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During the last years the TD community is striving to offer methods and tools for reducing the amount 

of TD, but also understand the underlying concepts. One popular practice that still has not been inves-

tigated in the context of TD, is software reuse. The aim of this paper is to investigate the relation be-

tween white-box code reuse and TD principal and interest. In particular, we target at unveiling if the 

reuse of code can lead to software with better levels of TD. To achieve this goal, we performed a case 

study on approximately 400 OSS systems, comprised of 897 thousand classes, and compare the levels 

of TD for reused and natively-written classes. The results of the study suggest that reused code usually 

has less TD interest; however, the amount of principal in them is higher. A synthesized view of the 

aforementioned results suggest that software engineers shall opt to reuse code when necessary, since 

apart from the established reuse benefits (i.e., cost savings, increased productivity, etc.) are also getting 

benefits in terms of maintenance. Apart from understanding the phenomenon per se, the results of this 

study provide various implications to research and practice. 

Keywords—technical debt; reuse; case study  

1. Introduction 

Technical Debt (TD) is a software engineering metaphor that relates the construction of poor-

quality software with incurring additional cost, and more specifically to going into debt 

(Kruchten et al., 2012). Based on the TD metaphor, software industries save an amount of 

money by not developing the system in optimal design-time quality levels—termed as princi-

pal (Ampatzoglou et al., 2015). However, later the maintenance costs increase—this amount is 

called interest (Ampatzoglou et al., 2015) due to lowered maintainability, whenever mainte-

nance tasks occur (their frequency map to interest probability (Seaman and Guo, 2011)). By 

acknowledging the tremendous relevance of technical debt in software development industries, 

the TD community is striving to produce methods and tools for TD Management (TDM) that 

would reduce the amount of TD in the software, by either preventing the accumulation of addi-

tional TD, or by removing the existing one (Arvanitou et al., 2019). To this end, the roots of 

TD have been extensively studied ((Kazman et al., 2015), (Mo et al., 2015), and (Xiao et al., 

2016)) along with factors that encourage developers to manage it efficiently ((Amanatidis et 

al., 2018), (Ernst et al., 2014), (Palomba et al., 2015), and (Potdar et al., 2015)). 

Under the prism of understanding possible reasons that lead to TD accumulation, it becomes 

relevant to investigate existing software engineering practices, which might enforce TD accu-

mulation. To this end, in this paper we focus on software reuse: through reuse, artifacts devel-

oped originally for one system (source system), are used again (either “as are” or after modifi-

cation) in the construction of another target system (Krueger, 1992). The intensity of reuse as a 

phenomenon, becomes evident by considering that code reuse from 1.3K popular Open Source 
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Software (OSS) projects (e.g., log4j, jUnit, etc.) in other projects, represents approximately 

316K staff years and tens of billions of dollars in development costs (Ampatzoglou et al., 

2013). Some of the main benefits that promoted reuse as a leading practice in software devel-

opment is the increase of development productivity (Baldassare et al., 2005; Frakes and Kang, 

2005), the improvement of several aspects of software quality (Ajila and Wu, 2007; Baldassare 

et al., 2005; Lim, 1994), and better software reliability in cases when the reused components 

are already tested when they are selected for reuse (Joos, 1994; Juristo and Moreno, 2001 ; 

Lim, 1994; Morisio et al., 2002; Poulin, 1999; Rine, 1997).  

According to Barros-Justo et al. (2018), research efforts should focus on the use of quality 

models for testing the actual impact of reuse benefits, with maintainability appointed as the 

most important one, while linking them to specific practices. In this direction Mikkonen and 

Taivalsari (2019) stress that the revival of software reuse, due to the enormous amount of 

freely available source code on the web, poses new challenges to the software engineering 

community related to the systematic analysis of the compatibility and the properties of popular 

open source components. From the above, it becomes clear that although various aspects of 

business and product qualities have been studied, with respect to reuse, there is still the need to 

empirically explore the structural properties of the freely available reused components and 

their effect to the quality of the software in which they are integrated (see Section 2). 

In this paper we target this specific knowledge gap, by investigating the relation of open-

source code reuse to the structural quality of the target system. More specifically, we investi-

gate if on average the structural quality of source code that is written from scratch (native 

code), is lower or higher compared to reused code. Additionally, by acknowledging the rele-

vance of TD in modern software quality assurance processes, we focus our assessment of 

structural quality to technical debt measurements. Software reuse can be performed in two 

ways (Heinemann et al., 2011): (a) white-box, in which the reused code is inserted in the appli-

cation as source code (i.e., directly editable); and (b) black-box, in which the reused code is 

inserted in the application in a binary form (i.e., it cannot be edited and maintained). Regarding 

black-box reuse, the notion of TD is not considered fitting, in the sense that artifacts reused in 

a black-box fashion, do not involve any maintenance. Therefore, for the purpose of our study 

we focus only on white box reuse. Finally, we note that TD is a far more multifaceted term, 

and that it is not restricted to code only. However, to keep the scoping of this study realistic, 

and by considering that reuse of small code-chunks (such as classes) are more likely to affect 

code TD rather than architecture, we focus this investigation on code TD only. 

In particular, we scope our research so as to answer the following concerns of software practi-

tioners and researchers, as illustrated in Figure 1. 

• Practitioner: “Will the code that I want to reuse have a low number of code smells, so that 

I can easily bring it to the quality standards of the company?” 

• Practitioner: “Will the code that I will reuse: follow object-oriented practices (e.g., low 

coupling, high cohesion, etc.) that facilitate maintenance, or will it hinder fixing of defects 

and modification of functionality?” 

• Researcher: “Is code reuse a practice that would be helpful in preventing the accumula-

tion of code TD, or would writing native code yield better software quality?” 

• Researcher: “Which particular aspects of the TD metaphor are hurt and which benefit 

from code reuse?” 
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Figure 1. Stakeholders’ Concerns—Contributions of the Study 

To answer the aforementioned concerns, we have performed a large-scale case study on ap-

prox. 50 Million (Mo) lines of code, from 400 different projects. The projects are first divided 

into its reused and native parts (i.e., classes), then reused classes are characterized as white-box 

or black-box, then we measure TD aspects for native and white-box reused classes, and per-

form statistical analysis, to draw meaningful conclusions. The main contribution of this study 

from a research point of view, is the exploration of the relation between white-box code reuse 

and code TD in a large-scale, which until now is rather unexplored. In terms of practical con-

siderations, the results are expected to be useful for technical debt prevention, as explained in 

Figure 1. 

The rest of the paper is organized as follows: in Section 2, we present related work, i.e., studies 

that investigate the effect of reuse on software quality—since this is the first study on reuse 

and TD. In Section 3, we present background information, focusing on TD terminology and 

measurement/assessment strategies. In Section 4, we outline the case study design, whereas in 

Section 5 we present the obtained results. Next, in Section 6 we discuss them, by contrasting 

them to existing literature, providing tentative interpretations, and implications for researchers 

and practitioners. Finally, in Section 7 we discuss threats to validity, and in Section 8 we con-

clude the paper. 

2. Related Work 

In this section we present related work to our study. Since to the best of our knowledge, this is 

the first study that investigates the effect of software code reuse (as discussed by Almeida et al. 

(2005)) on technical debt, in this section we broaden the scope of reporting to studies that ex-

plore the effect of reusing code to software quality. Special emphasis will be given to structural 

product quality, in the sense that it is closer to TD, compared to other quality views (Kitchen-

ham, 1996). Nevertheless, the terms technical debt and software reuse (not restricted to code) 

have already been discussed in current literature.  

First, Martinez-Fernandez et al (2013) considered technical debt as a parameter for their eco-

nomic model, while reusing at the software architecture level, by implementing reference ar-

chitectures. Second, Yli-Huumo et al. (2014) investigates technical debt management tech-

niques when using software product lines, i.e., one of the prominent ways of systematic reuse. 

To achieve this goal, they have conducted interviews with 12 practitioners; the results suggest 

that: (a) TD is mostly formed as a result of intentional decisions made during the project to 

reach deadlines; and (b) customer satisfaction was identified as the main reason for taking TD 

in short-term but it turned to economic consequences and quality issues in the longer perspec-
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tive. Also, the results suggested that product line managers did not had any specific plan for 

technical debt management. Both these studies are substantially different from this work, in the 

sense that they focus on architecture, rather than source code. 

The positive effect of reuse on software quality has been verified by several studies (Lim, 

1994; Frakes and Kang, 2005; Mahagheghi and Conradi, 2007, 2008). Lim (1994) analyzed 

metrics collected from two reuse programs completed by Hewlett-Packard and reported im-

proved quality, in terms of defect density, increased productivity and reduced time to market. 

In this direction Frakes and Kang (2005) performed an exploratory study on the relationship 

between the amount of reuse and the quality of software modules developed in C/C++ within 

an industrial context. The authors analyzed four software projects and concluded that software 

reuse is positively correlated to software quality, as assessed by the developers, and negatively 

correlated to the error density. Another study that added evidence to the quality benefits ac-

quired from reuse was performed by Mohagheghi and Conradi (2007), who examined the po-

tentials of software reuse in a telecommunications project. The results of their case study re-

vealed that software reuse contributed to lower fault-density and less modified code between 

the successive releases of the software product under study (Mohagheghi and Conradi, 2008). 

The quality benefits acquired from software reuse are also reported in the review performed by 

Mohagheghi and Conradi (2007) who assessed the effects of reuse in an industrial context. 

Concluding, by transferring the aforementioned results to the TDM context, one could argue 

that reuse leads reduced interest probability, in the sense that the reused code has fewer de-

fects; thus, it undergoes more rarely corrective maintenance, and therefore produces interest 

more sparsely.   

In terms of structural quality, we have identified very few studies that investigate the effect of 

reuse on software product quality. Deniz and Bilgen (2014) performed a case study to test 

whether the quality of software code is improved as reuse rates of the products increase. The 

authors analyzed software modules developed by a defense industry (mainly developed in 

C++) in order to calculate complexity and class level metrics proposed by Chidamber and Ke-

merer (1994). Their findings show that some metrics (number of classes, lines of code, depth 

of inheritance tree) do not correlate with changing reuse rate. However, Coupling and Com-

plexity metrics are significantly improved when the reuse rate increases, a fact that indicates 

the positive effect of reuse on structural quality of code. Constantinou et al. (2015) explored 

the effect of white-box reuse on software quality. In particular, they investigated more than 1K 

Java projects and highlighted that on average reused classes where of higher complexity, less 

coherent, and more closed coupled to other classes, compared to system classes. Additionally, 

Zaimi et al. (2015) explored the effect reuse decisions on reusability, extendibility, flexibility, 

and effectiveness of the target software. To achieve this goal, the authors explored the reuse 

decision taken along the evolution of 5 well-known Java open-source projects. The results 

suggested that no statistically significant effect of reuse decisions to design-time quality attrib-

utes could be argued. Nevertheless, the update of a library version usually led to an (on aver-

age) improved quality. Finally, Nikolaidis et al. (2019) compared the levels of TD in source 

code reused from StackOverflow and suggested that reused code is in the majority of the cases 

of better quality, in terms of technical debt, compared to the code of the rest of the target sys-

tem. This result was based on the analysis of approximately 50 reused code chunks of non-

negligible size.  
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Table 1. Related Work Overview 

Study Association to TD TD Concept Research Method Outcome 

Martinez-Fernandez et al., 2013 Direct Principal Qualitative TD hinders reuse 

Yli-Huumo et al., 2014 Direct Principal Qualitative No strategy for TDM in SPLs 

Lim, 1994 Indirect 
Interest 

Probability 
Quantitative 

Reuse positively affects: (a) defect 

density; (b) productivity; and (c) 

time to market 

Frakes and Kang, 2005 Indirect 
Interest 

Probability 
Quantitative 

Reuse positively affects defect 

density 

Mahagheghi and Conradi, 2007 
Indirect 

Interest 

Probability 
Quantitative 

Reuse positively affects defect 

density and change proneness Mahagheghi and Conradi, 2008 

Deniz and Bilingen, 2014 Indirect Interest Quantitative 

Reuse improves coupling and 

complexity. Not correlated to size 

and inheritance 

Constantinou et al., 2015 Indirect Interest Quantitative 
Reuse increases complexity and 

coupling. Lowers cohesion 

Zaimi et al., 2015 Indirect Interest Quantitative No relation found to reusability 

Nikolaidis et al., 2019 Direct Principal Quantitative Reuse decreases TD principal 

To summarize the aforementioned results, in Table 1 (for each identified study), we character-

ize it as directly or indirectly (e.g., through structural properties) associated to TD, we note the 

TD concept that is being analyzed, the used research method (qualitative, quantitative, descrip-

tive), and the sign of the relation (positive or negative). Based on Table 1 (and the detailed de-

scriptions of related works), we can conclude that: (a) there is limited evidence on the relation 

of TD Principal and Reuse; and (b) the results on the relation of TD Interest and Reuse are in-

conclusive, in the sense that some studies suggest positive correlations, other negative ones, 

and other no correlation all. 

3. Technical Debt Terminology, Measurement, and Assessment 

In this section we discuss all background information that is necessary for facilitating the un-

derstanding of this study. In particular, we present: (a) the TD metaphor; (b) an overview of 

TD concepts; and (c) the ways that they can be assessed, or measured. For the purpose of this 

study, we have decided to work at the source code level. To ease the understandability of this 

section, we present each concept along with each way of measure (or assess) and then we pro-

ceed to the next concept. 

3.1 Introduction to Technical Debt 

Maintenance is one of the most effort-intensive activities in the software lifecycle, since it 

stands for 50 - 75% of the total effort spent during the software lifecycle (van Vliet, 2008). 

Maintenance activities, such as requests for adding new functionality, or the correction of er-

rors are hard to neglect and shall be performed between almost all pairs of successive software 

versions. On the contrary, changes that are not directly related to the external behavior of the 

system, but relate to design-time qualities, are often postponed or neglected, to shrink product 

time to market and reduce short-term costs. However, software systems are by definition high-

ly evolving products, whose design-time quality will gradually decay (Parnas et al., 1994), and 

therefore deferring such maintenance activities (e.g., refactorings, resolution of bad smells, 

reverse engineering) might have a significant impact on several design-time qualities (e.g., 
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maintainability, comprehensibility, reusability, etc.). This strategy leads to the creation of a 

financial overhead due to degraded quality, originally termed, by Cunningham (1992), as tech-

nical debt.  

Technical debt (TD) is a metaphor that is used to draw an analogy between financial debt as 

defined in economics and the situation in which an organization decides to produce immature 

software artifacts (e.g., designs or source code), to deliver the product to market within a short-

er time period (Cunningham, 1992). The most modern definition of technical debt is the 16162 

definition, that was one of the main conclusions of the TDM Dagstuhl Seminar in 2016, which 

is stated as follows: “In software-intensive systems, technical debt is a collection of design or 

implementation constructs that are expedient in the short term, but set up a technical context 

that can make future changes more costly or impossible. Technical debt presents an actual or 

contingent liability whose impact is limited to internal system qualities, primarily maintaina-

bility and evolvability”. In addition to trade-offs between design-time qualities and business 

goals (such as time-to-market, etc.), recent literature identifies trade-offs between run-time and 

design-time quality attributes (Feitosa et al., 2015), especially in software systems in which 

run-time properties cannot be compromised, such as embedded or real-time systems. These 

trade-offs, can also been considered as potential roots of neglecting design-time qualities, lead-

ing to the accumulation of TD ((Ampatzoglou et al., 2016) and (Martini et al., 2014)). 

TD is accumulated during all development phases, i.e. requirements analysis, architectur-

al/detailed design, and implementation, and therefore should be monitored and handled during 

the complete software lifecycle (Kruchten et al., 2012). Nevertheless, code TD is reported as 

the most frequently studied type in research (Alves et al., 2016) and the most important one in 

the industry (Ampatzoglou et al., 2016). Although, TD is sometimes desirable (e.g., in cases 

when companies opt for investing on a different products, rather than improve the quality of an 

existing one) and its complete repayment is considered unrealistic (Eisenberg, 2013), its side-

effects cannot be ignored, in the sense that TD severely hinders the maintainability of the soft-

ware (Zazorwka, 2011). To this end, TD should be continuously monitored and managed. As a 

first step of any management process, it is important to identify the most crucial concepts that 

need to be monitored, and define a measurement plan for them—see Section 3.2. 

3.2 Technical Debt Concepts and their Meassurement / Assessment 

The cornerstones of the TD metaphor are two concepts borrowed from economics: principal 

and interest. TD Principal is the effort required to eliminate inefficiencies in the current design 

or implementation of a software system (Ampatzoglou et al., 2015); typical examples of such 

inefficiencies are code and design smells. On the contrary, TD Interest is the additional devel-

opment effort required to modify the software, due to the presence of such inefficiencies (Am-

patzoglou et al., 2015): corresponding to the extra effort required to add new features or fix 

bugs because of the presence of TD (Buschman, 2011). The estimation of principal and interest 

depends on the type of TD (e.g., code, design, testing TD). In the next paragraphs we elaborate 

on estimating code TD principal and interest, which is the focus of this paper. 

In Figure 2, we visualize an overview of the two concepts, so as to allow the easy interpreta-

tion of TD terminology, based on the study of Chatzigeorgiou et al. (2015). In Figure 2, we can 

observe the positioning of a random system in the y-axis (“actual”), which represents the level 

of design-time quality of the system. The actual quality is at some distance from the “optimal” 

quality: The effort required for the development team to close this quality gap, represents the 
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TD principal. The negative consequence of principal, is TD interest, which represents the addi-

tional effort required to maintain the software in the actual state, compared to the effort that 

would be required if the system was of optimal quality.  

 
Figure 2. TD Terminology Visualization (Chatzigeorgiou et al., 2015)) 

According to two recent secondary studies on TD management by Ampatzoglou et al. (2015) 

and Li et al. (2015), SonarQube is the most frequently used tool for estimating TD principal. 

SonarQube is representing TD principal through two different views: (a) the number of ineffi-

ciencies in the source code, and (b) the amount of time required to fix such inefficiencies. The 

platform algorithm was originally based upon an adopted version of the SQALE method pro-

posed by Letouzey (2012), in which a remediation index is obtained for requirements of an 

applicable Quality Model. Since in this study we are adopting the Dagstuhl 16162 definition of 

TD, we are not using the calculations of SonarQube, “as-is”, but we consider only the effort to 

resolve maintainability issues (code smells, duplicated lines density, and coverage), since it is 

the only property discriminable at design-time. For code smells (by default) there are 334 

rules—e.g., “Method overrides should not change contracts”, “Package declaration should 

match source file directory”, etc. SonarQube rules that are related to code smells are associated 

with code understandability, poorly written code, runtime security, and coding standard. Re-

garding duplicated code, SonarQube measures the portion of the code that contains duplicated 

logic—not necessarily only copy-pasted code, but also conceptual clones occurring at multiple 

places. Finally, SonarQube itself cannot assess which tests are actually executed and the code 

coverage; thus, it relies on third-party test coverage tools—e.g., JaCoCo for Java. All the 

aforementioned efforts are summed up as the total TD principal: calculated as the effort re-

quired to fix all the aforementioned maintainability issues. The measure is stored in minutes in 

the database. An 8-hour day is assumed, when values are shown in days. The value of the cost 

to develop a line of code is 0.06 days. 

Software maintainability is inherently related to technical debt, and in particular to TD interest 

(Kruchten et al., 2012) (i.e., how easy it is for a software engineer to apply changes in a specif-

ic software system). Therefore, in this study we consider maintainability as a proxy for TD 

interest. The relation of interest and maintainability, as a consequence of the existence of TD 

principal, has been highlighted in the literature: “the existence of compromises incur a “debt” 
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in the software that should be repaid to restore the health of the system in the future and to 

avoid “interest” in the form of decreasing maintainability” (Seaman and Guo, 2011). The set 

of metrics that we have selected to use in our study for quantifying maintainability (see Table 

2) belong to well-known metric suites (Chidamber and Kemerer, 1994; Li and Henry, 1993).  

Table 2. Maintainability Properties and Metrics 

Property Metric Description 

Inheritance 
DIT Depth of Inheritance Tree: Inheritance level number, 0 for the root class. 

NOCC Number of Children Classes: Number of direct sub-classes that the class has.  

Coupling 

MPC Message Passing Coupling: Number of send statements defined in the class.  

RFC 
Response for a Class: Number of local methods plus the number of methods called by 

class methods.  

DAC Data Abstraction Coupling: Number of abstract types defined in the class. 

Cohesion LCOM 
Lack of Cohesion of Methods: Number of disjoint sets of methods (a set of methods 

that do not interact with each other), in the class. 

Complexity 

CC Cyclomatic Complexity: Average cyclomatic complexity of all methods in the class. 

WMPC 

/ NOM 

Weighted Method per Class: Weighted sum of methods. Each method of the class is 

assigned to a weight equal to 1. 

Size 
SIZE1 Lines of Code: Number of semicolons in the class. 

SIZE2 Number of Properties: Number of attributes and methods in the class 

The metrics selection was based on a secondary study by Riaz et al. (2009), which reported on 

a systematic literature review (SLR) aimed at summarizing software metrics that can be used 

as maintainability predictors. In particular, Riaz et al. (2009) have performed a quality assess-

ment of maintainability models, through a quantitative checklist, in order to identify studies of 

high-quality score, i.e., studies that provide reliable evidence. More specifically, the checklist 

was comprised of 19 questions and each model was assessed for each criterion by a three-point 

scale: yes, no, or partially, with associated scores of 1, 0, and 0.5 respectively. The range of the 

total score of each study was between 0 and 19. All studies that have scored 7 or below were 

excluded from the list of selected studies, whereas among the studies with the highest scores 

were those of van Koten and Gray (2006), Zhou and Leung (2007) and Misra (2005). These 

studies have used the same definition of maintainability while the common metrics used in all 

three studies are the ones belonging to the metric suites proposed by Li and Henry (1993) and 

Chidamber et al. (1994), i.e., two well-known object-oriented set of metrics. The employed 

suites contain metrics that can be calculated at the source-code level, and can be used to assess 

well-known quality properties, such as inheritance, coupling, cohesion, complexity and size.  

The employed suites contain metrics that can be calculated at the source-code level, and can be 

used to assess well-known quality properties, such as inheritance, coupling, cohesion, com-

plexity and size.  

• Regarding inheritance, although we acknowledge its need as one of the main advantages 

of object-orientation, excessive levels of inheritance renders the design more complex, 

and therefore harder to maintain. More specifically, the DIT metric can be characterized 

as maintainability predictor, in the sense that a class placed very low in the inheritance 

tree has access to more properties or methods of super-classes and thus is hard to main-

tain. In such a case, it is more difficult to locate which class implements a method that 

needs to be changed or a property that need to be parsed. Similarly, for NOCC metric, the 
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more direct sub-classes a class has, may affect its maintainability, in the sense that for un-

derstandability reasons it may be preferable to organize entities inside sub-hierarchies in-

stead of giving excessive breadth to the design.  

• Three coupling metrics are related to maintainability. In particular, RFC metric calculates 

the cardinality of the response of a class. Thus, a class that has many local methods and 

all these methods call others, RFC metric will score high, signifying a larger and more 

complex class in which it will be difficult to identify errors, due to excessive message 

delegation. Similarly, with RFC, the MPC metric depicts the dependence of a class to 

methods in other classes. Classes with high levels of MPC are more prone to ripple ef-

fects, i.e., changes propagated due to changes in other classes. Finally, a class that has 

multiple variables of abstract data types (DAC) is difficult to maintain, since method calls 

to abstract objects can potentially lead to concrete implementations located in sub-classes. 

Thus, identifying the proper implementation becomes more time consuming.   

• Regarding cohesion, LCOM characterizes the amount of responsibilities offered by a 

class. A class with many responsibilities is expected to change more frequently, and to in-

clude longer methods that are hard to maintain.  

• For the complexity property we use two metrics: CC and WMPC. In particular, WMPC is 

the number of methods in a class. For a class that has a lot of methods, its’ interface will 

be more frequently maintained. In addition, by focusing on the body of methods, CC 

measures the average cyclomatic complexity. A method with high CC, is harder to under-

stand since it has more control flows (e.g. loops, if, etc.).  

• Finally, the size of a class is very important, in the sense that a class that has a large num-

ber of lines of code, properties and methods will be more difficult to understand and 

maintain. For assessing this property, we use two metrics: SIZE1 and SIZE2. 

4. Study Design 

The objective of this study is to investigate the relation between software reuse and technical 

debt. To achieve this goal, we compare the levels of the two pillars of the TD concept (i.e., 

principal, and interest) of reused and native classes, through a multi-case study. The study has 

been designed and reported according to the guidelines suggested by Runeson et al. (2012).  

4.1 Objectives and Research Questions 

The goal of the study is to “compare white-box reused and native classes with respect to their 

TD principal and interest”. Based on this goal (and the two aspects of technical debt) we have 

derived two research questions that will guide the case study design and the reporting of the 

results: 

RQ1:  Is reused code having lower principal compared to native code? 

This research question aims at investigating if the overall quality (as captured by TD) of 

the reused code is higher compared to the overall quality of the native code, in which the 

reused code is to be introduced. This question is relevant for cases that development 

teams: (a) have to decide on whether to reuse code or develop it from scratch; and/or (b) 

want to refactor reused code so as to pass certain quality standards in the company. To 

answer this research question, we compare the average TD principal of native and re-

used code: TD principal sums-up the effort to refactor all code smells, as provided by 

SonarQube. 
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RQ2:  Is reused code having lower interest compared to native code? 

This research question aims to investigate if the effort required to maintain reused code 

is higher or lower, compared to native code. The answer to this question is interesting to 

practitioners that aim at applying white-box reuse that will involve code maintenance in 

the target system. To answer this research question, we compare the average TD interest 

of native and reused code. TD interest is assessed through a set of proxies, i.e., well-

known maintainability predictors: see Section 3 for more details. 

4.2 Case Selection and Units of Analysis 

According to Yin (2003), for every case study, researchers must determine the context, the 

cases, and the units of analysis. In this study, the context is open-source software and the cases 

/ units of analysis are open source classes. We note that this case study is holistic: for each case 

one unit of analysis is extracted. To gather as many cases as possible, we queried the Reaper 

database1 and selected the GitHub projects written in Java, using Apache Maven as an automa-

tion tool. We selected Java as a programming language so as to take advantage of the capabili-

ties of exiting tools for quantifying the aspects of TD. We have selected Maven as a build tools 

(e.g., against Gradle), since it offers a large number of projects that could lead to a large-scale 

dataset, and since it is more generic-scoped compared to Gradle. In particular, most Gradle 

projects are Android applications; thus, they require manual customization and pre-build con-

figurations. These tasks prevent the automated build and data-extraction of these projects for 

the needs of this large-scale analysis. Finally, to filter and select a subset of project in the 

Reaper database, we sorted them based on their popularity, i.e., their stars in GitHub API.  

4.3 Data Collection  

The dataset that has been used in this study consists of 897,044 rows, one row for each class of 

the considered systems. For every class, we recorded 18 variables: 

[V1] Software: The name of the OSS project from which we extracted the data. 

[V2] Class: The name of the class under study. 

[V3] Reuse: Reused or Native 

[V4] TD Principal: The amount of TD principal in a specific class, based on SonarQube.  

[V5] TD Interest: The values of the 10 object-oriented metrics (V.5.1 – V.5.10) that can be 

used as proxies of TD interest, as calculated from the Percerons Client—see Table I. 

For enabling the automated extraction of these variables, the following process has been used: 

• Step 1: Download repositories. After selecting the projects (see Section 4.2), using Git, we 

cloned locally the top 1,000 ones. We selected this number of projects to improve the rep-

resentativeness of the sample towards the population and strengthen the statistical analysis. 

• Step 2: Build projects and retrieve dependencies. With the repositories at hand, we have 

then built each project. During the building process, the generated compiled package (i.e., 

a .jar or .war file) are placed in the local Maven repository (the .m2 directory by default). 

The dependencies (third party packages or libraries) of each project are also downloaded 

and placed in the local repository (in cases that the source code was not available as glass-

box reuse, we downloaded it manually). From the total 1,000, we discarded 598 projects 

that failed to build. For the remaining 402 successfully built projects, we stored their de-

pendency tree, i.e., the paths to the packages of the project and its dependencies. 

 
1 https://github.com/RepoReapers/reaper  

https://github.com/RepoReapers/reaper
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• Step 3: Collect project information. In this step, we analyzed each project's dependencies' 

tree and collected the first groups of variables (V1-V3). In particular, regarding V3, we 

used a two-step process. First, we marked as reused all systems classes that exist in the 

compiled packages that are downloaded from the Maven repository (black-box reuse – 

however black-box reused classes have not been studied in our analysis). Then, for each 

one of these classes from the Maven repository, we searched them in the source code of 

the 402 built projects, and when we identified them in a project (other than the 

source/original one), we marked them as reused (white-box reuse). The identification of 

the original project relied on the naming of the projects. Classes that are reused in more 

than one projects have been removed as duplicates (i.e. we retained only a single class). 

All other classes of the built projects (i.e. other than reused ones) are tagged as native, in 

the sense that we have no indication of reuse within our set of analyzed projects. 

• Step 4: Measure TD Principal. For quantifying TD principal (V4), we have used So-

narQube (see Section 3). According to its documentation, SonarQube aims at the continu-

ous evaluation of software quality. SonarQube can assess the quality of software on a mul-

titude of programming languages, generating documentation on quality measures and is-

sues, such as coding rule violations. The analysis has been performed according to the 

platform’s default configuration. The TD Principal for each artifact corresponds to the total 

effort needed in order to resolve all existing maintainability issues in an artifact.  

• Step 5: Measure TD Interest. For calculating the metrics of Table 1 that can be considered 

as interest proxies (see Section 3), we have used Percerons Client (Ampatzoglou et al., 

2013). Percerons is a software engineering platform (Ampatzoglou et al., 2013) created by 

one of the authors with the aim of facilitating empirical research in software engineering, 

by providing: (a) indications of componentizable parts of source code, (b) quality assess-

ment in Java code through software metrics, and (c) design pattern instances. This step led 

to the recording of variables V.5.1 – V.5.10. 

In the end of this process 897 thousand classes, retrieved from 402 projects, have been ana-

lyzed. The average size of the projects is approximately 2,231 classes. The number of native 

classes in the dataset is 167K (~19%) classes, whereas the rest are reused ones (~7% white-box 

reused and 74% black-box reused). Some additional demographics are presented in Figure 3 

and Table 3. From the figure we can observe that both the absolute, as well as, the normalized 

values (divided by the number of classes) are quite close, constituting the two groups (the 

analysis is performed per class) comparable. 

 

 

 

 

 

Variable Min Max Mean Std. Dev. 

History 0 209 12,54 21,824 

#Issues 0 67 2,38 6,078 

#Unit Tests 0 1 0,21 0,187 

Stars 3 3440 176,91 325,200 
 

Figure 3. Descriptives of the Dataset Table 3. Reaper Repo Descriptives 
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4.4 Data Analysis 

To answer the research questions set in Section 4.1, given the available dataset (see Section 

4.3), the following data analysis process has been performed. Given the fact that all the analy-

sis is built around subjects that can be split into two groups, we have selected tests and means 

of visualization for comparing the levels of a certain numerical variables between groups. To 

this end, for hypothesis testing, we have used the independent sample t-test. According to Field 

(2017) the proper execution of independent sample t-tests requires checking the following four 

assumptions: 

• normal distribution: We have checked that the differences between scores are normally 

distributed, using the Kolmogorov-Smirnov test (Field, 2017). 

• data are measured at least at the interval level: This assumption holds, since all the rec-

orded variables are at a continuous scale. 

• homogeneity of variance: We have checked that the variances of the two groups are equal 

in the population, using the Levene’s test (Field, 2017). 

• independence of variables’ scores: This assumption holds, since all datapoints come from 

different classes. 

Due to space limitations, here we report only the results on the TD Principal variable, but the 

same process has been performed for all ten variables that are proxies of TD Interest. In partic-

ular, in Figure 4, we present the Q-Q plot, suggesting that the values of the variable are nor-

mally distributed for both groups. The Kolmogorov-Smirnov test for native classes is 0.087 

(sig: 0.11), whereas for white-box reused classes is 0.072 (sig: 0.15). Additionally, the 

Levene's test of equality of variances suggested that the variances are equal (F: 0.266 and sig: 

0.55). 

  
(a) white-box reused classes (b) native classes 

Figure 4. Q-Q Plots for Checking Normal Distribution for TD Principal 

The analysis on principal has been performed: (a) for the total TD principal; whereas (b) for 

interest, on all metrics that can be used as interest proxies—see Section 3. To ensure that the 

confounding factor of reused code size is factored out of the analysis, we performed hypothesis 

testing to compare the average size of reused and native classes, in terms of lines of code 

(LOC) and number of methods (NOM). The outcome of this comparison will be important dur-

ing the interpretation of the results, since size is acknowledged as an important factor while 

performing quality comparisons. An overview of data analysis is presented in Table 4. 
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Table 4. Hypothesis Testing Overview 

RQ Dependent Variables 

Grouping 

Variable Null Hypothesis 

RQ1 [V4] Total TD Principal 

[V3] Native 

or Reused 

H0: The population means for TD principal from 

the white-box reused classes and the native code 

are equal. 

RQ2 [V5.1] – [V5.10] 

H0: The population means for 10 proxy metrics for 

TD interest from the white-box reused classes and 

the native code are equal. 

5. Results 

In this section we present the results of this study organized by research question. In Section 

5.1, we answer RQ1 (relation between reuse and TD principal), whereas, in Section 5.2 we an-

swer RQ2 (reuse and TD interest).  

As a pre-processing step for our analysis, we explored the possible differences in the size of 

reused and not reused classes. The comparison has been made, by using two size metrics: (a) 

lines of code—LOC, and (b) number of methods—NOM. The results suggest that the two 

groups (native and white-box reused classes) have similar size in mean values (64.42±191.04 

vs. 65.22±188.63 lines of code per class, and 10.38±21.24 and 12.18±22.48 methods per class 

respectively). However, the differences in their mean values are statistically significant (hy-

pothesis testing with p <0.01). Therefore, since any differences identified in the upcoming sec-

tions could be attributed to the different size of the reused vs. native code, mitigation actions 

shall be taken. To this end: to factor out this confounding factor all variables have been nor-

malized against the lines of code of each class. Studying TD Principal Density instead of TD 

values per se has been adopted by other studies as well (e.g., by Digkas et al. (2017)).  

Reuse and TD Principal. In Table 5 we present the results that have been obtained by studying 

the TD principal accumulated in reused classes compared to native ones. Based on the results, 

we can conclude that TD Principal is higher in white-box reused code compared to native 

code. The difference apart from being statistically significant, is also important in an absolute 

value, in the sense that reused code has 290% more TD Principal Density, compared to native 

code. Despite the fact that standard deviation is quite high compared to the mean values, the 

standard deviation is comparable between the two groups (standard deviation ratio: 0.792). 

Table 5. Hypothesis Testing for TD Principal 

Code 

Mean TD       

Principal Density  

(in minutes) Std. Dev. t-value sig. 

Native 0.472 40.79 
-6.788 <0.01 

Reused 1.388 32.31 
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Reuse and TD Interest. Following a similar analysis to RQ1, in Table 6, we present the results 

of the independent sample t-tests for the variables that are proxies of TD interest. We note that 

from this analysis, we have omitted size metrics, since they have been factored out as ex-

plained in the beginning of Section 5. The results suggest that based on all metrics (except 

from Cyclomatic Complexity) the reused code is more maintainable compared to the native 

one. Nevertheless, the differences are statistically significant only for the two inheritance met-

rics (DIT and NOCC), the complexity metric (CC), and two coupling metrics (RFC and DAC). 

Table 6. Hypothesis Testing for TD Interest 

TD Interest Code Mean Std. Dev. t-value sig. 

Depth of Inheritance Tree 
Native 2.164 1.48 

19.587 <0.01 
Reused 1.977 1.34 

Number of Children 
Native 0.661 3.65 

5.877 0.02 
Reused 0.602 4.29 

Cyclomatic Complexity 
Native 1.623 2.45 

-6.444 <0.01 
Reused 1.702 1.96 

Lack of Cohesion 
Native 195.184 2481.79 

0.889 0.78 
Reused 175.338 4217.11 

Response for a Class 
Native 37.970 61.98 

4.995 <0.01 
Reused 35.111 58.69 

Message Passing Coupling 
Native 41.095 122.95 

0.102 0.85 
Reused 38.698 111.78 

Data Abstraction Coupling 
Native 0.335 1.21 

11.172 <0.01 
Reused 0.295 1.73 

By focusing on the actual values of the metric scores (see Figure 5), we can observe that the 

differences are rather small, ranging from 4.64% for CC to 15.22% for DAC, whereas for the 

majority of cases the difference is around 10%. This observation is in contrast to TD principal, 

in which: (a) the difference was more substantial in terms of absolute numbers, and (b) the na-

tive code excelled compared to the reused one. 

 

Figure 5. Continuents of TD Interest 

The aforementioned findings are considered as expected in the sense that code that is orga-

nized into libraries is by definition paying special attention to modularity, so as to be reusable. 

Software modularity is composed by two structural properties: coupling and cohesion (van 
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Vliet, 2008). Therefore, the fact that reused code excels in terms of coupling and cohesion can 

be consider expected. Additionally, reused code usually is a more conceptually difficult to im-

plement code chunk, that offers advanced functionality, which inevitable contains necessary 

complexity. Thus, the fact that native code is on average less complex can be attributed to the 

fact that it is a collection of trivial and advanced functionalities, in contrast to library code, 

which usually encapsulates more complex functionalities. Additionally, in terms of abstraction 

and inheritance, the reused code is also expected to be superior, since it is meant to be reused 

and therefore offers extension points through well-known mechanisms such as patterns, open-

close principle, etc., that rely on polymorphism. 

6. Discussion 

In this section we discuss the main findings of this paper, organized into two sub-sections. 

First, we present interpretations of the main findings of the case study, by providing compari-

sons to related work, when it is possible. Then, we provide implications to researchers and 

practitioners in the form of actionable outcomes and future work opportunities. 

Interpretation of Results and Practical Considerations. This study compared the reused and 

native source code in terms of technical debt. The findings of the study are not uniform in the 

sense that the two aspects that have been investigated do not seem to be affected in the same 

way by software reuse as a phenomenon. On the one hand, the TD principal (i.e., the effort 

required to fix all source code inefficiencies) of reused code appears to be 3 times higher 

compared to native one. Interpreting this observation suggest that, supposing that software 

development industries want to retain a certain standard of quality assurance, in terms of 

source code issues (i.e., code conventions, clumsy code, etc.), it is preferable to write their 

own code, in the sense that reused code is in more need of refactoring.  

On the other hand, based on our findings the reused classes appear to be more maintainable 

than native classes (even marginally, less than 10%)—i.e., having lower TD interest. This 

observation has merit since it shows that in cases that the reused classes need to be maintained, 

their structure enables the easy extension of the code base. This finding is extremely interesting 

since it: (a) contradicts existing literature on the relation between TD principal and interest, 

which until now have been reported as positively correlated (e.g., (Kosti et al., 2017)); and (b) 

does not comply with the traditional relation between principal and interest in economics—a 

claim that it is also supported by others in the TD community (e.g., (Schmid, 2013)). This find-

ing, suggests that reused code has some special characteristics that deserve further investiga-

tion. In particular, the findings of this study suggest that although the reused code is in-need of 

various refactorings (in terms of styling, coding conventions, etc.) the produced code obeys to 

good object-oriented practices; lowering complexity and coupling, and improving cohesion. 

Additionally, this finding suggests that although measuring TD principal (through SonarQube) 

and TD interest (through maintainability metrics) are having some overlap (e.g., SonarQube 

offers some rules, by setting thresholds on the value of Cyclomatic Complexity) the two 

amounts are not by-definition correlated, and therefore are valid and independent views of the 

two concepts.  
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Implications to Researchers and Practitioners. Based on the aforementioned observations 

various implications to researchers and practitioners can be highlighted. On the one hand, 

practitioners are encouraged to perform open-source code reuse, at least in terms of 

guaranteeing that technical debt can be sufficiently managed. Although the amount of TD 

principal that is brought to the system is higher compared to native code, reused code appears 

to be easier to maintain. In particular, the extra effort that shall be spent in refactoring existing 

inefficiencies is equalized at the first place by the effort saved during development, and in the 

long term by the interest savings along maintenance. However, each development team 

should monitor the TD principal and interest incurred by reuse and check whether it aligns 

with the team’s overall quality assurance strategy. Additionally, in the special case of 

selecting between commercial components off-the-shelf (COTS) and OSS components, the 

results of the study can be used as part of the valuation of reuse alternatives, e.g., through 

real-option approaches (Mavridis, 2014). Such strategies consider the trade-offs between 

paying for getting access to propertiary components, against the need for paying for 

technology transfer. 

On the other hand, regarding TD research community, we provide evidence that reuse is a 

promising technology for preventing the accumulation of TD, and for ensuring the future TD 

sustainability of the system. An interesting research implication that leads to a very interesting 

future work opportunity is studying why reuse does not have the same effect on TD principal 

and interest. This seems to be a special case for the TD literature in the sense that current em-

pirical evidence suggest that TD principal and interest are correlated (Kosti, 2017) and since it 

contradicts the underlying financial concept that principal and interest are related through in-

terest rate, as discussed by Schmid (2013). Deviating from these two observations constitute 

reuse at the class level as a candidate for more in-depth analysis, explanatory studies that goes 

beyond out exploratory ones. An interesting future work opportunity would be the replication 

of the study, by using additional building tools (e.g., Gradle), in order to investigate if the build 

tool related to the quality of the code that is brought inside the project. 

7. Threats to Validity 

In this section, we present and discuss potential threats to the validity of our case study: con-

struct validity, reliability, and external validity (Runeson et al., 2012).  

7.1 Construct Validity 

Construct validity is related to the way in which the selected phenomena are observed and 

measured. In this study we quantified two TD concepts, namely TD principal and TD interest: 

TD principal is quantified through SonarQube, which is the state-of-practice tool for measur-

ing TD principal (Alves, 2016) in the sense that is the most widely used in research and prac-

tice. Although SonarQube is an established tool, it focuses on code TD, neglecting other types 

of TD, like architecture debt, requirements debt, etc. Despite the identified limitations, espe-

cially the lack of Architectural Technical Debt (ATD) identification and measurement, So-

narQube is considered as extremely useful for code TD identification, monitoring, measure-

ment and prioritization. According to Tsintzira et al. (2019) the TD principal as measured in 

this study is correlated at the level of 0.83 to the perception of practitioners in terms of the 

amount of effort required to refactor an existing industrial system. 
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In the literature there is no established way to measure TD interest. This is due to the fact that 

an accurate measurement of interest would require the simultaneous maintenance of two soft-

ware solutions: an optimal and an actual one and the anticipation of future maintenance activi-

ties. Besides the inability to fore-cast future changes, such an approach is unrealistic for two 

reasons: (a) there is no way to define a universally accepted optimal system, and (b) it is cost 

inefficient to maintain two real systems just aiming to accurately measure technical debt inter-

est. Therefore, as the current state-of-the-art stands TD interest can only be assessed through 

proxies. In this study, as a proxy of interest we selected metrics that assess maintainability. 

Although in literature, maintainability has been linked to various metrics, in this study we se-

lected ten object-oriented metrics (grouped in 5 categories/aspects of TD interest) measured at 

source code. Metrics’ selection was based on empirical evidence in the literature suggesting 

that a combination of these metrics is the optimal maintainability predictors (Riaz, 2009). Ac-

cording to Tsintzira et al. (2019) the TD interest as measured in this study is correlated at the 

level of 0.73 to the perception of practitioners in terms of the amount of additional effort re-

quired to maintain an existing industrial system, due to the presence of inefficiencies. 

Finally, a tentative threat to construct validity might arise by mixing up design and code TD, 

while calculating interest (we note that all calculations have been made at the source code lev-

el). Despite the fact that the interest proxy metrics are intended to be design ones, the majority 

of them cannot be calculated from design artifacts (e.g., a class diagram). For instance, LCOM 

requires for each calculation to be aware of the attributes that are being accessed in the body of 

a function. This information is only available at the implementation phase and from the source 

code artifact; despite the fact that the level of calculation is the class. The same holds for other 

metrics, e.g., the coupling ones, since the declaration of an extra variable in a method body 

would increase coupling, but it is highly unlikely that it would lead to the inclusion of an asso-

ciation in a class diagram. Therefore, the used metrics are in the border between code and de-

sign TD; and we consider their use as a proper decision. 

7.2 Reliability 

With respect to reliability, we consider any possible researchers’ bias, during the data collec-

tion and data analysis process. The design of the study, concerning data collection, does not 

contain threats, since all data are automatically extracted by tools, without any subjective con-

figuration. Moreover, with respect to the data analysis process, to mitigate any potential threats 

to reliability, three researchers were involved in the process, aiming at double checking the 

work performed and thus reducing the chances of reliability threats. Furthermore, the detailed 

case study protocol presented in Section 4 enables the repetition of the study, as well as the 

provision of a replication package.  

7.3 Internal Validity 

Concerning internal validity, we note possible confounding factors that might have biased the 

results of this study. The main threat to internal validity is related to the characterization of 

classes with respect to reuse. First, regarding the characterization of a class as reused or native, 

we have used a systematic process for classifying classes. Through this process, we are certain 

that the classes that have been classified as reused ones are true-positive occurrences (high re-

call); however, we acknowledge that we might have characterized as native, some classes that 

have been reused in the white-box form (lowered precision—false positives). Due to the enor-

mous size of the dataset, it was not realistic to perform a comprehensive check; however, to 

alleviate this problem, we have performed a manual check on a subset of our dataset (approx. 
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500 classes) and we have identified, no such cases. Second, regarding the characterization of 

classes as white-box, we note that we cannot differentiate between white- and glass-box reused 

classes: i.e., cases in which the reused code, is copied inside the code bases of the target appli-

cation (as source), but it was never maintained. Getting definite results on this would require 

the analysis of the whole project evolution. We opted not to perform this task, since we believe 

that glass-box and white-box reuse do not differ substantially, and although some classes have 

not been maintained still, they contribute to the TD of the system, since they are candidates for 

accommodating future changes. 

7.4 External Validity 

Concerning external validity, a potential threat to generalization is the possibility that perform-

ing the study on different projects of different languages might affect the obtained observa-

tions. However, we believe that the selected projects, given their size and complexity, repre-

sent a realistic real-world system. Additionally, the results of the study are not applicable to 

non-object-oriented systems, in the sense that TD interest in such systems could not be as-

sessed through properties such as inheritance, coupling and cohesion, which are applicable 

only in OO software modules. Finally, the identified outliers (less than 1% of the sample) 

might influence the generalizability of results in the sense that in the population more extreme 

values might exist. However, we believe that this threat is substantially mitigated by the size of 

our sample and the small proportion of outliers. 

8. Conclusions 

Reuse is an established practice in software engineering that is yielding several benefits for the 

quality of the target system, and the development process, in terms of productivity. In this pa-

per, we study the relation between software reuse at the class level and technical debt, which is 

a modern view of structural software quality, which valuates future maintenance actions. In 

particular, we have explored the reuse activities performed in ~400 projects (~890K classes) 

and compared the TD principal and interest of reused and natively-developed classes. The re-

sults of the study suggested that reused classes tend to concentrate more principal, but are easi-

er to maintain (lower interest). Unveiling the underlying relations between source-code reuse 

and technical debt, are useful to both practitioners and researchers, since they can get more 

informed decisions while reusing, and trigger some promising research opportunities. 
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