identifying accumulation of mg-ce.

2) CONTRIBUTING FACTORS

The way pattern grime builds up in pattern-participant classes
can depend on several factors. Our empirical investigation
confirmed that three such factors indeed play a role: project,
pattern and developer. With regard to projects, we observed
that the difference may be related to two sub-factors. The
type of the project seems relevant on determining the
relation between grime and quality. Two of the studied
projects (P1 and P4) provide services to other applications
(e.g., libraries or API's) and showed to be more prone to
grime and violations; this aligns with the suggestion by

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

Vasquez et al. [31] that parameters such as application
domain can be relevant. However, we also noticed that these
projects had more pattern instances (i.e., a bigger pattern
code base) and that a second sub-factor, namely lines of code
was also correlated with both grime and quality indicators;
this has also been discerned by Izurieta and Bieman [10].

A similar observation also holds for developers: those that
wrote more code (i.e., provided more units of analysis) were
more prone to incur both grime and violations. Finally, our
main observation concerning the difference among patterns is
that those using more complex mechanisms (e.g., State,
Strategy and Factory Method, which have polymorphic
calls) tend to accumulate both more grime and violations;
this is intuitive given that more complex designs are less
understandable and harder to maintain.

Investigating the factors in isolation allowed us to observe
that the correlations in different groups (based on factors)
differ from the ones concerning the entire dataset.
However, although the differences may look random at first,
we noticed a recurrent motif. In particular, we observed that
the majority (approx. 80%) of moderate or strong
correlations (i.e., more than 0.4) [31] have been identified
when grime and qualities metrics are at a similar level. For
example, projects that on average concentrate few violations
and have low levels of accumulated grime, or the opposite.
Among those, 56% regard higher values on both grime and
quality indicators.

3) ANALYSIS OF VIOLATIONS
Finally, since we estimated the levels of quality attributes
through the number of violations of good coding practices, it
is relevant to dig deeper into these violations. In Table VIII,
we present the most recurrent violations, assessed according
to the addressed research questions, i.e., the overall dataset,
per project, per pattern and per developer. We note that some
developers have not violated any rules for certain quality
attributes in pattern-participant classes; those are marked
with “-”. We observe that this list of violations comprises
issues that are clearly harmful to the respective quality
attributes, e.g., calling unsafe methods in a multithreaded
context can lead to race conditions or unpredictable states.
Thus, if these violations are among the recurrent ones, they
can pose a serious threat to the system. Furthermore, the top
issues vary among projects, patterns and developers. The
differences that we observe between developers is aligned
with the findings by Amanatidis et al. [17], who not only
observed an imbalance on how developers accumulate
violations but also a difference on the recurrence.
Nevertheless, it is possible to discern the connection
between groups. For example, the two recurrent performance
issues that appear for the most among developers (i.e.,
“Comparison of different types” and “Possible null pointer
dereference”), also appear frequently among projects and
patterns, and one of them is the most recurrent in the entire
dataset.

TABLE VIII
MOST RECURRENT VIOLATIONS
Correctness Performance Security
Overall Comparison of different types Class member should be static ~ Exposed inner representation by incorporating mutable object
P1 Comparison of different types Class member should be static ~ Method invocation without proper security check
s P2 Unsafe call in for multithreading ~ Class member should be static ~ Exposed inner representation by returning mutable object
'? P3 Possible null pointer dereference ~ Private method is never called ~ Exposed inner representation by incorporating mutable object
~ P4 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object
P5 Unsafe call for multithreading Unnecessary call to toString() Exposed inner representation by incorporating mutable object
- AC Comparison of different types Class member should be static ~ Field should be package protected
5 FM Possible null pointer dereference ~ Unnecessary value unboxing Exposed inner representation by incorporating mutable object
E Si Comparison of different types Inefficient use of map iterator Exposed inner representation by incorporating mutable object
SS Comparison of different types Class member should be static ~ Exposed inner representation by returning mutable object
D1 Comparison to null - Exposed inner representation by incorporating mutable object
D2 Possible null pointer dereference ~ Unnecessary value unboxing Exposed inner representation by incorporating mutable object
D3 Possible null pointer dereference Class member should be static ~ Exposed inner representation by incorporating mutable object
D5 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object
- D6 Comparison of different types Private method is never called ~ Method invocation without proper security check
“g’. DY Possible null pointer dereference Private method is never called -
T; D11 Variable self-assignment Class member should be static ~ Exposed inner representation by incorporating mutable object
5 D12 Possible null pointer dereference Class member should be static -
D13 Nul}check on dereferenced Invoke of inefficient Method invocation without proper security check
variable constructor
D14 Unsafe call for multithreading Class member should be static ~ Exposed inner representation by returning mutable object
D15 Comparison of different types Private method is never called -
D16 Unsafe call for multithreading Class member should be static ~ Exposed inner representation by incorporating mutable object

VOLUME XX, 2017

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

B. IMPLICATIONS TO RESEARCHERS AND
PRACTITIONERS

GoF patterns are popular among practitioners as established
and valuable design solutions. However, the consequences of
using them often become a matter of concern, especially
regarding quality. This paper sheds some light on this
respect, suggesting the following implications to
practitioners. We encourage the conscious usage of GoF
patterns, in the sense that knowledge about the patterns being
applied, as well as the pattern instances in the system under
development, should be disseminated within the team of
developers.

In addition, monitoring the pattern instances is of
paramount importance to maintain desired levels of quality,
especially correctness, performance and security. Moreover,
practitioners can take advantage of the tool spoon-pttgrime in
order to track the accumulation of grime and plan
maintenance activities. Conversely, if practitioners already
use FindBugs within their development process, the number
of violations (for correctness, performance and security) can
be used as indicators of grime accumulation, helping the
team on identifying pattern instances with potentially
deteriorated design.

The findings in this paper can also benefit researchers. Our
work joins the small pool of studies that investigate pattern
grime, especially its relation to quality attributes, and further
demonstrate the relevance of researching this phenomenon
and the underlying relations. In particular, we provide
evidence that encourages the investigation of other quality
attributes, as well as factors related to it. The presented
information also builds up on the body of knowledge on
pattern grime, and we hope it will support future research.
Particularly, we envisage confirmatory studies to seek more
evidence to explain the observed variations in the
relationship between grime and the studied quality attribute,
as well as others. We also demonstrate that the usage of static
analysis tools such as FindBugs can provide valuable
information regarding the accumulation of grime. Finally, the
design of our case study and used tools used can be exploited
for future research efforts.

VI. THREATS TO VALIDITY
In this section, we discuss threats to the validity of the study
reported on this paper; in particular, construct validity,
reliability and external validity. Construct validity concerns
to what extent the objects of the study are connected to the
research questions. Reliability regards the extent to which the
study can be replicated with the same observed results.
External validity pertains to the limitations to generalize our
findings to the entire population. We note that we do not
analyze internal validity, as we empirically study the
correlation between variables without establishing causal
relations.

Regarding construct validity, we identified the following
threats. First, the DPD and FindBugs tools are limited by

VOLUME XX, 2017

their precision and recall, which may bias our results due to
false positives and negatives. We note that, to the best of our
knowledge, these tools have adequate performance and good
reputation (see Sections III.C.2 and III.C.4). Nevertheless, to
mitigate this threat, we randomly selected 50 pattern
instances and verified the output from each tool manually. In
addition, we acknowledge that the list rules provided by
FindBugs is by no means exhaustive and additional rules
could affect our results. However, we reiterate that the
diverse list of bug patterns (i.e., 252 rules) and evidence
provided by other studies that used FindBugs to estimate
quality attributes [27], [30] suggest that the tool is adequate
for the purpose used in this study. Finally, concerning the
tools developed in our group (SSA+ and spoon-ptigrime),
which although perform deterministic tasks, may contain
bugs and bias the results of the study. To mitigate this threat,
we also checked their output for 50 randomly selected pattern
instances. In addition, our tools have been used in previous
studies, where they were also validated.

To address reliability threats, at least two researchers were
involved in both data collection and analysis. Samples of the
output were checked by both researchers and the verification
followed a checklist to avoid irregularities. Furthermore,
most tasks were automated by the tools referenced in this
paper, which are all publicly available. Despite our effort, we
acknowledge that non-disclosure agreements do not allow us
to share the collected dataset. However, replications studies
can be carried out to attempt to replicate our results.

Concerning external validity, the main threat is that we
explored projects from the same company, from which three
were developed by the same team. Such uniformity (e.g.,
developers subject to same company practices) may lessen
the generalizability of our findings to other companies or
teams. However, we note that the accumulation of grime that
we observed aligns with the results of other studies, e.g.,
class and modular grime are the main indicators of grime.
Moreover, we also aimed at identifying variations in the
relationship between pattern grime and quality attributes
based on project and developer, which we identified
successfully despite the “uniformity” of our subjects. The
other threats regard limitations of our study design. In
particular, we investigated a limited number of patterns and
subjects, and we acknowledge that additions to the
population may affect our findings. Furthermore, we
investigated projects developed in Java and our observations
cannot be generalized to other languages without additional
analyses. Finally, the grime metrics and quality indicators are
estimators, and the usage of different variables may affect the
observed results. Specifically, the inclusion of metrics based
on subtypes of grime could provide more refined
observations.

VII. CONCLUSIONS
In this paper, we reported on an exploratory case study with
five industrial software systems, in which we examined the

9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

IEEE Access

Multidisciplinary | Rapid Review | Open Access Joumnal

relationship between the accumulation of pattern grime and
the levels of three quality attributes, namely correctness,
performance and security. For that, we considered six metrics
regarding the three forms of grime (i.e., class, modular and
organizational), and one indicator of each studied quality
attribute, estimated by the amount of violations of coding
practices in pattern-participant classes. We investigated the
evolution of 2,329 pattern instances over 1,422 commits,
totalizing 36,571 units of analysis, in which we assessed the
correlations between the grime metrics and quality indicators.
Moreover, we sought to analyze factors that might influence
the observed correlations, in particular, projects, pattern
types, and developers.

The results suggest that pattern grime is related to the
depreciation of correctness, performance and security in
pattern instances. These findings are based on both class and
modular grime, whilst no strong evidence is observed based
on organizational grime. The results also suggest that all
three examined factors can influence the relationship
between pattern grime and quality attributes.

Based on our findings, we envisage several opportunities
for future work. Confirmatory empirical studies could
investigate one or more of the explored factors in more
details, and seek evidence to explain the observed variations
in the relationship between grime and quality attributes.
Furthermore, a replication study with open-source systems
could increase the external validity of the results reported on
this paper. Finally, investigation of additional grime metrics
and factors could enhance the understanding over the
consequences of accumulating pattern grime. In particular,
metrics regarding subtypes of grime have been proposed in
the literature and it would be interesting to investigate the
interplay between indicators of the types and subtypes of
grime in similar study settings.

REFERENCES

[11 E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software, vol. 206. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[2] B. Bafandeh Mayvan, A. Rasoolzadegan, and Z. Ghavidel Yazdi, “The
state of the art on design patterns: A systematic mapping of the
literature,” J. Syst. Softw., vol. 125, pp. 93-118, Mar. 2017. DOIL
10.1016/j.jss.2016.11.030.

[3] F.Khomh, Y.-G. Gueheneuc, and G. Antoniol, “Playing roles in design
patterns: An empirical descriptive and analytic study,” in Proc. 25th
IEEE Int. Conf. Software Maintenance (ICSM °09), Edmonton, AB,
Canada, 2009, pp. 83-92. DOI: 10.1109/ICSM.2009.5306327.

[4] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P.
Avgeriou, “The effect of GoF design patterns on stability: A case study,”
IEEE Trans. Softw. Eng., vol. 41, no. 8, pp. 781-802, Aug. 2015. DOI:
10.1109/TSE.2015.2414917.

[5] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state of
the art on GoF design patterns: A mapping study,” J. Syst. Softw., vol.
86, no. 7, pp. 1945-1964, Jul. 2013. DOI: 10.1016/j.jss.2013.03.063.

[6] B. Huston, “The effects of design pattern application on metric scores,”
J. Syst. Sofiw., vol. 58, no. 3, pp. 261-269, Sep. 2001. DOI:
10.1016/S0164-1212(01)00043-7.

[71 T. Muraki and M. Saeki, “Metrics for applying GOF design patterns in
refactoring processes,” in Proc. 4th Int. Workshop Principles of Sofiware
Evolution (IWPSE ’02), Vienna, Austria, 2002, pp. 27-36. DOL
10.1145/602461.602466.

VOLUME XX, 2017

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach for
evaluating the quality of design patterns,” J. Syst. Softw., vol. 81, no. 8,
pp. 1430-1439, Aug. 2008. DOI: 10.1016/j.jss.2007.11.724.

S. Charalampidou, A. Ampatzoglou, P. Avgeriou, S. Sencer, E.-M.
Arvanitou, and I. Stamelos, “A theoretical model for capturing the
impact of design patterns on quality,” in Proc. 32nd ACM SIGAPP
Symp. Applied Computing (SAC °17), Marrakech, Morocco, 2017, pp.
1231-1238. DOI: 10.1145/3019612.3019781.

C. Izurieta and J. M. Bieman, “A multiple case study of design pattern
decay, grime, and rot in evolving software systems,” Softw. Qual. J., vol.
21, no. 2, pp. 289323, Jun. 2013. DOI: 10.1007/s11219-012-9175-x.

C. Izurieta and J. M. Bieman, “Testing consequences of grime buildup in
object oriented design patterns,” in Proc. st Int. Conf. Software Testing,
Verification, and Validation (ICST ’08), Lillehammer, Norway, 2008,
pp. 171-179. DOI: 10.1109/ICST.2008.27.

M. R. Dale and C. Izurieta, “Impacts of design pattern decay on system
quality,” in Proc. 8th ACM/IEEE Int. Symp. Empirical Software
Engineering and Measurement (ESEM ’14), Torino, Italy, 2014, pp.
37:1-37:4. DOL: 10.1145/2652524.2652560.

I. Griffith and C. Izurieta, “Design pattern decay: the case for class
grime,” in Proc. 8th ACM/IEEE Int. Symp. Empirical Sofiware
Engineering and Measurement (ESEM ’14), Torino, Italy, 2014, pp.
39:1-39:4. DOLI: 10.1145/2652524.2652570.

T. Schanz and C. Izurieta, “Object oriented design pattern decay,” in
Proc. 4th ACM/IEEE Int. Symp. Empirical Software Engineering and
Measurement (ESEM ’10), Bolzano-Bozen, Italy, 2010, pp. 7:1-7:8.
DOI: 10.1145/1852786.1852796.

D. Feitosa, P. Avgeriou, A. Ampatzoglou, and E. Y. Nakagawa, “The
evolution of design pattern grime: An industrial case study,” in Proc.
18th Int. Conf. Product-Focused Software Process Improvement
(PROFES ’17), Innsbruck, Austria, 2017, pp. 165-181. DOL
10.1007/978-3-319-69926-4_13.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. Wiley Blackwell,
2012.

T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I. Stamelos,
“Who is producing more technical debt? A personalized assessment of
TD principal,” in Proc. 9th Int. Workshop Managing Technical Debt
(MTD ’17), Cologne, Germany, 2017, pp. 4:1-4:8. DOIL
10.1145/3120459.3120464.

C. Izurieta and J. M. Bieman, “How software designs decay: A pilot
study of pattern evolution,” in Proc. Ist Int. Symp. Empirical Software
Engineering and Measurement (ESEM °07), Madrid, Spain, 2007, pp.
449-451. DOI: 10.1109/ESEM.2007.55.

A. Ampatzoglou, O. Michou, and I. Stamelos, “Building and mining a
repository of design pattern instances: Practical and research benefits,”
Entertain. Comput., vol. 4, no. 2, pp. 131-142, Apr. 2013. DOI:
10.1016/j.entcom.2012.10.002.

J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp.
4-17,2002. DOI: 10.1109/32.979986.

R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) Approach,” in Encyclopedia of Sofiware
Engineering, John Wiley & Sons, Inc., 2002, pp. 528-532. DOI:
10.1002/0471028959.s0f142

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE Trans. Sofiw.
Eng., vol. 32, no. 11, pp. 896-909, 2006. DOI: 10.1109/TSE.2006.112
G. Kniesel and A. Binun, “Standing on the shoulders of giants - A data
fusion approach to design pattern detection,” in Proc. IEEE 17th Int.
Conf. Program Comprehension (ICPC ’09), Vancouver, BC, Canada,
2009, pp. 208-217. DOI: 10.1109/ICPC.2009.5090044.

N. Pettersson, W. Lowe, and J. Nivre, “Evaluation of Accuracy in
Design Pattern Occurrence Detection,” IEEE Trans. Softw. Eng., vol. 36,
no. 4, pp. 575-590, Jul. 2010. DOIL: 10.1109/TSE.2009.92.

R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“SPOON: A library for implementing analyses and transformations of
Java source code,” Softw. Pract. Exp., vol. 46, no. 9, pp. 1155-1179,
Sep. 2016. DOIL: 10.1002/spe.2346.

D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN
Not., vol. 39, no. 12, pp. 92-106, 2004. DOI:
10.1145/1052883.1052895.

H. Khalid, M. Nagappan, and A. E. Hassan, “Examining the relationship
between FindBugs warnings and app ratings,” /EEE Sofiw., vol. 33, no.
4, pp. 34-39, Jul. 2016. DOI: 10.1109/MS.2015.29.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M.
A.S. E. L. T. on Vouk, “On the value of static analysis for fault detection

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2829895, IEEE Access
IEEE Access

Mulidisciplinary | Rapid Review | Open Access Journal

in software,” Softw. Eng. IEEE Trans., vol. 32, no. 4, pp. 240-253, 2006.
DOI: 10.1109/TSE.2006.38.

[29] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Softw., vol. 25, no. 5, pp. 22—
29,2008. DOI: 10.1109/MS.2008.130.

[30] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,
“Investigating quality trade-offs in open source critical embedded
systems,” in Proc. 11th Int. ACM SIGSOFT Conf. Quality of Software
Architectures (QoSA ’15), Montréal, QC, Canada, 2015, pp. 113-122.
DOI: 10.1145/2737182.2737190.

[31] J. D. Evans, Straightforward statistics for the behavioral sciences.
Pacific Grove: Brooks/Cole Pub. Co., 1996.

[32] A. Field, Discovering Statistics Using SPSS, 3rd ed. SAGE Publications
Ltd, 2009.

[33] M. Linares-Vasquez, S. Klock, C. McMillan, A. Sabané, D.
Poshyvanyk, and Y.-G. Guéhéneuc, “Domain matters: bringing further
evidence of the relationships among anti-patterns, application domains,
and quality-related metrics in Java mobile apps,” in Proc. 22nd Int.
Conf. Program Comprehension (ICPC ’'14), Hyderabad, India, 2014, pp.
232-243. DOL: 10.1145/2597008.2597144.

[34] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the impact
of antipatterns on change-proneness using fine-grained source code
changes,” in Proc. 19th Working Conf. Reverse Engineering (WCRE
’12), Kingston, ON, Canada, 2012, pp. 437-446. DOL
10.1109/WCRE.2012.53.

[35] S.R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476-493, 1994.
DOI: 10.1109/32.295895.

[36] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” J. Syst. Softw., vol. 23, no. 2, pp. 111-122, 1993. DOL:
10.1016/0164-1212(93)90077-B.

VOLUME XX, 2017 9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

