
Software Engineering Practices in Smart Contract

Development: A Systematic Mapping Study

Antonios Giatzis1, Elvira-Maria Arvanitou1, Danai Papadopoulou1,

Theodoros Maikantis1, Nikolaos Nikolaidis1, Daniel Feitosa2, Christos Georgiadis1,

Apostolos Ampatzoglou1, Alexander Chatzigeorgiou1, Evdokimos Konstantinidis3,

Panagiotis Bamidis3

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

2 Institute for Mathematics, Computer Science and AI, University of Groningen, Netherlands
3 School of Medicine, Aristotle University, Thessaloniki, Greece

Abstract. Smart Contracts are pieces of software that are deployed in Blockchain

infrastructures to enable the interaction (and production of value) between

unknown parties, without intermediaries, but in a trustworthy and transparent

manner. A key to Smart Contracts’ success is their delivery to excellent standards

of quality (e.g., security, documentation, code understandability etc.). To achieve

this goal, the development of Smart Contracts needs to be driven by proven

software engineering practices. In this paper, we conducted a systematic mapping

study to get a comprehensive overview on how “good” software engineering

practices are applied to Smart Contract Development. To identify primary studies

that lie on the intersection of software engineering and smart contract

development, we have selected specific publication venues and queried the

literature. After applying the selection criteria, 113 studies were identified,

analyzed, and synthesized results have been reported. The results provided some

actionable implications for researchers and practitioners.

Keywords: Smart Contract Development, Blockchain, Software Engineering

Practices, Software Quality, Cost, Mapping Study.

1 Introduction

After the introduction of Bitcoin in 2008 [6], the technology of Blockchain (BC) has

risen enormously, not only in the field of cryptocurrencies, but also for serving

application domains that yield safety and validation. BC is a decentralized peer-to-peer

network, whose users are called nodes and perform transactions using cryptographic

algorithms (stored in a shared ledger for assuring transparency). Along with the rise of

BC, Smart Contracts (SCs) [9] began to popularize. SCs are computer programs that

exist inside a blockchain network, imitating physical contracts, triggered and executed

when certain, predefined conditions are met.

From a technical perspective, the execution cost of a SC is related to the size and

complexity of the source code [2], with the size, depending on the SC complexity,

usually having hundreds of lines of code [11]. A key distinction of smart contracts,

compared to other software, is that their code cannot be maintained after deployment

2 A. Giatzis, E.M. Arvanitou, et al.

to preserve trustworthiness. Since it is difficult to fully test the source code before

deployment [13], errors are often discovered after the contract is executed, which can

undermine trust from the end-user's perspective. Consequently, there is a clear need to

apply “good” software engineering (SE) practices to improve the structural quality of

SCs. An additional key consideration in SC development is the effective management

of associated costs. As a general principle, as the codebase increases in size and

complexity, the cost of executing a transaction within a blockchain network (referred

to as gas) also rises. Since gas consumption is a critical factor in the success of smart

contracts, this growth in size and complexity can negatively impact a contract’s

competitiveness. However, such costs must be collectively considered alongside the

cost of developing less “gas hungry” SCs. Based on this, we can deduce that there is a

need to introduce a collective cost model for the complete SC lifecycle (need-2). To

address these needs, we conducted a Systematic Mapping Study (SMS) aiming at the

following goals: (g1) investigate SE practices currently used in SC development

(addressing need-1) and (g2) provide a list of costs for the entire lifecycle of a smart

contract, including both development and operation costs (addressing need-2).

2 Related Work

Vacca et al. [12] conducted a systematic literature review (SLR) to identify current
problems and solutions in BC and SC development. They presented challenges related
to SC testing, code analysis, metrics, security, DApp performance and BC
applications. After the selection process, the authors analyzed 96 articles written from
2016 to 2020. One of their most important outcomes was the importance of bug
detection in SCs. Demi et al. [3] carried out a SMS to identify the uses of BC in SE
and its contribution to the SE landscape and categorized their results into eight areas:
SE process and management, software requirements, testing, quality, maintenance and
configuration management, and professional practices. We note that their study
excluded papers on SE issues of BC-based software and included only the vice versa.

Alharby et al. [1] performed a SMS on BC based on SCs. The aim of this work is
to identify and classify all peer reviewed research that has been conducted on SC
technology. The search process was conducted up to 2018 using Scopus, ACM, Wiley,
IEEE, and Springer, identifying 188 primary studies. They classified the outcomes
into six categories: security, privacy, software engineering, application, performance
and scalability. They also derived that 21% of the papers’ topics were about SE, noting
that the number has increased by approximately eight times, compared to 2017.
Macrinici et al [5] conducted a SMS to determine the channels for publishing SC-
related research. After applying the selection criteria, 64 studies were identified.
Based on their results, they managed to divide the papers into the four categories:
security, privacy, scalability of BC and programmability of SCs. Regarding
programmability of SCs, they identified security and reliability as the major key
challenges as well as the economical challenge in association with gas cost.

Sanchez-Gomez et al. [8] performed a systematic literature review on the Software

Development Life Cycle of SCs. More specifically, the authors focused on reviewing

model-based software design and testing in SC. The results suggest that there is no

established methodology for software validation or development of SCs. Additionally,

they emphasized the need for efficient SC testing as it is the only way to reduce

 Software Engineering Practices in Smart Contract Development: A SMS 3

functionality, security, and performance risks. Moreover, they highlight the importance

of model-based design and testing as these reduce errors in design and code.

Tariq and Colomo-Palacios [10] conducted a SMS related to the interaction between

SC and SE. The aim of this study was to identify opportunities and potential problems

that may arise in SE while using SCs. The search process was applied on five DLs

(ACM, IEEE, ScienceDirect, Springer, and Wiley), and resulted in 8 primary studies.

The results indicate a shortage of professionals capable of ensuring security during SC

development. At the same time, smart contract mechanisms can facilitate trust between

untrusted parties. Finally, Kannengiesser et al. [4] conducted a SLR to identify

challenges and solutions in SC development. They identified 29 challenges and 60

solutions from the literature, leading to them proposing 20 software design patterns,

specialized for SC development in collaboration with SC developers.

3 Study

In this section, we describe the protocol of our systematic mapping study, which has

been according to the guidelines proposed by Petersen et al. [7].

3.1 Study Design

The primary goal of our study, is to analyze software engineering literature for the

purpose of characterization with respect to: (a) the use of SE methods and tools on SC

development; (b) the costs that associated with SC. We defined the following research

questions:

RQ1: What SE practices are used in SC development?

RQ1 refers to the research goals that are being set related to software engineering

practices in SC development. The goals have been retrieved from the research questions

of each primary study. For the primary studies that do not provide a specific RQ, the

goal is retrieved from the abstract of the primary study. By answering this research

question, we provide the most used SE practices that are used for the implementation

of SC.

RQ2: What are the costs involved when developing SCs?

RQ2 is related to how researchers approach their studies when measuring gas

consumption or determining execution costs in general. By answering this research

question, we shed light if there are formulas of the different types of costs and the

methods for the reduction of these costs.

In order to answer these questions, we used well known practices and steps [7],

which can be found online. Upon the assessment of 394 papers, we have retained 113

primary studies, which can also be found online 1.

3.2 Results and Discussion

SE Practices in SC development (RQ1): In this section, we present the most common

SE practices that are used for SC development—see Table 1. The consolidated goals

1 https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip

https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip

4 A. Giatzis, E.M. Arvanitou, et al.

present the SE term that has been retrieved from the open card sorting methodology,

while the number represents the studies in which the term is reported (30 more terms

with lower frequency are omitted due to space limitation).

Table 1. SE Practices and Terms

Consolidated Goals Count Consolidated Goals Count

Vulnerabilities 40 Cost Analysis 13

Security 33 Compilers / Languages 12

Testing 22 Code / Test Generation 9

Bugs / Defects / Faults 20 Code Clones 7

Gas 18 Software Design 6

Static Analysis 16 Debugging / Bug Fixing 5

Software Patterns 14 Framework 5

Based on our findings, an interesting result is that the frequency of the top 10 goals

from the primary studies are quite high in number (197 times) in contrast to the rest 34

goals (102 times). We observed by their goals frequency that most primary studies

focus on vulnerabilities (35%), security (29%), testing (19%) and bugs / defects / faults

(18%). This finding is intuitive in the sense that SCs need to be reliable and trustworthy,

given the fact that they intend to manage monetary transactions and have legal entities.

The high number of primary studies (40) mentioning the need to understand and

mitigate Vulnerabilities in smart contract codebases highlights the researchers' focus

on addressing these issues through various methods. Risks associated with errors during

the coding phase, logical loopholes that can transform into code loopholes and

weaknesses resulting in potential exploits and financial losses, are some of the problems

that researchers have pointed and addressed as important. Researchers have developed

and recommended various tools and methodologies to mitigate vulnerabilities in smart

contracts and ensure their reliability at the pre-deployment stage. These include fuzzing

tools [PS67], [PS96], [PS37] and static analysis tools [PS101], [PS30], tools for fixing

insecure code patterns and securing bytecode before deployment [PS110], analyzing

correlations between certain types of smart contracts and specific vulnerabilities to help

developers avoid risky codebases [PS36], and emphasizing the importance of using the

latest compilers with patched vulnerabilities [PS35].

Moreover, the emphasis on Security, which is mentioned in 33 of the primary

studies, confirms the existing attention shown by the scientific community regarding

issues related to the importance of safeguarding the codebase of the SC against

malicious attacks, while at the same time, protecting the assets or functions that are

ruled by these contracts. To address these challenges, primary studies propose security

methodologies that practitioners can follow throughout the smart contract development

lifecycle, identifying common problems and offering potential solutions [PS87]. These

include frameworks that improve security by recommending and validating patterns

and secure programming standards, helping developers implement secure contracts

more efficiently [PS76]. Additionally, semi-automated or automated tools are

 Software Engineering Practices in Smart Contract Development: A SMS 5

introduced to assist in detecting security issues before deployment on a live blockchain

network [PS55], [PS37], [PS101], [PS64].

Third in our findings, Testing is mentioned as a goal in 22 primary studies, and it

shows the recognition of the vital importance that testing methods play during the

development lifecycle of a smart contract. Mossberg et al. [PS65] developed Manticore,

a dynamic symbolic execution framework that can analyze simultaneous multiple smart

contracts for discovering code bugs and verify code invariants and works by not making

any hypothetical assumptions regarding the underlying execution model of the contract.

Nguyen et al. [PS67] developed sFuzz, an automated fuzzing testing tool in which a

generated execution trace of a smart contract is tested, and, through high code coverage

and pattern analysis, any potential vulnerabilities can be discovered. A similar fuzzing

tool was proposed by [PS108] and by simulating blockchain behaviors, it generated

exploits such as unchecked transfer value and vulnerable access control. Its evaluation

through 45,308 smart contracts brought up 554 exploitable cases, of which 306 have

not been generated by any exploit generation tool until then. Ma et al. [PS63] created

the tool Pluto that can detect three types of vulnerabilities under inter-contract

scenarios: integer overflow, timestamp dependency, and reentrancy. When applied

their tool on 39,3443 smart contracts, it has confirmed 451 previously unknown

vulnerabilities, including 36 inter-contract vulnerability scenarios.

Focusing on the goals of Bugs / Defects / Faults (20 studies) and Gas (18 studies),

the researchers emphasize the challenges associated with coding errors, logical flaws

and under-optimized smart contracts, resulting in unexpected code behaviors and

higher transaction costs, thus impacting the usability and cost-effectiveness of the smart

contracts. To prevent the identification of bugs / defects / faults, extensive testing is

required. In that sense, this line of research is quite active. Regarding smart contract

bugs, J.F. Ferreira et al. [PS26] introduced SmartBugs, a framework for analyzing

Solidity smart contracts and detecting defects. Zhang et al. [PS107] developed a dataset

of 49 smart contract bugs, outlining the criteria for their detection and including

examples of contracts with integrated bugs to avoid. Gao et al. [PS28] created

SmartEmbed, a tool that uses structural code embedding to detect bugs, while the

ÐArcher tool [PS109] was designed to identify synchronization bugs between the on-

chain and off-chain layers of DApps. Regarding the higher transaction costs that the

developers and the users might encounter, from the 2017 [PS15] it was apparent that

under-optimized smart contracts cost more gas and that could be avoided by following

gas-efficient programming patterns. Fuzzing has been proposed as a method for

estimating the gas required by a smart contract [PS81], alongside other techniques to

predict gas costs and prevent out-of-gas exceptions [PS44]. By analyzing a sample of

68,000 smart contract interactions over three years, Severing et al. [PS78] identified

three primary cost drivers: external code, storage, and transaction base fees.

Additionally, deployment gas usage has become increasingly costly due to

programmers' assumptions about how their code would operate, which often results in

unexpected gas consumption.

What are the Costs Involved when Developing SCs? (RQ2): During the lifecycle of

the development of a smart contract, from the first line of code till its deployment on

blockchain, there are certain types of costs that are involved, each with a distinct

purpose and contributing: (a) on the quality, functionality, and security of the contract;

6 A. Giatzis, E.M. Arvanitou, et al.

and (b) to the overall cost of a project. The early management and consideration of

these costs become even more important by considering the immutable nature of a

Smart Contract, which prevents gas optimization after deployment [PS15], [PS81],

[PS44], [PS3], [PS21]. Based on our findings, the SC lifecycle costs can be divided into

three main categories:

• Development cost: involves the necessary expenses (mostly personal effort)

required for the programming of a smart contract codebase, ensuring all good

practices are present. Delivering the SC at the required levels of quality.

• Deployment Cost involves the necessary fees that must be paid when a Smart

Contract (or a bunch of Smart Contracts) is deployed onto a blockchain network and

thus making it available for use.

• Transaction Cost corresponds to the necessary fees that must be paid for interacting

with the functionality of the Smart Contract for executing transactions.

Researchers highlighted various challenges in SC development in terms of gas

optimization and suggested security analysis tools and code patterns, actions to be taken

to mitigate these challenges, aiming on reducing these costs and enhancing the overall

quality of smart contract code.

In terms of Tools, Chen et al. [PS15] introduced GASPER with the main purpose

to locate 7 expensive gas patterns, such as dead code and expensive loops operations,

by analyzing smart contract’s bytecodes and replacing them. From a sample of 4,240

real smart contracts, 80% were suffering from 3 (out of the 7 studied) gas patterns. Yu

et al. [PS104] championed that reducing the number of opcodes could lead to less

bytecode and eventually lowering the deployment costs. SCRepair was designed to

detect vulnerable contracts and automatically repair them by generating correct code

patches. Other research efforts focused on developing tools, such as the GASTAP that

uses a control flow graph to estimate the functions calls’ gas bounds [PS3].

Additionally, Di Sorbo et al. [PS21] collected 19 code smells produced by low

efficiency of data storage and function implementation and developed the GASMET

tool that evaluates the code quality of a smart contract from a static point of view,

focusing on the overall functionality wastage in term of gas. Moreover, Albert et al.

[PS4] developed a framework that automatically identifies patterns that are expensive

by focusing on the stack bytecode operations. Finally, Xi and Pattabiraman [PS98]

proposed GoHigh, a tool that replaces low-level function-related vulnerabilities with

secure alternatives, resulting in more than 5% lower gas cost from a dataset of over

2,100,000 real-world smart contracts.

In terms of Code Patterns, various studies pointed out the necessity of creating a

gas-optimized code-base free of bugs, while at the same time, any anti-patterns should

be avoided. Chen et al. [PS12] defined 20 contract defects, categorized them into five

categories (i.e., security, availability, performance, maintainability, and reusability),

provided example code with the defects (e.g., anti-pattern: “calling external smart

contracts often or nesting calls into a loop”), accompanied by possible solutions. Li

[PS44] proposed solutions for the off-chain storage. For example, a solution for

reducing the amount of gas used would be to use local variables instead of global ones.

This is expected to lower the amount of the fees that are paid across several transactions.

Additionally, Wang et al. [PS90] proposed patterns that involve batching. Finally, Zarir

et al. [PS105] suggested that loops with dynamic boundaries could potentially lead to

 Software Engineering Practices in Smart Contract Development: A SMS 7

higher gas cost drivers, with the risk of creating a transaction from a user that uses all

the available gas. Some of the solutions they suggested is that the developers should

know that the transactions usually take form by prioritizing for completion the ones

with high gas price.

4 Implications to Researchers and Practitioners

Based on the findings of our study, several implications to researchers and practitioners

can be highlighted. Regarding researchers, we propose the need for enhancing smart

contract security by developing comprehensive security frameworks and innovative

approaches for automated vulnerabilities detection. Additionally, the emphasis on

testing shows that a need for safeguarding the codebase of the smart contracts against

malicious attacks is a crucial task and researchers should examine new testing

paradigms and expand the existing ones, focusing on tackle any inefficiencies that the

old methodologies may possess, including automated testing tools and environments

that simulate real-world exploits (and possibly the creation of up-to-date database).

Furthermore, the need for a holistic approach for detecting and mitigate bugs is also a

critical area of study that can be achieved through newer formal verification techniques

and the specifically tailored combination of elements from both static and dynamic

analysis. Finally, researchers could concentrate on developing predictive models for

gas usage and execution costs as well as gas anti-patterns detection and repairing tools.

Regarding practitioners, this study has pointed out that the creation of under-

optimized smart contracts during the lifecycle of the development of a smart contract

can lead to unexpected code behaviors and higher transaction costs. Thus, impacting

the usability and cost-effectiveness of the smart contracts. Additionally, by considering

that the field of smart contract development is rapidly evolving, and new tools and

methods are being suggested, the need of the adoption of proven SE practices it is even

more imperative and necessary. The implementation of robust risk and cost

management strategies is mandatory, including: (a) comprehensive and rigorous testing

protocols in simulated environments for addressing on the early stages of production

any potential security issues, (b) reusing components that are field-tested and can

reduce development and cost during the development lifecycle. Staying informed with

the latest research finding and incorporating well-established SE practices should be a

standard part towards a secure and cost-effective smart contract development

workflow.

5 Conclusions

This paper aims to provide an overview of the main SE practices and concepts that have

been used in the literature of SC development. Special emphasis has been placed on the

costs that appear in the complete lifecycle of a SC, and the ways to mitigate them

effectively. The paper attempts to summarize the main trends in research and focuses

on discussing the most prominent SE-related terms, as well as the main strategies for

cost reduction. Through our systematic mapping study, it emerged that a significant

portion of research focuses on the areas of vulnerabilities, security, testing, bugs and

8 A. Giatzis, E.M. Arvanitou, et al.

gas consumption, topics that cover vital issues that arise during the development

lifecycle of a SC and emphasize the demand for the creation and usage of robust

security and testing protocols. In this way it will ensure the reliability and

trustworthiness of a SC’s code and logic.

Acknowledgments. This study has been partially funded by the Horizon Europe Framework

Programme of the European Union under Grant agreement no 101058479.

References

1. Alharby, M., Aldweesh, A., Moorsel, A. v: “Blockchain-based Smart Contracts: A

Systematic Mapping Study of Academic Research (2018)”, International Conference on

Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, pp. 1-6 (2018).

2. Ajienka, N., Vangorp, P., Capiluppi, A.: “An empirical analysis of source code metrics and

smart contract resource consumption”, Journal of Software: Evolution and Process, 32 (10)

(2020).

3. Demi, S., Colomo-Palacios, R., Sánchez-Gordón, M.: “Software Engineering Applications

Enabled by Blockchain Technology: A Systematic Mapping Study”, Applied Sciences,

11(7) (2021).

4. Kannengiesser, N., Lins, S., Sander, C., Winter, K., Frey, H., Sunyaev, A.: “Challenges and

Common Solutions in Smart Contract Development”, Transactions on Software

Engineering, 48 (11), pp. 4291-4318 (2022).

5. Macrinici, D., Cartofeanu, C., Gao, S.: “Smart contract applications within blockchain

technology: A systematic mapping study”, Telematics and Informatics, 35 (8) (2018).

6. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System,

https://bitcoin.org/bitcoin.pdf, last accessed 2024/08/04.

7. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: "Systematic mapping studies in software

engineering", 12th International Conference on Evaluation and Assessment in Software

Engineering (EASE'08), Bari, Italy, pp. 68-77, 26 - 27 (2008).

8. Sánchez-Gómez, N., Torres, J., Garcia-Garcia, J.A., Escalona, M.J, Gutierrez, Javier J., Es-

calona, M.J.: “Model-Based Software Design and Testing in Blockchain Smart Contracts:

A Systematic Literature Review”, IEEE Access, 8 (2020).

9. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997).

10. Tariq, F., Colomo-Palacios, R.: “Use of Blockchain Smart Contracts in Software

Engineering: A Systematic Mapping”, Computational Science and Its Applications – ICCSA

(2019).

11. Tonelli, R., Destefanis, G., Marchesi, M., Ortu, M.: “Smart Contracts Software Metrics: a

First Study”, PLoS ONE, 18 (4) (2023).

12. Vacca, A., Di Sorbo, C., Visaggio, A., Canfora, G.: "A systematic literature review of

blockchain and smart contract development: Techniques, tools, and open challenges, Journal

of Systems and Software, 174 (2021).

13. Zou, W. et al.: "Smart Contract Development: Challenges and Opportunities", Transactions

on Software Engineering, 47 (10), pp. 2084-2106 (2021).

