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Abstract. Smart Contracts are pieces of software that are deployed in Blockchain 

infrastructures to enable the interaction (and production of value) between 

unknown parties, without intermediaries, but in a trustworthy and transparent 

manner. A key to Smart Contracts’ success is their delivery to excellent standards 

of quality (e.g., security, documentation, code understandability etc.). To achieve 

this goal, the development of Smart Contracts needs to be driven by proven 

software engineering practices. In this paper, we conducted a systematic mapping 

study to get a comprehensive overview on how “good” software engineering 

practices are applied to Smart Contract Development. To identify primary studies 

that lie on the intersection of software engineering and smart contract 

development, we have selected specific publication venues and queried the 

literature. After applying the selection criteria, 113 studies were identified, 

analyzed, and synthesized results have been reported. The results provided some 

actionable implications for researchers and practitioners. 

Keywords: Smart Contract Development, Blockchain, Software Engineering 

Practices, Software Quality, Cost, Mapping Study. 

1 Introduction 

After the introduction of Bitcoin in 2008 [6], the technology of Blockchain (BC) has 

risen enormously, not only in the field of cryptocurrencies, but also for serving 

application domains that yield safety and validation. BC is a decentralized peer-to-peer 

network, whose users are called nodes and perform transactions using cryptographic 

algorithms (stored in a shared ledger for assuring transparency). Along with the rise of 

BC, Smart Contracts (SCs) [9] began to popularize. SCs are computer programs that 

exist inside a blockchain network, imitating physical contracts, triggered and executed 

when certain, predefined conditions are met. 

From a technical perspective, the execution cost of a SC is related to the size and 

complexity of the source code [2], with the size, depending on the SC complexity, 

usually having hundreds of lines of code [11]. A key distinction of smart contracts, 

compared to other software, is that their code cannot be maintained after deployment 
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to preserve trustworthiness. Since it is difficult to fully test the source code before 

deployment [13], errors are often discovered after the contract is executed, which can 

undermine trust from the end-user's perspective. Consequently, there is a clear need to 

apply “good” software engineering (SE) practices to improve the structural quality of 

SCs. An additional key consideration in SC development is the effective management 

of associated costs. As a general principle, as the codebase increases in size and 

complexity, the cost of executing a transaction within a blockchain network (referred 

to as gas) also rises. Since gas consumption is a critical factor in the success of smart 

contracts, this growth in size and complexity can negatively impact a contract’s 

competitiveness. However, such costs must be collectively considered alongside the 

cost of developing less “gas hungry” SCs. Based on this, we can deduce that there is a 

need to introduce a collective cost model for the complete SC lifecycle (need-2). To 

address these needs, we conducted a Systematic Mapping Study (SMS) aiming at the 

following goals: (g1) investigate SE practices currently used in SC development 

(addressing need-1) and (g2) provide a list of costs for the entire lifecycle of a smart 

contract, including both development and operation costs (addressing need-2). 

2 Related Work 

Vacca et al. [12] conducted a systematic literature review (SLR) to identify current 
problems and solutions in BC and SC development. They presented challenges related 
to SC testing, code analysis, metrics, security, DApp performance and BC 
applications. After the selection process, the authors analyzed 96 articles written from 
2016 to 2020. One of their most important outcomes was the importance of bug 
detection in SCs. Demi et al. [3] carried out a SMS to identify the uses of BC in SE 
and its contribution to the SE landscape and categorized their results into eight areas: 
SE process and management, software requirements, testing, quality, maintenance and 
configuration management, and professional practices. We note that their study 
excluded papers on SE issues of BC-based software and included only the vice versa. 

Alharby et al. [1] performed a SMS on BC based on SCs. The aim of this work is 
to identify and classify all peer reviewed research that has been conducted on SC 
technology. The search process was conducted up to 2018 using Scopus, ACM, Wiley, 
IEEE, and Springer, identifying 188 primary studies. They classified the outcomes 
into six categories: security, privacy, software engineering, application, performance 
and scalability. They also derived that 21% of the papers’ topics were about SE, noting 
that the number has increased by approximately eight times, compared to 2017. 
Macrinici et al [5] conducted a SMS to determine the channels for publishing SC-
related research. After applying the selection criteria, 64 studies were identified. 
Based on their results, they managed to divide the papers into the four categories: 
security, privacy, scalability of BC and programmability of SCs. Regarding 
programmability of SCs, they identified security and reliability as the major key 
challenges as well as the economical challenge in association with gas cost. 

Sanchez-Gomez et al. [8] performed a systematic literature review on the Software 

Development Life Cycle of SCs. More specifically, the authors focused on reviewing 

model-based software design and testing in SC. The results suggest that there is no 

established methodology for software validation or development of SCs. Additionally, 

they emphasized the need for efficient SC testing as it is the only way to reduce 
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functionality, security, and performance risks. Moreover, they highlight the importance 

of model-based design and testing as these reduce errors in design and code. 

Tariq and Colomo-Palacios [10] conducted a SMS related to the interaction between 

SC and SE. The aim of this study was to identify opportunities and potential problems 

that may arise in SE while using SCs. The search process was applied on five DLs 

(ACM, IEEE, ScienceDirect, Springer, and Wiley), and resulted in 8 primary studies. 

The results indicate a shortage of professionals capable of ensuring security during SC 

development. At the same time, smart contract mechanisms can facilitate trust between 

untrusted parties. Finally, Kannengiesser et al. [4] conducted a SLR to identify 

challenges and solutions in SC development. They identified 29 challenges and 60 

solutions from the literature, leading to them proposing 20 software design patterns, 

specialized for SC development in collaboration with SC developers. 

3 Study 

In this section, we describe the protocol of our systematic mapping study, which has 

been according to the guidelines proposed by Petersen et al. [7]. 

3.1 Study Design 

The primary goal of our study, is to analyze software engineering literature for the 

purpose of characterization with respect to: (a) the use of SE methods and tools on SC 

development; (b) the costs that associated with SC. We defined the following research 

questions: 

RQ1: What SE practices are used in SC development? 

RQ1 refers to the research goals that are being set related to software engineering 

practices in SC development. The goals have been retrieved from the research questions 

of each primary study. For the primary studies that do not provide a specific RQ, the 

goal is retrieved from the abstract of the primary study. By answering this research 

question, we provide the most used SE practices that are used for the implementation 

of SC. 

RQ2: What are the costs involved when developing SCs? 

RQ2 is related to how researchers approach their studies when measuring gas 

consumption or determining execution costs in general. By answering this research 

question, we shed light if there are formulas of the different types of costs and the 

methods for the reduction of these costs.  

In order to answer these questions, we used well known practices and steps [7], 

which can be found online. Upon the assessment of 394 papers, we have retained 113 

primary studies, which can also be found online 1. 

3.2 Results and Discussion 

SE Practices in SC development (RQ1): In this section, we present the most common 

SE practices that are used for SC development—see Table 1. The consolidated goals 

 
1 https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip  

https://users.uom.gr/~a.ampatzoglou/aux_material/profesSupplementaryMaterial.zip
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present the SE term that has been retrieved from the open card sorting methodology, 

while the number represents the studies in which the term is reported (30 more terms 

with lower frequency are omitted due to space limitation). 

Table 1. SE Practices and Terms 

Consolidated Goals Count Consolidated Goals Count 

Vulnerabilities 40 Cost Analysis 13 

Security 33 Compilers / Languages 12 

Testing 22 Code / Test Generation 9 

Bugs / Defects / Faults 20 Code Clones 7 

Gas 18 Software Design 6 

Static Analysis 16 Debugging / Bug Fixing 5 

Software Patterns 14 Framework 5 

Based on our findings, an interesting result is that the frequency of the top 10 goals 

from the primary studies are quite high in number (197 times) in contrast to the rest 34 

goals (102 times). We observed by their goals frequency that most primary studies 

focus on vulnerabilities (35%), security (29%), testing (19%) and bugs / defects / faults 

(18%). This finding is intuitive in the sense that SCs need to be reliable and trustworthy, 

given the fact that they intend to manage monetary transactions and have legal entities. 

The high number of primary studies (40) mentioning the need to understand and 

mitigate Vulnerabilities in smart contract codebases highlights the researchers' focus 

on addressing these issues through various methods. Risks associated with errors during 

the coding phase, logical loopholes that can transform into code loopholes and 

weaknesses resulting in potential exploits and financial losses, are some of the problems 

that researchers have pointed and addressed as important. Researchers have developed 

and recommended various tools and methodologies to mitigate vulnerabilities in smart 

contracts and ensure their reliability at the pre-deployment stage. These include fuzzing 

tools [PS67], [PS96], [PS37] and static analysis tools [PS101], [PS30], tools for fixing 

insecure code patterns and securing bytecode before deployment [PS110], analyzing 

correlations between certain types of smart contracts and specific vulnerabilities to help 

developers avoid risky codebases [PS36], and emphasizing the importance of using the 

latest compilers with patched vulnerabilities [PS35]. 

Moreover, the emphasis on Security, which is mentioned in 33 of the primary 

studies, confirms the existing attention shown by the scientific community regarding 

issues related to the importance of safeguarding the codebase of the SC against 

malicious attacks, while at the same time, protecting the assets or functions that are 

ruled by these contracts. To address these challenges, primary studies propose security 

methodologies that practitioners can follow throughout the smart contract development 

lifecycle, identifying common problems and offering potential solutions [PS87]. These 

include frameworks that improve security by recommending and validating patterns 

and secure programming standards, helping developers implement secure contracts 

more efficiently [PS76]. Additionally, semi-automated or automated tools are 
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introduced to assist in detecting security issues before deployment on a live blockchain 

network [PS55], [PS37], [PS101], [PS64]. 

Third in our findings, Testing is mentioned as a goal in 22 primary studies, and it 

shows the recognition of the vital importance that testing methods play during the 

development lifecycle of a smart contract. Mossberg et al. [PS65] developed Manticore, 

a dynamic symbolic execution framework that can analyze simultaneous multiple smart 

contracts for discovering code bugs and verify code invariants and works by not making 

any hypothetical assumptions regarding the underlying execution model of the contract. 

Nguyen et al. [PS67] developed sFuzz, an automated fuzzing testing tool in which a 

generated execution trace of a smart contract is tested, and, through high code coverage 

and pattern analysis, any potential vulnerabilities can be discovered. A similar fuzzing 

tool was proposed by [PS108] and by simulating blockchain behaviors, it generated 

exploits such as unchecked transfer value and vulnerable access control. Its evaluation 

through 45,308 smart contracts brought up 554 exploitable cases, of which 306 have 

not been generated by any exploit generation tool until then. Ma et al. [PS63] created 

the tool Pluto that can detect three types of vulnerabilities under inter-contract 

scenarios: integer overflow, timestamp dependency, and reentrancy. When applied 

their tool on 39,3443 smart contracts, it has confirmed 451 previously unknown 

vulnerabilities, including 36 inter-contract vulnerability scenarios. 

Focusing on the goals of Bugs / Defects / Faults (20 studies) and Gas (18 studies), 

the researchers emphasize the challenges associated with coding errors, logical flaws 

and under-optimized smart contracts, resulting in unexpected code behaviors and 

higher transaction costs, thus impacting the usability and cost-effectiveness of the smart 

contracts. To prevent the identification of bugs / defects / faults, extensive testing is 

required. In that sense, this line of research is quite active. Regarding smart contract 

bugs, J.F. Ferreira et al. [PS26] introduced SmartBugs, a framework for analyzing 

Solidity smart contracts and detecting defects. Zhang et al. [PS107] developed a dataset 

of 49 smart contract bugs, outlining the criteria for their detection and including 

examples of contracts with integrated bugs to avoid. Gao et al. [PS28] created 

SmartEmbed, a tool that uses structural code embedding to detect bugs, while the 

ÐArcher tool [PS109] was designed to identify synchronization bugs between the on-

chain and off-chain layers of DApps. Regarding the higher transaction costs that the 

developers and the users might encounter, from the 2017 [PS15] it was apparent that 

under-optimized smart contracts cost more gas and that could be avoided by following 

gas-efficient programming patterns. Fuzzing has been proposed as a method for 

estimating the gas required by a smart contract [PS81], alongside other techniques to 

predict gas costs and prevent out-of-gas exceptions [PS44]. By analyzing a sample of 

68,000 smart contract interactions over three years, Severing et al. [PS78] identified 

three primary cost drivers: external code, storage, and transaction base fees. 

Additionally, deployment gas usage has become increasingly costly due to 

programmers' assumptions about how their code would operate, which often results in 

unexpected gas consumption. 

What are the Costs Involved when Developing SCs? (RQ2): During the lifecycle of 

the development of a smart contract, from the first line of code till its deployment on 

blockchain, there are certain types of costs that are involved, each with a distinct 

purpose and contributing: (a) on the quality, functionality, and security of the contract; 



6  A. Giatzis, E.M. Arvanitou, et al. 

and (b) to the overall cost of a project. The early management and consideration of 

these costs become even more important by considering the immutable nature of a 

Smart Contract, which prevents gas optimization after deployment [PS15], [PS81], 

[PS44], [PS3], [PS21]. Based on our findings, the SC lifecycle costs can be divided into 

three main categories: 

• Development cost: involves the necessary expenses (mostly personal effort) 

required for the programming of a smart contract codebase, ensuring all good 

practices are present. Delivering the SC at the required levels of quality. 

• Deployment Cost involves the necessary fees that must be paid when a Smart 

Contract (or a bunch of Smart Contracts) is deployed onto a blockchain network and 

thus making it available for use.  

• Transaction Cost corresponds to the necessary fees that must be paid for interacting 

with the functionality of the Smart Contract for executing transactions. 

Researchers highlighted various challenges in SC development in terms of gas 

optimization and suggested security analysis tools and code patterns, actions to be taken 

to mitigate these challenges, aiming on reducing these costs and enhancing the overall 

quality of smart contract code. 

In terms of Tools, Chen et al. [PS15] introduced GASPER with the main purpose 

to locate 7 expensive gas patterns, such as dead code and expensive loops operations, 

by analyzing smart contract’s bytecodes and replacing them. From a sample of 4,240 

real smart contracts, 80% were suffering from 3 (out of the 7 studied) gas patterns. Yu 

et al. [PS104] championed that reducing the number of opcodes could lead to less 

bytecode and eventually lowering the deployment costs. SCRepair was designed to 

detect vulnerable contracts and automatically repair them by generating correct code 

patches.  Other research efforts focused on developing tools, such as the GASTAP that 

uses a control flow graph to estimate the functions calls’ gas bounds [PS3]. 

Additionally, Di Sorbo et al. [PS21] collected 19 code smells produced by low 

efficiency of data storage and function implementation and developed the GASMET 

tool that evaluates the code quality of a smart contract from a static point of view, 

focusing on the overall functionality wastage in term of gas. Moreover, Albert et al. 

[PS4] developed a framework that automatically identifies patterns that are expensive 

by focusing on the stack bytecode operations. Finally, Xi and Pattabiraman [PS98] 

proposed GoHigh, a tool that replaces low-level function-related vulnerabilities with 

secure alternatives, resulting in more than 5% lower gas cost from a dataset of over 

2,100,000 real-world smart contracts. 

In terms of Code Patterns, various studies pointed out the necessity of creating a 

gas-optimized code-base free of bugs, while at the same time, any anti-patterns should 

be avoided. Chen et al. [PS12] defined 20 contract defects, categorized them into five 

categories (i.e., security, availability, performance, maintainability, and reusability), 

provided example code with the defects (e.g., anti-pattern: “calling external smart 

contracts often or nesting calls into a loop”), accompanied by possible solutions. Li 

[PS44] proposed solutions for the off-chain storage. For example, a solution for 

reducing the amount of gas used would be to use local variables instead of global ones. 

This is expected to lower the amount of the fees that are paid across several transactions. 

Additionally, Wang et al. [PS90] proposed patterns that involve batching. Finally, Zarir 

et al. [PS105] suggested that loops with dynamic boundaries could potentially lead to 
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higher gas cost drivers, with the risk of creating a transaction from a user that uses all 

the available gas. Some of the solutions they suggested is that the developers should 

know that the transactions usually take form by prioritizing for completion the ones 

with high gas price. 

4 Implications to Researchers and Practitioners 

Based on the findings of our study, several implications to researchers and practitioners 

can be highlighted. Regarding researchers, we propose the need for enhancing smart 

contract security by developing comprehensive security frameworks and innovative 

approaches for automated vulnerabilities detection. Additionally, the emphasis on 

testing shows that a need for safeguarding the codebase of the smart contracts against 

malicious attacks is a crucial task and researchers should examine new testing 

paradigms and expand the existing ones, focusing on tackle any inefficiencies that the 

old methodologies may possess, including automated testing tools and environments 

that simulate real-world exploits (and possibly the creation of up-to-date database). 

Furthermore, the need for a holistic approach for detecting and mitigate bugs is also a 

critical area of study that can be achieved through newer formal verification techniques 

and the specifically tailored combination of elements from both static and dynamic 

analysis. Finally, researchers could concentrate on developing predictive models for 

gas usage and execution costs as well as gas anti-patterns detection and repairing tools. 

Regarding practitioners, this study has pointed out that the creation of under-

optimized smart contracts during the lifecycle of the development of a smart contract 

can lead to unexpected code behaviors and higher transaction costs. Thus, impacting 

the usability and cost-effectiveness of the smart contracts. Additionally, by considering 

that the field of smart contract development is rapidly evolving, and new tools and 

methods are being suggested, the need of the adoption of proven SE practices it is even 

more imperative and necessary. The implementation of robust risk and cost 

management strategies is mandatory, including: (a) comprehensive and rigorous testing 

protocols in simulated environments for addressing on the early stages of production 

any potential security issues, (b) reusing components that are field-tested and can 

reduce development and cost during the development lifecycle. Staying informed with 

the latest research finding and incorporating well-established SE practices should be a 

standard part towards a secure and cost-effective smart contract development 

workflow. 

5 Conclusions 

This paper aims to provide an overview of the main SE practices and concepts that have 

been used in the literature of SC development. Special emphasis has been placed on the 

costs that appear in the complete lifecycle of a SC, and the ways to mitigate them 

effectively. The paper attempts to summarize the main trends in research and focuses 

on discussing the most prominent SE-related terms, as well as the main strategies for 

cost reduction. Through our systematic mapping study, it emerged that a significant 

portion of research focuses on the areas of vulnerabilities, security, testing, bugs and 
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gas consumption, topics that cover vital issues that arise during the development 

lifecycle of a SC and emphasize the demand for the creation and usage of robust 

security and testing protocols. In this way it will ensure the reliability and 

trustworthiness of a SC’s code and logic. 

Acknowledgments. This study has been partially funded by the Horizon Europe Framework 

Programme of the European Union under Grant agreement no 101058479. 

References 

1. Alharby, M., Aldweesh, A., Moorsel, A. v: “Blockchain-based Smart Contracts: A 

Systematic Mapping Study of Academic Research (2018)”, International Conference on 

Cloud Computing, Big Data and Blockchain (ICCBB), Fuzhou, China, pp. 1-6 (2018). 

2. Ajienka, N., Vangorp, P., Capiluppi, A.: “An empirical analysis of source code metrics and 

smart contract resource consumption”, Journal of Software: Evolution and Process, 32 (10) 

(2020). 

3. Demi, S., Colomo-Palacios, R., Sánchez-Gordón, M.: “Software Engineering Applications 

Enabled by Blockchain Technology: A Systematic Mapping Study”, Applied Sciences, 

11(7) (2021). 

4. Kannengiesser, N., Lins, S., Sander, C., Winter, K., Frey, H., Sunyaev, A.: “Challenges and 

Common Solutions in Smart Contract Development”, Transactions on Software 

Engineering, 48 (11), pp. 4291-4318 (2022). 

5. Macrinici, D., Cartofeanu, C., Gao, S.: “Smart contract applications within blockchain 

technology: A systematic mapping study”, Telematics and Informatics, 35 (8) (2018). 

6. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, 

https://bitcoin.org/bitcoin.pdf, last accessed 2024/08/04. 

7. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: "Systematic mapping studies in software 

engineering", 12th International Conference on Evaluation and Assessment in Software 

Engineering (EASE'08), Bari, Italy, pp. 68-77, 26 - 27 (2008). 

8. Sánchez-Gómez, N., Torres, J., Garcia-Garcia, J.A., Escalona, M.J, Gutierrez, Javier J., Es-

calona, M.J.: “Model-Based Software Design and Testing in Blockchain Smart Contracts: 

A Systematic Literature Review”, IEEE Access, 8 (2020). 

9. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997). 

10. Tariq, F., Colomo-Palacios, R.: “Use of Blockchain Smart Contracts in Software 

Engineering: A Systematic Mapping”, Computational Science and Its Applications – ICCSA 

(2019). 

11. Tonelli, R., Destefanis, G., Marchesi, M., Ortu, M.: “Smart Contracts Software Metrics: a 

First Study”, PLoS ONE, 18 (4) (2023). 

12. Vacca, A., Di Sorbo, C., Visaggio, A., Canfora, G.: "A systematic literature review of 

blockchain and smart contract development: Techniques, tools, and open challenges, Journal 

of Systems and Software, 174 (2021). 

13. Zou, W. et al.: "Smart Contract Development: Challenges and Opportunities", Transactions 

on Software Engineering, 47 (10), pp. 2084-2106 (2021). 


