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ABSTRACT The GoF design patterns are widely adopted in industry as best practices and their effect on 

software quality has been long investigated in academia, with both positive and negative consequences 

being observed. One important parameter that relates to the effect of patterns on quality is the deterioration 

of pattern instances due to the buildup of artifacts unrelated to the pattern structure. This is called pattern 

grime and can potentially diminish some of the benefits of using patterns in the first place. In this paper we 

investigate the relation between pattern grime and three qualities, namely performance, security and 

correctness. To this end, we conducted a case study with five industrial projects (approx. 260,000 lines of 

code) implemented by 16 developers. Our findings suggest a correlation between the accumulation of grime 

and decreased levels of performance, security, and correctness. Moreover, factors such as the project itself, 

pattern type and the developer can influence this relation. The obtained results can benefit both researchers 

and practitioners, as we provide evidence on the accumulation of pattern grime and its correlation to 

performance, security and correctness, and how different factors affect these correlations. 

INDEX TERMS Design patterns, pattern grime, quality attributes, industrial case study

I. INTRODUCTION 

The popular GoF (Gang of Four - Gamma, Johnson, Helm, 

and Vlissides) design patterns catalog consists of 23 solutions 

to recurring problems of object-oriented design [1]. 

Practitioners often adopt them as good design practices, but 

at the same time they are concerned with their impact on the 

system under development, particularly their effect on quality 

attributes [2]. This concern is reasonable, as patterns can 

occur in a significant part of software systems (from 15% to 

65% of the classes) [3], [4]. Additionally, the state of the 

research suggests that this effect of patterns on software 

quality is not uniform, but it depends on a number of 

parameters [5]. Several works have concluded that a pattern 

can be beneficial in some cases and harmful in others, with 

respect to a specific quality attribute, by studying the 

structural characteristics of patterns, such as the number of 

pattern participating classes, number of methods, etc [6]–[9]. 

One significant aspect of patterns’ instantiation that might 

incurs negative consequences on software quality is the 

presence of artifacts (e.g., methods or classes) that are not 

related to the pattern rationale. This phenomenon has been 

defined by Izurieta and Bieman [10] as pattern grime, 

which is the “degradation of a design pattern instance due to 

accumulation of artifacts unrelated to the instance”. For 

example, in a Decorator pattern instance, the addition of 

public methods to the class playing the Decorator role that 

are not invoked inside the class playing the Component role 

introduces grime into the instance as this new responsibility 

is not compliant with the original definition of the pattern [1]. 

Such a change could reduce the cohesion of the class, as well 

as hinder its understandability [9]. In general, accumulating 

pattern grime contributes to the degradation of quality in 

pattern instances [10]–[12]. Given the aforementioned high 

percentage of class participation in GoF patterns, the effects 

of ever-growing grime can be detrimental to the overall 

quality of those systems.  

Despite ongoing research on identifying the impact of 

pattern grime on software quality [10], [11], [13], there are 

still three shortcomings. First, only a few quality attributes 

have been addressed so far, namely testability, adaptability 

and understandability. Second, despite the existence of 

industrial case studies examining how pattern grime 
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accumulates [14], [15], there is a lack of industrial studies 

regarding how the accumulation of grime relate to levels of 

quality attributes; the existing studies are limited to open 

source software. Finally, even these studies on open source 

have limited depth regarding the investigation of factors that 

contribute to this relation between grime and qualities. For 

example, developers with different levels of involvement in a 

project may accumulate grime differently. Identifying the 

factors related to higher levels of grime can improve the 

impact of design patterns on quality, as well as to a more 

adequate allocation of resources in a project.  

In this paper, we address the aforementioned shortcomings 

through an industrial case study that examines the relation 

between the accumulation of pattern grime and quality. The 

study was designed according to the guidelines of Runeson et 

al. [16], reported based on the Linear Analytic Structure [16]. 

Thus, we offer three advancements compared to the state of 

the art (which is further elaborated in Section II). First, we 

focus on three qualities that have not been studied: 

performance, correctness and security. Second, we consider 

five industrial software systems for our investigation, instead 

of open source. Finally, we investigate three factors that may 

influence the underlying relations:  

 the projects under development have several 

characteristics such as application domain and type of 

systems (e.g., user application, library), which may 

influence the usage of patterns and development 

practices. Studies have already shown that projects 

can accumulate pattern grime differently [10], [15]. 

Thus, we seek to investigate if this may reflect on the 

relation between grime and levels of quality as well;  

 the types of pattern (e.g., Template Method, 

Singleton, etc.) have also been pointed out as a factor 

on how pattern grime is accumulated [10], [14], [15]. 

The different structural and behavioral characteristics 

of patterns may also be related to how exactly quality 

is affected; and 

 the developers often have different traits such as 

background and experience, which may affect their 

behavior and productivity [17]. Besides, developers 

have also been found to accumulate grime differently 

[15], which corroborates the relevance of also 

investigating if this factor relates to a varying level of 

quality.  

The study is executed based on the commits performed by 16 

developers during the implementation of five projects that 

sum up to approx. 260,000 source lines of code. The studied 

qualities are assessed through the number of violations of 

various coding practices, each one mapped to one of the 

qualities (for more details see Section III.C.4).  

The remainder of this paper is organized as follows. In 

Section II, we present related work. The design of our case 

study is described in Section III. In Sections IV and V, we 

report on our results and discuss the most important findings. 

We present the identified threats to validity in Section VI, 

together with actions taken to mitigate them. In Section VII, 

we conclude the paper and present some interesting 

extensions for this study. 

II. RELATED WORK 

In this section, we focus on the terminology related to pattern 

grime, and address empirical studies that investigate the 

relation between accumulation of grime and quality 

attributes.  

A. DESIGN PATTERN GRIME AND QUALITY 
ATTRIBUTES 

Pattern grime concerns the degradation of pattern instances 

without breaking down the original structure on the pattern 

definition [10]. This degradation occurs through the addition 

of associations that do not comply with patterns’ 

responsibilities (e.g., addition of a public method that is not 

in the definition), which can accumulate along the evolution 

of the instance and obscure their design [11]. Izurieta and 

Bieman [18] established that the added associations can be 

assessed from three base perspectives, i.e., there are three 

forms of pattern grime. Class grime regards class-related 

elements (e.g., number of attributes, methods, or children) 

that are unrelated to the role of a class in the pattern instance. 

Modular grime regards relationships (e.g., dependency, 

generalization) between classes of the pattern instance and 

other classes, which are not predicted in the definition of the 

pattern. Organizational grime regards how pattern-

participant classes are distributed into packages and/or 

namespaces. This threefold classification was further refined 

by Schanz and Izurieta [14], who provided a taxonomy of 

subtypes for modular grime, and by Griffith and Izurieta 

[13], with a taxonomy of subtypes for class grime. 

Regarding the relation between the accumulation of 

pattern grime and the levels of quality attributes, we 

identified three empirical studies. Izurieta and Bieman [11] 

investigated how grime is associated with the testability of 

pattern instances. For that, they considered instances of 

Singleton, Visitor and State patterns obtained from an open-

source system and assessed their testability by the number of 

test cases necessary to cover them. By analyzing the 

testability against the accumulation of modular grime, 

Izurieta and Bieman found that testability decreases (i.e., 

more test cases are needed) as grime accumulates. Moreover, 

other issues such as the appearance of code smells also 

aggravate. In a complementary study, Izurieta and Bieman 

[10] explored how pattern grime affects the testability and 

adaptability (measured by pattern instability) of instances 

from three open-source systems. They examined all three 

forms of pattern grime (i.e., class, modular and 

organizational) and again observed a negative impact. Both 

testability and adaptability decreased with the accumulation 

of grime, although the results regarding organizational grime 

were inconclusive due to lack of more data. Finally, Griffith 

and Izurieta [13] investigated how the understandability of 
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pattern instances changes due to the accumulation of grime. 

To this end, they focused on class grime and randomly 

collected pattern instances from a database of open-source 

components [19]. By correlating the accumulated grime with 

understandability (assessed according to the QMOOD quality 

model [20]), they found that this quality attribute is also 

affected negatively.  

B. COMPARISON TO STATE OF THE RESEARCH 

In Table I, we compare the main parameters that differentiate 

our study from related work. In particular, we emphasize 

that: (a) we investigated three quality attributes (i.e., 

performance, security and correctness) that have not been 

addressed in this context; (b) we studied five industrial non-

trivial  projects (in contrast to open-source ones) that 

collectively provided 36,571 units of analysis (i.e., 

modifications to the source code of pattern instances, see 

Section III); and (c) we investigated factors that, although 

have been explored with regards to the accumulation of 

grime, have not still been examined with regards to the 

relation between grime and quality attributes. 

III. STUDY DESIGN 

In this section, we present the protocol of our case study, 

designed according to the guidelines of Runeson et al. [16], 

reported based on the Linear Analytic Structure [16]. 

A. OBJECTIVES AND RESEARCH QUESTIONS 

We formulated the goal of this study using the Goal-

Question-Metric (GQM) approach [21], as follows: “analyze 

the accumulation of grime on GoF pattern instances for the 

purpose of evaluation with respect to its relationship with the 

levels of performance, security and correctness, from the 

point of view of software designers in the context of industrial 

software development”. To accomplish this goal, we 

proposed three research questions (RQs), which are 

elaborated as follows.  

 

RQ1  Does the accumulation of pattern grime correlate with 
changes in the investigated quality attributes? 

         RQ1.1 Is a correlation observed for class grime?          

         RQ1.2 Is a correlation observed for modular grime?          

         RQ1.3 Is a correlation observed for organizational 
grime? 

 

RQ1 aims at acquiring initial evidence of the relationship 

between the accumulation of pattern grime and changes in 

the levels of correctness, performance and security. We note 

that we address each quality attribute in isolation. To more 

comprehensively answer this question, we investigated all 

three forms of grime proposed by Izurieta and Bieman [18], 

i.e., class, modular and organizational grime.  

 

RQ2  Which factors affect the aforementioned relation? 

         RQ2.1 Does it vary for different projects?          

         RQ2.2 Does it vary for different patterns?          

         RQ2.3 Does it vary for different developers? 

 

Next, we extend our analysis to factors that may influence 

the relation between pattern grime and quality attributes. In 

this study, we examined three factors. First, we investigated 

if the correlation between grime and quality attributes differs 

for different projects (RQ2.1).  Second, we were interested in 

answering this question, but for different patterns (RQ2.2). 

Although these two factors were briefly addressed in related 

work, they have not been empirically explored so far. To 

complement the analysis, we also investigated whether the 

relationship varies depending on the developer (RQ2.3), in the 

sense that the expertise or experience of developers may be 

reflected in the accumulated grime and/or quality attribute. 

B. CASE SELECTION AND UNIT OF ANALYSIS 

To answer the posed research questions, we designed an 

exploratory case study [16]. Since related work is limited to 

studying only open-source applications, we decided to fill the 

gap and perform an industrial case study with five industrial 

projects from a company in the domain of web and mobile 

applications development. Moreover, these projects provided 

us with a diverse and comprehensive sample of developers 

(and projects) to investigate: one team of six people worked 

on three of the projects, while the other two projects were 

developed by two other teams (of five people each) 

independently. 

The cases of our study comprise pattern instances of the 

aforementioned projects. Based on the evolution of these 

instances, we assemble our units of analysis, which consist of 

the changes that they undergo (i.e., the source code change 

between two successive commits). We perform our analyses 

and answer our research questions based on this unit of 

analysis and, thus, we selected this particular unit due to its 

granularity, which allows us to isolate all necessary variables. 

In particular, collecting data regarding individual developers 

TABLE I 
COMPARISON WITH RELATED WORK 

Parameter 
Study 

[11] [10] [13] Ours 

Context open-source open-source open-source industrial 

Projects 1 3 not clear 5 

Patterns 3 7 16 9 

Instances 2 
"small 

number" 
not clear 2,329 

Forms of 
grime 

modular 
class, 
modular and 

organizational 

class 
class, modular 
and 

organizational 

Quality 
attributes 

testability 
testability and 
adaptability 

understandability 
correctness, 
performance 

and security 

Factors pattern lines of code none 
project, pattern, 

developer 
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is facilitated, as commits regard changes authored 

distinctively.  

We clarify that the usage of such unit of analysis entail the 

collection of multiple data points for individual pattern 

instances. However, each data point concerns a different 

snapshot of the pattern instance, i.e., there is no repetition. 

Moreover, the snapshot of a pattern instance is collected only 

when a change is made, i.e., the collection is not made for 

every commit. Nevertheless, it is paramount to avoid bias by 

having an excessive number of units from a few instances. 

For that, we verified the balance of our population on this 

regard (see Section IV).  

Other main sources of bias regard the authoring of 

commits and the size of change, which may compromise our 

analyses. To address these concerns, we consulted with the 

company, which informed us that their developers are not 

allowed to commit for each other neither exchange source 

code to commit it. Moreover, a practice of small commits is 

encouraged to avoid the aforementioned bad practices. 

C. VARIABLES AND DATA COLLECTION 

To address the research questions, we recorded four sets of 

variables for each unit of analysis. Each set regards one of 

the major steps in the data collection: 1) Characterize 

commits; 2) Collect patterns instances; 3) Assess pattern 

grime; 4) Assess quality attributes. In the following we 

describe each step, the variables collected in them 

(highlighted between parentheses), and tools we used. A 

summary of the recoded variables is presented in Table II. 

1) STEP 1: CHARACTERIZE COMMITS  

The versioning of the five projects was managed using Git. 

For each commit we recorded the project name (project), the 

commit hashcode (commit) and the developer responsible for 

the commit (dev). We also recorded the files that were 

modified in order to filter out undesired commits. In 

particular, we ignored merges (as no modifications to source 

code are applied) and commits that did not modify pattern 

instances. We clarify that the latter filtering is performed in 

the next step.  

2) STEP 2: COLLECT PATTERN INSTANCES  

This collection was performed for every commit, which is a 

time-consuming task. Hence, we automated this task using 

two tools. We first used the Design Pattern Detector (DPD, 

v4.12) [22], which is able to identify 12 GoF patterns: 

Adapter/Command, Composite, Decorator, Factory Method, 

Observer, Prototype, Singleton, State/Strategy, Template 

Method, and Visitor. We selected this tool because it covers a 

fair amount of design patterns that can be detected and it has 

adequate performance, as reported in Tsantalis et al. [22], 

also when compared to similar tools [23], [24]. To further 

validate the performance of the tool, we manually assessed 

50 instances, which were all true positives. 

Despite the performance of DPD, it detects only the main 

pattern-participant classes (i.e., those that provide the main 

structure of the pattern solution, commonly abstract classes). 

To detect the extended pattern-participants classes (i.e., the 

other classes that play a role in the pattern), we employed a 

tool developed in our group, name SSA+
1
 (v1.0). This tool 

can detect and complement the output of DPD with ten 

extended pattern participants: Concrete Creator and Product, 

for Factory Method pattern; Concrete Prototype, for 

Prototype pattern; Leaf, for Composite pattern; Concrete 

Decorator and Concrete Component, for Decorator pattern; 

Concrete Observer, for Observer pattern; Concrete 

State/Strategy, for State/Strategy pattern; Concrete Class, for 

Template Method pattern; and Subject, for Proxy pattern. For 

that, SSA+ queries the abstract syntax tree (AST) of the 

system according to a set of rules to identify each extended 

pattern participant (e.g., inherit from a main pattern-

participant class). As the task performed by SSA+ is 

deterministic (i.e., it identifies classes that comply with a set 

of rules), we validated it by manually checking the output for 

50 randomly selected pattern instances, and no error was 

detected. In addition, SSA+ was similarly validated in 

another study [15].  

Based on the collected information, we assign an ID 

(inst_id) for every instance and record it together with the 

type of the pattern (pattern). We note that IDs are assigned 

when instances are first detected and then reused when the 

same instance is detected again in later versions, i.e., they are 

persistent across versions of the project. Instances were 

considered equivalent if the main pattern participants had the 

same class name or matched a renamed version of the class 

(obtained from Git). 

3) STEP 3: ASSESS PATTERN GRIME  

For every unit of analysis (i.e., change to a pattern instance), 

we assessed the amount of pattern grime accumulated with 

regards to its three forms (i.e., class, modular and 

                                                 
1 https://github.com/search-rug/ssap 

TABLE II 

LIST OF RECORDED VARIABLES 

Step Variable Description 

1 

project Project from which the PI was extracted 

commit Hash of the commit in the git repository 

dev Developer author of the commit 

2 
inst_id ID of the PI that the class belongs to 

pattern GoF design pattern of the instance 

3 

cg-napm # alien public methods in all PI classes (Class grime) 

cg-naa # alien attributes in all PI classes (Class grime) 

mg-ca Afferent coupling of the PI (Modular grime) 

mg-ce Efferent coupling of the PI (Modular grime) 

og-np # packages within the PI (Organizational grime) 

og-ca Afferent coupling at the package level (Organizational grime) 

4 

cor-viol # correctness violations in all PI classes 

per-viol # performance violations in all PI classes 

sec-viol # security violations in all PI classes 

PI stands for “pattern instance” 

# stands for “Number of” 
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organizational). For that, we selected six metrics, two for 

each form of grime, which were previously used and 

validated to assess pattern grime in non-trivial systems [10], 

allowing us to analyze its accumulation from various 

perspectives. 

To assess class grime, we calculate: (a) number of alien 

attributes (cg-naa), i.e., that are not described in the original 

pattern; and (b) number of alien public methods (cg-napm). 

We clarify that we consider only public methods, as they are 

responsible for exposing functionality of the pattern instance 

to the whole system. For modular grime, we calculate: (a) 

afferent pattern coupling (mg-ca) that is the amount of in-

coming dependencies (or fan-in), representing the 

responsibility of the pattern instance [10]; and (b) efferent 

pattern coupling (mg-ce) that is the amount of dependencies 

on classes external to the pattern instance (or fan-out), 

representing the instability of the pattern instance [10]. 

Organizational grime is assessed by calculating: (a) number 

of packages (og-np) that contain classes participating on the 

pattern instance; and (b) afferent coupling at package level 

(og-ca). Although afferent coupling is also calculated for 

modular grime (mg-ca), og-ca will depict the responsibility at 

a higher level of abstraction. For example, mg-ca may 

increase within the same package containing the pattern 

instance, which would not affect og-ca.  

To automate the data collection of the aforementioned 

metrics, we used a tool developed in our group, namely 

spoon-pttgrime
2
 (v0.1.0). This tool takes as input Java source 

files of a project and an XML file describing the pattern 

instances in the project (i.e., the output from SSA+). For each 

pattern instance, spoon-pttgrime calculates the six 

aforementioned metrics by querying the project’s AST using 

the Spoon library [25]. To validate the tool, we verified the 

calculated metrics for 50 pattern instances that were 

randomly selected, and the results were all correct. Based on 

the collected information, we record the amount of grime 

accumulated according to each metric, i.e., the difference 

between two consecutive versions of the pattern instance. 

We note that other indicators of grime have been proposed 

in the literature, which are based on taxonomies of modular 

and class grime [13, 14]. However, they are not independent 

grime indicators in the sense that they are subtypes of the 

indicators that we already investigate. Moreover, these 

additional indicators have been so far validated only through 

synthetic experiments [12, 13, 14], and there is no tool to 

automate their measurement. At the same time, the size of 

the population of our study makes it infeasible to assess them 

manually. Therefore, we decided to consider such indicators 

in our future work, and not include them in this study setup. 

4) STEP 4: ASSESS QUALITY ATTRIBUTES 

As mentioned in Section I, we estimated the studied quality 

attributes based on the number of violations of various 

                                                 
2 https://github.com/search-rug/spoon-pttgrime 

coding practices. For that, we used FindBugs (v3.0.1), which 

considers bug patterns as rules to identify violation of good 

coding practices [26]. In particular, FindBugs organizes its 

rules (i.e., bug patterns) into nine high-level categories
3
, from 

which five can be mapped into the studied quality attributes: 

correctness (Correctness and Multithreaded Correctness 

categories), performance (Performance category), and 

security (Security and Malicious Code categories). We note 

that, despite the name of the tool, we do not consider its 

output as bugs but simply as warnings, i.e., violations of 

good coding practices, and take them as indicators of quality. 

A similar approach was used by Kahlid et al. [27], who 

correlated the violations of three categories (one being 

performance) to quality as perceived by end-users. They 

found the data to be closely related, which supports the 

violations as quality indicators.  

We selected FindBugs due to its collection of rules (252 of 

them regarding the considered categories), the possibility to 

map them into the studied quality attributes, as well as due to 

its adequate precision when compared to similar tools [26], 

[28], [29], which reflects on the relevance of the offered 

rules. Moreover, we analyzed and validated FindBugs in a 

previous study [30] and found that the precision can be 

noticeably improved by excluding violations with low level 

of confidence. To estimate the level for each quality attribute, 

we calculate the amount of rules violations in the pattern-

participant classes of a unit of analysis (cor-viol, per-viol, 

and sec-viol). We clarify that lower numbers of violations 

reflect a higher level of quality. 

D. ANALYSIS PROCEDURE 

To investigate the collected data, we performed various 

statistical analyses. First, to answer RQ1, we calculated the 

correlation between every pair of <grime metric, quality 

indicator> (e.g., pattern efferent coupling vs. performance 

violations). We assess the strength of the correlation 

according to the guidelines of Evans [31]: ‘very weak’ (0.00-

0.19); ‘weak’ (0.20-0.39); ‘moderate’ (0.40-0.59); ‘strong’ 

(0.60-0.79); and ‘very strong’ (0.80-1.00). To select the most 

fitting method for correlation analysis, we first tested the 

normality of our data, using the Kolmogorov-Smirnov test 

[32], which is more appropriate for large samples. We clarify 

that  for normally distributed variables, we used Pearson 

correlation method [32], otherwise, we used the Spearman’s 

rank correlation method [32]. Moreover, the correlations 

calculated in this study do not entail bias from consecutive 

measurements with same value, also known as artificial 

boost. This is because every unit of analysis regards different 

states of a particular pattern instance. Therefore, consecutive 

measures with same value suggest that a specific metric is 

not designed to capture this particular change, and this 

information is relevant to our study.  

                                                 
3 The categories are: Security, Correctness, Multithreaded Correctness, 

Performance, Malicious Code, Bad Practice, Internationalization, 

Experimental and Dodgy Code 
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To answer RQ2, we performed the following steps for each 

factor (i.e., project, pattern, developer) that might affect the 

relation between pattern grime and quality. First, we grouped 

the dataset according to the factor. Next, we verified whether 

the groups differentiate between themselves with regards to 

the measured variables. For that, we performed an Analysis 

of Variance (ANOVA) [32] to confirm a disparity among 

groups, followed by post-hoc tests for pairwise comparisons. 

We note that we applied Levene’s test [32] to assess the 

assumption of equal variances of the tested populations. 

When the assumption was met, we used regular ANOVA, 

followed by Tukey’s Honestly Significant Differences (HSD) 

tests [32]. Otherwise, we used Welch’s ANOVA, followed 

by Games-Howell tests (which are more appropriate for large 

samples). Finally, for the groups that are statistically 

different, we calculate the correlation for each pair of grime 

and quality metrics and identify statistically relevant 

correlations. 

IV. RESULTS 

In this section, we present a summary of the collected data, 

as well as the results of the analysis performed to answer the 

research questions posed in Section III.A. During the data 

collection, we identified 1,422 commits that contain the 

creation or modification of pattern-participating classes of 

the five investigated projects, from which the majority (94%) 

regard the modification of one or more pattern instances. 

Based on the commits, we isolated 2,329 pattern instances of 

eight different GoF patterns: (Object) Adapter / Command, 

Decorator, Factory Method, Observer, Singleton, State / 

Strategy, and Template Method. In Table III we present a 

summary of the units of analysis by project and patterns. 

In Section III.B, we highlighted the necessity of having a 

balanced population (i.e., pattern instances should have 

similar number of modifications) to avoid bias from pattern 

instances with excessive number of units of analysis. After 

studying the history of commits, we assessed that each 

pattern instance underwent a maximum of 178 modifications. 

Moreover, 87% of the pattern instances (i.e., 2,039) were 

modified at least once, and 64% (i.e., 1,500) at least five 

times. Our analysis suggests that although the population is 

not evenly balanced, the discrepancies are not enough to 

harm the statistical analysis of our study nor the answers to 

the research questions. 

In summary, we collected a total of 36,571 units of 

analysis (i.e., creation/modification of a pattern instance in a 

commit). For each unit, we recorded the amount of pattern 

grime that was accumulated according to six metrics (cg-*, 

mg-* and og-*) and the number of violations regarding the 

three studied quality attributes (*-viol). We clarify that due to 

a non-disclosure agreement signed with the company in this 

case study, we cannot share the created dataset, nor certain 

details regarding specific projects and developers. 

To characterize our population, in Table IV we present the 

descriptive statistics for these variables. We notice that 

pattern efferent coupling (mg-ce) is the grime metric that 

changes the most, which may be a sign of bad practices since 

it represents the dependency of the pattern instance on other 

classes. On the counterpart, number of packages (og-np) is 

the metric that changes the least, which is expected given that 

pattern instances normally grow within the same package. 

Furthermore, we notice that violations of good practices 

regarding correctness appear to be considerably more 

frequent than regarding performance and security. This 

observation may be partially related to the fact that the 

majority of the rules checked by FindBugs concern 

correctness: out of all the rules for the three studied qualities, 

correctness accounts for approx. 70%, while performance 

and security correspond to approx. 15% each. Nevertheless, 

we could detect considerably fewer violations concerning 

security rather than performance, which suggest that other 

parameters are also relevant, such as the type of application 

or even the specific security-related violations that FindBugs 

checks.  

A. RQ1 – CORRELATION BETWEEN GRIME AND 
QUALITY ATTRIBUTES 

To answer RQ1, we calculated the correlation between all 

pairs of <grime metric, quality indicator> (e.g., cg-ce vs. 

TABLE III 

SUMMARY OF DATASET 

Project Pattern 
Number of 

instances 

Number of  

units of analysis 

P1 

(Object) Adapter/Command 284 8150 

Singleton 80 155 

State/Strategy 351 11586 

P2 

(Object) Adapter/Command 86 484 

Observer 3 21 
Singleton 16 42 

State/Strategy 275 2113 

Template Method 1 6 

P3 

(Object) Adapter/Command 327 3090 

Factory Method 53 545 

Singleton 29 152 
State/Strategy 375 3995 

P4 

(Object) Adapter/Command 136 2144 

Decorator 1 1 
Factory Method 13 266 

Singleton 21 73 
State/Strategy 230 3275 

P5 

(Object) Adapter/Command 16 206 

Factory Method 2 33 
Singleton 5 10 

State/Strategy 25 224 

 

 

TABLE IV 

DESCRIPTIVE STATISTICS PER COMMIT 

Variable Minimum Maximum Mean Std. Deviation 

cg-napm 0.00 52.80 13.66 8.27 

cg-naa 0.00 41.50 7.95 5.00 

mg-ca 0.00 107.00 8.01 10.72 
mg-ce 0.00 325.00 100.18 61.22 

og-np 1.00 5.00 2.34 0.53 

og-ca 0.00 54.00 6.75 8.06 
cor-viol 0.00 35.00 2.39 3.19 

per-viol 0.00 8.00 0.97 1.45 

sec-viol 0.00 20.00 0.25 1.40 
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per-viol) as explained in Section III.D. We note that we could 

not assume normal distribution for all variables and, thus, we 

used Spearman’s rank correlation method. Moreover, 

‘artificial boost’ is not a concern in this population (see 

Section III.D). Fig. 1 depicts a heatmap with the results of 

our analysis, in which darker shades of gray denote stronger 

correlation. The coefficients are written within each cell 

except for correlations that are not statistically significant 

(which are blank). Based on Fig. 1 we can make several 

observations.  

The accumulation of grime seems to be related with the 

depreciation of correctness and performance (i.e., more 

violations), as we observed strong correlations (i.e., above 

0.6) and moderate correlations (i.e., between 0.4 and 0.59) 

respectively [31]. Furthermore, the very weak correlation 

with security violations (i.e., below 0.2) does not imply that a 

link does not exist. This only shows a lack of evidence.  

Another observation is that metrics for assessing class 

grime, namely number of alien public methods (cg-napm), 

alien attributes (cg-naa), and pattern efferent coupling 

(mg-ce) displayed the strongest correlations regarding 

every quality attribute. This outcome can be considered 

intuitive in the sense that, as structural elements at the class 

level, patterns are expected to be more influential at lower 

levels of granularity (e.g., class rather than module). The 

degradation of another quality, namely maintainability, due 

to the existence of alien methods is also reported in related 

work [9]. 

The aforementioned observations are based on how grime 

accumulates in pattern instances. However, one may wonder 

if changes in the quality levels can be simply explained by 

natural evolution of the source code, i.e., any type of change 

to the pattern instance rather than pattern grime. To 

investigate this possibility, we assessed the correlation 

between lines of code (LOC) and both grime metrics and 

quality indicators. The results show that grime is strongly 

correlated (0.81) with LOC, i.e., most maintenance activities 

in pattern instances entail accumulation of grime. However, 

the correlation between grime and quality indicators was 

often slightly stronger compared to the correlation between 

LOC and quality indicators. For example, the correlation 

between cor-viol vs. mg-ce (0.792) is marginally stronger 

than cor-viol vs. LOC (0.785), per-viol vs. mg-ce (0.414) is 

stronger than per-viol vs. LOC (0.359), and sec-viol vs. mg-

ce (-0.093) is stronger than sec-viol vs. LOC (-0.074). 

Therefore, although the difference between correlation values 

may be marginal at times, the overall analysis consistently 

shows that grime matches the degradation of quality better 

than natural evolution. 

B. RQ2 – ANALYSIS OF FACTORS 

To further explore the relation between the accumulation of 

pattern and the three studied quality attributes, we 

investigated three factors that may influence the observed 

correlations as described in Section III.D: projects, patterns 

and developers.  

1) COMPARISON OF PROJECTS 

We collected data from five different industrial projects, here 

referred to as P1 to P5. From the 36,571 units of analysis, 

19,891 regard P1, 2,667 regard P2, 7,781 regard P3, 5,759 

regard P4, and 473 regard P5. Moreover, P1 and P2 were 

developed by two different teams of developers while a third 

team developed P3, P4 and P5. In Table V, we show the 

descriptive statistics of all variables for each project 

independently.  

We notice that the projects are considerably distinct from 

each other with regard to these variables. For example, P2 

has the highest mean for most grime metrics but not for 

quality indicators, while P5 has the lowest means for grime 

metrics but present the highest average of performance 

violations. To verify the observed differences, we compared 

the means between projects by performing an analysis of 

variances (ANOVA) for each variable, followed by one post-

hoc test for each pairwise comparison (i.e., 90 in total). The 

results of the tests are publicly available online in a 

supplementary material
4
. The results show that 91% of the 

tests are statistically significant, i.e., the means differ 

between the two compared projects. Based on these findings, 

we hypothesize that the different characteristics of projects 

are indeed reflected on the relationship between the 

accumulation of pattern grime and the indicators of 

correctness, performance and security. 

To verify how the accumulation of grime in projects 

relates to the levels of quality, we calculated the correlation 

between every pair of grime metric and quality indicator for 

each project. The results are presented in Fig. 2 (which is 

interpreted as Fig. 1), from which we observe that the 

correlations are noticeably different based on the projects. 

For example, similar to the results observed for the general 

population, P1 exhibits a strong correlation (i.e., above 0.6) 

between class grime metrics and the correctness indicator 

(cor-viol). The opposite is observed for P2, for which the 

data suggest a correlation between pattern grime and the 

security indicator (sec-viol), which have not been observed 

for the general population.  

                                                 
4 https://doi.org/10.5281/zenodo.1133552 

 

FIGURE 1.  Correlation between grime metrics (cg-*, mg-*, og-*) and 
quality attributes indicators (*-viol). 
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However, we also noticed that higher values of 

accumulated grime are related to higher depreciation of 

quality (i.e., higher number of violations), which is often 

reflected in higher correlation coefficients. This evidence 

strengthens our finding that the relationship between 

pattern grime and quality attribute indicators is project-

dependent. It also suggests that the observed difference is 

connected to how grime accumulates in the different projects. 

This finding is in accordance to those of Vasquez et al. [33], 

which suggest that other indirect quality indicators (such as 

anti-patterns or code smells) vary among projects of different 

application domains, as well as with Izurieta and Bieman 

[10], who observed varied levels of grime and quality on the 

studied projects. 

2) COMPARISON OF PATTERNS 

During the data collection, we identified instances of eight 

different patterns. From the 36,571 units of analysis, 14,074 

regard the (Object) Adapter / Command (AC) patterns, 844 

regard the Factory Method (FM) pattern, 432 regard the 

Singleton (Si) pattern, 21,193 regard the State/Strategy (SS) 

patterns, 21 regard the Observer pattern, six regard the 

Template Method pattern, and one regards the Decorator 

pattern. Due to the limited amount of units, we do not present 

results concerning the last three patterns, which are available 

in the supplementary material.  

In Table VI, we present the descriptive statistics of all 

variables for each pattern independently. We notice that this 

factor also seems to influence the relations between pattern 

grime and indicators of the studied quality attributes. In 

particular, we observe that the means for every metric varies 

considerably among patterns. Moreover, we could not 

observe clear trends, i.e., patterns that consistently display 

the highest or lower means. For example, Factory Method 

displays the highest mean of security violations (sec-viol) but 

one of the lowest of correctness violations (cor-viol). 

To verify our observations, we computed the ANOVA for 

each variable and performed the post-hoc tests (i.e., 48 in 

total). The results of the tests are available in the 

supplementary material. We note that Singleton instances 

had no variance with regards to number of packages (og-np) 

and security indicator (sec-viol), and, thus, these variables 

were not considered in the analyses for this pattern. The 

results show that 93% of the tests are statistically significant.  

To further investigate this factor, we calculated the 

correlation between every pair of grime metric and quality 

indicator for the investigated patterns. In Fig. 3 (which is 

 

TABLE V 
DESCRIPTIVE STATISTICS PER PROJECT 

Variable Project Minimum Maximum Mean 
Std. 

Deviation 

cg-napm 

P1 0.00 44.67 13.94 8.26 
P2 0.00 48.00 14.92 11.90 

P3 0.00 52.80 11.79 6.47 
P4 0.00 42.00 14.89 8.13 

P5 0.00 29.75 10.36 5.73 

cg-naa 

P1 0.00 22.33 8.97 4.87 
P2 0.00 30.33 5.87 3.72 

P3 0.00 30.50 5.90 3.81 
P4 0.00 41.50 8.45 6.13 

P5 0.00 13.75 4.72 2.50 

mg-ca 

P1 0.00 49.00 6.52 8.48 
P2 0.00 78.00 17.69 18.65 

P3 0.00 107.00 7.44 10.29 

P4 0.00 102.00 10.02 10.85 
P5 0.00 5.00 1.00 1.07 

mg-ce 

P1 0.00 325.00 132.05 62.91 

P2 0.00 140.00 55.07 28.23 
P3 0.00 162.00 63.31 29.65 

P4 0.00 141.00 65.50 27.99 
P5 0.00 95.00 43.13 19.02 

og-np 

P1 1.00 3.00 2.31 0.48 

P2 1.00 3.00 2.64 0.53 
P3 1.00 5.00 2.30 0.60 

P4 1.00 4.00 2.35 0.54 

P5 1.00 3.00 2.21 0.46 

og-ca 

P1 0.00 54.00 5.55 8.32 

P2 0.00 29.00 15.42 8.98 

P3 0.00 44.00 7.71 7.50 

P4 0.00 19.00 6.03 3.95 

P5 0.00 5.00 0.88 0.55 

cor-viol 

P1 0.00 35.00 3.74 3.68 
P2 0.00 5.00 0.16 0.55 

P3 0.00 7.00 0.66 1.19 
P4 0.00 10.00 1.24 1.25 

P5 0.00 2.00 0.63 0.65 

per-viol 

P1 0.00 7.00 1.16 1.58 
P2 0.00 8.00 1.12 1.50 

P3 0.00 6.00 0.72 1.15 

P4 0.00 5.00 0.57 1.10 
P5 0.00 8.00 1.16 1.66 

sec-viol 

P1 0.00 2.00 0.03 0.18 
P2 0.00 14.00 1.31 2.65 

P3 0.00 14.00 0.31 1.33 

P4 0.00 20.00 0.42 2.41 

P5 0.00 8.00 0.28 0.89 

 

FIGURE 2.  Correlation between grime metrics (cg-*, mg-*, og-*) and 
quality attributes indicators (*-viol) for individual projects (P*). 
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interpreted as Fig. 1), we present the results of the 

calculations, which show clearly varying correlations 

depending on the pattern. We notice that, as for projects, we 

could identify a pattern, namely Factory Method, for which 

the accumulation of grime is moderately correlated with the 

depreciation of quality indicators. Again, we observed that 

the combination of higher accumulation of grime and 

quality indicators often reflects in higher correlation 

coefficients. All this information suggests that the 

relationship between pattern grime and quality attribute 

indicators also depends on the pattern type of the instance. 

This finding is in accordance with the literature, which 

suggests that different patterns have different effects on the 

same quality attribute (e.g., [4], [34]). 

3) COMPARISON OF DEVELOPERS 

The case study involved 16 developers, here referred to as 

D1 to D16, which account for various amounts of units of 

analysis
5
. Due to the low number of data points, we did not 

                                                 
5 The number of units by each developer is: D1 - 810; D2 - 5662; D3 - 

1535; D4 - 8; D5 - 470; D6 - 5368; D7 - 21; D8 - 62; D9 - 1464; D10 - 11; 

D11 - 811; D12 - 1648; D13 - 3565; D14 - 6748; D15 - 7825; D16 - 563. 

include D4, D7, D8 and D10 in our analyses. In Table VII, 

we show the mean value of all variables, for each developer. 

We note that we do not present the complete descriptive 

statistics, which are available in the supplementary material. 

Similar to the previous factors, we observe that mean values 

regarding all variables differ among developers, i.e., they 

exhibit different characteristics. For example, both D11 and 

D15 show higher tendency to pollute pattern instances with 

alien methods (i.e., higher cg-napm values) than other 

developers. However, D11 seems much less prone to pollute 

instances with external dependencies (i.e., lower mg-ce).  

To validate the differences observed in the measurements, 

we performed ANOVA on all variables, followed by the 

post-hoc tests (583 in total), which are all available in the 

supplementary material. We note that no variance in the 

security indicator (sec-viol) was observed for D9 and, thus, 

we discarded this variable for analyses regarding the 

developer. The results show that 80% of the tests are 

statistically significant. The majority of the comparisons that 

were not significant, concern the number of packages, which 

is intuitive, as pattern instances do not tend to be spread 

across multiple packages/namespaces.  

TABLE VI 

DESCRIPTIVE STATISTICS PER PATTERN 

Variable Pattern Minimum Maximum Mean 
Std. 

Deviation 

cg-napm 

AC 0.00 43.00 12.59 7.70 
FM 2.40 52.80 15.63 8.89 

Si 0.00 6.00 0.82 1.35 

SS 0.67 48.00 14.55 8.39 

cg-naa 

AC 0.50 41.50 8.53 5.78 

FM 1.00 23.20 6.86 4.43 

Si 0.00 3.00 0.44 0.73 
SS 0.00 30.33 7.77 4.32 

mg-ca 

AC 0.00 49.00 6.57 8.71 

FM 1.00 107.00 19.70 23.46 

Si 0.00 52.00 7.39 10.54 

SS 0.00 78.00 8.51 10.80 

mg-ce 

AC 5.00 236.00 90.24 51.97 
FM 10.00 129.00 58.00 25.67 

Si 0.00 17.00 1.68 2.52 
SS 1.00 325.00 110.56 64.80 

og-np 

AC 1.00 2.00 1.99 0.10 

FM 1.00 5.00 3.37 0.68 
Si 1.00 1.00 1.00 0.00 

SS 1.00 4.00 2.56 0.50 

og-ca 

AC 0.00 46.00 5.82 7.72 
FM 1.00 44.00 13.34 8.15 

Si 0.00 54.00 13.06 8.03 

SS 0.00 46.00 6.96 8.07 

cor-viol 

AC 0.00 13.00 2.19 2.84 

FM 0.00 5.00 0.69 1.02 

Si 0.00 3.00 0.02 0.21 

SS 0.00 35.00 2.64 3.44 

per-viol 

AC 0.00 5.00 0.82 1.30 
FM 0.00 6.00 0.56 1.22 

Si 0.00 0.00 0.00 0.00 

SS 0.00 8.00 1.11 1.54 

sec-viol 

AC 0.00 6.00 0.04 0.26 

FM 0.00 20.00 4.71 5.81 

Si 0.00 12.00 0.48 1.67 
SS 0.00 14.00 0.21 1.05 

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy 

 

FIGURE 3.  Correlation between grime metrics (cg-*, mg-*, og-*) and 
quality attributes indicators (*-viol) for individual patterns (AC, FM, Si, 
and SS). 

  

TABLE VII 
DESCRIPTIVE STATISTICS PER DEVELOPER 

  cg-

napm 

cg-

naa 

mg- 

ca 

mg- 

ce 

og- 

np 

og- 

ca 

cor-

viol 

per-

viol 

sec-

viol 

D1 9.50 3.17 8.40 38.09 2.28 7.07 0.47 0.00 0.25 
D2 12.53 7.17 8.02 63.75 2.32 7.21 1.03 0.56 0.34 

D3 9.83 7.11 7.68 70.78 2.30 8.59 0.26 1.14 0.29 
D5 12.58 5.84 5.48 56.39 2.27 5.08 0.45 0.97 0.27 

D6 14.01 9.15 7.00 127.50 2.30 5.65 3.57 1.59 0.05 

D9 9.62 6.76 6.41 99.90 2.27 5.02 2.21 0.87 0.00 
D11 16.36 5.88 14.27 51.18 2.59 13.07 0.07 0.83 0.96 

D12 12.83 7.92 8.03 122.20 2.38 7.20 2.99 1.11 0.01 
D13 12.42 8.36 7.21 112.66 2.26 5.49 2.61 1.83 0.08 

D14 14.81 6.99 11.12 64.40 2.40 8.06 0.89 0.88 0.65 

D15 15.65 9.78 5.57 152.28 2.34 5.28 4.83 0.64 0.01 
D16 14.31 5.66 16.25 53.53 2.60 15.48 0.17 0.75 0.96 
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We also calculated the correlation between variables, 

which are shown in Fig. 4 (which is interpreted as Fig. 1). 

The results suggest that developers accumulate grime 

differently and that this may reflect on the quality indicators. 

We also observed that although we found that correlations 

differ among developers, they are mostly consistent in the 

sense that more grime is correlated with more violations 

(i.e., depreciated quality). In summary, all collected 

information strengthens our finding that developers comprise 

a factor to how the accumulation is related to the depreciation 

of correctness, performance and security in pattern instances. 

Our results are in accordance with those by Amanatidis et al. 

[17], who studied the accumulation of technical debt and 

observed an imbalance regarding the number of violations 

among developers. 

V. DISCUSSION 

In this section, we revisit the findings of our study and 

present their connection to related work. Next, we elaborate 

on the main implications to researchers and practitioners.  

A. INTERPRETATIONS OF RESULTS  

1) CORRELATION BETWEEN GRIME AND ATTRIBUTES 

The findings discussed in this paper suggest that, as pattern 

grime accumulates, classes that participate in pattern 

instances become more prone to quality depreciation. In 

particular, such classes are more susceptible to source code 

that violates good practices that promote correctness, 

performance and security of software systems. These 

findings corroborate those by related work that analyzes the 

relations between grime and quality [10], [11], [13], in the 

sense that we also found that grime goes hand in hand with 

diminished quality.  

In our study, we noticed that three metrics, namely 

number alien attributes (cg-naa), number of alien public 

methods (cg-napm) and instance efferent coupling (mg-ce), 

were the most likely to be appropriate indicators of bad 

quality; these same metrics have shown similar relevance in 

the related work. Moreover, these metrics correspond to 

structural characteristics of pattern instances (e.g., efferent 

coupling), and similar metrics (at class level rather than 

instance level) have been largely explored in the literature 

(e.g. [6]–[9]) and found to be good estimators of the benefit 

(or harmfulness) of pattern instances to quality attributes. In a 

previous study, we found that the degradation of certain well-

known design metrics can be used as hints of the 

accumulation of pattern grime [15], as it is assessed based on 

design propertied of pattern participants. In particular, we 

investigated the metric suits proposed by Chidamber and 

Kemerer [35], Li and Henry [36], and Bansiya and Davis 

[20]. Results of that study showed that the metrics data 

abstraction coupling (DAC) [36] and measure of aggregation 

(MOA) [20] may help identifying accumulation of cg-naa; 

the metrics weighted methods per class (WMC) [35] and 

class interface size (CIS) [20] may help identifying 

accumulation of cg-napm; and the metrics coupling between 

object classes (CBO) [35] and response for a class (RFC) 

[35] may help identifying accumulation of mg-ce. 

2) CONTRIBUTING FACTORS 

The way pattern grime builds up in pattern-participant classes 

can depend on several factors. Our empirical investigation 

confirmed that three such factors indeed play a role: project, 

pattern and developer. With regard to projects, we observed 

that the difference may be related to two sub-factors. The 

type of the project seems relevant on determining the 

relation between grime and quality. Two of the studied 

projects (P1 and P4) provide services to other applications 

(e.g., libraries or API's) and showed to be more prone to 

grime and violations; this aligns with the suggestion by 

 

FIGURE 4.  Correlation between grime metrics (cg-*, mg-*, og-*) and 
quality attributes indicators (*-viol) for individual developers (D*). 
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Vasquez et al. [31] that parameters such as application 

domain can be relevant. However, we also noticed that these 

projects had more pattern instances (i.e., a bigger pattern 

code base) and that a second sub-factor, namely lines of code 

was also correlated with both grime and quality indicators; 

this has also been discerned by Izurieta and Bieman [10].  

A similar observation also holds for developers: those that 

wrote more code (i.e., provided more units of analysis) were 

more prone to incur both grime and violations. Finally, our 

main observation concerning the difference among patterns is 

that those using more complex mechanisms (e.g., State, 

Strategy and Factory Method, which have polymorphic 

calls) tend to accumulate both more grime and violations; 

this is intuitive given that more complex designs are less 

understandable and harder to maintain.  

Investigating the factors in isolation allowed us to observe 

that the correlations in different groups (based on factors) 

differ from the ones concerning the entire dataset. 

However, although the differences may look random at first, 

we noticed a recurrent motif. In particular, we observed that 

the majority (approx. 80%) of moderate or strong 

correlations (i.e., more than 0.4) [31] have been identified 

when grime and qualities metrics are at a similar level. For 

example, projects that on average concentrate few violations 

and have low levels of accumulated grime, or the opposite. 

Among those, 56% regard higher values on both grime and 

quality indicators. 

3) ANALYSIS OF VIOLATIONS 

Finally, since we estimated the levels of quality attributes 

through the number of violations of good coding practices, it 

is relevant to dig deeper into these violations. In Table VIII, 

we present the most recurrent violations, assessed according 

to the addressed research questions, i.e., the overall dataset, 

per project, per pattern and per developer. We note that some 

developers have not violated any rules for certain quality 

attributes in pattern-participant classes; those are marked 

with “-”. We observe that this list of violations comprises 

issues that are clearly harmful to the respective quality 

attributes, e.g., calling unsafe methods in a multithreaded 

context can lead to race conditions or unpredictable states.  

Thus, if these violations are among the recurrent ones, they 

can pose a serious threat to the system. Furthermore, the top 

issues vary among projects, patterns and developers. The 

differences that we observe between developers is aligned 

with the findings by Amanatidis et al. [17], who not only 

observed an imbalance on how developers accumulate 

violations but also a difference on the recurrence. 

Nevertheless, it is possible to discern the connection 

between groups. For example, the two recurrent performance 

issues that appear for the most among developers (i.e., 

“Comparison of different types” and “Possible null pointer 

dereference”), also appear frequently among projects and 

patterns, and one of them is the most recurrent in the entire 

dataset.  

 
TABLE VIII 

MOST RECURRENT VIOLATIONS 

  Correctness Performance Security 

Overall Comparison of different types Class member should be static Exposed inner representation by incorporating mutable object 

P
r
o

je
c
t 

P1 Comparison of different types Class member should be static Method invocation without proper security check 

P2 Unsafe call in for multithreading Class member should be static Exposed inner representation by returning mutable object 

P3 Possible null pointer dereference Private method is never called Exposed inner representation by incorporating mutable object 
P4 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object 
P5 Unsafe call for multithreading Unnecessary call to toString() Exposed inner representation by incorporating mutable object 

P
a

tt
e
r
n

 AC Comparison of different types Class member should be static Field should be package protected 

FM Possible null pointer dereference Unnecessary value unboxing Exposed inner representation by incorporating mutable object 
Si Comparison of different types Inefficient use of map iterator Exposed inner representation by incorporating mutable object 
SS Comparison of different types Class member should be static Exposed inner representation by returning mutable object 

D
e
v

el
o

p
e
r 

D1 Comparison to null - Exposed inner representation by incorporating mutable object 
D2 Possible null pointer dereference Unnecessary value unboxing Exposed inner representation by incorporating mutable object 
D3 Possible null pointer dereference Class member should be static Exposed inner representation by incorporating mutable object 
D5 Unsafe call for multithreading Unnecessary value unboxing Exposed inner representation by incorporating mutable object 
D6 Comparison of different types Private method is never called Method invocation without proper security check 

D9 Possible null pointer dereference Private method is never called - 

D11 Variable self-assignment Class member should be static Exposed inner representation by incorporating mutable object 

D12 Possible null pointer dereference Class member should be static - 

D13 
Nullcheck on dereferenced 
variable 

Invoke of inefficient 
constructor 

Method invocation without proper security check 

D14 Unsafe call for multithreading Class member should be static Exposed inner representation by returning mutable object 

D15 Comparison of different types Private method is never called - 

D16 Unsafe call for multithreading Class member should be static Exposed inner representation by incorporating mutable object 

AC = (Object)Adapter/Command; FM = Factory Method; Si = Singleton; SS = State/Strategy 
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B. IMPLICATIONS TO RESEARCHERS AND 
PRACTITIONERS  

GoF patterns are popular among practitioners as established 

and valuable design solutions. However, the consequences of 

using them often become a matter of concern, especially 

regarding quality. This paper sheds some light on this 

respect, suggesting the following implications to 

practitioners. We encourage the conscious usage of GoF 

patterns, in the sense that knowledge about the patterns being 

applied, as well as the pattern instances in the system under 

development, should be disseminated within the team of 

developers.  

In addition, monitoring the pattern instances is of 

paramount importance to maintain desired levels of quality, 

especially correctness, performance and security. Moreover, 

practitioners can take advantage of the tool spoon-pttgrime in 

order to track the accumulation of grime and plan 

maintenance activities. Conversely, if practitioners already 

use FindBugs within their development process, the number 

of violations (for correctness, performance and security) can 

be used as indicators of grime accumulation, helping the 

team on identifying pattern instances with potentially 

deteriorated design. 

The findings in this paper can also benefit researchers. Our 

work joins the small pool of studies that investigate pattern 

grime, especially its relation to quality attributes, and further 

demonstrate the relevance of researching this phenomenon 

and the underlying relations. In particular, we provide 

evidence that encourages the investigation of other quality 

attributes, as well as factors related to it. The presented 

information also builds up on the body of knowledge on 

pattern grime, and we hope it will support future research. 

Particularly, we envisage confirmatory studies to seek more 

evidence to explain the observed variations in the 

relationship between grime and the studied quality attribute, 

as well as others. We also demonstrate that the usage of static 

analysis tools such as FindBugs can provide valuable 

information regarding the accumulation of grime. Finally, the 

design of our case study and used tools used can be exploited 

for future research efforts. 

VI. THREATS TO VALIDITY 

In this section, we discuss threats to the validity of the study 

reported on this paper; in particular, construct validity, 

reliability and external validity. Construct validity concerns 

to what extent the objects of the study are connected to the 

research questions. Reliability regards the extent to which the 

study can be replicated with the same observed results. 

External validity pertains to the limitations to generalize our 

findings to the entire population. We note that we do not 

analyze internal validity, as we empirically study the 

correlation between variables without establishing causal 

relations. 

Regarding construct validity, we identified the following 

threats. First, the DPD and FindBugs tools are limited by 

their precision and recall, which may bias our results due to 

false positives and negatives. We note that, to the best of our 

knowledge, these tools have adequate performance and good 

reputation (see Sections III.C.2 and III.C.4). Nevertheless, to 

mitigate this threat, we randomly selected 50 pattern 

instances and verified the output from each tool manually. In 

addition, we acknowledge that the list rules provided by 

FindBugs is by no means exhaustive and additional rules 

could affect our results. However, we reiterate that the 

diverse list of bug patterns (i.e., 252 rules) and evidence 

provided by other studies that used FindBugs to estimate 

quality attributes [27], [30] suggest that the tool is adequate 

for the purpose used in this study. Finally, concerning the 

tools developed in our group (SSA+ and spoon-pttgrime), 

which although perform deterministic tasks, may contain 

bugs and bias the results of the study. To mitigate this threat, 

we also checked their output for 50 randomly selected pattern 

instances. In addition, our tools have been used in previous 

studies, where they were also validated. 

To address reliability threats, at least two researchers were 

involved in both data collection and analysis. Samples of the 

output were checked by both researchers and the verification 

followed a checklist to avoid irregularities. Furthermore, 

most tasks were automated by the tools referenced in this 

paper, which are all publicly available. Despite our effort, we 

acknowledge that non-disclosure agreements do not allow us 

to share the collected dataset. However, replications studies 

can be carried out to attempt to replicate our results. 

Concerning external validity, the main threat is that we 

explored projects from the same company, from which three 

were developed by the same team. Such uniformity (e.g., 

developers subject to same company practices) may lessen 

the generalizability of our findings to other companies or 

teams. However, we note that the accumulation of grime that 

we observed aligns with the results of other studies, e.g., 

class and modular grime are the main indicators of grime. 

Moreover, we also aimed at identifying variations in the 

relationship between pattern grime and quality attributes 

based on project and developer, which we identified 

successfully despite the “uniformity” of our subjects. The 

other threats regard limitations of our study design. In 

particular, we investigated a limited number of patterns and 

subjects, and we acknowledge that additions to the 

population may affect our findings. Furthermore, we 

investigated projects developed in Java and our observations 

cannot be generalized to other languages without additional 

analyses. Finally, the grime metrics and quality indicators are 

estimators, and the usage of different variables may affect the 

observed results. Specifically, the inclusion of metrics based 

on subtypes of grime could provide more refined 

observations. 

VII. CONCLUSIONS 

In this paper, we reported on an exploratory case study with 

five industrial software systems, in which we examined the 
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relationship between the accumulation of pattern grime and 

the levels of three quality attributes, namely correctness, 

performance and security. For that, we considered six metrics 

regarding the three forms of grime (i.e., class, modular and 

organizational), and one indicator of each studied quality 

attribute, estimated by the amount of violations of coding 

practices in pattern-participant classes. We investigated the 

evolution of 2,329 pattern instances over 1,422 commits, 

totalizing 36,571 units of analysis, in which we assessed the 

correlations between the grime metrics and quality indicators. 

Moreover, we sought to analyze factors that might influence 

the observed correlations, in particular, projects, pattern 

types, and developers. 

The results suggest that pattern grime is related to the 

depreciation of correctness, performance and security in 

pattern instances. These findings are based on both class and 

modular grime, whilst no strong evidence is observed based 

on organizational grime. The results also suggest that all 

three examined factors can influence the relationship 

between pattern grime and quality attributes.  

Based on our findings, we envisage several opportunities 

for future work. Confirmatory empirical studies could 

investigate one or more of the explored factors in more 

details, and seek evidence to explain the observed variations 

in the relationship between grime and quality attributes. 

Furthermore, a replication study with open-source systems 

could increase the external validity of the results reported on 

this paper. Finally, investigation of additional grime metrics 

and factors could enhance the understanding over the 

consequences of accumulating pattern grime. In particular, 

metrics regarding subtypes of grime have been proposed in 

the literature and it would be interesting to investigate the 

interplay between indicators of the types and subtypes of 

grime in similar study settings. 
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