Software Engineering Practices in Smart Contract
Development: A Systematic Mapping Study

Antonios Giatzis!, Elvira-Maria Arvanitou!, Danai Papadopoulou!,
Theodoros Maikantis', Nikolaos Nikolaidis!, Daniel Feitosa?, Christos Georgiadis',
Apostolos Ampatzoglou!, Alexander Chatzigeorgiou', Evdokimos Konstantinidis?,

Panagiotis Bamidis®

! Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
2 Institute for Mathematics, Computer Science and Al, University of Groningen, Netherlands
3 School of Medicine, Aristotle University, Thessaloniki, Greece

Abstract. Smart Contracts are pieces of software that are deployed in Blockchain
infrastructures to enable the interaction (and production of value) between
unknown parties, without intermediaries, but in a trustworthy and transparent
manner. A key to Smart Contracts’ success is their delivery to excellent standards
of quality (e.g., security, documentation, code understandability etc.). To achieve
this goal, the development of Smart Contracts needs to be driven by proven
software engineering practices. In this paper, we conducted a systematic mapping
study to get a comprehensive overview on how “good” software engineering
practices are applied to Smart Contract Development. To identify primary studies
that lie on the intersection of software engineering and smart contract
development, we have selected specific publication venues and queried the
literature. After applying the selection criteria, 113 studies were identified,
analyzed, and synthesized results have been reported. The results provided some
actionable implications for researchers and practitioners.

Keywords: Smart Contract Development, Blockchain, Software Engineering
Practices, Software Quality, Cost, Mapping Study.

1 Introduction

After the introduction of Bitcoin in 2008 [6], the technology of Blockchain (BC) has
risen enormously, not only in the field of cryptocurrencies, but also for serving
application domains that yield safety and validation. BC is a decentralized peer-to-peer
network, whose users are called nodes and perform transactions using cryptographic
algorithms (stored in a shared ledger for assuring transparency). Along with the rise of
BC, Smart Contracts (SCs) [9] began to popularize. SCs are computer programs that
exist inside a blockchain network, imitating physical contracts, triggered and executed
when certain, predefined conditions are met.

From a technical perspective, the execution cost of a SC is related to the size and
complexity of the source code [2], with the size, depending on the SC complexity,
usually having hundreds of lines of code [11]. A key distinction of smart contracts,
compared to other software, is that their code cannot be maintained after deployment

2 A. Giatzis, E.M. Arvanitou, et al.

to preserve trustworthiness. Since it is difficult to fully test the source code before
deployment [13], errors are often discovered after the contract is executed, which can
undermine trust from the end-user's perspective. Consequently, there is a clear need to
apply “good” software engineering (SE) practices to improve the structural quality of
SCs. An additional key consideration in SC development is the effective management
of associated costs. As a general principle, as the codebase increases in size and
complexity, the cost of executing a transaction within a blockchain network (referred
to as gas) also rises. Since gas consumption is a critical factor in the success of smart
contracts, this growth in size and complexity can negatively impact a contract’s
competitiveness. However, such costs must be collectively considered alongside the
cost of developing less “gas hungry” SCs. Based on this, we can deduce that there is a
need to introduce a collective cost model for the complete SC lifecycle (need-2). To
address these needs, we conducted a Systematic Mapping Study (SMS) aiming at the
following goals: (gl) investigate SE practices currently used in SC development
(addressing need-1) and (g2) provide a list of costs for the entire lifecycle of a smart
contract, including both development and operation costs (addressing need-2).

2 Related Work

Vacca et al. [12] conducted a systematic literature review (SLR) to identify current
problems and solutions in BC and SC development. They presented challenges related
to SC testing, code analysis, metrics, security, DApp performance and BC
applications. After the selection process, the authors analyzed 96 articles written from
2016 to 2020. One of their most important outcomes was the importance of bug
detection in SCs. Demi et al. [3] carried out a SMS to identify the uses of BC in SE
and its contribution to the SE landscape and categorized their results into eight areas:
SE process and management, software requirements, testing, quality, maintenance and
configuration management, and professional practices. We note that their study
excluded papers on SE issues of BC-based software and included only the vice versa.

Alharby et al. [1] performed a SMS on BC based on SCs. The aim of this work is
to identify and classify all peer reviewed research that has been conducted on SC
technology. The search process was conducted up to 2018 using Scopus, ACM, Wiley,
IEEE, and Springer, identifying 188 primary studies. They classified the outcomes
into six categories: security, privacy, software engineering, application, performance
and scalability. They also derived that 21% of the papers’ topics were about SE, noting
that the number has increased by approximately eight times, compared to 2017.
Macrinici et al [S] conducted a SMS to determine the channels for publishing SC-
related research. After applying the selection criteria, 64 studies were identified.
Based on their results, they managed to divide the papers into the four categories:
security, privacy, scalability of BC and programmability of SCs. Regarding
programmability of SCs, they identified security and reliability as the major key
challenges as well as the economical challenge in association with gas cost.

Sanchez-Gomez et al. [8] performed a systematic literature review on the Software
Development Life Cycle of SCs. More specifically, the authors focused on reviewing
model-based software design and testing in SC. The results suggest that there is no
established methodology for software validation or development of SCs. Additionally,
they emphasized the need for efficient SC testing as it is the only way to reduce

Software Engineering Practices in Smart Contract Development: A SMS 3

functionality, security, and performance risks. Moreover, they highlight the importance
of model-based design and testing as these reduce errors in design and code.

Tariq and Colomo-Palacios [10] conducted a SMS related to the interaction between
SC and SE. The aim of this study was to identify opportunities and potential problems
that may arise in SE while using SCs. The search process was applied on five DLs
(ACM, IEEE, ScienceDirect, Springer, and Wiley), and resulted in 8 primary studies.
The results indicate a shortage of professionals capable of ensuring security during SC
development. At the same time, smart contract mechanisms can facilitate trust between
untrusted parties. Finally, Kannengiesser et al. [4] conducted a SLR to identify
challenges and solutions in SC development. They identified 29 challenges and 60
solutions from the literature, leading to them proposing 20 software design patterns,
specialized for SC development in collaboration with SC developers.

3 Study

In this section, we describe the protocol of our systematic mapping study, which has
been according to the guidelines proposed by Petersen et al. [7].

3.1 Study Design

The primary goal of our study, is to analyze software engineering literature for the
purpose of characterization with respect to: (a) the use of SE methods and tools on SC
development; (b) the costs that associated with SC. We defined the following research
questions:

RQ1: What SE practices are used in SC development?

RQ; refers to the research goals that are being set related to software engineering
practices in SC development. The goals have been retrieved from the research questions
of each primary study. For the primary studies that do not provide a specific RQ, the
goal is retrieved from the abstract of the primary study. By answering this research
question, we provide the most used SE practices that are used for the implementation
of SC.

RQ2: What are the costs involved when developing SCs?

RQ: is related to how researchers approach their studies when measuring gas
consumption or determining execution costs in general. By answering this research
question, we shed light if there are formulas of the different types of costs and the
methods for the reduction of these costs.

In order to answer these questions, we used well known practices and steps [7],
which can be found online. Upon the assessment of 394 papers, we have retained 113
primary studies, which can also be found online !.

32 Results and Discussion

SE Practices in SC development (RQ1): In this section, we present the most common
SE practices that are used for SC development—see Table 1. The consolidated goals

! https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip

https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip

4 A. Giatzis, E.M. Arvanitou, et al.

present the SE term that has been retrieved from the open card sorting methodology,
while the number represents the studies in which the term is reported (30 more terms
with lower frequency are omitted due to space limitation).

Table 1. SE Practices and Terms

Consolidated Goals Count Consolidated Goals Count
Vulnerabilities 40 Cost Analysis 13
Security 33 Compilers / Languages 12
Testing 22 Code / Test Generation 9
Bugs / Defects / Faults 20 Code Clones 7

Gas 18 Software Design 6
Static Analysis 16 Debugging / Bug Fixing 5
Software Patterns 14 Framework 5

Based on our findings, an interesting result is that the frequency of the top 10 goals
from the primary studies are quite high in number (197 times) in contrast to the rest 34
goals (102 times). We observed by their goals frequency that most primary studies
focus on vulnerabilities (35%), security (29%), testing (19%) and bugs / defects / faults
(18%). This finding is intuitive in the sense that SCs need to be reliable and trustworthy,
given the fact that they intend to manage monetary transactions and have legal entities.

The high number of primary studies (40) mentioning the need to understand and
mitigate Vulnerabilities in smart contract codebases highlights the researchers' focus
on addressing these issues through various methods. Risks associated with errors during
the coding phase, logical loopholes that can transform into code loopholes and
weaknesses resulting in potential exploits and financial losses, are some of the problems
that researchers have pointed and addressed as important. Researchers have developed
and recommended various tools and methodologies to mitigate vulnerabilities in smart
contracts and ensure their reliability at the pre-deployment stage. These include fuzzing
tools [PS67], [PS96], [PS37] and static analysis tools [PS101], [PS30], tools for fixing
insecure code patterns and securing bytecode before deployment [PS110], analyzing
correlations between certain types of smart contracts and specific vulnerabilities to help
developers avoid risky codebases [PS36], and emphasizing the importance of using the
latest compilers with patched vulnerabilities [PS35].

Moreover, the emphasis on Security, which is mentioned in 33 of the primary
studies, confirms the existing attention shown by the scientific community regarding
issues related to the importance of safeguarding the codebase of the SC against
malicious attacks, while at the same time, protecting the assets or functions that are
ruled by these contracts. To address these challenges, primary studies propose security
methodologies that practitioners can follow throughout the smart contract development
lifecycle, identifying common problems and offering potential solutions [PS87]. These
include frameworks that improve security by recommending and validating patterns
and secure programming standards, helping developers implement secure contracts
more efficiently [PS76]. Additionally, semi-automated or automated tools are

Software Engineering Practices in Smart Contract Development: A SMS 5

introduced to assist in detecting security issues before deployment on a live blockchain
network [PS55], [PS37], [PS101], [PS64].

Third in our findings, Testing is mentioned as a goal in 22 primary studies, and it
shows the recognition of the vital importance that testing methods play during the
development lifecycle of a smart contract. Mossberg et al. [PS65] developed Manticore,
a dynamic symbolic execution framework that can analyze simultaneous multiple smart
contracts for discovering code bugs and verify code invariants and works by not making
any hypothetical assumptions regarding the underlying execution model of the contract.
Nguyen et al. [PS67] developed sFuzz, an automated fuzzing testing tool in which a
generated execution trace of a smart contract is tested, and, through high code coverage
and pattern analysis, any potential vulnerabilities can be discovered. A similar fuzzing
tool was proposed by [PS108] and by simulating blockchain behaviors, it generated
exploits such as unchecked transfer value and vulnerable access control. Its evaluation
through 45,308 smart contracts brought up 554 exploitable cases, of which 306 have
not been generated by any exploit generation tool until then. Ma et al. [PS63] created
the tool Pluto that can detect three types of vulnerabilities under inter-contract
scenarios: integer overflow, timestamp dependency, and reentrancy. When applied
their tool on 39,3443 smart contracts, it has confirmed 451 previously unknown
vulnerabilities, including 36 inter-contract vulnerability scenarios.

Focusing on the goals of Bugs / Defects / Faults (20 studies) and Gas (18 studies),
the researchers emphasize the challenges associated with coding errors, logical flaws
and under-optimized smart contracts, resulting in unexpected code behaviors and
higher transaction costs, thus impacting the usability and cost-effectiveness of the smart
contracts. To prevent the identification of bugs / defects / faults, extensive testing is
required. In that sense, this line of research is quite active. Regarding smart contract
bugs, J.F. Ferreira et al. [PS26] introduced SmartBugs, a framework for analyzing
Solidity smart contracts and detecting defects. Zhang et al. [PS107] developed a dataset
of 49 smart contract bugs, outlining the criteria for their detection and including
examples of contracts with integrated bugs to avoid. Gao et al. [PS28] created
SmartEmbed, a tool that uses structural code embedding to detect bugs, while the
DArcher tool [PS109] was designed to identify synchronization bugs between the on-
chain and off-chain layers of DApps. Regarding the higher transaction costs that the
developers and the users might encounter, from the 2017 [PS15] it was apparent that
under-optimized smart contracts cost more gas and that could be avoided by following
gas-efficient programming patterns. Fuzzing has been proposed as a method for
estimating the gas required by a smart contract [PS81], alongside other techniques to
predict gas costs and prevent out-of-gas exceptions [PS44]. By analyzing a sample of
68,000 smart contract interactions over three years, Severing et al. [PS78] identified
three primary cost drivers: external code, storage, and transaction base fees.
Additionally, deployment gas usage has become increasingly costly due to
programmers' assumptions about how their code would operate, which often results in
unexpected gas consumption.

What are the Costs Involved when Developing SCs? (RQ2): During the lifecycle of
the development of a smart contract, from the first line of code till its deployment on
blockchain, there are certain types of costs that are involved, each with a distinct
purpose and contributing: (a) on the quality, functionality, and security of the contract;

6 A. Giatzis, E.M. Arvanitou, et al.

and (b) to the overall cost of a project. The early management and consideration of

these costs become even more important by considering the immutable nature of a

Smart Contract, which prevents gas optimization after deployment [PS15], [PS81],

[PS44], [PS3], [PS21]. Based on our findings, the SC lifecycle costs can be divided into

three main categories:

e Development cost: involves the necessary expenses (mostly personal effort)
required for the programming of a smart contract codebase, ensuring all good
practices are present. Delivering the SC at the required levels of quality.

e Deployment Cost involves the necessary fees that must be paid when a Smart
Contract (or a bunch of Smart Contracts) is deployed onto a blockchain network and
thus making it available for use.

¢ Transaction Cost corresponds to the necessary fees that must be paid for interacting
with the functionality of the Smart Contract for executing transactions.

Researchers highlighted various challenges in SC development in terms of gas
optimization and suggested security analysis tools and code patterns, actions to be taken
to mitigate these challenges, aiming on reducing these costs and enhancing the overall
quality of smart contract code.

In terms of Tools, Chen et al. [PS15] introduced GASPER with the main purpose
to locate 7 expensive gas patterns, such as dead code and expensive loops operations,
by analyzing smart contract’s bytecodes and replacing them. From a sample of 4,240
real smart contracts, 80% were suffering from 3 (out of the 7 studied) gas patterns. Yu
et al. [PS104] championed that reducing the number of opcodes could lead to less
bytecode and eventually lowering the deployment costs. SCRepair was designed to
detect vulnerable contracts and automatically repair them by generating correct code
patches. Other research efforts focused on developing tools, such as the GASTAP that
uses a control flow graph to estimate the functions calls’ gas bounds [PS3].
Additionally, Di Sorbo et al. [PS21] collected 19 code smells produced by low
efficiency of data storage and function implementation and developed the GASMET
tool that evaluates the code quality of a smart contract from a static point of view,
focusing on the overall functionality wastage in term of gas. Moreover, Albert et al.
[PS4] developed a framework that automatically identifies patterns that are expensive
by focusing on the stack bytecode operations. Finally, Xi and Pattabiraman [PS98]
proposed GoHigh, a tool that replaces low-level function-related vulnerabilities with
secure alternatives, resulting in more than 5% lower gas cost from a dataset of over
2,100,000 real-world smart contracts.

In terms of Code Patterns, various studies pointed out the necessity of creating a
gas-optimized code-base free of bugs, while at the same time, any anti-patterns should
be avoided. Chen et al. [PS12] defined 20 contract defects, categorized them into five
categories (i.e., security, availability, performance, maintainability, and reusability),
provided example code with the defects (e.g., anti-pattern: “calling external smart
contracts often or nesting calls into a loop”), accompanied by possible solutions. Li
[PS44] proposed solutions for the off-chain storage. For example, a solution for
reducing the amount of gas used would be to use local variables instead of global ones.
This is expected to lower the amount of the fees that are paid across several transactions.
Additionally, Wang et al. [PS90] proposed patterns that involve batching. Finally, Zarir
et al. [PS105] suggested that loops with dynamic boundaries could potentially lead to

Software Engineering Practices in Smart Contract Development: A SMS 7

higher gas cost drivers, with the risk of creating a transaction from a user that uses all
the available gas. Some of the solutions they suggested is that the developers should
know that the transactions usually take form by prioritizing for completion the ones
with high gas price.

4 Implications to Researchers and Practitioners

Based on the findings of our study, several implications to researchers and practitioners
can be highlighted. Regarding researchers, we propose the need for enhancing smart
contract security by developing comprehensive security frameworks and innovative
approaches for automated vulnerabilities detection. Additionally, the emphasis on
testing shows that a need for safeguarding the codebase of the smart contracts against
malicious attacks is a crucial task and researchers should examine new testing
paradigms and expand the existing ones, focusing on tackle any inefficiencies that the
old methodologies may possess, including automated testing tools and environments
that simulate real-world exploits (and possibly the creation of up-to-date database).
Furthermore, the need for a holistic approach for detecting and mitigate bugs is also a
critical area of study that can be achieved through newer formal verification techniques
and the specifically tailored combination of elements from both static and dynamic
analysis. Finally, researchers could concentrate on developing predictive models for
gas usage and execution costs as well as gas anti-patterns detection and repairing tools.

Regarding practitioners, this study has pointed out that the creation of under-
optimized smart contracts during the lifecycle of the development of a smart contract
can lead to unexpected code behaviors and higher transaction costs. Thus, impacting
the usability and cost-effectiveness of the smart contracts. Additionally, by considering
that the field of smart contract development is rapidly evolving, and new tools and
methods are being suggested, the need of the adoption of proven SE practices it is even
more imperative and necessary. The implementation of robust risk and cost
management strategies is mandatory, including: (a) comprehensive and rigorous testing
protocols in simulated environments for addressing on the early stages of production
any potential security issues, (b) reusing components that are field-tested and can
reduce development and cost during the development lifecycle. Staying informed with
the latest research finding and incorporating well-established SE practices should be a
standard part towards a secure and cost-effective smart contract development
workflow.

5 Conclusions

This paper aims to provide an overview of the main SE practices and concepts that have
been used in the literature of SC development. Special emphasis has been placed on the
costs that appear in the complete lifecycle of a SC, and the ways to mitigate them
effectively. The paper attempts to summarize the main trends in research and focuses
on discussing the most prominent SE-related terms, as well as the main strategies for
cost reduction. Through our systematic mapping study, it emerged that a significant
portion of research focuses on the areas of vulnerabilities, security, testing, bugs and

A. Giatzis, E.M. Arvanitou, et al.

gas consumption, topics that cover vital issues that arise during the development
lifecycle of a SC and emphasize the demand for the creation and usage of robust
security and testing protocols. In this way it will ensure the reliability and
trustworthiness of a SC’s code and logic.

Acknowledgments. This study has been partially funded by the Horizon Europe Framework
Programme of the European Union under Grant agreement no 101058479.

References

. Alharby, M., Aldweesh, A., Moorsel, A. v: “Blockchain-based Smart Contracts: A

Systematic Mapping Study of Academic Research (2018)”, International Conference on
Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, pp. 1-6 (2018).
Ajienka, N., Vangorp, P., Capiluppi, A.: “An empirical analysis of source code metrics and
smart contract resource consumption”, Journal of Software: Evolution and Process, 32 (10)
(2020).

Demi, S., Colomo-Palacios, R., Sdnchez-Gordon, M.: “Software Engineering Applications
Enabled by Blockchain Technology: A Systematic Mapping Study”, Applied Sciences,
11(7) (2021).

Kannengiesser, N., Lins, S., Sander, C., Winter, K., Frey, H., Sunyaev, A.: “Challenges and
Common Solutions in Smart Contract Development”, Transactions on Software
Engineering, 48 (11), pp. 4291-4318 (2022).

. Macrinici, D., Cartofeanu, C., Gao, S.: “Smart contract applications within blockchain

technology: A systematic mapping study”, Telematics and Informatics, 35 (8) (2018).
Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System,
https://bitcoin.org/bitcoin.pdf, last accessed 2024/08/04.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: "Systematic mapping studies in software
engineering", 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE'08), Bari, Italy, pp. 68-77, 26 - 27 (2008).

Sanchez-Gomez, N., Torres, J., Garcia-Garcia, J.A., Escalona, M.J, Gutierrez, Javier J., Es-
calona, M.J.: “Model-Based Software Design and Testing in Blockchain Smart Contracts:
A Systematic Literature Review”, IEEE Access, 8 (2020).

Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997).

. Tariq, F., Colomo-Palacios, R.: “Use of Blockchain Smart Contracts in Software

Engineering: A Systematic Mapping”, Computational Science and Its Applications — ICCSA
(2019).

. Tonelli, R., Destefanis, G., Marchesi, M., Ortu, M.: “Smart Contracts Software Metrics: a

First Study”, PLoS ONE, 18 (4) (2023).

. Vacca, A., Di Sorbo, C., Visaggio, A., Canfora, G.: "A systematic literature review of

blockchain and smart contract development: Techniques, tools, and open challenges, Journal
of Systems and Software, 174 (2021).

. Zou, W. et al.: "Smart Contract Development: Challenges and Opportunities", Transactions

on Software Engineering, 47 (10), pp. 2084-2106 (2021).

