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ABSTRACT

Technical Debt estimation relies heavily on the use of static anal-
ysis tools looking for violations of pre-defined rules. Largely,
Technical Debt principal is attributed to the presence of low-level
code smells, unavoidably tying the effort for fixing the problems
with mere coding inefficiencies. At the same time, despite their
simple definition, the detection of most code smells is non-trivial
and subjective, rendering the assessment of Technical Debt prin-
cipal dubious. To this end, we have revisited the literature on code
smell detection approaches backed by tools and developed an
Eclipse plugin that incorporates six code smell detection ap-
proaches. The combined application of various smell detectors
can increase the certainty of identifying actual code smells that
matter to the development team. We also conduct a case study to
investigate the agreement among the employed code smell detec-
tors. To our surprise the level of agreement is quite low even for
relatively simple code smells threating the validity of existing TD
analysis tools and calling for increased attention to the precise
specification of code and design level issues.
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1. Introduction

Poor software quality can be expressed in various ways: as non-
conformance to design principles, lack of design patterns, exces-
sive metric values, violations of heuristics, existence of Technical
Debt and through the presence of code smells. Code smells, intro-
duced by Fowler in 1999 [1], are defined as bad practices when
writing code and have become very popular among developers
since they capture in a systematic, yet simple manner, habits lead-
ing to less maintainable code. While an experienced developer can
usually identify code smells simply by looking through the code
given that he / she is familiar with their definition, smell identifi-
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cation should be automated considering their frequency in even
small-scale systems. Code smells form one of the main pillars for
Technical Debt (TD) assessment in most contemporary TD man-
agement tools.

To facilitate the automatic identification of code smell instances
representing opportunities for refactoring, various tools have been
developed, either commercial or as research prototypes, that are
capable of detecting code smells and displaying them in a user-
friendly way. Such automation of the detection process can have a
very positive impact on both quality and productivity. An empiri-
cal study [2] showed that automated smell detection can save time
and when compared to a manual review of the results it increases
the confidence about the detected smells.

Although automated detection of smells can be of great help, extra
care needs to be taken when selecting a tool, since the adopted
detection techniques determine the obtained results. Rasool and
Arshad [3] presented a review of state-of-the-art tools for code
smell detection, which vividly showed that precision and recall
differ largely between tools even for those that rely on the same
technique. Such reviews are important because they can highlight
advantages and disadvantages of using these tools and distinguish
the most appropriate one in each occasion.

Despite the availability of various code smell detection tools, it
can be time consuming to either find already analyzed cases or get
access to executable files, plug-ins or source code of the tools of
interest, to extract conclusions from the results or to conduct case
studies. In this paper, we introduce an Eclipse plug-in [4], namely:
Smell Detection Merger, which incorporates six (6) code smell
detection tools (some of them were introduced as research prod-
ucts) and aggregates the results. Smell Detection Merger allows
the user to easily access and use the underlying tools to conduct
experiments in a direct way and get aggregate results.

Accurate code smell detection is of paramount importance in the
context of Technical Debt (TD) estimation for two reasons: First,
TD tools rely on static source code analyzers to identify code
smells as TD issues, whose refactoring effort is summed up to
measure the principal of the software. Unreliable smell detection
approaches render the resulting TD measurement inaccurate. As
an indicative example of the importance of code smells for TD
quantification, project commons-imaging of the Apache ecosys-
tem, entails according to the widely used SonarQube TD assess-
ment tool 1,307 TD issues of which 1,236 refer to code smells
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(94.5%). In terms of effort to repay TD, the principal is measures
as 26 days, out of which 25 days correspond to the effort for miti-
gating code smells. Second, most TD tools focus on code-level
smells leaving out smells pertaining to the design of methods,
classes and packages. We performed a case study on the level of
agreement among the examined smell detectors to shed light into
the maturity of the code smell concept in terms of common defini-
tion and common detection approaches.

The rest of the paper is organized as follows. Section 2 provides
an overview of related work. In section 3, the developed plug-in is
presented while Section 4 presents a case study on an open-source
project using our plug-in and sheds light into the level of agree-
ment among tools. Finally, we conclude in section 5.

2. Related Work

In the literature there are various tools on smell detection; there-
fore, comparisons between them are essential to determine which
of them produce the best results, their underlying detection tech-
niques and their accuracy. Fontana et al. [5], in their experimental
assessment, reviewed several code smell detectors and presented a
list of all the smells supported by the tools in order to find the
common ground between them. Their case study considered four
tools, namely JDeodorant, inFusion, PMD and CheckStyle while
findings on six code smells have been compared. Interestingly, the
results showed very high agreement ratio between the tools for
each smell type in all of the selected versions. A comparative
study was also conducted by Hamid et al. [6] that consisted of a
comparison of two tools, namely. JDeodorant and inCode, fol-
lowed by an extensive analysis of their detection results on two
common code smells, Feature Envy and God Class. The authors
concluded that the results between the tools differed significantly,
mainly due to the different approaches they follow on detecting
these smells.

Rasool and Arshad [3] performed an extensive review on the
state-of-the-art techniques and tools for mining code smells from
source code. Code smell detection techniques and tools are classi-
fied based on their detection methods into: manual detection, met-
rics-based, symptoms-based, probabilistic-based, visualization-
based, search-based and cooperative-based techniques. Based on
results in the literature the authors observed a wide disparity in the
results among different tools. The same conclusion was reached
through experimentation, in which the authors installed three code
smell detection tools, namely CheckStyle, JDeodorant, and PMD
for comparing their results on four common code smells.

Another extended review was conducted by Fernandes et al. [7]
on the state-of-the-art code smell detectors in order to provide an
overview for each tool. For each of the tools they listed essential
details like the programming language it was developed as well as
the target language that can be analyzed, the employed detection
technique, the code smells it can detect, if it is free to use, if a
GUI is provided, etc. In terms of this review, the authors per-
formed an experiment with four of the tools, i.e., inFusion, JDeo-
dorant, PMD, JSpIRIT and compared the results of detecting two
smells, namely Large Class and Long Method. Kaur and Dhiman
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[8] performed a review of tools and techniques for code smell de-
tection. The authors highlighted that the comparison between
tools and approaches can be a challenging task due to the fact that
many of them are not publicly available to researchers and also
the experiments that are conducted with these tools, are often car-
ried out on different projects for different smell types. For their
review, they considered JDeodorant and CodeNose tools for the
detection of smells such as Feature Envy, Large Class, Long
Method, Long Parameter List, Refused Bequest.

Table 1 provides a summary of previous studies along with num-
ber of tools and smells considered in this paper. As it can be seen,
we perform our study with a larger set of tools and on a signifi-
cantly larger set of code smells.

Paper Tools Code Smells

Fontana et JDeodorant Duplicate Code, Feature Envy,

al. [5] inFusion God Class, Large Class, Long
PMD Method, Long Parameter List
CheckStyle

Hamid etal.  JDeodorant Feature Envy, God Class

[6] inCode

Rasool and CheckStyle Large Class, God Class, Long

Arshad [3] JDeodorant Parameter List, Long Method
PMD

Fernandes inFusion Large Class, Long Method

etal. [7] JDeodorant
PMD
JSpIRIT

Kaur and = JDeodorant Feature Envy, Large Class,

Dhiman [8]  codeNose Long Method, Long Parameter

List, Refused Bequest

This work CheckStyle, Brain Class, Brain Method,
DuDe Class Data Should be Private,
PMD Complex Class, Data Class,
JDeodorant Dispersed Coupling, Duplicate
ISpIRIT Code, FeatL'Jre Envy, God

. Class, Intensive Coupling, La-

Organic

zy Class, Long Method, Long
Parameter  List, Message
Chain, Refused Bequest, Shot-
gun Surgery, Spaghetti Code,
Speculative Generality, Tradi-
tion Breaker, Type Checking

Table 1: Summary of related work experiments

3. Smell Detector Merger

For the purpose of this study, a non-systematic survey was con-
ducted to identify existing tools for code smell detection written in
Java, which support the examination of Java projects. During this
research, several tools were found, but only 6 were eventually in-
cluded under the umbrella of the unified detector we developed,
due to various difficulties. The search for tools was done in
Google Scholar to find articles related to code smell detectors, as
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well as reviews or comparisons of such tools. Primarily, we used
“code smell detection tools” and “code smell detection tech-
niques” as our search strings to get relevant results. These search-
es mainly returned literature reviews such as [7] and [8]. Such
studies present various detectors, their implemented detection
techniques and their accuracy. Many of the tools that we have
identified in these reviews or individually, were not available or
maintained by the original authors any more, while others were
not a good fit for our purpose, since their main feature was visual
representation of the detected smells directly in the IDE. In addi-
tion, there were a few more for which we could not get access to
their code and we had difficulties contacting their authors. Never-
theless, some of the tools we used are among the most commonly
seen tools in literature reviews related to code smell detection.

So far, we have integrated the following six tools: CheckStyle [9],
DuDe [10], PMD [11], JDeodorant [12], JSpIRIT [13], and Or-
ganic [14]. The plug-in was developed in Java 8 and tested using
Eclipse IDE version 2021-06 (4.20.0). The first half of the tools
are standalone and are executed by invoking either a jar or bat
file via our plug-in. The second half consists of plug-ins, which
were exported as jar files and then added to our plug-in as exter-
nal libraries to have access to their internal classes and methods.
For some of them, a few minor changes were made to their source
code that had no effect to their detection logic, to expose publicly
specific functionality for our convenience. In addition, we need to
highlight that some of the tools provide a level of customization,
though this is not currently supported via our plug-in. We aim to
include this as part of future work.

The code smells that each of the previously mentioned tools can
detect add up to a total count of twenty. Some of the smells are
more “popular” and can be detected by more than one tool (e.g.,
Long Method and God Class), while others are less popular and
can only be detected by a single tool (e.g., Tradition Breaker and
Type Checking). For more details about the smells that can be de-
tected by each tool, either the corresponding references or the
GitHub? page of our plug-in can be used.

The developed plug-in offers various options to the user to cus-
tomize the detection process, by defining the set of tools to be
used for the detection, along with the type of smell (or all of them)
to be detected. After the completion of the detection process, the
results are displayed in a single view in the IDE, as shown in Fig-
ure 1. Each row displays a different smell that was detected and
consists of the smell type, the affected element (could be either a
class or a method) and a list of tools that detected the smell sepa-
rated with a comma. If needed, each column can be sorted alpha-
betically in ascending or descending order. Moreover, if the user
double-clicks on a smell, the corresponding resource will open in
the IDE at the line in which the smell was detected. Additionally,
the detected smells can be filtered to keep only those that were
detected by more than 2 (in absolute number) or 50% of the tools.
The previous two filtered sets can also be used as (tentative) gold

1 https://github.com/detectormerger/SmellDetectorMerger
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standard sets. This is very important because as such they can be
utilized to calculate precision and recall for each of the tools for
all its supported smell types. Finally, it is worth mentioning that
the results of the detected smells as well as their filtered sets can
be exported to a csv file for later use.

[£2 Problems [€) Declaration | 4" Search| =g Progress % Git Staging | & History | & Console | @ SmellDetectorMerger Smells View &3

Smell Type Affected Element Detected by
Speculative Generality  AbstractMessageWrapper Organic
Speculative Generality  AbstractMessageWriter Organic
Feature Envy AbstractMessageWriterwrite() Organic
Dispersed Coupling ~ AbstractMessageWriterrite() JSpIRIT Organic
Long Method AbstractMessageWriterwrite( IDeodorant
Refused Parent Bequest  AbstractRequestBuilder ISpIRIT

God Class AbstractRequestBuilder JSpIRITPMD
Complex Class AbstractRequestBuilder Organic
Speculative Generality  AbstractServerExchangeHandler Organic

Long Method AbstractServerExchangeHandler.consume() JDeodorant
Long Method AbstractServerExchangeHandler failed() JDeodorant
Feature Envy AbstractServerExchangeHandlerhandleRequest() Organic

Long Parameter List  AbstractServerExchangeHandlerhandleRequest() Organic
Message Chain AbstractServerExchangeHandlerhandleRequest() Organic
Dispersed Coupling  AbstractServerExchangeHandlerhandleRequest() Organic

Long Method AbstractServerExchangeHandlerhandleRequest( JDeodorantJSpIRIT Organic

Figure 1: Smell detection results displayed in a single view

A notable advantage offered by this plug-in, is that it can save a
significant amount of time to researchers who want to perform
reviews for existing code smell detection tools. By using this
plug-in, one no longer has to get access to each separate tool,
download and install it independently, get the results for each one
of them and eventually compare the results with the rest. Instead,
the user can select the tools of interest as well as the smell(s) to be
detected and get the combined results with one click.

4. Empirical Evidence on Tools Agreement

To perform a preliminary evaluation of the tools, we conducted a
small-scale study on an open-source project. The project we used
iS Apache HTTP Components [15]; which provides a set of low-
level tools for implementing the HTTP and other relevant proto-
cols. The project consists of four Maven sub-projects, which were
all imported in Eclipse and then each one was analyzed using
Smell Detector Merger. The results were exported to a csv file in
order to post-process them.

Figure 2 provides an overview of the smells that were detected by
Smell Detector Merger. The top left cell indicates the aggregate
results, while all other cells correspond to a single smell. The bar
charts display the tools that detected each smell, along with the
total occurrences they found. It becomes obvious that in most cas-
es there is a notable difference in the total number of identified
smells between two or more tools. For some smell types the dif-
ference is substantial, as for example in the case of Shotgun Sur-
gery, for which JSpIRIT detected 91 instances, while Organic on-
ly 13. The same applies for Long Method, for which JDeodorant
detected the most instances (727 smells), while Organic detected
192 instances and CheckStyle, only reported 5 occurrences.
Through the figure the reader can grasp the popularity of each
smell, and can focus on the smells which can be detected by at
least two of the integrated tools. From the entire set of 20 support-
ed smells, 8 are detected by only one of the tools, while the other
12 are supported by more than one tools, enabling a comparison
of the results.
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Figure 2: Overview of the detected smells and their total occurrences found per tool
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Apart from the number of identified smell instances, it is im-
portant to investigate the agreement on the detected code smells
among the tools. To achieve that, we relied on the positive specif-
ic agreement [16] measure which “is the conditional probability
that one rater will agree that a case is positive given that the oth-
er one rated it positive, where the role of the two raters is selected
randomly. It approximates the proportion of positive cases that
were agreed on”. We decided to use this measure because it only
takes into consideration the cases in which two or more tools
agree on a detected smell. In other words, artifacts which are not
being reported as smelly by the tools are of less interest in the
general case.

The results regarding the level of agreement are shown in Figure
3. Each sub-diagram corresponds to a smell (the top-left applies to
all smells), while the tools which are capable of detecting that
smell are shown vertically and horizontally. On the intersection of
two different tool the calculated positive specific agreement is
shown in color and numerically. It is striking that for most of the
cases, the calculated positive specific agreement has a value of 0
or one very close to that. This shows that the different techniques
used by the smell detectors, lead to very different reported smell
instances. This raises questions about which techniques are more
efficient and / or implemented in a better way, as well as which of
the reported cases correspond to an actual smell of the detected
type in a given software product. Without a commonly-agreed
ground truth it becomes challenging to rate the accuracy of each
tool. Nevertheless, instances on which multiple tools agree pro-
vide some level of confidence in the existence of a problem. It
should be noted that there are only a few exceptions to the previ-
ous observation, such as Dispersed Coupling which is detected by
JSpIRIT and Organic, God Class detected by JSpIRIT and PMD,
Long Parameter List found by CheckStyle and PMD, as well as
Long Method reported by JSpIRIT and Organic, where the posi-
tive specific agreement is equal or greater than 0.6. However, a
high level of agreement can be claimed only for values above 0.8
which is observed only in one case.

5. Conclusions and Threats to Validity

For the reliable assessment of Technical Debt in software projects
it is of paramount importance to accurately detect code smells,
which form one of the main pillars of TD. Code smell detection
tools can play an important role to this goal by automatically iden-
tifying refactoring opportunities. In this paper, we integrated six
widely used code smell detectors and conducted a case study with
an open-source project to find the total smell instances detected by
each tool, and to study the agreement among them. The results
showed that for most smells the agreement level is quite low, rais-
ing questions about their subjective criteria and rendering it un-
safe to consider a reported case as an actual smell.

We acknowledge that the presented case study suffers from
threats to external validity as only one project was analyzed. We
plan to conduct more systematic analysis on a larger number of
projects. To mitigate threats to construct validity we plan to ex-
periment with the configuration settings of each tool, wherever
this is possible, so as to obtain more meaningful results.
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