
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 1

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Correlating Pattern Grime and Quality
Attributes

Daniel Feitosa
1
, Apostolos Ampatzoglou

1
, Paris Avgeriou

1
, Senior Member, IEEE, and Elisa

Y. Nakagawa
2
, Member, IEEE

1Department of Mathematics and Computing Science, University of Groningen, Groningen 9700 AK, The Netherlands
2Department of Computer Systems, University of São Paulo, São Carlos - São Paulo, Brazil

Corresponding author: Daniel Feitosa (e-mail: d.feitosa@rug.nl).

This work was financially supported by the Brazilian and Dutch agencies CAPES/Nuffic (Grant N.: 034/12), CNPq (Grant N.:
204607/2013-2), as well as the INCT-SEC (Grant N.: 573963/2008-8 and 2008/57870-9).

ABSTRACT The GoF design patterns are widely adopted in industry as best practices and their effect on

software quality has been long investigated in academia, with both positive and negative consequences

being observed. One important parameter that relates to the effect of patterns on quality is the deterioration

of pattern instances due to the buildup of artifacts unrelated to the pattern structure. This is called pattern

grime and can potentially diminish some of the benefits of using patterns in the first place. In this paper we

investigate the relation between pattern grime and three qualities, namely performance, security and

correctness. To this end, we conducted a case study with five industrial projects (approx. 260,000 lines of

code) implemented by 16 developers. Our findings suggest a correlation between the accumulation of grime

and decreased levels of performance, security, and correctness. Moreover, factors such as the project itself,

pattern type and the developer can influence this relation. The obtained results can benefit both researchers

and practitioners, as we provide evidence on the accumulation of pattern grime and its correlation to

performance, security and correctness, and how different factors affect these correlations.

INDEX TERMS Design patterns, pattern grime, quality attributes, industrial case study

I. INTRODUCTION

The popular GoF (Gang of Four - Gamma, Johnson, Helm,

and Vlissides) design patterns catalog consists of 23 solutions

to recurring problems of object-oriented design [1].

Practitioners often adopt them as good design practices, but

at the same time they are concerned with their impact on the

system under development, particularly their effect on quality

attributes [2]. This concern is reasonable, as patterns can

occur in a significant part of software systems (from 15% to

65% of the classes) [3], [4]. Additionally, the state of the

research suggests that this effect of patterns on software

quality is not uniform, but it depends on a number of

parameters [5]. Several works have concluded that a pattern

can be beneficial in some cases and harmful in others, with

respect to a specific quality attribute, by studying the

structural characteristics of patterns, such as the number of

pattern participating classes, number of methods, etc [6]–[9].

One significant aspect of patterns’ instantiation that might

incurs negative consequences on software quality is the

presence of artifacts (e.g., methods or classes) that are not

related to the pattern rationale. This phenomenon has been

defined by Izurieta and Bieman [10] as pattern grime,

which is the “degradation of a design pattern instance due to

accumulation of artifacts unrelated to the instance”. For

example, in a Decorator pattern instance, the addition of

public methods to the class playing the Decorator role that

are not invoked inside the class playing the Component role

introduces grime into the instance as this new responsibility

is not compliant with the original definition of the pattern [1].

Such a change could reduce the cohesion of the class, as well

as hinder its understandability [9]. In general, accumulating

pattern grime contributes to the degradation of quality in

pattern instances [10]–[12]. Given the aforementioned high

percentage of class participation in GoF patterns, the effects

of ever-growing grime can be detrimental to the overall

quality of those systems.

Despite ongoing research on identifying the impact of

pattern grime on software quality [10], [11], [13], there are

still three shortcomings. First, only a few quality attributes

have been addressed so far, namely testability, adaptability

and understandability. Second, despite the existence of

industrial case studies examining how pattern grime

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

accumulates [14], [15], there is a lack of industrial studies

regarding how the accumulation of grime relate to levels of

quality attributes; the existing studies are limited to open

source software. Finally, even these studies on open source

have limited depth regarding the investigation of factors that

contribute to this relation between grime and qualities. For

example, developers with different levels of involvement in a

project may accumulate grime differently. Identifying the

factors related to higher levels of grime can improve the

impact of design patterns on quality, as well as to a more

adequate allocation of resources in a project.

In this paper, we address the aforementioned shortcomings

through an industrial case study that examines the relation

between the accumulation of pattern grime and quality. The

study was designed according to the guidelines of Runeson et

al. [16], reported based on the Linear Analytic Structure [16].

Thus, we offer three advancements compared to the state of

the art (which is further elaborated in Section II). First, we

focus on three qualities that have not been studied:

performance, correctness and security. Second, we consider

five industrial software systems for our investigation, instead

of open source. Finally, we investigate three factors that may

influence the underlying relations:

 the projects under development have several

characteristics such as application domain and type of

systems (e.g., user application, library), which may

influence the usage of patterns and development

practices. Studies have already shown that projects

can accumulate pattern grime differently [10], [15].

Thus, we seek to investigate if this may reflect on the

relation between grime and levels of quality as well;

 the types of pattern (e.g., Template Method,

Singleton, etc.) have also been pointed out as a factor

on how pattern grime is accumulated [10], [14], [15].

The different structural and behavioral characteristics

of patterns may also be related to how exactly quality

is affected; and

 the developers often have different traits such as

background and experience, which may affect their

behavior and productivity [17]. Besides, developers

have also been found to accumulate grime differently

[15], which corroborates the relevance of also

investigating if this factor relates to a varying level of

quality.

The study is executed based on the commits performed by 16

developers during the implementation of five projects that

sum up to approx. 260,000 source lines of code. The studied

qualities are assessed through the number of violations of

various coding practices, each one mapped to one of the

qualities (for more details see Section III.C.4).

The remainder of this paper is organized as follows. In

Section II, we present related work. The design of our case

study is described in Section III. In Sections IV and V, we

report on our results and discuss the most important findings.

We present the identified threats to validity in Section VI,

together with actions taken to mitigate them. In Section VII,

we conclude the paper and present some interesting

extensions for this study.

II. RELATED WORK

In this section, we focus on the terminology related to pattern

grime, and address empirical studies that investigate the

relation between accumulation of grime and quality

attributes.

A. DESIGN PATTERN GRIME AND QUALITY
ATTRIBUTES

Pattern grime concerns the degradation of pattern instances

without breaking down the original structure on the pattern

definition [10]. This degradation occurs through the addition

of associations that do not comply with patterns’

responsibilities (e.g., addition of a public method that is not

in the definition), which can accumulate along the evolution

of the instance and obscure their design [11]. Izurieta and

Bieman [18] established that the added associations can be

assessed from three base perspectives, i.e., there are three

forms of pattern grime. Class grime regards class-related

elements (e.g., number of attributes, methods, or children)

that are unrelated to the role of a class in the pattern instance.

Modular grime regards relationships (e.g., dependency,

generalization) between classes of the pattern instance and

other classes, which are not predicted in the definition of the

pattern. Organizational grime regards how pattern-

participant classes are distributed into packages and/or

namespaces. This threefold classification was further refined

by Schanz and Izurieta [14], who provided a taxonomy of

subtypes for modular grime, and by Griffith and Izurieta

[13], with a taxonomy of subtypes for class grime.

Regarding the relation between the accumulation of

pattern grime and the levels of quality attributes, we

identified three empirical studies. Izurieta and Bieman [11]

investigated how grime is associated with the testability of

pattern instances. For that, they considered instances of

Singleton, Visitor and State patterns obtained from an open-

source system and assessed their testability by the number of

test cases necessary to cover them. By analyzing the

testability against the accumulation of modular grime,

Izurieta and Bieman found that testability decreases (i.e.,

more test cases are needed) as grime accumulates. Moreover,

other issues such as the appearance of code smells also

aggravate. In a complementary study, Izurieta and Bieman

[10] explored how pattern grime affects the testability and

adaptability (measured by pattern instability) of instances

from three open-source systems. They examined all three

forms of pattern grime (i.e., class, modular and

organizational) and again observed a negative impact. Both

testability and adaptability decreased with the accumulation

of grime, although the results regarding organizational grime

were inconclusive due to lack of more data. Finally, Griffith

and Izurieta [13] investigated how the understandability of

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

pattern instances changes due to the accumulation of grime.

To this end, they focused on class grime and randomly

collected pattern instances from a database of open-source

components [19]. By correlating the accumulated grime with

understandability (assessed according to the QMOOD quality

model [20]), they found that this quality attribute is also

affected negatively.

B. COMPARISON TO STATE OF THE RESEARCH

In Table I, we compare the main parameters that differentiate

our study from related work. In particular, we emphasize

that: (a) we investigated three quality attributes (i.e.,

performance, security and correctness) that have not been

addressed in this context; (b) we studied five industrial non-

trivial projects (in contrast to open-source ones) that

collectively provided 36,571 units of analysis (i.e.,

modifications to the source code of pattern instances, see

Section III); and (c) we investigated factors that, although

have been explored with regards to the accumulation of

grime, have not still been examined with regards to the

relation between grime and quality attributes.

III. STUDY DESIGN

In this section, we present the protocol of our case study,

designed according to the guidelines of Runeson et al. [16],

reported based on the Linear Analytic Structure [16].

A. OBJECTIVES AND RESEARCH QUESTIONS

We formulated the goal of this study using the Goal-

Question-Metric (GQM) approach [21], as follows: “analyze

the accumulation of grime on GoF pattern instances for the

purpose of evaluation with respect to its relationship with the

levels of performance, security and correctness, from the

point of view of software designers in the context of industrial

software development”. To accomplish this goal, we

proposed three research questions (RQs), which are

elaborated as follows.

RQ1 Does the accumulation of pattern grime correlate with
changes in the investigated quality attributes?

 RQ1.1 Is a correlation observed for class grime?

 RQ1.2 Is a correlation observed for modular grime?

 RQ1.3 Is a correlation observed for organizational
grime?

RQ1 aims at acquiring initial evidence of the relationship

between the accumulation of pattern grime and changes in

the levels of correctness, performance and security. We note

that we address each quality attribute in isolation. To more

comprehensively answer this question, we investigated all

three forms of grime proposed by Izurieta and Bieman [18],

i.e., class, modular and organizational grime.

RQ2 Which factors affect the aforementioned relation?

 RQ2.1 Does it vary for different projects?

 RQ2.2 Does it vary for different patterns?

 RQ2.3 Does it vary for different developers?

Next, we extend our analysis to factors that may influence

the relation between pattern grime and quality attributes. In

this study, we examined three factors. First, we investigated

if the correlation between grime and quality attributes differs

for different projects (RQ2.1). Second, we were interested in

answering this question, but for different patterns (RQ2.2).

Although these two factors were briefly addressed in related

work, they have not been empirically explored so far. To

complement the analysis, we also investigated whether the

relationship varies depending on the developer (RQ2.3), in the

sense that the expertise or experience of developers may be

reflected in the accumulated grime and/or quality attribute.

B. CASE SELECTION AND UNIT OF ANALYSIS

To answer the posed research questions, we designed an

exploratory case study [16]. Since related work is limited to

studying only open-source applications, we decided to fill the

gap and perform an industrial case study with five industrial

projects from a company in the domain of web and mobile

applications development. Moreover, these projects provided

us with a diverse and comprehensive sample of developers

(and projects) to investigate: one team of six people worked

on three of the projects, while the other two projects were

developed by two other teams (of five people each)

independently.

The cases of our study comprise pattern instances of the

aforementioned projects. Based on the evolution of these

instances, we assemble our units of analysis, which consist of

the changes that they undergo (i.e., the source code change

between two successive commits). We perform our analyses

and answer our research questions based on this unit of

analysis and, thus, we selected this particular unit due to its

granularity, which allows us to isolate all necessary variables.

In particular, collecting data regarding individual developers

TABLE I
COMPARISON WITH RELATED WORK

Parameter
Study

[11] [10] [13] Ours

Context open-source open-source open-source industrial

Projects 1 3 not clear 5

Patterns 3 7 16 9

Instances 2
"small

number"
not clear 2,329

Forms of
grime

modular
class,
modular and

organizational

class
class, modular
and

organizational

Quality
attributes

testability
testability and
adaptability

understandability
correctness,
performance

and security

Factors pattern lines of code none
project, pattern,

developer

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

is facilitated, as commits regard changes authored

distinctively.

We clarify that the usage of such unit of analysis entail the

collection of multiple data points for individual pattern

instances. However, each data point concerns a different

snapshot of the pattern instance, i.e., there is no repetition.

Moreover, the snapshot of a pattern instance is collected only

when a change is made, i.e., the collection is not made for

every commit. Nevertheless, it is paramount to avoid bias by

having an excessive number of units from a few instances.

For that, we verified the balance of our population on this

regard (see Section IV).

Other main sources of bias regard the authoring of

commits and the size of change, which may compromise our

analyses. To address these concerns, we consulted with the

company, which informed us that their developers are not

allowed to commit for each other neither exchange source

code to commit it. Moreover, a practice of small commits is

encouraged to avoid the aforementioned bad practices.

C. VARIABLES AND DATA COLLECTION

To address the research questions, we recorded four sets of

variables for each unit of analysis. Each set regards one of

the major steps in the data collection: 1) Characterize

commits; 2) Collect patterns instances; 3) Assess pattern

grime; 4) Assess quality attributes. In the following we

describe each step, the variables collected in them

(highlighted between parentheses), and tools we used. A

summary of the recoded variables is presented in Table II.

1) STEP 1: CHARACTERIZE COMMITS

The versioning of the five projects was managed using Git.

For each commit we recorded the project name (project), the

commit hashcode (commit) and the developer responsible for

the commit (dev). We also recorded the files that were

modified in order to filter out undesired commits. In

particular, we ignored merges (as no modifications to source

code are applied) and commits that did not modify pattern

instances. We clarify that the latter filtering is performed in

the next step.

2) STEP 2: COLLECT PATTERN INSTANCES

This collection was performed for every commit, which is a

time-consuming task. Hence, we automated this task using

two tools. We first used the Design Pattern Detector (DPD,

v4.12) [22], which is able to identify 12 GoF patterns:

Adapter/Command, Composite, Decorator, Factory Method,

Observer, Prototype, Singleton, State/Strategy, Template

Method, and Visitor. We selected this tool because it covers a

fair amount of design patterns that can be detected and it has

adequate performance, as reported in Tsantalis et al. [22],

also when compared to similar tools [23], [24]. To further

validate the performance of the tool, we manually assessed

50 instances, which were all true positives.

Despite the performance of DPD, it detects only the main

pattern-participant classes (i.e., those that provide the main

structure of the pattern solution, commonly abstract classes).

To detect the extended pattern-participants classes (i.e., the

other classes that play a role in the pattern), we employed a

tool developed in our group, name SSA+
1
 (v1.0). This tool

can detect and complement the output of DPD with ten

extended pattern participants: Concrete Creator and Product,

for Factory Method pattern; Concrete Prototype, for

Prototype pattern; Leaf, for Composite pattern; Concrete

Decorator and Concrete Component, for Decorator pattern;

Concrete Observer, for Observer pattern; Concrete

State/Strategy, for State/Strategy pattern; Concrete Class, for

Template Method pattern; and Subject, for Proxy pattern. For

that, SSA+ queries the abstract syntax tree (AST) of the

system according to a set of rules to identify each extended

pattern participant (e.g., inherit from a main pattern-

participant class). As the task performed by SSA+ is

deterministic (i.e., it identifies classes that comply with a set

of rules), we validated it by manually checking the output for

50 randomly selected pattern instances, and no error was

detected. In addition, SSA+ was similarly validated in

another study [15].

Based on the collected information, we assign an ID

(inst_id) for every instance and record it together with the

type of the pattern (pattern). We note that IDs are assigned

when instances are first detected and then reused when the

same instance is detected again in later versions, i.e., they are

persistent across versions of the project. Instances were

considered equivalent if the main pattern participants had the

same class name or matched a renamed version of the class

(obtained from Git).

3) STEP 3: ASSESS PATTERN GRIME

For every unit of analysis (i.e., change to a pattern instance),

we assessed the amount of pattern grime accumulated with

regards to its three forms (i.e., class, modular and

1 https://github.com/search-rug/ssap

TABLE II

LIST OF RECORDED VARIABLES

Step Variable Description

1

project Project from which the PI was extracted

commit Hash of the commit in the git repository

dev Developer author of the commit

2
inst_id ID of the PI that the class belongs to

pattern GoF design pattern of the instance

3

cg-napm # alien public methods in all PI classes (Class grime)

cg-naa # alien attributes in all PI classes (Class grime)

mg-ca Afferent coupling of the PI (Modular grime)

mg-ce Efferent coupling of the PI (Modular grime)

og-np # packages within the PI (Organizational grime)

og-ca Afferent coupling at the package level (Organizational grime)

4

cor-viol # correctness violations in all PI classes

per-viol # performance violations in all PI classes

sec-viol # security violations in all PI classes

PI stands for “pattern instance”

stands for “Number of”

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

organizational). For that, we selected six metrics, two for

each form of grime, which were previously used and

validated to assess pattern grime in non-trivial systems [10],

allowing us to analyze its accumulation from various

perspectives.

To assess class grime, we calculate: (a) number of alien

attributes (cg-naa), i.e., that are not described in the original

pattern; and (b) number of alien public methods (cg-napm).

We clarify that we consider only public methods, as they are

responsible for exposing functionality of the pattern instance

to the whole system. For modular grime, we calculate: (a)

afferent pattern coupling (mg-ca) that is the amount of in-

coming dependencies (or fan-in), representing the

responsibility of the pattern instance [10]; and (b) efferent

pattern coupling (mg-ce) that is the amount of dependencies

on classes external to the pattern instance (or fan-out),

representing the instability of the pattern instance [10].

Organizational grime is assessed by calculating: (a) number

of packages (og-np) that contain classes participating on the

pattern instance; and (b) afferent coupling at package level

(og-ca). Although afferent coupling is also calculated for

modular grime (mg-ca), og-ca will depict the responsibility at

a higher level of abstraction. For example, mg-ca may

increase within the same package containing the pattern

instance, which would not affect og-ca.

To automate the data collection of the aforementioned

metrics, we used a tool developed in our group, namely

spoon-pttgrime
2
 (v0.1.0). This tool takes as input Java source

files of a project and an XML file describing the pattern

instances in the project (i.e., the output from SSA+). For each

pattern instance, spoon-pttgrime calculates the six

aforementioned metrics by querying the project’s AST using

the Spoon library [25]. To validate the tool, we verified the

calculated metrics for 50 pattern instances that were

randomly selected, and the results were all correct. Based on

the collected information, we record the amount of grime

accumulated according to each metric, i.e., the difference

between two consecutive versions of the pattern instance.

We note that other indicators of grime have been proposed

in the literature, which are based on taxonomies of modular

and class grime [13, 14]. However, they are not independent

grime indicators in the sense that they are subtypes of the

indicators that we already investigate. Moreover, these

additional indicators have been so far validated only through

synthetic experiments [12, 13, 14], and there is no tool to

automate their measurement. At the same time, the size of

the population of our study makes it infeasible to assess them

manually. Therefore, we decided to consider such indicators

in our future work, and not include them in this study setup.

4) STEP 4: ASSESS QUALITY ATTRIBUTES

As mentioned in Section I, we estimated the studied quality

attributes based on the number of violations of various

2 https://github.com/search-rug/spoon-pttgrime

coding practices. For that, we used FindBugs (v3.0.1), which

considers bug patterns as rules to identify violation of good

coding practices [26]. In particular, FindBugs organizes its

rules (i.e., bug patterns) into nine high-level categories
3
, from

which five can be mapped into the studied quality attributes:

correctness (Correctness and Multithreaded Correctness

categories), performance (Performance category), and

security (Security and Malicious Code categories). We note

that, despite the name of the tool, we do not consider its

output as bugs but simply as warnings, i.e., violations of

good coding practices, and take them as indicators of quality.

A similar approach was used by Kahlid et al. [27], who

correlated the violations of three categories (one being

performance) to quality as perceived by end-users. They

found the data to be closely related, which supports the

violations as quality indicators.

We selected FindBugs due to its collection of rules (252 of

them regarding the considered categories), the possibility to

map them into the studied quality attributes, as well as due to

its adequate precision when compared to similar tools [26],

[28], [29], which reflects on the relevance of the offered

rules. Moreover, we analyzed and validated FindBugs in a

previous study [30] and found that the precision can be

noticeably improved by excluding violations with low level

of confidence. To estimate the level for each quality attribute,

we calculate the amount of rules violations in the pattern-

participant classes of a unit of analysis (cor-viol, per-viol,

and sec-viol). We clarify that lower numbers of violations

reflect a higher level of quality.

D. ANALYSIS PROCEDURE

To investigate the collected data, we performed various

statistical analyses. First, to answer RQ1, we calculated the

correlation between every pair of <grime metric, quality

indicator> (e.g., pattern efferent coupling vs. performance

violations). We assess the strength of the correlation

according to the guidelines of Evans [31]: ‘very weak’ (0.00-

0.19); ‘weak’ (0.20-0.39); ‘moderate’ (0.40-0.59); ‘strong’

(0.60-0.79); and ‘very strong’ (0.80-1.00). To select the most

fitting method for correlation analysis, we first tested the

normality of our data, using the Kolmogorov-Smirnov test

[32], which is more appropriate for large samples. We clarify

that for normally distributed variables, we used Pearson

correlation method [32], otherwise, we used the Spearman’s

rank correlation method [32]. Moreover, the correlations

calculated in this study do not entail bias from consecutive

measurements with same value, also known as artificial

boost. This is because every unit of analysis regards different

states of a particular pattern instance. Therefore, consecutive

measures with same value suggest that a specific metric is

not designed to capture this particular change, and this

information is relevant to our study.

3 The categories are: Security, Correctness, Multithreaded Correctness,

Performance, Malicious Code, Bad Practice, Internationalization,

Experimental and Dodgy Code

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

To answer RQ2, we performed the following steps for each

factor (i.e., project, pattern, developer) that might affect the

relation between pattern grime and quality. First, we grouped

the dataset according to the factor. Next, we verified whether

the groups differentiate between themselves with regards to

the measured variables. For that, we performed an Analysis

of Variance (ANOVA) [32] to confirm a disparity among

groups, followed by post-hoc tests for pairwise comparisons.

We note that we applied Levene’s test [32] to assess the

assumption of equal variances of the tested populations.

When the assumption was met, we used regular ANOVA,

followed by Tukey’s Honestly Significant Differences (HSD)

tests [32]. Otherwise, we used Welch’s ANOVA, followed

by Games-Howell tests (which are more appropriate for large

samples). Finally, for the groups that are statistically

different, we calculate the correlation for each pair of grime

and quality metrics and identify statistically relevant

correlations.

IV. RESULTS

In this section, we present a summary of the collected data,

as well as the results of the analysis performed to answer the

research questions posed in Section III.A. During the data

collection, we identified 1,422 commits that contain the

creation or modification of pattern-participating classes of

the five investigated projects, from which the majority (94%)

regard the modification of one or more pattern instances.

Based on the commits, we isolated 2,329 pattern instances of

eight different GoF patterns: (Object) Adapter / Command,

Decorator, Factory Method, Observer, Singleton, State /

Strategy, and Template Method. In Table III we present a

summary of the units of analysis by project and patterns.

In Section III.B, we highlighted the necessity of having a

balanced population (i.e., pattern instances should have

similar number of modifications) to avoid bias from pattern

instances with excessive number of units of analysis. After

studying the history of commits, we assessed that each

pattern instance underwent a maximum of 178 modifications.

Moreover, 87% of the pattern instances (i.e., 2,039) were

modified at least once, and 64% (i.e., 1,500) at least five

times. Our analysis suggests that although the population is

not evenly balanced, the discrepancies are not enough to

harm the statistical analysis of our study nor the answers to

the research questions.

In summary, we collected a total of 36,571 units of

analysis (i.e., creation/modification of a pattern instance in a

commit). For each unit, we recorded the amount of pattern

grime that was accumulated according to six metrics (cg-*,

mg-* and og-*) and the number of violations regarding the

three studied quality attributes (*-viol). We clarify that due to

a non-disclosure agreement signed with the company in this

case study, we cannot share the created dataset, nor certain

details regarding specific projects and developers.

To characterize our population, in Table IV we present the

descriptive statistics for these variables. We notice that

pattern efferent coupling (mg-ce) is the grime metric that

changes the most, which may be a sign of bad practices since

it represents the dependency of the pattern instance on other

classes. On the counterpart, number of packages (og-np) is

the metric that changes the least, which is expected given that

pattern instances normally grow within the same package.

Furthermore, we notice that violations of good practices

regarding correctness appear to be considerably more

frequent than regarding performance and security. This

observation may be partially related to the fact that the

majority of the rules checked by FindBugs concern

correctness: out of all the rules for the three studied qualities,

correctness accounts for approx. 70%, while performance

and security correspond to approx. 15% each. Nevertheless,

we could detect considerably fewer violations concerning

security rather than performance, which suggest that other

parameters are also relevant, such as the type of application

or even the specific security-related violations that FindBugs

checks.

A. RQ1 – CORRELATION BETWEEN GRIME AND
QUALITY ATTRIBUTES

To answer RQ1, we calculated the correlation between all

pairs of <grime metric, quality indicator> (e.g., cg-ce vs.

TABLE III

SUMMARY OF DATASET

Project Pattern
Number of

instances

Number of

units of analysis

P1

(Object) Adapter/Command 284 8150

Singleton 80 155

State/Strategy 351 11586

P2

(Object) Adapter/Command 86 484

Observer 3 21
Singleton 16 42

State/Strategy 275 2113

Template Method 1 6

P3

(Object) Adapter/Command 327 3090

Factory Method 53 545

Singleton 29 152
State/Strategy 375 3995

P4

(Object) Adapter/Command 136 2144

Decorator 1 1
Factory Method 13 266

Singleton 21 73
State/Strategy 230 3275

P5

(Object) Adapter/Command 16 206

Factory Method 2 33
Singleton 5 10

State/Strategy 25 224

TABLE IV

DESCRIPTIVE STATISTICS PER COMMIT

Variable Minimum Maximum Mean Std. Deviation

cg-napm 0.00 52.80 13.66 8.27

cg-naa 0.00 41.50 7.95 5.00

mg-ca 0.00 107.00 8.01 10.72
mg-ce 0.00 325.00 100.18 61.22

og-np 1.00 5.00 2.34 0.53

og-ca 0.00 54.00 6.75 8.06
cor-viol 0.00 35.00 2.39 3.19

per-viol 0.00 8.00 0.97 1.45

sec-viol 0.00 20.00 0.25 1.40

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

per-viol) as explained in Section III.D. We note that we could

not assume normal distribution for all variables and, thus, we

used Spearman’s rank correlation method. Moreover,

‘artificial boost’ is not a concern in this population (see

Section III.D). Fig. 1 depicts a heatmap with the results of

our analysis, in which darker shades of gray denote stronger

correlation. The coefficients are written within each cell

except for correlations that are not statistically significant

(which are blank). Based on Fig. 1 we can make several

observations.

The accumulation of grime seems to be related with the

depreciation of correctness and performance (i.e., more

violations), as we observed strong correlations (i.e., above

0.6) and moderate correlations (i.e., between 0.4 and 0.59)

respectively [31]. Furthermore, the very weak correlation

with security violations (i.e., below 0.2) does not imply that a

link does not exist. This only shows a lack of evidence.

Another observation is that metrics for assessing class

grime, namely number of alien public methods (cg-napm),

alien attributes (cg-naa), and pattern efferent coupling

(mg-ce) displayed the strongest correlations regarding

every quality attribute. This outcome can be considered

intuitive in the sense that, as structural elements at the class

level, patterns are expected to be more influential at lower

levels of granularity (e.g., class rather than module). The

degradation of another quality, namely maintainability, due

to the existence of alien methods is also reported in related

work [9].

The aforementioned observations are based on how grime

accumulates in pattern instances. However, one may wonder

if changes in the quality levels can be simply explained by

natural evolution of the source code, i.e., any type of change

to the pattern instance rather than pattern grime. To

investigate this possibility, we assessed the correlation

between lines of code (LOC) and both grime metrics and

quality indicators. The results show that grime is strongly

correlated (0.81) with LOC, i.e., most maintenance activities

in pattern instances entail accumulation of grime. However,

the correlation between grime and quality indicators was

often slightly stronger compared to the correlation between

LOC and quality indicators. For example, the correlation

between cor-viol vs. mg-ce (0.792) is marginally stronger

than cor-viol vs. LOC (0.785), per-viol vs. mg-ce (0.414) is

stronger than per-viol vs. LOC (0.359), and sec-viol vs. mg-

ce (-0.093) is stronger than sec-viol vs. LOC (-0.074).

Therefore, although the difference between correlation values

may be marginal at times, the overall analysis consistently

shows that grime matches the degradation of quality better

than natural evolution.

B. RQ2 – ANALYSIS OF FACTORS

To further explore the relation between the accumulation of

pattern and the three studied quality attributes, we

investigated three factors that may influence the observed

correlations as described in Section III.D: projects, patterns

and developers.

1) COMPARISON OF PROJECTS

We collected data from five different industrial projects, here

referred to as P1 to P5. From the 36,571 units of analysis,

19,891 regard P1, 2,667 regard P2, 7,781 regard P3, 5,759

regard P4, and 473 regard P5. Moreover, P1 and P2 were

developed by two different teams of developers while a third

team developed P3, P4 and P5. In Table V, we show the

descriptive statistics of all variables for each project

independently.

We notice that the projects are considerably distinct from

each other with regard to these variables. For example, P2

has the highest mean for most grime metrics but not for

quality indicators, while P5 has the lowest means for grime

metrics but present the highest average of performance

violations. To verify the observed differences, we compared

the means between projects by performing an analysis of

variances (ANOVA) for each variable, followed by one post-

hoc test for each pairwise comparison (i.e., 90 in total). The

results of the tests are publicly available online in a

supplementary material
4
. The results show that 91% of the

tests are statistically significant, i.e., the means differ

between the two compared projects. Based on these findings,

we hypothesize that the different characteristics of projects

are indeed reflected on the relationship between the

accumulation of pattern grime and the indicators of

correctness, performance and security.

To verify how the accumulation of grime in projects

relates to the levels of quality, we calculated the correlation

between every pair of grime metric and quality indicator for

each project. The results are presented in Fig. 2 (which is

interpreted as Fig. 1), from which we observe that the

correlations are noticeably different based on the projects.

For example, similar to the results observed for the general

population, P1 exhibits a strong correlation (i.e., above 0.6)

between class grime metrics and the correctness indicator

(cor-viol). The opposite is observed for P2, for which the

data suggest a correlation between pattern grime and the

security indicator (sec-viol), which have not been observed

for the general population.

4 https://doi.org/10.5281/zenodo.1133552

FIGURE 1. Correlation between grime metrics (cg-*, mg-*, og-*) and
quality attributes indicators (*-viol).

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

However, we also noticed that higher values of

accumulated grime are related to higher depreciation of

quality (i.e., higher number of violations), which is often

reflected in higher correlation coefficients. This evidence

strengthens our finding that the relationship between

pattern grime and quality attribute indicators is project-

dependent. It also suggests that the observed difference is

connected to how grime accumulates in the different projects.

This finding is in accordance to those of Vasquez et al. [33],

which suggest that other indirect quality indicators (such as

anti-patterns or code smells) vary among projects of different

application domains, as well as with Izurieta and Bieman

[10], who observed varied levels of grime and quality on the

studied projects.

2) COMPARISON OF PATTERNS

During the data collection, we identified instances of eight

different patterns. From the 36,571 units of analysis, 14,074

regard the (Object) Adapter / Command (AC) patterns, 844

regard the Factory Method (FM) pattern, 432 regard the

Singleton (Si) pattern, 21,193 regard the State/Strategy (SS)

patterns, 21 regard the Observer pattern, six regard the

Template Method pattern, and one regards the Decorator

pattern. Due to the limited amount of units, we do not present

results concerning the last three patterns, which are available

in the supplementary material.

In Table VI, we present the descriptive statistics of all

variables for each pattern independently. We notice that this

factor also seems to influence the relations between pattern

grime and indicators of the studied quality attributes. In

particular, we observe that the means for every metric varies

considerably among patterns. Moreover, we could not

observe clear trends, i.e., patterns that consistently display

the highest or lower means. For example, Factory Method

displays the highest mean of security violations (sec-viol) but

one of the lowest of correctness violations (cor-viol).

To verify our observations, we computed the ANOVA for

each variable and performed the post-hoc tests (i.e., 48 in

total). The results of the tests are available in the

supplementary material. We note that Singleton instances

had no variance with regards to number of packages (og-np)

and security indicator (sec-viol), and, thus, these variables

were not considered in the analyses for this pattern. The

results show that 93% of the tests are statistically significant.

To further investigate this factor, we calculated the

correlation between every pair of grime metric and quality

indicator for the investigated patterns. In Fig. 3 (which is

TABLE V
DESCRIPTIVE STATISTICS PER PROJECT

Variable Project Minimum Maximum Mean
Std.

Deviation

cg-napm

P1 0.00 44.67 13.94 8.26
P2 0.00 48.00 14.92 11.90

P3 0.00 52.80 11.79 6.47
P4 0.00 42.00 14.89 8.13

P5 0.00 29.75 10.36 5.73

cg-naa

P1 0.00 22.33 8.97 4.87
P2 0.00 30.33 5.87 3.72

P3 0.00 30.50 5.90 3.81
P4 0.00 41.50 8.45 6.13

P5 0.00 13.75 4.72 2.50

mg-ca

P1 0.00 49.00 6.52 8.48
P2 0.00 78.00 17.69 18.65

P3 0.00 107.00 7.44 10.29

P4 0.00 102.00 10.02 10.85
P5 0.00 5.00 1.00 1.07

mg-ce

P1 0.00 325.00 132.05 62.91

P2 0.00 140.00 55.07 28.23
P3 0.00 162.00 63.31 29.65

P4 0.00 141.00 65.50 27.99
P5 0.00 95.00 43.13 19.02

og-np

P1 1.00 3.00 2.31 0.48

P2 1.00 3.00 2.64 0.53
P3 1.00 5.00 2.30 0.60

P4 1.00 4.00 2.35 0.54

P5 1.00 3.00 2.21 0.46

og-ca

P1 0.00 54.00 5.55 8.32

P2 0.00 29.00 15.42 8.98

P3 0.00 44.00 7.71 7.50

P4 0.00 19.00 6.03 3.95

P5 0.00 5.00 0.88 0.55

cor-viol

P1 0.00 35.00 3.74 3.68
P2 0.00 5.00 0.16 0.55

P3 0.00 7.00 0.66 1.19
P4 0.00 10.00 1.24 1.25

P5 0.00 2.00 0.63 0.65

per-viol

P1 0.00 7.00 1.16 1.58
P2 0.00 8.00 1.12 1.50

P3 0.00 6.00 0.72 1.15

P4 0.00 5.00 0.57 1.10
P5 0.00 8.00 1.16 1.66

sec-viol

P1 0.00 2.00 0.03 0.18
P2 0.00 14.00 1.31 2.65

P3 0.00 14.00 0.31 1.33

P4 0.00 20.00 0.42 2.41

P5 0.00 8.00 0.28 0.89

FIGURE 2. Correlation between grime metrics (cg-*, mg-*, og-*) and
quality attributes indicators (*-viol) for individual projects (P*).

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

interpreted as Fig. 1), we present the results of the

calculations, which show clearly varying correlations

depending on the pattern. We notice that, as for projects, we

could identify a pattern, namely Factory Method, for which

the accumulation of grime is moderately correlated with the

depreciation of quality indicators. Again, we observed that

the combination of higher accumulation of grime and

quality indicators often reflects in higher correlation

coefficients. All this information suggests that the

relationship between pattern grime and quality attribute

indicators also depends on the pattern type of the instance.

This finding is in accordance with the literature, which

suggests that different patterns have different effects on the

same quality attribute (e.g., [4], [34]).

3) COMPARISON OF DEVELOPERS

The case study involved 16 developers, here referred to as

D1 to D16, which account for various amounts of units of

analysis
5
. Due to the low number of data points, we did not

5 The number of units by each developer is: D1 - 810; D2 - 5662; D3 -

1535; D4 - 8; D5 - 470; D6 - 5368; D7 - 21; D8 - 62; D9 - 1464; D10 - 11;

D11 - 811; D12 - 1648; D13 - 3565; D14 - 6748; D15 - 7825; D16 - 563.

include D4, D7, D8 and D10 in our analyses. In Table VII,

we show the mean value of all variables, for each developer.

We note that we do not present the complete descriptive

statistics, which are available in the supplementary material.

Similar to the previous factors, we observe that mean values

regarding all variables differ among developers, i.e., they

exhibit different characteristics. For example, both D11 and

D15 show higher tendency to pollute pattern instances with

alien methods (i.e., higher cg-napm values) than other

developers. However, D11 seems much less prone to pollute

instances with external dependencies (i.e., lower mg-ce).

To validate the differences observed in the measurements,

we performed ANOVA on all variables, followed by the

post-hoc tests (583 in total), which are all available in the

supplementary material. We note that no variance in the

security indicator (sec-viol) was observed for D9 and, thus,

we discarded this variable for analyses regarding the

developer. The results show that 80% of the tests are

statistically significant. The majority of the comparisons that

were not significant, concern the number of packages, which

is intuitive, as pattern instances do not tend to be spread

across multiple packages/namespaces.

TABLE VI

DESCRIPTIVE STATISTICS PER PATTERN

Variable Pattern Minimum Maximum Mean
Std.

Deviation

cg-napm

AC 0.00 43.00 12.59 7.70
FM 2.40 52.80 15.63 8.89

Si 0.00 6.00 0.82 1.35

SS 0.67 48.00 14.55 8.39

cg-naa

AC 0.50 41.50 8.53 5.78

FM 1.00 23.20 6.86 4.43

Si 0.00 3.00 0.44 0.73
SS 0.00 30.33 7.77 4.32

mg-ca

AC 0.00 49.00 6.57 8.71

FM 1.00 107.00 19.70 23.46

Si 0.00 52.00 7.39 10.54

SS 0.00 78.00 8.51 10.80

mg-ce

AC 5.00 236.00 90.24 51.97
FM 10.00 129.00 58.00 25.67

Si 0.00 17.00 1.68 2.52
SS 1.00 325.00 110.56 64.80

og-np

AC 1.00 2.00 1.99 0.10

FM 1.00 5.00 3.37 0.68
Si 1.00 1.00 1.00 0.00

SS 1.00 4.00 2.56 0.50

og-ca

AC 0.00 46.00 5.82 7.72
FM 1.00 44.00 13.34 8.15

Si 0.00 54.00 13.06 8.03

SS 0.00 46.00 6.96 8.07

cor-viol

AC 0.00 13.00 2.19 2.84

FM 0.00 5.00 0.69 1.02

Si 0.00 3.00 0.02 0.21

SS 0.00 35.00 2.64 3.44

per-viol

AC 0.00 5.00 0.82 1.30
FM 0.00 6.00 0.56 1.22

Si 0.00 0.00 0.00 0.00

SS 0.00 8.00 1.11 1.54

sec-viol

AC 0.00 6.00 0.04 0.26

FM 0.00 20.00 4.71 5.81

Si 0.00 12.00 0.48 1.67
SS 0.00 14.00 0.21 1.05

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy

FIGURE 3. Correlation between grime metrics (cg-*, mg-*, og-*) and
quality attributes indicators (*-viol) for individual patterns (AC, FM, Si,
and SS).

TABLE VII
DESCRIPTIVE STATISTICS PER DEVELOPER

 cg-

napm

cg-

naa

mg-

ca

mg-

ce

og-

np

og-

ca

cor-

viol

per-

viol

sec-

viol

D1 9.50 3.17 8.40 38.09 2.28 7.07 0.47 0.00 0.25
D2 12.53 7.17 8.02 63.75 2.32 7.21 1.03 0.56 0.34

D3 9.83 7.11 7.68 70.78 2.30 8.59 0.26 1.14 0.29
D5 12.58 5.84 5.48 56.39 2.27 5.08 0.45 0.97 0.27

D6 14.01 9.15 7.00 127.50 2.30 5.65 3.57 1.59 0.05

D9 9.62 6.76 6.41 99.90 2.27 5.02 2.21 0.87 0.00
D11 16.36 5.88 14.27 51.18 2.59 13.07 0.07 0.83 0.96

D12 12.83 7.92 8.03 122.20 2.38 7.20 2.99 1.11 0.01
D13 12.42 8.36 7.21 112.66 2.26 5.49 2.61 1.83 0.08

D14 14.81 6.99 11.12 64.40 2.40 8.06 0.89 0.88 0.65

D15 15.65 9.78 5.57 152.28 2.34 5.28 4.83 0.64 0.01
D16 14.31 5.66 16.25 53.53 2.60 15.48 0.17 0.75 0.96

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

We also calculated the correlation between variables,

which are shown in Fig. 4 (which is interpreted as Fig. 1).

The results suggest that developers accumulate grime

differently and that this may reflect on the quality indicators.

We also observed that although we found that correlations

differ among developers, they are mostly consistent in the

sense that more grime is correlated with more violations

(i.e., depreciated quality). In summary, all collected

information strengthens our finding that developers comprise

a factor to how the accumulation is related to the depreciation

of correctness, performance and security in pattern instances.

Our results are in accordance with those by Amanatidis et al.

[17], who studied the accumulation of technical debt and

observed an imbalance regarding the number of violations

among developers.

V. DISCUSSION

In this section, we revisit the findings of our study and

present their connection to related work. Next, we elaborate

on the main implications to researchers and practitioners.

A. INTERPRETATIONS OF RESULTS

1) CORRELATION BETWEEN GRIME AND ATTRIBUTES

The findings discussed in this paper suggest that, as pattern

grime accumulates, classes that participate in pattern

instances become more prone to quality depreciation. In

particular, such classes are more susceptible to source code

that violates good practices that promote correctness,

performance and security of software systems. These

findings corroborate those by related work that analyzes the

relations between grime and quality [10], [11], [13], in the

sense that we also found that grime goes hand in hand with

diminished quality.

In our study, we noticed that three metrics, namely

number alien attributes (cg-naa), number of alien public

methods (cg-napm) and instance efferent coupling (mg-ce),

were the most likely to be appropriate indicators of bad

quality; these same metrics have shown similar relevance in

the related work. Moreover, these metrics correspond to

structural characteristics of pattern instances (e.g., efferent

coupling), and similar metrics (at class level rather than

instance level) have been largely explored in the literature

(e.g. [6]–[9]) and found to be good estimators of the benefit

(or harmfulness) of pattern instances to quality attributes. In a

previous study, we found that the degradation of certain well-

known design metrics can be used as hints of the

accumulation of pattern grime [15], as it is assessed based on

design propertied of pattern participants. In particular, we

investigated the metric suits proposed by Chidamber and

Kemerer [35], Li and Henry [36], and Bansiya and Davis

[20]. Results of that study showed that the metrics data

abstraction coupling (DAC) [36] and measure of aggregation

(MOA) [20] may help identifying accumulation of cg-naa;

the metrics weighted methods per class (WMC) [35] and

class interface size (CIS) [20] may help identifying

accumulation of cg-napm; and the metrics coupling between

object classes (CBO) [35] and response for a class (RFC)

[35] may help identifying accumulation of mg-ce.

2) CONTRIBUTING FACTORS

The way pattern grime builds up in pattern-participant classes

can depend on several factors. Our empirical investigation

confirmed that three such factors indeed play a role: project,

pattern and developer. With regard to projects, we observed

that the difference may be related to two sub-factors. The

type of the project seems relevant on determining the

relation between grime and quality. Two of the studied

projects (P1 and P4) provide services to other applications

(e.g., libraries or API's) and showed to be more prone to

grime and violations; this aligns with the suggestion by

FIGURE 4. Correlation between grime metrics (cg-*, mg-*, og-*) and
quality attributes indicators (*-viol) for individual developers (D*).

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

Vasquez et al. [31] that parameters such as application

domain can be relevant. However, we also noticed that these

projects had more pattern instances (i.e., a bigger pattern

code base) and that a second sub-factor, namely lines of code

was also correlated with both grime and quality indicators;

this has also been discerned by Izurieta and Bieman [10].

A similar observation also holds for developers: those that

wrote more code (i.e., provided more units of analysis) were

more prone to incur both grime and violations. Finally, our

main observation concerning the difference among patterns is

that those using more complex mechanisms (e.g., State,

Strategy and Factory Method, which have polymorphic

calls) tend to accumulate both more grime and violations;

this is intuitive given that more complex designs are less

understandable and harder to maintain.

Investigating the factors in isolation allowed us to observe

that the correlations in different groups (based on factors)

differ from the ones concerning the entire dataset.

However, although the differences may look random at first,

we noticed a recurrent motif. In particular, we observed that

the majority (approx. 80%) of moderate or strong

correlations (i.e., more than 0.4) [31] have been identified

when grime and qualities metrics are at a similar level. For

example, projects that on average concentrate few violations

and have low levels of accumulated grime, or the opposite.

Among those, 56% regard higher values on both grime and

quality indicators.

3) ANALYSIS OF VIOLATIONS

Finally, since we estimated the levels of quality attributes

through the number of violations of good coding practices, it

is relevant to dig deeper into these violations. In Table VIII,

we present the most recurrent violations, assessed according

to the addressed research questions, i.e., the overall dataset,

per project, per pattern and per developer. We note that some

developers have not violated any rules for certain quality

attributes in pattern-participant classes; those are marked

with “-”. We observe that this list of violations comprises

issues that are clearly harmful to the respective quality

attributes, e.g., calling unsafe methods in a multithreaded

context can lead to race conditions or unpredictable states.

Thus, if these violations are among the recurrent ones, they

can pose a serious threat to the system. Furthermore, the top

issues vary among projects, patterns and developers. The

differences that we observe between developers is aligned

with the findings by Amanatidis et al. [17], who not only

observed an imbalance on how developers accumulate

violations but also a difference on the recurrence.

Nevertheless, it is possible to discern the connection

between groups. For example, the two recurrent performance

issues that appear for the most among developers (i.e.,

“Comparison of different types” and “Possible null pointer

dereference”), also appear frequently among projects and

patterns, and one of them is the most recurrent in the entire

dataset.

TABLE VIII

MOST RECURRENT VIOLATIONS

 Correctness Performance Security

Overall Comparison of different types Class member should be static Exposed inner representation by incorporating mutable object

P
r
o

je
c
t

P1 Comparison of different types Class member should be static Method invocation without proper security check

P2 Unsafe call in for multithreading Class member should be static Exposed inner representation by returning mutable object

P3 Possible null pointer dereference Private method is never called Exposed inner representation by incorporating mutable object
P4 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object
P5 Unsafe call for multithreading Unnecessary call to toString() Exposed inner representation by incorporating mutable object

P
a

tt
e
r
n

 AC Comparison of different types Class member should be static Field should be package protected

FM Possible null pointer dereference Unnecessary value unboxing Exposed inner representation by incorporating mutable object
Si Comparison of different types Inefficient use of map iterator Exposed inner representation by incorporating mutable object
SS Comparison of different types Class member should be static Exposed inner representation by returning mutable object

D
e
v

el
o

p
e
r

D1 Comparison to null - Exposed inner representation by incorporating mutable object
D2 Possible null pointer dereference Unnecessary value unboxing Exposed inner representation by incorporating mutable object
D3 Possible null pointer dereference Class member should be static Exposed inner representation by incorporating mutable object
D5 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object
D6 Comparison of different types Private method is never called Method invocation without proper security check

D9 Possible null pointer dereference Private method is never called -

D11 Variable self-assignment Class member should be static Exposed inner representation by incorporating mutable object

D12 Possible null pointer dereference Class member should be static -

D13
Nullcheck on dereferenced
variable

Invoke of inefficient
constructor

Method invocation without proper security check

D14 Unsafe call for multithreading Class member should be static Exposed inner representation by returning mutable object

D15 Comparison of different types Private method is never called -

D16 Unsafe call for multithreading Class member should be static Exposed inner representation by incorporating mutable object

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

B. IMPLICATIONS TO RESEARCHERS AND
PRACTITIONERS

GoF patterns are popular among practitioners as established

and valuable design solutions. However, the consequences of

using them often become a matter of concern, especially

regarding quality. This paper sheds some light on this

respect, suggesting the following implications to

practitioners. We encourage the conscious usage of GoF

patterns, in the sense that knowledge about the patterns being

applied, as well as the pattern instances in the system under

development, should be disseminated within the team of

developers.

In addition, monitoring the pattern instances is of

paramount importance to maintain desired levels of quality,

especially correctness, performance and security. Moreover,

practitioners can take advantage of the tool spoon-pttgrime in

order to track the accumulation of grime and plan

maintenance activities. Conversely, if practitioners already

use FindBugs within their development process, the number

of violations (for correctness, performance and security) can

be used as indicators of grime accumulation, helping the

team on identifying pattern instances with potentially

deteriorated design.

The findings in this paper can also benefit researchers. Our

work joins the small pool of studies that investigate pattern

grime, especially its relation to quality attributes, and further

demonstrate the relevance of researching this phenomenon

and the underlying relations. In particular, we provide

evidence that encourages the investigation of other quality

attributes, as well as factors related to it. The presented

information also builds up on the body of knowledge on

pattern grime, and we hope it will support future research.

Particularly, we envisage confirmatory studies to seek more

evidence to explain the observed variations in the

relationship between grime and the studied quality attribute,

as well as others. We also demonstrate that the usage of static

analysis tools such as FindBugs can provide valuable

information regarding the accumulation of grime. Finally, the

design of our case study and used tools used can be exploited

for future research efforts.

VI. THREATS TO VALIDITY

In this section, we discuss threats to the validity of the study

reported on this paper; in particular, construct validity,

reliability and external validity. Construct validity concerns

to what extent the objects of the study are connected to the

research questions. Reliability regards the extent to which the

study can be replicated with the same observed results.

External validity pertains to the limitations to generalize our

findings to the entire population. We note that we do not

analyze internal validity, as we empirically study the

correlation between variables without establishing causal

relations.

Regarding construct validity, we identified the following

threats. First, the DPD and FindBugs tools are limited by

their precision and recall, which may bias our results due to

false positives and negatives. We note that, to the best of our

knowledge, these tools have adequate performance and good

reputation (see Sections III.C.2 and III.C.4). Nevertheless, to

mitigate this threat, we randomly selected 50 pattern

instances and verified the output from each tool manually. In

addition, we acknowledge that the list rules provided by

FindBugs is by no means exhaustive and additional rules

could affect our results. However, we reiterate that the

diverse list of bug patterns (i.e., 252 rules) and evidence

provided by other studies that used FindBugs to estimate

quality attributes [27], [30] suggest that the tool is adequate

for the purpose used in this study. Finally, concerning the

tools developed in our group (SSA+ and spoon-pttgrime),

which although perform deterministic tasks, may contain

bugs and bias the results of the study. To mitigate this threat,

we also checked their output for 50 randomly selected pattern

instances. In addition, our tools have been used in previous

studies, where they were also validated.

To address reliability threats, at least two researchers were

involved in both data collection and analysis. Samples of the

output were checked by both researchers and the verification

followed a checklist to avoid irregularities. Furthermore,

most tasks were automated by the tools referenced in this

paper, which are all publicly available. Despite our effort, we

acknowledge that non-disclosure agreements do not allow us

to share the collected dataset. However, replications studies

can be carried out to attempt to replicate our results.

Concerning external validity, the main threat is that we

explored projects from the same company, from which three

were developed by the same team. Such uniformity (e.g.,

developers subject to same company practices) may lessen

the generalizability of our findings to other companies or

teams. However, we note that the accumulation of grime that

we observed aligns with the results of other studies, e.g.,

class and modular grime are the main indicators of grime.

Moreover, we also aimed at identifying variations in the

relationship between pattern grime and quality attributes

based on project and developer, which we identified

successfully despite the “uniformity” of our subjects. The

other threats regard limitations of our study design. In

particular, we investigated a limited number of patterns and

subjects, and we acknowledge that additions to the

population may affect our findings. Furthermore, we

investigated projects developed in Java and our observations

cannot be generalized to other languages without additional

analyses. Finally, the grime metrics and quality indicators are

estimators, and the usage of different variables may affect the

observed results. Specifically, the inclusion of metrics based

on subtypes of grime could provide more refined

observations.

VII. CONCLUSIONS

In this paper, we reported on an exploratory case study with

five industrial software systems, in which we examined the

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

relationship between the accumulation of pattern grime and

the levels of three quality attributes, namely correctness,

performance and security. For that, we considered six metrics

regarding the three forms of grime (i.e., class, modular and

organizational), and one indicator of each studied quality

attribute, estimated by the amount of violations of coding

practices in pattern-participant classes. We investigated the

evolution of 2,329 pattern instances over 1,422 commits,

totalizing 36,571 units of analysis, in which we assessed the

correlations between the grime metrics and quality indicators.

Moreover, we sought to analyze factors that might influence

the observed correlations, in particular, projects, pattern

types, and developers.

The results suggest that pattern grime is related to the

depreciation of correctness, performance and security in

pattern instances. These findings are based on both class and

modular grime, whilst no strong evidence is observed based

on organizational grime. The results also suggest that all

three examined factors can influence the relationship

between pattern grime and quality attributes.

Based on our findings, we envisage several opportunities

for future work. Confirmatory empirical studies could

investigate one or more of the explored factors in more

details, and seek evidence to explain the observed variations

in the relationship between grime and quality attributes.

Furthermore, a replication study with open-source systems

could increase the external validity of the results reported on

this paper. Finally, investigation of additional grime metrics

and factors could enhance the understanding over the

consequences of accumulating pattern grime. In particular,

metrics regarding subtypes of grime have been proposed in

the literature and it would be interesting to investigate the

interplay between indicators of the types and subtypes of

grime in similar study settings.

REFERENCES
[1] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software, vol. 206. Addison-Wesley

Longman Publishing Co., Inc., 1995.

[2] B. Bafandeh Mayvan, A. Rasoolzadegan, and Z. Ghavidel Yazdi, “The
state of the art on design patterns: A systematic mapping of the

literature,” J. Syst. Softw., vol. 125, pp. 93–118, Mar. 2017. DOI:

10.1016/j.jss.2016.11.030.

[3] F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “Playing roles in design

patterns: An empirical descriptive and analytic study,” in Proc. 25th

IEEE Int. Conf. Software Maintenance (ICSM ’09), Edmonton, AB,

Canada, 2009, pp. 83–92. DOI: 10.1109/ICSM.2009.5306327.
[4] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and P.

Avgeriou, “The effect of GoF design patterns on stability: A case study,”

IEEE Trans. Softw. Eng., vol. 41, no. 8, pp. 781–802, Aug. 2015. DOI:

10.1109/TSE.2015.2414917.

[5] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state of

the art on GoF design patterns: A mapping study,” J. Syst. Softw., vol.

86, no. 7, pp. 1945–1964, Jul. 2013. DOI: 10.1016/j.jss.2013.03.063.

[6] B. Huston, “The effects of design pattern application on metric scores,”
J. Syst. Softw., vol. 58, no. 3, pp. 261–269, Sep. 2001. DOI:

10.1016/S0164-1212(01)00043-7.

[7] T. Muraki and M. Saeki, “Metrics for applying GOF design patterns in

refactoring processes,” in Proc. 4th Int. Workshop Principles of Software

Evolution (IWPSE ’02), Vienna, Austria, 2002, pp. 27–36. DOI:

10.1145/602461.602466.

[8] N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach for

evaluating the quality of design patterns,” J. Syst. Softw., vol. 81, no. 8,
pp. 1430–1439, Aug. 2008. DOI: 10.1016/j.jss.2007.11.724.

[9] S. Charalampidou, A. Ampatzoglou, P. Avgeriou, S. Sencer, E.-M.

Arvanitou, and I. Stamelos, “A theoretical model for capturing the

impact of design patterns on quality,” in Proc. 32nd ACM SIGAPP

Symp. Applied Computing (SAC ’17), Marrakech, Morocco, 2017, pp.

1231–1238. DOI: 10.1145/3019612.3019781.

[10] C. Izurieta and J. M. Bieman, “A multiple case study of design pattern
decay, grime, and rot in evolving software systems,” Softw. Qual. J., vol.

21, no. 2, pp. 289–323, Jun. 2013. DOI: 10.1007/s11219-012-9175-x.

[11] C. Izurieta and J. M. Bieman, “Testing consequences of grime buildup in

object oriented design patterns,” in Proc. 1st Int. Conf. Software Testing,

Verification, and Validation (ICST ’08), Lillehammer, Norway, 2008,

pp. 171–179. DOI: 10.1109/ICST.2008.27.

[12] M. R. Dale and C. Izurieta, “Impacts of design pattern decay on system

quality,” in Proc. 8th ACM/IEEE Int. Symp. Empirical Software
Engineering and Measurement (ESEM ’14), Torino, Italy, 2014, pp.

37:1–37:4. DOI: 10.1145/2652524.2652560.

[13] I. Griffith and C. Izurieta, “Design pattern decay: the case for class

grime,” in Proc. 8th ACM/IEEE Int. Symp. Empirical Software

Engineering and Measurement (ESEM ’14), Torino, Italy, 2014, pp.

39:1–39:4. DOI: 10.1145/2652524.2652570.

[14] T. Schanz and C. Izurieta, “Object oriented design pattern decay,” in

Proc. 4th ACM/IEEE Int. Symp. Empirical Software Engineering and
Measurement (ESEM ’10), Bolzano-Bozen, Italy, 2010, pp. 7:1–7:8.

DOI: 10.1145/1852786.1852796.

[15] D. Feitosa, P. Avgeriou, A. Ampatzoglou, and E. Y. Nakagawa, “The

evolution of design pattern grime: An industrial case study,” in Proc.

18th Int. Conf. Product-Focused Software Process Improvement

(PROFES ’17), Innsbruck, Austria, 2017, pp. 165–181. DOI:

10.1007/978-3-319-69926-4_13.
[16] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in

Software Engineering: Guidelines and Examples. Wiley Blackwell,

2012.

[17] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I. Stamelos,

“Who is producing more technical debt? A personalized assessment of

TD principal,” in Proc. 9th Int. Workshop Managing Technical Debt

(MTD ’17), Cologne, Germany, 2017, pp. 4:1–4:8. DOI:

10.1145/3120459.3120464.
[18] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot

study of pattern evolution,” in Proc. 1st Int. Symp. Empirical Software

Engineering and Measurement (ESEM ’07), Madrid, Spain, 2007, pp.

449–451. DOI: 10.1109/ESEM.2007.55.

[19] A. Ampatzoglou, O. Michou, and I. Stamelos, “Building and mining a

repository of design pattern instances: Practical and research benefits,”

Entertain. Comput., vol. 4, no. 2, pp. 131–142, Apr. 2013. DOI:

10.1016/j.entcom.2012.10.002.
[20] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented

design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp.

4–17, 2002. DOI: 10.1109/32.979986.

[21] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal

Question Metric (GQM) Approach,” in Encyclopedia of Software

Engineering, John Wiley & Sons, Inc., 2002, pp. 528–532. DOI:

10.1002/0471028959.sof142
[22] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,

“Design pattern detection using similarity scoring,” IEEE Trans. Softw.

Eng., vol. 32, no. 11, pp. 896–909, 2006. DOI: 10.1109/TSE.2006.112

[23] G. Kniesel and A. Binun, “Standing on the shoulders of giants - A data

fusion approach to design pattern detection,” in Proc. IEEE 17th Int.

Conf. Program Comprehension (ICPC ’09), Vancouver, BC, Canada,

2009, pp. 208–217. DOI: 10.1109/ICPC.2009.5090044.

[24] N. Pettersson, W. Löwe, and J. Nivre, “Evaluation of Accuracy in
Design Pattern Occurrence Detection,” IEEE Trans. Softw. Eng., vol. 36,

no. 4, pp. 575–590, Jul. 2010. DOI: 10.1109/TSE.2009.92.

[25] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,

“SPOON: A library for implementing analyses and transformations of

Java source code,” Softw. Pract. Exp., vol. 46, no. 9, pp. 1155–1179,

Sep. 2016. DOI: 10.1002/spe.2346.

[26] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN
Not., vol. 39, no. 12, pp. 92–106, 2004. DOI:

10.1145/1052883.1052895.

[27] H. Khalid, M. Nagappan, and A. E. Hassan, “Examining the relationship

between FindBugs warnings and app ratings,” IEEE Softw., vol. 33, no.

4, pp. 34–39, Jul. 2016. DOI: 10.1109/MS.2015.29.

[28] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M.

A. S. E. I. T. on Vouk, “On the value of static analysis for fault detection

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2829895, IEEE Access

VOLUME XX, 2017 9

in software,” Softw. Eng. IEEE Trans., vol. 32, no. 4, pp. 240–253, 2006.

DOI: 10.1109/TSE.2006.38.
[29] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,

“Using static analysis to find bugs,” IEEE Softw., vol. 25, no. 5, pp. 22–

29, 2008. DOI: 10.1109/MS.2008.130.

[30] D. Feitosa, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,

“Investigating quality trade-offs in open source critical embedded

systems,” in Proc. 11th Int. ACM SIGSOFT Conf. Quality of Software

Architectures (QoSA ’15), Montréal, QC, Canada, 2015, pp. 113–122.
DOI: 10.1145/2737182.2737190.

[31] J. D. Evans, Straightforward statistics for the behavioral sciences.

Pacific Grove: Brooks/Cole Pub. Co., 1996.

[32] A. Field, Discovering Statistics Using SPSS, 3rd ed. SAGE Publications

Ltd, 2009.

[33] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sabané, D.

Poshyvanyk, and Y.-G. Guéhéneuc, “Domain matters: bringing further

evidence of the relationships among anti-patterns, application domains,
and quality-related metrics in Java mobile apps,” in Proc. 22nd Int.

Conf. Program Comprehension (ICPC ’14), Hyderabad, India, 2014, pp.

232–243. DOI: 10.1145/2597008.2597144.

[34] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the impact

of antipatterns on change-proneness using fine-grained source code

changes,” in Proc. 19th Working Conf. Reverse Engineering (WCRE

’12), Kingston, ON, Canada, 2012, pp. 437–446. DOI:

10.1109/WCRE.2012.53.
[35] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

DOI: 10.1109/32.295895.

[36] W. Li and S. Henry, “Object-oriented metrics that predict

maintainability,” J. Syst. Softw., vol. 23, no. 2, pp. 111–122, 1993. DOI:

10.1016/0164-1212(93)90077-B.

