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A B S T R A C T

Context: GoF patterns have been extensively studied with respect to the benefit they provide as problem-solving,
communication and quality improvement mechanisms. The latter has been mostly investigated through em-
pirical studies, but some aspects of quality (esp. run-time ones) are still under-investigated.
Objective: In this paper, we study if the presence of patterns enforces the conformance to good coding practices.
To achieve this goal, we explore the relationship between the presence of GoF design patterns and violations of
good practices related to source code correctness, performance and security, via static analysis.
Method: Specifically, we exploit static analysis so as to investigate whether the number of violations of good
coding practices identified on classes is related to: (a) their participation in pattern occurrences, (b) the pattern
category, (c) the pattern in which they participate, and (d) their role within the pattern occurrence. To answer
these questions, we performed a case study on approximately 13,000 classes retrieved from five open-source
projects.
Results: The obtained results suggest that classes not participating in patterns are more probable to violate good
coding practices for correctness, performance and security. In a more fine-grained level of analysis, by focusing
on specific patterns, we observed that patterns with more complex structure (e.g., Decorator) and pattern roles
that are more change-prone (e.g., Subclasses) are more likely to be associated with a higher number of violations
(up to 50 times more violations).
Conclusion: This finding implies that investing in a well-thought architecture based on best practices, such as
patterns, is often accompanied with cleaner code with fewer violations.

1. Introduction

Design patterns have been introduced in the software engineering
literature by Gamma et al. [1] (known as the Gang of Four (GoF)—-
Gamma, Helm, Johnson, and Vlissides), aiming to provide common
solutions to recurring problems, while designing object-oriented (OO)
systems. The GoF catalogue includes 23 patterns, organized into three
categories (structural, behavioral, and creational), based on their pur-
pose1 [1]. Since their inception, GoF patterns have been widely ex-
plored by both researchers and practitioners, and are currently con-
sidered as a common practice for software development. In addition to
their original purpose of solving OO design problems [2], their effect on

quality attributes (QAs) has also been widely investigated, according to
two mapping studies by Ampatzoglou et al. [3] and Mayvan et al. [4].
However, the current state of the research has two main limitations:

• Limited number of studies related to run-time qualities. In parti-
cular, on the one hand, several empirical studies have explored the
impact of GoF design patterns on design-time QAs such as mod-
ifiability and reusability (see for example [4]). On the other hand,
research on the effect of GoF patterns on run-time QAs, such as
security and performance, is fairly limited [4]. Although GoF pat-
terns are not originally intended to serve any run-time QA in par-
ticular, some indirect effect, either positive or negative, is to be
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expected. For instance, developers often use GoF design patterns as
communication mechanisms, which facilitate the understanding of
each other's code. As a consequence, code smells, such as Message
Chains and Middle Man, can be avoided and, thus, performance
improved, since the number of method calls is decreased.

• Run-time qualities have been explored mostly through dynamic
analysis. Until now, the limited work done on studying the effect of
GoF patterns on run-time QAs was performed mostly by using dy-
namic analysis, i.e., by exploring the observed effects during the
execution of a system. For example, researchers have used profilers
for extracting memory usage or energy consumption data to in-
vestigate performance (e.g., Litke et al. [5] and Sahin et al. [6]). An
alternative to dynamic analysis, for investigating the same phe-
nomenon, is the employment of static analysis. Static analysis is an
established method for performing code quality analysis
[7,8,9,10,11], mostly because it is based upon an artifact that is
always available to quality engineers (i.e., source code). There are
also a few research efforts that employed static analysis for assessing
run-time qualities, e.g., [12] for assessing reliability with GERT,
[13] for assessing performance with FindBugs, [14,15,16] for as-
sessing security, etc. With static analysis, one would be able to ex-
plore the underlying relationship between GoF patterns and run-
time QAs without executing the systems in which they are in-
stantiated. We believe that statically detecting violations of good
coding practices that affect run-time QAs is complementary to dy-
namic analysis, since it promotes the assessment of different arte-
facts (e.g., violations instead of profilers output) and by using a
different approach (static instead of dynamic analysis). We note
that, even if the introduction of design patterns might not directly
aim at removing violations, it may lead to a ‘cleaner’ and well-de-
signed architecture, accompanied by better coding practices.
Nevertheless, not all parts of the architecture can benefit from the
introduction of patterns, as the pattern goal might be irrelevant to
the functionality/design of that part. Design patterns are not a pa-
nacea as they cannot solve all design problems and all design pro-
blems cannot be solved by a design pattern.

Motivated by the aforementioned limitations, in this study, we ex-
ploit static analysis to explore whether the application of GoF patterns
can be associated to the existence of violations of good coding practices
related to three run-time QAs, namely, correctness, performance and
security, as defined in the SQuaRE quality model [17]. We note that we
consider correctness a run-time QA because, as performance and se-
curity, it is discernible at run-time [18]. We selected these QAs as they
are highly relevant for both practitioners and researchers, with con-
siderable literature addressing them. However, there is a lack of studies
investigating them from the proposed perspective, i.e., by using static
analysis to examine the effect of GoF patterns on them.

To estimate the effect of GoF patterns on the aforementioned qua-
lities, we adopted the same approach used by Sahin et al. [6] and Ga-
trell and Counsell [19], i.e., we compare pattern-participating (PP)
parts of the system against non-pattern-participating (NPP) parts. Si-
milar to Ampatzoglou et al. [20] and Aversano et al. [21], our in-
vestigation is performed at class-level to standardize data collection and
source code analysis. Specifically, by working on class-level we can
discriminate between: PP classes – that participate in pattern occur-
rences – and NPP classes. Additionally, we further classify PP classes
into: single-pattern-participating (SPP), i.e., those that participate in
exactly one pattern occurrence; and coupled-pattern-participating
(CPP), i.e., those that participate in more than one pattern occurrences.
According to the literature (e.g., [20,22,23]), these two types of pattern
participation can lead to diverse effects on QAs; therefore, we treat
them separately in this study.

To explore the relationship of GoF patterns with the aforementioned
QAs, we compare quality levels of classes (quantified by the number of
violations) measured from four different perspectives, serving the sub-

goals of this study:

sg1.Pattern participation—by clustering classes according to their
pattern participation, i.e., NPP, SPP and CPP. As previously men-
tioned, this perspective allows us to compare the number of viola-
tions concentrated in SPP and CPP elements against NPP elements.
sg2.Pattern category—by clustering classes according to the pattern
category in which they participate, i.e., creational, behavioral and
structural. This perspective allows us to investigate whether there
are differences in the relationship of GoF patterns of different ca-
tegories on QAs.
sg3.Pattern—by clustering classes according to the pattern in which
they participate (e.g., Singleton, State, Strategy, etc.). This per-
spective allows finer grained observations of the relationship of
applying GoF patterns and run-time QAs. It is rather common when
investigating GoF patterns, as it represents the unit of the proposed
solutions (i.e., the patterns) and can inform designers of both ben-
efits and disadvantages of their usage.
sg4.Pattern role—by clustering classes according to the role they
play in the pattern occurrence (e.g., Concrete State, Concrete
Prototype, etc.). This perspective represents the finest-grained ana-
lysis that can be performed under the considered level (i.e., class-
level). It allows us to investigate if the number of violations in
classes is related to specific roles or to the joint effect of all roles.

We note that the last three perspectives involve SPP classes only.
This decision is based on the fact that for coupled pattern occurrences it
is not possible to separate the individual influence of each pattern.
Moreover, based on literature, coupled design pattern occurrences have
a different effect on QAs compared to single occurrences [20,22,23].

Summarizing the above, the main contribution of our work is that it
explores the link between patterns and aspects of quality that are not evident
as problems yet. For example, classes that do not participate in design
pattern instances may be more prone to the existence of performance
issues (e.g., unnecessary data boxing2 and unboxing, allocation of an
object only to get its class, or inefficient use of collections). If the
number of concentrated violations becomes high, it may result in a
perceivable decrease of quality regarding performance. Therefore, the
early identification of such issues, and their potential link to some GoF
patterns, is considered important.

Another contribution is that our work increases the validity of the
empirical results on the subject in terms of data source and methodo-
logical triangulation [24]. In other words, we can reach a safer con-
clusion by gathering data from different sources and using different
methods. Approaching a problem from different perspectives is espe-
cially important from an empirical software engineering viewpoint in
the sense that every method poses different threats to validity (e.g., the
use of profilers provides an overhead to program execution that is
difficult to filter out). Additionally, some use cases may never be exe-
cuted during dynamic analysis, leading to the omission of the under-
lying violations, but they will show up in static analysis, as it covers the
whole codebase. Therefore, if studies using different methods reach
similar conclusions, the results can be more uniformly interpreted.

The remainder of this paper is organized as follows: related work is
presented in Section 2, along with a discussion of the main points of
differentiation of this study. In Section 3, we present the case study
design, whereas its results are presented in Section 4, followed by a
discussion of the findings in Section 5. Finally, we report on threats to
validity and actions taken to mitigate them in Section 6, and draw the
conclusions in Section 7.

2 Boxing and unboxing refers to encapsulating data from one type into an-
other, causing the value to be wrapped, leading in turn to an extra hop in order
to access the value (by unboxing it).
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2. Related work

In this section, we present related work that discusses the re-
lationship between the application of design patterns and run-time QAs.
We clarify that we only present studies that consider GoF design pat-
terns; therefore, we excluded studies that use different patterns, e.g.,
architectural [25] or security [26] patterns. This section is organized
into four sub-sections: First, we present the related work, grouped by
the QAs addressed in this study, i.e., correctness (see Section 2.1),
performance (see Section 2.2) and security (see Section 2.3). Next, we
summarize this section and present the main points of advancement of
our work (Section 2.4). Most of the related work discussed in this sec-
tion were retrieved from a mapping study on GoF design patterns, by
Ampatzoglou et al. [3], and on a literature survey on the impact of
patterns on quality, by Ali and Elish [27].

2.1. Design patterns and correctness

Vokac [28] analyzed the correlation of five design patterns and
correctness in a large commercial product (written in C++, with
∼500KLOC). The product was investigated over weekly snapshots of
the source code, during a period of three years. For each snapshot, the
correctness of pattern-participating classes was measured in terms of
number of defects, as collected from the issue tracking system. The
results of the study suggest that Factory, Observer, Singleton, and
Template Method patterns are correlated to higher defect frequency in
source code. Additionally, Singleton and Observer seem to be often
used in complex parts of the project (i.e., with more code, and higher
defect frequency).

Ampatzoglou et al. [29] investigated the correlation between 12
design patterns and correctness. For that, they performed a case study
involving 94 software projects in the game application domain. In this
study, information was collected regarding bug tracking and pattern
instances from each version of every software. During the analysis, each
pattern was analyzed separately in order to identify correlations be-
tween the number of defects and pattern instances. The results of the
study suggest that specific design patterns are related to higher defect
frequency, although the presence of pattern occurrences (without ex-
amining each pattern separately) seems not to be correlated with such a
frequency.

Gatrell and Counsell [19] investigated the effect of 11 design pat-
terns on correctness by analyzing a commercial project written in C#
(with ∼266KLOC). For that, PP classes were manually collected and
compared against NPP classes over a two-year period, correlating them
with the fault history provided by the source control system, aiming at
finding fault-prone classes. The results of the study suggest that PP
classes are more fault-prone than NPP classes, as well as that this is
related to both a higher number and the size of changes in NPP classes.
Additionally, the authors characterized Adapter, Template Method and
Singleton as the most fault-prone patterns.

Aversano et al. [21] investigated the relationship between correct-
ness of pattern participants and the scattering degree of concerns3 that
communicate with them. For that, occurrences of 12 design patterns
were extracted from several snapshots of three open-source projects,
and the correctness was measured in terms of code defects. The results
of this study suggest that patterns that induce crosscutting concerns
(i.e., implemented across several classes spread along the system [30])
are correlated to a higher number of defects in their participants.

2.2. Design patterns and performance

Afacan [31] investigated the effect of the State design pattern on

performance of a Digital Signal Processor (DSP). The author compared
three implementations for a state machine: in C, C++, and C++ using
the State design pattern. For that, performance was measured in terms
of execution time (in clock cycles, and μs), and required memory (in 16-
bit words). The results suggest that usage of the State design pattern has
a negative effect on the performance of a system. However, the author
also reports that the gain in architectural aspects is worth the ex-
pectedly small loss in performance.

Rudzki [32] investigated the effect of design patterns on perfor-
mance. For that, two design patterns (Facade and Command) were
compared as alternative solutions to each other. These patterns were
used for implementing two different solutions for accessing services of
business layer from a sample Java application. Their performance was
measured in different deployment configurations, using four metrics:
throughput, response time, number of correctly served requests, and
number of requests. The results of the study suggest that, in general,
Facade provided a better performance than Command. However, some
results were hard to interpret due to noise in the measured values.

Chantarasathaporn and Srisa-an [33] proposed a pattern instantia-
tion for the Factory pattern [1]. This variant consists of an energy
conscious implementation of the pattern by using C# language. In order
to create an instantiation for power limited systems, the authors eval-
uated several options that varied in terms of component structure (i.e.,
class or struct) and type (i.e., static or non-static). The energy con-
sumption was measured using four metrics (obtained via profiler): User
Processor Time (UPT), Privileged Processor Time (PPT), Total Processor
Time (TPT) and Memory used by the specific software process. The
results of the study suggest that the modified Factory Method consumes
around 11% less CPU time than the regular implementation.

Sahin et al. [6] investigated the energy consumption of design
patterns. For that, they considered 15 design patterns, five from each of
the categories proposed by Gamma et al. [1], measuring the difference
in energy consumption between two versions of the same software
(before and after applying the pattern). For measuring the energy
consumption, the authors used a tool created by them, which is also
introduced in their work. The results of this study show that: (a) design
patterns can increase or decrease the energy usage; (b) the impact in
energy consumption is not necessarily similar for pattern within the
same category; and (c) energy usage is unlikely to be predicted by
considering design-level artefacts only.

Finally, Litke et al. [5] investigated changes in the energy con-
sumption due to the application of three different design patterns. For
that, they used a profiler for measuring: memory accesses to the in-
struction memory; memory accesses to the data memory; and dissipated
energy within the processor core. The results of the study show that the
application of design patterns does not necessarily imply a change of
energy consumption.

2.3. Design patterns and security

To the best of our knowledge, there is a lack of empirical studies
investigating security aspects of GoF design patterns; however, we were
able to identify one descriptive study. Ferraz et al. [34] relate the 12
common types of security requirements proposed by Firesmith [35] to
the GoF pattern categories [1]. The authors suggest that using an initial
set of GoF patterns might substantially reduce the effort required to
fulfill security requirements in the future. However, no empirical ana-
lysis was performed to evaluate the proposal.

A possible explanation on the lack of related work on the relation-
ship between security and GoF patterns is the fact that GoF patterns
were not originally intended to serve security requirements [36]; hence
the existence of specialized solutions known as security patterns [37].
Thus, we are not interested in investigating whether the use of GoF
patterns promotes security, but on the contrary, if the application of
GoF patterns leads to violations of security good practices.

3 According to Aversano et al., it is how spread, among classes, is the im-
plementation of a concern.
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2.4. Overview of related work

The main differences of our study compared to the related work are
summarized in Table 1. In particular, we compare the studies with re-
spect to three aspects:

(a) Objectives: The conceptual elements of the work, i.e., studied QAs;
studied GoF patterns; and type of approach measuring QAs.

(b) Empirical setting: The empirical setup of the studies, i.e., type of
validation; number of used projects; level of measurement (i.e., unit
from which the QA was assessed); and the number of assessed
classes (a dash indicates that it was not possible to find or estimate
the number of classes).

(c) Ability to compare results: The elements of the analysis that are
comparable to our study, i.e., whether or not PP components are
compared against NPP components; granularity of the pattern in-
vestigation—i.e., category, pattern and role—whether or not there
is a distinction between SPP and CPP.

Based on this overview, the advancements of this study compared to
the state-of-the-art research are:

• It investigates three run-time QAs using static analysis, providing
evidence on their potential relationship to the application of design
patterns;

• It identifies similarities and differences between the results obtained by
static analysis and those obtained by dynamic analysis, increasing the
validity of evidence on the subject, as well as adding to the current
state of the art on analysis of run-time QAs;

• It is, to the best of our knowledge, the first study that provides
empirical evidence on the relationship between the use of GoF patterns
and security.

3. Case study design

This section describes the case study protocol, which was designed
according to the guidelines of Runeson et al. [38] and is reported based
on the Linear Analytic Structure [38].

3.1. Objectives and research questions

The goal of this study is described using the Goal-Question-Metrics
(GQM) approach [39], as follows: “analyze software projects for the
purpose of evaluating GoF design patterns with respect to their po-
tential relationship with run-time quality attributes, from the point of
view of software developers in the context of open source systems”.
Based on the goal of this study, we defined the following research
questions (RQ):

RQ1: To what extent do run-time QAs differ between non-pattern-par-
ticipating (NPP), single-pattern-participating (SPP), and coupled-pattern-
participating (CPP) classes?

RQ1.1: To what extent do the aforementioned groups of classes differ
regarding correctness?
RQ1.2: To what extent do the aforementioned groups of classes differ
regarding performance?
RQ1.3: To what extent do the aforementioned groups of classes differ
regarding security?

RQ1 aims at exploring whether the application of GoF design pat-
terns is related to the levels of run-time QAs. This question is important
to investigate, in the sense that certain GoF patterns are using “ex-
pensive” or sometimes complex OO mechanisms, e.g., polymorphism or
extensive message passing, that can potentially harm run-time QAs in
favor of improving design-time ones. Additionally, while performing
such an investigation, it is important to treat the two types of pattern
participation (SPP and CPP) separately, because CPP classes are a
special case of pattern-participation.

RQ2: Is the relationship between GoF patterns and run-time QAs dif-
ferent across categories of design patterns?

RQ2.1: Is there a difference in the levels of correctness among classes
participating in patterns of different categories?
RQ2.2: Is there a difference in the levels of performance among
classes participating in patterns of different categories?
RQ2.3: Is there a difference in the levels of security among classes
participating in patterns of different categories?

Table 1
Overview of related work.

#ref Objectives Empirical setting Ability to compare results

QA Patterns Approach Validation Projects Level Classes PP vs.
NPP

Granularity SPP ≠
CPP

[19] Correctness 11a Dynamic Case study 1 Class 7,439 Yes Pattern No
[21] Correctness 12b Dynamic Case study 3 Class ∼10,000 No Pattern No
[28] Correctness 5c Dynamic Case study 1 Class 1,550 No Pattern Yes
[29] Correctness 12b Dynamic Case study 94 System ∼85,000 No Pattern No
[5] Performance 3d Dynamic Example 6 Pattern

instance
∼30 Yes Pattern Yes*

[6] Performance 15e Dynamic Example 15 Pattern
instance

∼250 Yes Category, pattern Yes*

[31] Performance State Dynamic Case study 1 System 8 Yes Pattern No
[32] Performance Facade,

Command
Dynamic Case study 1 Pattern

instance
– No Pattern No

[33] Performance Factory Method Dynamic Example 1 Pattern
instance

∼20 No Pattern Yes*

[34] Security All None Theoretical 0 None 0 No Category No
This Correctness, performance and

security
12b Static Case study 5 Class 12,857 Yes Category, pattern,

role
Yes

⁎ Only SPP components are considered.
a Adapter, Builder, Command, Creator, Factory, Template Method, Proxy, Singleton, State, Strategy, Visitor.
b Abstract Factory, Singleton, Composite, Adapter, Command, Observer, State, Strategy, Template Method, Decorator, Prototype and Proxy.
c Singleton, Template Method, Decorator, Observer, Factory.
d Factory Method, Adapter, Observer.
e Abstract Factory, Builder, Factory Method, Prototype, Singleton, Bridge, Composite, Decorator, Flyweight, Proxy, Command, Mediator, Observer, Strategy,

Visitor.
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RQ2 aims at investigating if the different purposes that patterns
serve (i.e., create objects, handle system behavior, and organize source
code structure) lead to a different relation between GoF pattern appli-
cation and the levels of run-time qualities. A similar question was
considered in other studies such as Sahin et al. [6]. To explore this
research question, we focus only on SPP classes, clustering them by
category (creational, behavioral and structural). We exclude CPP
classes from this RQ, since the behavior of coupled pattern cannot be
safely attributed to one of the patterns participating in it.

RQ3: Is the relationship between GoF patterns and run-time QAs, dif-
ferent across design patterns?

RQ3.1: Is there a difference in the levels of correctness among classes
participating in different patterns?
RQ3.2: Is there a difference in the levels of performance among
classes participating in different patterns?
RQ3.3: Is there a difference in the levels of security among classes
participating in different patterns?

RQ3 aims at identifying design patterns whose classes might be
more prone to violating good coding practices. Therefore, alternative
solutions (non-pattern or non-GoF) may be preferred when possible
[40]. Many studies (e.g., [19,21,28]), have explored similar RQs. To
answer this research question, we focus only on SPP classes, clustering
them by design pattern.

RQ4: Is the relationship between GoF patterns and the levels of run-time
QAs, different across design patterns roles?

RQ4.1: Is there a difference in the levels of correctness among classes
playing different roles in GoF patterns?
RQ4.2: Is there a difference in the levels of performance among
classes playing different roles in GoF patterns?
RQ4.3: Is there a difference in the levels of security among classes
playing different roles in GoF patterns?

RQ4 aims at investigating the different roles that classes can play
within a certain pattern (e.g., the Subject in an Observer pattern in-
stance) to identify those that are more prone to harm specific run-time
QAs. Although roles have also been explored in other studies, e.g.,
[20,41], we decided not to investigate the roles individually, but rather
consider the similar purposes they have (e.g., Container, Containee and
Client), namely meta-roles (see Section 3.3.3). We made this decision
since meta-roles may lead to more exploitable results as they encompass
responsibilities that may lead to more relevant investigation [20]. To
explore this research question, we focus only on SPP classes, clustering
them by design pattern meta-role.

3.2. Case selection and unit of analysis

This study is a holistic multiple-case study, in which open-source
software (OSS) projects are the subjects. As unit of analysis we refer to
one class of a project over a certain period of time when the number

and type of patterns, in which the class participates, is stable. Based on
the above, as a stable pattern status period, we refer to a set of versions
in which the class did not change its participation status (i.e., partici-
pating to a specific pattern, or not participating to any pattern).
Therefore, it is important to note that, in order to avoid possible bias
from outliers (e.g., an outstanding good release, or a very buggy ver-
sion), we consider all available versions of each system, considering the
measurement of each metric in a unit of analysis as the average of all
versions in the stable pattern status period.

Concluding, we consider triplets of <class_name, pattern_participa-
tion, versions-span> as unit of analysis. For example, suppose that class
C1 starts its lifespan as a participant in a Visitor pattern, until version 6;
next, it does not participate in a pattern for three versions; and next it
becomes a Strategy participant for three more versions. This class
would provide us with three units of analysis, as follows:

• <C1, Adapter, Ver. 1-Ver. 6>

• <C1, no-pattern, Ver. 7-Ver. 9>

• <C1, Strategy, Ver. 10-Ver. 12>

In order to select appropriate cases (i.e., subjects) for our study, we
considered OSS projects from SourceForge.4 The projects used in our
analysis were required: (a) to be written in Java, due to limitations of
the used tools (see Section 3.3.3); (b) to have an adequate number of
versions for evolution analysis; and (c) not to be considered as “toy
examples”. For that, we selected the five most popular projects from
SourceForge that fit our requirements, and we collected all available
versions for each one of them. The selected projects, accompanied by
their size and duration information, are presented in Table 2.

3.3. Data collection and pre-processing

In order to answer the research questions stated in Section 3.1, we
extracted three sets of variables from each class of each version of the
five selected projects (to later compute the units of analysis - see
Section 3.3.3), as follows:

• project and class identification information;

• pattern participation information; and

• estimates on the levels of QAs.

We clarify that the third set represents assessments of the studied
QAs, and, therefore, when referring to the attributes, we are in practice
referring to their assessments. For that, we selected metrics that, to the
best of our knowledge, are able to quantify aspects of their levels of
quality (see Section 3.3.2). An overview and more details on each
variable are presented in Section 3.3.3. Details on the pattern detection
and run-time QAs assessment are presented in the following sections.

3.3.1. Detection of design patterns occurrences
Regarding pattern detection in each version of the projects, we used

a tool developed by Tsantalis et al. [42]. This tool5 uses a Similarity
Scoring Algorithm (SSA) for detecting instances of 12 patterns, namely,
Adapter/Command, Composite, Decorator, Factory Method, Observer,
Prototype, Singleton, State/Strategy, Template Method, and Visitor. By
reverse engineering the system under study, this tool isolates sub-
systems and explores the relationship between elements in each one of
them, applying the proposed SSA to detect occurrences of the afore-
mentioned patterns [42]. The tool was already evaluated in in-
dependent studies (e.g., by Kniesel and Binun [43], and Pettersson et al.
[44]), which reported positively on its performance, precision and re-
call rates. In short, the recall of the tool averages around 70%, varying

Table 2
Projects considered in the case study.

Project name Starting yeara Sizeb NoCc NoVd

Bonita BPM 2009 138K 3,994 45
Convertigo 2011 79K 1,779 40
Eclipse Checkstyle 2003 9K 216 37
Hibernate 2001 162K 3,374 126
LogicalDOC 2008 46K 818 31

a Year of registration according to SourceForge.
b Size in lines of code (of the last version).
c NoC=Number of classes (of the last version).
dNoV dNoV =Number of versions.

4 https://sourceforge.net/.
5 http://users.encs.concordia.ca/∼nikolaos/pattern_detection.html.

D. Feitosa et al. Information and Software Technology 105 (2019) 1–16

5

https://sourceforge.net/
http://users.encs.concordia.ca/~nikolaos/pattern_detection.html


between 25% and 100% in the reported benchmarks. The precision is
reported to be close to 100%, mostly due to structure-based detection
approach. Moreover, we manually verified the precision of the tool by
checking 50 random pattern instances for each GoF pattern that is de-
tected by this tool (i.e., over 500 instances in total—standing for 32% of
the total dataset in terms of pattern instances), which were all true
positives. We decided to use this tool for the following reasons:

• it covers a fair amount of design patterns that can be detected;

• it has adequate performance, as reported in Tsantalis et al. [42], also
when compared to similar tools [43,44]; and

• it facilitates the pattern detection process.

Although this tool is able to detect the aforementioned patterns, it
does not extract all PP classes. According to Aversano et al. [21] classes
are subdivided into two categories: (a) main PP classes, comprising
those that provide the structure of the pattern solution (commonly
abstract classes); and (b) extended PP classes, which are subclasses of
the former that extend the functionality of the pattern solution. The SSA
tool only detects the main PP classes. Therefore, as we require all PPs to
be identified for our study, a second tool6 named SSA+, developed by
the authors, was used to identify and extract the extended PP classes.
SSA+ takes as input the output of SSA, and is able to identify 10 extra
roles, based on the information provided by SSA for each pattern oc-
currence. The extra roles are: Concrete Creator and Product, for Factory
Method pattern; Concrete Prototype, for Prototype pattern; Leaf, for
Composite pattern; Concrete Decorator and Concrete Component, for
Decorator pattern; Concrete Observer, for Observer pattern; Concrete
State/Strategy, for State/Strategy pattern; Concrete Class, for Template
Method pattern; and Subject, for Proxy pattern.

The task performed by SSA+ is deterministic, as it identifies classes
that comply with a set of rules (e.g., inherit from a main PP class), and,
therefore, the final version of the tool should present no faulty results,
as it was thoroughly tested. In order to further validate SSA+, we
manually verified the output for numerous pattern occurrences (ran-
domly selected) of each pattern for which we detect extra roles. In all
cases, SSA+ found only true positives, and no class appeared to be
missing. The tool was also used in another study, in which a similar
verification procedure was performed [45]. Additionally, to validate
our data collection, we verified the frequency of pattern occurrences in
the entire dataset against the frequencies obtained by related work
[20,23]. In Table 3, we present the distribution of classes among all
participation types (NPP, SPP and CPP), for the five projects, as well as
the summary of all projects. All frequencies are presented considering
main roles only (detected via SSA), as well as all roles (SSA+, i.e., main
and extra roles). Related work has considered main roles and the fre-
quency reported in Table 3 (SSA) is accordance to theirs [20,23,29].
Finally, one can notice that, as expected, the frequency of PP classes
considering all roles (SSA+ ) is higher than considering main roles only
(SSA).

3.3.2. Assessment of run-time quality attributes
To evaluate software projects with respect to their run-time QAs, we

performed static analysis by collecting the amount of several different
types of violations of good coding practices. For that, we used the tool
FindBugs,7 which detects such violations and provides warnings [46].
The tool was already evaluated in independent studies (e.g., by Hove-
meyer and Pugh [46] and Ayewah et al. [47]), which reported an
average precision of 66% and stated that the precision can be increased
by measures such as filtering bug patterns and selecting confidence
levels. We also evaluated the tool in a previous study and found that its
precision for the three levels of confidence (i.e., low, medium, and

high) are 26.67%, 60%, and 73.33%, respectively [48]. Thus, we ad-
vised discarding violations with low level of confidence.

It is possible that FindBugs introduces noise (i.e., false positives) to
the data collection. However, we also found in other studies
[8,9,10,13,46], as well as in our experiments, that the violations
identified by FindBugs are valuable pointers to parts of the system that
need to be maintained. Moreover, we note that although part of the
violations detected by FindBugs may incur bugs in the system (therefore
the nomenclature “bug pattern”), we do not make this assumption. We
treat them simply as violations, which can be used as indicators of
quality. Other studies explored this approach to estimate quality
[13,49]. In particular, Khalid et al. [13] examined violations from
FindBugs, correlating them to software quality as perceived by end-
users. Their results suggest that violations can be used as quality in-
dicators, as the two were closely related in the observed population. In
short, we adopt the estimation of violations identified by static analysis
not as an absolute number of real bugs or faults in the system at a given
moment, but as a quality indicator that can warn developers and ar-
chitects to investigate a given part of the system.

In this case study, we have chosen to use FindBugs because it pro-
vides:

• a collection of over 400 bug patterns;

• adequate precision when compared to similar tools [7,46,47], which
reflects on the relevance of the offered bug patterns; and

• a grouping of these bug patterns in nine high-level categories8 that
can in turn be mapped into QAs, as presented below.

In this study, to evaluate run-time QAs, we considered the first five
categories (in total 246 bug patterns), as they can be mapped to the
three studied QAs: correctness9 (Correctness and Multithreaded Correct-
ness categories), performance10 (Performance category), and security11

(Security and Malicious Code categories). The levels of quality, in each
OSS version, for the three aforementioned QAs are estimated by the
quantity of:

Table 3
Frequency of pattern occurrences based on SSA and SSA+.

Project name Number of classes Tool NPP SPP CPP

Bonita BPM 3994 SSA 74.0% 19.2% 6.8%
SSA+ 54.0% 35.3% 10.8%

Convertigo 1779 SSA 89.0% 8.2% 2.8%
SSA+ 74.6% 16.1% 9.3%

Eclipse Checkstyle 216 SSA 71.8% 19.9% 8.3%
SSA+ 40.7% 44.9% 14.4%

Hibernate 3374 SSA 63.5% 25.2% 11.4%
SSA+ 51.0% 26.6% 22.4%

LogicalDOC 818 SSA 85.0% 9.5% 5.5%
SSA+ 80.6% 13.0% 6.5%

Total 10,181 SSA 74.0% 18.5% 7.5%
SSA+ 58.5% 27.4% 14.1%

The frequency is w.r.t. the last version of each project.

6 https://github.com/search-rug/ssap.
7 http://findbugs.sourceforge.net/.

8 The categories are: Security, Correctness, Multithreaded Correctness,
Performance, Malicious Code, Bad Practice, Internationalization, Experimental
and Dodgy Code.
9 An example of a correctness bug pattern is: Signature declares use of un-

hashable class in hashed construct (http://findbugs.sourceforge.net/
bugDescriptions.html#HE_SIGNATURE_DECLARES_HASHING_OF_
UNHASHABLE_CLASS).
10 An example of a performance bug pattern is: Method allocates an object,

only to get the class object (http://findbugs.sourceforge.net/
bugDescriptions.html#DM_NEW_FOR_GETCLASS).
11 An example of a security bug pattern is: HTTP cookie formed from un-

trusted input (http://findbugs.sourceforge.net/bugDescriptions
.html#HRS_REQUEST_PARAMETER_TO_COOKIE).
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• New violations per lines of code (LoC): this metric partially ex-
presses the likelihood of a class to harm the assessed QA;

• Removed violations (i.e., not detected in comparison to the pre-
vious version) per LoC: this metric partially expresses the likelihood
of a class to benefit the assessed QA. As this metric depends on the
previous existence of violations, we represent it as the percentage of
removed violations compared to the total amount; and

• Total violations (i.e., total number of detected violations) per LoC:
this metric takes into account the resulting effect of both adding and
removing violations.

We clarify that, concerning correctness and security, the quantities
are the sum of the two categories of bug patterns that each QA is
comprised of. For example, security is measured by summing the
numbers from both Security and Malicious Code categories. For all three
QAs a lower number of Total and New violations reflect a higher level
of quality, while it is the opposite for Removed violations (i.e., the level
of quality is directly proportional to the number of Removed viola-
tions).

3.3.3. Collection procedure and pre-processing
The data collection phase was a two-step process. First, we collected

raw data of the QAs assessment variables for every class of every ver-
sion using FindBugs, as well as design pattern related variables using
the SSA and SSA+ tools. All tools work on Java binary code, so we fed
them with a set of .class files and recorded the outcome. For FindBugs,
we used the command line version 3.0.0, for automation purposes. We
configured the tool with maximum effort (i.e., enabling analysis that
increases precision), and reported violations with medium or high
confidence level (to improve precision, as reported in a previous study
[48]) and from all urgency priorities (i.e., from least to most harmful to
the system). For SSA tool, we used the command line version 4.5, also
for automation purposes.

Next, we derived additional information that was needed to collect
every variable for the units of analysis. For that, two tasks were per-
formed:

t1. We compiled FindBugs’ information for each project. The bug
detection report of all versions was compiled into a history of vio-
lations, generated by FindBugs. The number of violations from each
QA was obtained by counting the rule violations with medium and
high confidence from Findbugs.12 The three aforementioned metrics
(New, Removed, and Total number of violations) were calculated
based on these values.
t2. We mapped pattern roles to their respective meta-roles, ac-
cording to the map presented in Table 4. The meta-roles are assigned
to roles based on the purpose of those roles. We considered the same
seven meta-roles as in our earlier work (for more details see [20]):
Client, Container (a container or aggregate in a “whole-part” re-
lationship, or the dependent class in a “simple association”), Con-
tainee (a containee or component in a “whole-part” relationship or
the independent class in a “simple association”), Superclass (or ab-
stract class), Subclass, Compound (playing two or more of the
aforementioned roles), and Singleton. For example, the Subject acts
as a container in the Observer pattern.

Finally, a dataset was created with the information of all variables
for each unit of analysis. This dataset was recorded as a table into a
spreadsheet, in which each line corresponded to one class of one project
in a certain version range. Summarizing, the full list of variables, to-
gether with their description, is presented in Table 5. The final dataset

is created as described above to facilitate the identification of coupled
patterns (by detecting duplication of classes in different patterns on the
same version), and merging of tuples to build data subsets for an-
swering each RQ (e.g., merging tuples of same pattern category and
version, to answer RQ2).

3.4. Data analysis

During this phase, we analyzed the previously described variables
(V1–V16) to investigate the relationship between the use of design
patterns and the level of run-time QAs. We clarify that, unless specified,
when referring to a relationship with a certain QA, we imply the scores
of all metrics of the QA. The analysis of the collected data is split in four
steps, each aiming at answering each of the four RQs. In each step, a
data subset was derived from the final dataset (see Section 3.3.3), and
further analyzed as follows:

s1. Verify relationship between NPP, SPP, and CPP classes for each QA.
In this step, we derived a data subset consisting of classes that are
related to only one of the three participation types during their

Table 4
Mapping of pattern roles to meta-roles.

Pattern type Pattern role Meta-role

Adapter/Command Adaptee/Receiver Containee
Adapter/Concrete Command Container

Composite Component Superclass
Composite Compound
Leaf Subclass

Decorator Component Superclass
Concrete component Subclass
Concrete decorator Subclass
Decorator Compound

Factory method Concrete creator Compound
Creator Superclass
Product Containee

Observer Concrete observer Subclass
Observer Compound
Subject Container

Prototype Client Client
Concrete prototype Subclass
Prototype Superclass

Proxy Proxy Compound
RealSubject Subclass
Subject Superclass

Singleton Singleton Singleton
State/Strategy Concrete State/Strategy Subclass

Context Client
State/Strategy Superclass

Template Method Abstract class Superclass
Concrete class Subclass

Table 5
List of collected variables.

Variable Description Tool

[V1] Source project of the class –
[V2] Class full name (package+ class name) –
[V3] Versions of the project considered in the unit of

analysis
–

[V4] Class type (i.e., NPP, SPP, or CPP) SSA & SSA+
[V5] Name of the category (i.e., behavioral, creational,

structural) containing the pattern in which the class
participated.

[V6] Name of the pattern in which the class participated
[V7] Name of the meta-role that the class played in the

pattern
[V8-V10] Violation metrics for correctness FindBugs
[V11-V13] Violation metrics for performance
[V14-V16] Violation metrics for security

12We had analyzed and validated FindBugs, in a previous work [13], re-
garding its confidence levels, reporting that precision can be improved by ex-
cluding bugs with low confidence level.
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entire version-span (within the collected data). By avoiding change
of participation, we aimed at mitigating bias caused by the joint
effect of multiple types of pattern participation. Therefore, in-
dependent sample t-tests are performed in order to investigate dif-
ferences in the level of QAs among the types of participation. This
step was divided into four sub-steps.

a. Select relevant tuples. We selected only classes that have been only
NPP, SPP, or CPP during their lifetime (i.e., classes that did not
change their participation).

b. Remove duplicated entries. As CPP classes appear in more than one
pattern occurrence, it is necessary to avoid accounting for duplicates
of classes. For example, a class that has initially been a Singleton
and in a later version part of an Adapter occurrence would produce
two units of analysis as a pattern participant, which have identical
number of violations (because they regard the same class). These
two units of analysis would be merged into a single CPP entry (to
avoid duplicated entries).

c. Compute units of analysis. Tuples concerning the same class in the
different versions are now united by calculating the average for each
metric, resulting in the data subset to be analyzed.

d. Calculate differences in levels of QAs. We performed independent
sample t-tests using pattern participation (V4) as a grouping vari-
able, and the number of violations (V8-V16) as test variables. We
clarify that, despite analyzing three groups (NPP, SPP, and CPP), we
did not perform analysis of variance, since we intend to look into
every pairwise comparison.

s2. Verify difference among design pattern categories for each metric of
each QA. In this step, we derived a data subset consisting of classes
that were SPP during their entire version-span, for the same reasons
described in step 1. In a similar four-sub-steps process, the units of
analysis were initially selected and clustered into three clusters, one
for each pattern category (structural, behavioral, and creational);
afterwards, duplicates were removed, i.e., tuples concerning same
class, version, and pattern category; then, the units of analysis were
computed by merging tuples concerning same classes and different
versions; finally, a one-way analysis of variance (ANOVA) was
performed for each metric of each QA, i.e., [V8 - V16], using pattern
category (V5) as grouping variable.
s3. Verify difference among design patterns for each metric of each QA.
In this step, we derived a data subset consisting of classes that were
SPP during their entire version-span, for the same reasons described
in step 1. Similar to step 2, we performed ANOVA for each metric of
each QA, but using the pattern (V6) as grouping variable. Removal
of duplicates and computation of units of analysis were also simi-
larly performed (considering pattern in the procedure).
s4. Verify difference among design pattern meta-roles for each metric of
each QA. In this step we derived a data subset consisting of classes
that were SPP during their entire version-span, for the same reasons
described in step 1. Next, we clustered the dataset into seven groups,
one for each meta-role (V7). Finally, we performed independent
sample t-tests between pairs of meta-roles for each metric of each
QA, i.e., [V8–V16].

Summarizing the procedure for answering the RQs, Table 6 presents
the mapping between each RQ, the used variables, as well as the step of
the analysis in which each RQ is answered, along with the used pre-
sentation methods.

4. Results

In this section, we present the results of the case study, highlighting
the most important observations based on the acquired data. Each RQ is
addressed separately, presenting an overview of the considered data
subset, as well as the statistical analysis over the data (see Section 3.4).

Before presenting the results, we clarify that the metric on Removed
violations was not statistically evaluated in all RQs due to the low
number of classes that had removed violations. However, this is not an
important issue since the metric on Total number of violations also
reflects the effects of the removed ones (see Section 3.3.2).

4.1. Comparison between SPP, PPC, and NPP classes (RQ1)

The descriptive statistics (i.e., number of units of analysis, mean
number of violations per 10 KLOC, and standard deviation) of the data
subset built for answering RQ1 (see step 1 of Section 3.4) are presented
in Table 7. We clarify that due to the nature of the data (i.e., violations)
it is expected that most of the classes in the dataset do not present
violations. Thus, metrics such as median and mode would not be de-
scriptive for our dataset and, for that reason, are not included in
Table 7. For each metric, we highlight the type of pattern participation
with the lowest amount of New and Total violations, e.g., for New se-
curity violations SPP classes had the lowest average number of viola-
tions (i.e., 0.72).

Based on the descriptive statistics, we created the radar chart de-
picted on Fig. 1 to better visualize and compare the three types of
pattern participation. To create the charts, we normalized the mean for
each metric (New violations, Removed violations, and Total number of
violations) as the ratio over the best result. Therefore, the best result
has score 1, and the other two scores are equal or less than 1. We note
that for New and Total violations, the ratio is inverse, i.e., more vio-
lations are implied by scores closer to 0, and best results (i.e., fewer
violations) are denoted with scores close to 1. Regarding Removed
violations high scores imply best results (more violations are corrected),
whereas low scores refer to cases in which only few violations are re-
solved. In each radar chart, we have created three lines: (a) a con-
tinuous red line for NPP classes; (b) a dotted blue line for SPP classes;
and (c) a dashed green line for CPP classes. To interpret these charts one
needs to check which type of pattern participation has a value equal to
1, and then compare to the rest. For instance, for New violations we can
observe that SPP classes exhibit the best results for Security and Cor-
rectness, whereas CPP for Performance.

In order to verify the previously presented differences, we carried
out statistical tests to compare all obtained means. For that, we per-
formed independent t-tests between every two types of participation
(i.e., SPP vs. NPP, SPP vs. CPP, and NPP vs. CPP) for each metric of each
QA (V8–V16). In Table 8 we present the results of the tests that are
statistically significant. For example, the difference between NPP and
SPP for New security bugs presented in Fig. 1 (top on the left radar
chart) is statistically significant. From the results, the following ob-
servations can be highlighted.

Non-pattern-participating (NPP) classes are likely to underperform when
compared against pattern-participating (PP) classes (both SPP and CPP).
For nine out of the 18 possible comparisons (between NPP and the other
two class types), NPP classes exhibit a statistically significant larger
number of violations than classes participating in patterns. At the same
time, there is no strong statistical evidence of the difference between SPP and
CPP classes. However, it should be pointed out that one difference be-
tween SPP and CPP classes has been found to be statistically significant
(i.e., Total amount of performance violations), providing an indication
in favor of SPP classes.

4.2. Comparison between pattern categories RQ2

To compare the different pattern categories (i.e., Behavioral,
Creational and Structural), we considered the data subset as described
in step 2 of the data analysis (see Section 3.4), comprising units of
analysis limited to SPP classes. The descriptive statistics for this dataset
are presented in Table 9. Similar to RQ1, we present the number of units
of analysis, mean number of violations per 10 KLOC, and standard
deviation for each category (i.e., in this case, of each pattern category).
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To better visualize the descriptive data, we created a radar chart to ease
the comparison of mean values (see Fig. 2). Similar to Fig. 1, the best
result has score 1, and the other two scores are equal or less than 1.

To verify the differences presented by the descriptive statistics, we
performed a two-step statistical analysis for each metric of each QA.
First, we carried out an analysis of variance (ANOVA) to identify the
existence of differences between the three pattern categories for the
given metric. If a difference was detected, then we applied a post-hoc
test to recognize which pattern categories differentiate from each other.
For the post-hoc test, we used the Bonferroni correction due to its

ability to control Type I error (i.e., find a relationship that in fact does
not exist), and its suitability for a small number of categories [50]. In
Table 10, we present the tests that revealed a statistically significant
difference. From the results, we highlight the following observations.

Classes that participate in Creational patterns are likely to have fewer
violations of security and performance coding practices than those partici-
pating in Structural and Behavioral patterns. Based on the statistically
significant differences presented in Table 10, we notice that compar-
isons of Creational patterns regarding security are mostly valid. With
regards to performance violation, the only statistically significant dif-
ferent provides an indication that Creational patterns may be less prone
to such violations. This is an expected result as Creational patterns tend
to be simpler than patterns of the other two categories. Moreover, this
finding corroborates with findings of related work.

4.3. Comparison between patterns (RQ3)

For comparing the 12 patterns considered in this study, we focused
on SPP classes as units of analysis. However, this time we clustered
them by pattern, so as to be able to explore the differences between
such types for each QA metric. Similar to the previous RQs we present
the descriptive statistics of this data subset (see Table 11). This table
shows the number of units of analysis for each pattern, as well as the
mean and standard deviation for each QA metric. It is important to
highlight that we excluded three patterns from the analysis (Composite,
Observer and Proxy) due to the small number of available SPP classes
(1, 15 and 11, respectively). Additionally, we did not consider results
with mean violations equal to zero, although they are shown in
Table 11 (for clarity purposes). Such a mean indicates that we identified
no violations in the SPP classes and, although we expect this number to
be small, we cannot predict it with enough confidence.

To better visualize the difference between the means and, most
importantly, how the patterns are ordered, we plotted each metric in
different rows of Fig. 3. Each row presents the mean number of viola-
tions, normalized by the best score, i.e., the best score received 1
(plotted on the rightmost side) and all others a ratio of this value factor
(patterns with score 0 are not plotted). The patterns are identified by
symbol (see legend of the figure), and each pattern category (e.g.,
Creational) has a different filling color and graphic pattern. It is im-
portant to highlight that the Adapter/Command patterns are detected

Table 6
Mapping of RQs to variables, steps, and presentation.

Table 7
Descriptive statistics of the data subset for RQ1.
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jointly by SSA+ (due to design similarities), and that they are from
different categories (Structural and Behavioral respectively). This is
considered in both charts and analysis of the results.

Similar to the previous RQ, we used ANOVA to verify the differences
among the means. However, for the post-hoc test, we selected Games-
Howell because the number of groups (i.e., patterns) was inadequate for
using the Bonferroni correction. Table 12 presents the statistically sig-
nificant results. From the results, we highlight the following observa-
tions.

SPP classes of a Factory Method instance are less prone to violations.
This finding is supported by the facts that six comparisons involving
Factory Method are statistically significant (see Table 12). This result is
not surprising because this is a Creational pattern, which has previously
shown to be the least vulnerable one. Ordering of patterns tends to reflect
the ordering of pattern categories (see Section 4.2), as it would be ex-
pected. By looking at Fig. 3, one can see that Creational patterns are
predominantly ranked among those with best scores, whereas Beha-
vioral and Structural patterns interchangeably rank among those with
worst scores. For example, Factory Method, which is a Creational pat-
tern, achieves the highest scores, while Template Method (a Behavioral
pattern) and Decorator (a Structural pattern) have the worst scores.
However, no clear ordering appears within the patterns of a category
(expect for Factory Method). This might be evidence that the amount of
violations might be more related to the type of responsibility (identified
by a pattern category) rather than to specific patterns.

4.4. Comparison between pattern roles (RQ4)

As shown in Table 14, there are 30 pattern roles distributed among
the 12 patterns considered in this study. To study these roles, we
decided to consider the meta-roles (see Table 14) rather than the roles
themselves, as we expect the amount of violations to be related to the

type of responsibility a role has. This reduces the number of groups to
be analyzed to the seven meta-roles presented in Table 14.

By focusing the investigation to the meta-roles that classes play in a
pattern instance, we analyze the relationship between the types of roles
these classes have. Therefore, for RQ4 we investigated only the com-
binations of roles that participate within the same pattern (i.e., meta-
roles that collaborate to provide a specific pattern solution). For ex-
ample, in the instance of a Prototype pattern, classes of the following
meta-roles are present: Client, Superclass and Subclass. The

Fig. 1. Relationship between pattern participation type and QAs.

Table 8
Statistically significant results from the investigation of RQ1.

Table 9
Descriptive statistics of the data subset for RQ2.
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investigation of these meta-roles was performed in pairs, as follows:
Client vs. Superclass; Client vs. Subclass; and Superclass vs. Subclass.
Considering all patterns, we derived a total of 19 pairs; we excluded the
Singleton meta-role because it involves one class only.

The descriptive statistics of the analyzed meta-roles are presented in
Table 13, showing the number of units of analysis, mean violations per
10 KLOC and standard deviation for each QA metric. In contrast to the
previous RQs, we do not highlight the best means, as the comparisons
are at the level of pairs of meta-roles rather than overall. To better
visualize the comparison between the means, we created eight plots,
grouping the means by metric and type of violation. Fig. 4 presents
these charts; they are read similarly to Fig. 3 and colors represent sets of
related meta-roles (e.g., Subclass and Superclass).

For statistically analyzing the difference between meta-roles in each
pair, we performed independent sample t-tests. The tests that showed
statistically significant difference are presented in Table 14. Based on
the results, the most important observation is that more generic meta-
roles (i.e., Container and Superclass) are less prone to violations than less
generic meta-roles. This is an intuitive result because more abstract
elements of a design usually have less complex logic, being supposedly
simpler to implement. Additionally, there are several statistically sig-
nificant differences that show the clear difference between the meta-
roles.

5. Discussion

In this section, we discuss the main outcomes of the study, providing
more details on their interpretation, as well as implications for re-
searchers and practitioners. Comparison to related work is also pre-
sented, when applicable.

Fig. 2. Relationship between pattern categories and QAs.

Table 10
Statistically significant results from the investigation of RQ2.

Table 11
Descriptive statistics of the data subset for RQ3.

Fig. 3. Relationship between patterns and QAs.
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5.1. Interpretation of results

Firstly, while analyzing the results of RQ1, one can notice that NPP
classes are likely to present more violations, regarding run-time QAs,
than PP classes (i.e., SPP and CPP). Additionally, SPP classes are more
likely to have fewer violations than CPP (we observed an average of
22%). A possible explanation is that PP classes are easier to understand
as the patterns also serve as an explicit design documentation and as
common language among the team members [51,52]. Therefore, it is

expected to be easier to understand and maintain a piece of source code
when it is using a pattern. On the other hand, adding an extra re-
sponsibility to a class (i.e., by making it participate in more than one
pattern) might decrease the readability and understandability of the
code.

Concerning security, our findings comply with the results of the
literature. For example, Ferraz et al. [34] suggest that GoF design
patterns support implementing security requirements. Regarding cor-
rectness, Gatrell and Counsell [19] found that PP classes are more fault-
prone than NPP classes. Conversely, we observed that PP classes ex-
hibited fewer violations than NPP classes. However, Gatrell and
Counsell also observed that their finding was attributed mainly to a
tendency of PP classes to be more change-prone. Thus, a normalization
of the results could have shown a finding similar to ours, in which the
analysis procedure included normalization. Moreover, Ampatzoglou
et al. [29], found the overall number of design pattern instances not to
be correlated with defect frequency. Run-time defects observed for PP
classes are probably related to the complexity of the requirements that
pattern instances are involved in, since design patterns are expected to
be placed in design hot spots.

Concerning performance, related work have found that PP classes
perform worse at times [5,6,31], whereas we observed that PP classes
display fewer violations. However, related work also observed that
pattern instances could also show improved performance compared to
alternative (non-pattern) solutions [6], also suggesting that the usage of
design pattern do not necessarily result in change of run-time perfor-
mance [5]. The energy consumption and/or CPU usage of PP classes can
be higher than that of NPP classes because patterns rely on certain
object-oriented (OO mechanisms (e.g., polymorphism) that have higher
computational cost, but such drawback is not always observed [53]. To
further study this matter, in a previous study [53], we investigated
parameters that can influence the efficiency of patterns solutions
compared against alternative (non-pattern) solutions. We found that the
run-time benefits of a pattern can be associated with its application in
more appropriate scenarios, e.g., when the implementation logic is
complex in terms of size or messaging. The appropriate use can greatly
reduce the overhead of OO mechanisms.

Following our RQs, by analyzing the findings of RQ2 one can ob-
serve that Creational patterns tend to have the lowest number of vio-
lations in most cases. An explanation could be that Creational patterns
are implemented with a simple source code structure. A simple im-
plementation naturally supports better understanding and readability
of the source code, which in turn would explain the existence of fewer
violations. In contrast, Structural patterns had the highest frequency of
violations. A possible explanation is that Structural patterns are com-
monly used to organize complex concepts in an OO design, aiming at
reducing the accidental complexity of the software [54] (i.e., the

Table 12
Statistically significant results from the investigation of RQ3.

Table 13
Descriptive statistics of the data subset for RQ4.

Fig. 4. Relationship between meta-roles and QAs.
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complexity imposed by the designer and not the functionality respon-
sibility). However, even if they decrease the accidental complexity, the
essential complexity (i.e., the complexity inherent to the implemented
functionality) of these components is still high, leading to more viola-
tions when compared to simpler designs (e.g., Creational patterns). We
also noticed that the most recurrent violations are common among all
pattern categories (see Table XVII on Supplementary Appendix A), and
are similar to those regarding all SPP classes (see Table XVI in Sup-
plementary Appendix A).

We note that the findings of this study are based on violations
concerning run-time qualities derived by a static analysis tool. To fa-
cilitate the comparison of observations on the difference between PP
and NPP classes and on the violations exhibited by Creational patterns,
we summarize in Table 15 our key findings (static analysis column)
versus findings derived by dynamic analysis in previous studies
[5,6,19,29,31,53]. This summary indicates that the results from static
analysis are to a large extent aligned with those from dynamic analysis,
with few exceptions as discussed in the preceding paragraphs.

Findings regarding RQ3 suggest that the ordering of the patterns
(from best to worst score) tends to follow the ordering of the findings
from the pattern categories (RQ2). This may suggest that, regardless of
the QA, the type of the responsibility (defined by the category) plays a

major role and, thus, the category has influence on the result. For ex-
ample, a Creational pattern such as Factory Method presented fewer
violations in all cases (in average, 48% fewer than the second-ranked
pattern). A plausible explanation is the structural simplicity of this
pattern. From the studied Creational patterns, Factory Method is po-
tentially the simplest one, because all other patterns allow more com-
plex implementations (e.g., the cloning mechanism of Prototype and
the unique instantiation of Singleton). This finding is in accordance
with the related work. For both correctness and performance, studies
showed that Factory Method is among the patterns with best scores
[6,19,28].

Furthermore, we notice that the difference in the patterns’ defini-
tion and purpose may also reflect on the violations that are accumu-
lated on their instances. By examining Table XVIII (Supplementary
Appendix A), we observe that despite similarities, some of the most
recurrent violations differ among the patterns. For example, unsafe
multithreaded calls are more recurrent for four out of the 12 analyzed
patterns. Another interesting observation is that instances of some
patterns tend to accumulate violations of higher severity (“scary” or
“scariest”, according to FindBugs classification). In particular, although
instances of Factory Method accumulate fewer violations of correctness,
the most recurrent ones are potentially more harmful to the system (see

Table 14
Statistically significant results from the investigation of RQ4.

Table 15
Comparable observations between static and dynamic analyses.
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Table XVIII). This shows that even with a tendency of accumulating
fewer violations, it might be important to monitor instances of certain
patterns.

Finally, the findings from RQ4 suggest that classes playing more
generic roles (i.e., Superclass and Container) tend to show better scores
than classes playing more concrete ones (i.e., Subclass and Containee).
A possible explanation for these observations is that more specialized
roles implement more intense and complex business logic and, there-
fore, are more prone to violations. The counting presented in Table XX
(Supplementary Appendix A) supports this hypothesis, as one can see
that more specialized roles showed larger number of violations with
higher severity. Moreover, the type of violation may also be different
depending on the role a class plays (see Table XIX on Supplementary
Appendix A). These observations may also be partially related to the
likelihood of a class to be changed. It is intuitive to expect that the more
frequently a class is changed the more violations are introduced into its
source code. Di Penta et al. [41] investigated the correlation of pattern
roles to the changes in pattern participants. Their findings suggest that
some meta-roles (i.e., Subclass and Client) changed more frequently
than the other meta-roles). This may indicate that change- and viola-
tion-proneness are related.

5.2. Implications for practitioners and researchers

The findings of this article suggest that PP classes are likely to have
fewer security, correctness and performance violations than NPP
classes, even in cases in which a class participates in more than one
pattern. Stated differently, this exploratory study revealed that ad-
hering to good architectural practices (such as the use of patterns) is
often accompanied by (or due to) better programming practices,
leading to fewer violations. One could argue that a well-designed ar-
chitecture besides its obvious benefits in supporting software evolution
provides a solid basis for developing cleaner code with fewer violations.
Building an application around reusable, documented and well-tested
pattern instances improves comprehensibility, thereby limiting the
possibilities of accidentally introducing violations. Moreover, the clean
code structure facilitates easier bug localization and removal.

This study has two main implications to researchers. The exploita-
tion of static analysis and, in particular, source code for investigating
run-time QAs can add to the current state of the art on the relationship
between the presence of patterns and security, correctness and perfor-
mance. The comparison of our results to related work has in some cases
led to contradictions, due to the different nature of our measurement
approach, but some common implications can be retrieved. First, the
fact that no universal assessment on the relationship between patterns
and run-time qualities can be made (without performing a separate
investigation per pattern type) is a common finding in both our study
and almost every related work in the field. Second, the fact that the
structural complexity of the pattern is playing an important role on the
relationship of patterns and run-time qualities is confirmed by our case
study (e.g., Creational patterns present fewer violations).

Furthermore, to the best of our knowledge, this study is the first to
provide empirical evidence on the relationship between GoF patterns
and security. In addition, it is interesting to notice that most of the
statistically significant results were w.r.t. security. Therefore, we sug-
gest the usage of static analysis when investigating this QA. Finally, the
investigation of pattern roles and, in particular, meta-roles has provided
interesting and insightful findings to our study, showing to be a valu-
able source of information when it comes to investigate GoF patterns.
The investigation of roles allows a finer-grained analysis of the patterns,
while considering meta-roles brings the discussion to a more abstract
level, considering characteristics as mechanisms used by the patterns.
Thus, we also encourage the consideration of meta-roles when in-
vestigating GoF patterns, especially if such characteristics are clearly
relevant for interpreting results of the study.

6. Threats to validity

In this section, we present and discuss the threats to the validity of
our study, in particular, construct validity, reliability and external va-
lidity. Internal validity is not applicable, as the study does not examine
causal relations. Construct validity reflects the connection between the
object of study, or studied phenomenon, and the RQs. Reliability is
related to the possibility of others replicating the performed case study
and obtaining the same results. Finally, external validity comprises
possible threats to the generalization of the findings on this study to the
entire population.

Concerning construct validity, it can be argued that static analysis
does not assess run-time qualities as effectively and precisely as dy-
namic analysis. Indeed, dynamic analysis has been used much more
extensively than static analysis in assessing run-time qualities and such
results are more well-established. To partially mitigate this threat, we
compared some of our results with those from studies using dynamic
analysis. The comparison indicates that the results from static analysis
are to a large extent aligned with those from dynamic analysis (with
some exceptions discussed in Section 5.1), so we consider this threat to
some extent addressed. Another threat related to construct validity is
that the SSA tool is limited by its precision and recall: false positives
and negatives may bias the presented results. However, to the best of
our knowledge, the used tool is among the most reputed in the com-
munity, and has adequate performance (see Section 3.3.1). For miti-
gating this threat, we manually verified its precision and recall by
checking 50 random pattern instances for each GoF pattern that is de-
tected by SSA tool (i.e., over 500 instances in total—standing for 32% of
the total dataset in terms of pattern instances), which were true posi-
tives. We note that the level of agreement between the researchers was
approximately 98%, since only for very few instances there was an
initial disagreement that was resolved through discussion among the
two of the authors. Additionally, regarding FindBugs, we acknowledge
that the list of bug patterns is by no means exhaustive and additional
bugs related to security, correctness and performance could be used.
However, to the best of our knowledge this tool is also among the most
reputed in the community, and has adequate performance (see
Section 3.3.2).

Finally, this study assumes that PP classes in the dataset contribute
to pattern instances that are correctly implemented. A pattern im-
plementation might not be the correct one, due to either a program-
ming mistake or pattern grime [55], or because the deployed pattern is
not the optimal way to solve the underlying problem considering that
the effect of a pattern on quality is affected by different factors [56].
This poses a threat to construct validity. To mitigate it, we checked all
the manually verified pattern instances; we found that their im-
plementation was correct and they were a suitable solution for the
problem at hand. Since these instances account for 32% of the dataset,
we consider that this threat is to a large extent mitigated.

In order to mitigate reliability, two different researchers were in-
volved in the data collection procedure, double-checking all outputs.
Furthermore, the same researchers also double-checked the data ana-
lysis. Finally, all primitive data can be reproduced by using the same
cases and tooling. The pattern detection tool (SSA v4.5) and bug de-
tection tool (FindBugs, v3.0.0) were downloaded from the provided
sources, while we have made the tool developed by us (SSA+ v1.0)
publicly available.

Finally, concerning external validity, we identified the following
threats. First, not all parts of the architecture can benefit from the in-
troduction of patterns, as the pattern goal might be irrelevant to the
functionality/design of that part. Thus, the outcomes of this study do
not generalize to all parts of the codebase or the design space, but only
to those where the use of a design pattern would be beneficial and
applicable. Second, we investigated a limited number of OSS projects.
However, the five projects selected are the most popular projects in
SourceForge that fitted our selection criteria. Additionally, they vary in
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terms of both domains and characteristics; this partially alleviates this
threat. Next, we investigate a limited number of patterns, as well as
pattern instances. A larger sample could strengthen the results and in-
crease our confidence on generalizing our findings. Similarly, we in-
vestigated a subset of all run-time QAs and, therefore, our results
cannot be generalized to all QAs without further investigation. Finally,
we investigated OSS projects written in Java only, while all used tooling
was Java-specific. Therefore, our observations focus on this program-
ming language and cannot be generalized to other OO languages
without further investigation.

7. Conclusion

In this article, we investigated the relationship of 12 GoF patterns to
three run-time QAs, namely security, correctness and performance. In
particular, we conducted a case study on multiple versions of five OSSs
among the most popular Java projects on SourceForge platform (Bonita
BPM, Convertigo, Eclipse Checkstyle Plug-in, Hibernate and Logical
DOC), from which we collected 12,857 classes, being approx. 25%
single-pattern participants, 13% coupled-pattern participants and 62%
non-pattern participants.

To investigate the relationship between GoF patterns and the
aforementioned QAs, we explored source code violations, defining
three metrics for each QA, namely the number of New violations,
Removed violations and Total number of violations. Considering these
metrics, we estimated the levels of the three QAs for each collected class
of each version. We investigated the relation of these metrics to GoF
patterns with regards to four different perspectives: pattern participa-
tion (i.e., NPP, SPP or CPP), pattern category, pattern and meta-role.
Results of the study suggest that classes not participating in any pattern
are more prone to violations, as well as that participation in more than
one pattern can also be connected to the existence of more violations. In
addition, classes participating in Creational patterns, especially Factory
Method, or playing more generic meta-roles (e.g., Container) are likely
to have fewer violations than other classes. However, we advise being
attentive of these violations as we found them to often be of higher
severity.

The findings of this study, although they do not imply any causality
between the introduction of patterns and the removal of violations,
provide evidence that code residing around design patterns adheres to
good programming practices. This observation is consistent with the
wide-spread belief that the application of patterns complies with the
adoption of software architecture principles.

Finally, in light of our findings, we envisage several opportunities of
future work. For example, by normalizing PP classes over the size/
functionality of each system, it would be interesting to compare the
overall level of QAs across projects that have more vs. less pattern in-
stances. In addition, FindBugs reports a severity level for each violation,
which was not explored in our study design due to its complexity. Thus,
it would be interesting to extend the current work to factor in the se-
verity of violations.
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