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ABSTRACT 

Technical Debt estimation relies heavily on the use of static anal-

ysis tools looking for violations of pre-defined rules. Largely, 

Technical Debt principal is attributed to the presence of low-level 

code smells, unavoidably tying the effort for fixing the problems 

with mere coding inefficiencies. At the same time, despite their 

simple definition, the detection of most code smells is non-trivial 

and subjective, rendering the assessment of Technical Debt prin-

cipal dubious. To this end, we have revisited the literature on code 

smell detection approaches backed by tools and developed an 

Eclipse plugin that incorporates six code smell detection ap-

proaches. The combined application of various smell detectors 

can increase the certainty of identifying actual code smells that 

matter to the development team. We also conduct a case study to 

investigate the agreement among the employed code smell detec-

tors. To our surprise the level of agreement is quite low even for 

relatively simple code smells threating the validity of existing TD 

analysis tools and calling for increased attention to the precise 

specification of code and design level issues.       
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1. Introduction 

Poor software quality can be expressed in various ways: as non-

conformance to design principles, lack of design patterns, exces-

sive metric values, violations of heuristics, existence of Technical 

Debt and through the presence of code smells. Code smells, intro-

duced by Fowler in 1999 [1], are defined as bad practices when 

writing code and have become very popular among developers 

since they capture in a systematic, yet simple manner, habits lead-

ing to less maintainable code. While an experienced developer can 

usually identify code smells simply by looking through the code 

given that he / she is familiar with their definition, smell identifi-

cation should be automated considering their frequency in even 

small-scale systems. Code smells form one of the main pillars for 

Technical Debt (TD) assessment in most contemporary TD man-

agement tools. 

To facilitate the automatic identification of code smell instances 

representing opportunities for refactoring, various tools have been 

developed, either commercial or as research prototypes, that are 

capable of detecting code smells and displaying them in a user-

friendly way. Such automation of the detection process can have a 

very positive impact on both quality and productivity. An empiri-

cal study [2] showed that automated smell detection can save time 

and when compared to a manual review of the results it increases 

the confidence about the detected smells. 

Although automated detection of smells can be of great help, extra 

care needs to be taken when selecting a tool, since the adopted 

detection techniques determine the obtained results. Rasool and 

Arshad [3] presented a review of state-of-the-art tools for code 

smell detection, which vividly showed that precision and recall 

differ largely between tools even for those that rely on the same 

technique. Such reviews are important because they can highlight 

advantages and disadvantages of using these tools and distinguish 

the most appropriate one in each occasion. 

Despite the availability of various code smell detection tools, it 

can be time consuming to either find already analyzed cases or get 

access to executable files, plug-ins or source code of the tools of 

interest, to extract conclusions from the results or to conduct case 

studies. In this paper, we introduce an Eclipse plug-in [4], namely: 

Smell Detection Merger, which incorporates six (6) code smell 

detection tools (some of them were introduced as research prod-

ucts) and aggregates the results. Smell Detection Merger allows 

the user to easily access and use the underlying tools to conduct 

experiments in a direct way and get aggregate results. 

Accurate code smell detection is of paramount importance in the 

context of Technical Debt (TD) estimation for two reasons: First, 

TD tools rely on static source code analyzers to identify code 

smells as TD issues, whose refactoring effort is summed up to 

measure the principal of the software. Unreliable smell detection 

approaches render the resulting TD measurement inaccurate. As 

an indicative example of the importance of code smells for TD 

quantification, project commons-imaging of the Apache ecosys-

tem, entails according to the widely used SonarQube TD assess-

ment tool 1,307 TD issues of which 1,236 refer to code smells 
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(94.5%). In terms of effort to repay TD, the principal is measures 

as 26 days, out of which 25 days correspond to the effort for miti-

gating code smells. Second, most TD tools focus on code-level 

smells leaving out smells pertaining to the design of methods, 

classes and packages. We performed a case study on the level of 

agreement among the examined smell detectors to shed light into 

the maturity of the code smell concept in terms of common defini-

tion and common detection approaches.  

The rest of the paper is organized as follows. Section 2 provides 

an overview of related work. In section 3, the developed plug-in is 

presented while Section 4 presents a case study on an open-source 

project using our plug-in and sheds light into the level of agree-

ment among tools. Finally, we conclude in section 5. 

2. Related Work 

In the literature there are various tools on smell detection; there-

fore, comparisons between them are essential to determine which 

of them produce the best results, their underlying detection tech-

niques and their accuracy. Fontana et al. [5], in their experimental 

assessment, reviewed several code smell detectors and presented a 

list of all the smells supported by the tools in order to find the 

common ground between them. Their case study considered four 

tools, namely JDeodorant, inFusion, PMD and CheckStyle while 

findings on six code smells have been compared. Interestingly, the 

results showed very high agreement ratio between the tools for 

each smell type in all of the selected versions. A comparative 

study was also conducted by Hamid et al. [6] that consisted of a 

comparison of two tools, namely. JDeodorant and inCode, fol-

lowed by an extensive analysis of their detection results on two 

common code smells, Feature Envy and God Class. The authors 

concluded that the results between the tools differed significantly, 

mainly due to the different approaches they follow on detecting 

these smells. 

Rasool and Arshad [3] performed an extensive review on the 

state-of-the-art techniques and tools for mining code smells from 

source code. Code smell detection techniques and tools are classi-

fied based on their detection methods into: manual detection, met-

rics-based, symptoms-based, probabilistic-based, visualization-

based, search-based and cooperative-based techniques. Based on 

results in the literature the authors observed a wide disparity in the 

results among different tools. The same conclusion was reached 

through experimentation, in which the authors installed three code 

smell detection tools, namely CheckStyle, JDeodorant, and PMD 

for comparing their results on four common code smells. 

Another extended review was conducted by Fernandes et al. [7] 

on the state-of-the-art code smell detectors in order to provide an 

overview for each tool. For each of the tools they listed essential 

details like the programming language it was developed as well as 

the target language that can be analyzed, the employed detection 

technique, the code smells it can detect, if it is free to use, if a 

GUI is provided, etc. In terms of this review, the authors per-

formed an experiment with four of the tools, i.e., inFusion, JDeo-

dorant, PMD, JSpIRIT and compared the results of detecting two 

smells, namely Large Class and Long Method. Kaur and Dhiman 

[8] performed a review of tools and techniques for code smell de-

tection. The authors highlighted that the comparison between 

tools and approaches can be a challenging task due to the fact that 

many of them are not publicly available to researchers and also 

the experiments that are conducted with these tools, are often car-

ried out on different projects for different smell types. For their 

review, they considered JDeodorant and CodeNose tools for the 

detection of smells such as Feature Envy, Large Class, Long 

Method, Long Parameter List, Refused Bequest. 

Table 1 provides a summary of previous studies along with num-

ber of tools and smells considered in this paper. As it can be seen, 

we perform our study with a larger set of tools and on a signifi-

cantly larger set of code smells. 

Paper Tools Code Smells 

Fontana et 

al. [5] 

JDeodorant  

inFusion  

PMD  

CheckStyle 

Duplicate Code, Feature Envy, 

God Class, Large Class, Long 

Method, Long Parameter List 

Hamid et al. 

[6] 

JDeodorant  

inCode 

Feature Envy, God Class 

Rasool and 

Arshad [3] 

CheckStyle  

JDeodorant  

PMD 

Large Class, God Class, Long 

Parameter List, Long Method 

Fernandes 

et al. [7] 

inFusion  

JDeodorant  

PMD  

JSpIRIT 

Large Class, Long Method 

Kaur and 

Dhiman [8] 

JDeodorant  

CodeNose 

Feature Envy, Large Class, 

Long Method, Long Parameter 

List, Refused Bequest 

This work CheckStyle,  

DuDe 

PMD 

JDeodorant 

JSpIRIT 

Organic 

Brain Class, Brain Method, 

Class Data Should be Private, 

Complex Class, Data Class, 

Dispersed Coupling, Duplicate 

Code, Feature Envy, God 

Class, Intensive Coupling, La-

zy Class, Long Method, Long 

Parameter List, Message 

Chain, Refused Bequest, Shot-

gun Surgery, Spaghetti Code, 

Speculative Generality, Tradi-

tion Breaker, Type Checking 

Table 1: Summary of related work experiments 

3. Smell Detector Merger 

For the purpose of this study, a non-systematic survey was con-

ducted to identify existing tools for code smell detection written in 

Java, which support the examination of Java projects. During this 

research, several tools were found, but only 6 were eventually in-

cluded under the umbrella of the unified detector we developed, 

due to various difficulties. The search for tools was done in 

Google Scholar to find articles related to code smell detectors, as 
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well as reviews or comparisons of such tools. Primarily, we used 

“code smell detection tools” and “code smell detection tech-

niques” as our search strings to get relevant results. These search-

es mainly returned literature reviews such as [7] and [8]. Such 

studies present various detectors, their implemented detection 

techniques and their accuracy. Many of the tools that we have 

identified in these reviews or individually, were not available or 

maintained by the original authors any more, while others were 

not a good fit for our purpose, since their main feature was visual 

representation of the detected smells directly in the IDE. In addi-

tion, there were a few more for which we could not get access to 

their code and we had difficulties contacting their authors. Never-

theless, some of the tools we used are among the most commonly 

seen tools in literature reviews related to code smell detection. 

So far, we have integrated the following six tools: CheckStyle [9], 

DuDe [10], PMD [11], JDeodorant [12], JSpIRIT [13], and Or-

ganic [14]. The plug-in was developed in Java 8 and tested using 

Eclipse IDE version 2021-06 (4.20.0). The first half of the tools 

are standalone and are executed by invoking either a jar or bat 

file via our plug-in. The second half consists of plug-ins, which 

were exported as jar files and then added to our plug-in as exter-

nal libraries to have access to their internal classes and methods. 

For some of them, a few minor changes were made to their source 

code that had no effect to their detection logic, to expose publicly 

specific functionality for our convenience. In addition, we need to 

highlight that some of the tools provide a level of customization, 

though this is not currently supported via our plug-in. We aim to 

include this as part of future work. 

The code smells that each of the previously mentioned tools can 

detect add up to a total count of twenty. Some of the smells are 

more “popular” and can be detected by more than one tool (e.g., 

Long Method and God Class), while others are less popular and 

can only be detected by a single tool (e.g., Tradition Breaker and 

Type Checking). For more details about the smells that can be de-

tected by each tool, either the corresponding references or the 

GitHub1 page of our plug-in can be used. 

The developed plug-in offers various options to the user to cus-

tomize the detection process, by defining the set of tools to be 

used for the detection, along with the type of smell (or all of them) 

to be detected. After the completion of the detection process, the 

results are displayed in a single view in the IDE, as shown in Fig-

ure 1. Each row displays a different smell that was detected and 

consists of the smell type, the affected element (could be either a 

class or a method) and a list of tools that detected the smell sepa-

rated with a comma. If needed, each column can be sorted alpha-

betically in ascending or descending order. Moreover, if the user 

double-clicks on a smell, the corresponding resource will open in 

the IDE at the line in which the smell was detected. Additionally, 

the detected smells can be filtered to keep only those that were 

detected by more than 2 (in absolute number) or 50% of the tools. 

The previous two filtered sets can also be used as (tentative) gold 

                                                                 
1 https://github.com/detectormerger/SmellDetectorMerger 

standard sets. This is very important because as such they can be 

utilized to calculate precision and recall for each of the tools for 

all its supported smell types. Finally, it is worth mentioning that 

the results of the detected smells as well as their filtered sets can 

be exported to a CSV file for later use. 

 
Figure 1: Smell detection results displayed in a single view 

A notable advantage offered by this plug-in, is that it can save a 

significant amount of time to researchers who want to perform 

reviews for existing code smell detection tools. By using this 

plug-in, one no longer has to get access to each separate tool, 

download and install it independently, get the results for each one 

of them and eventually compare the results with the rest. Instead, 

the user can select the tools of interest as well as the smell(s) to be 

detected and get the combined results with one click. 

4. Empirical Evidence on Tools Agreement 

To perform a preliminary evaluation of the tools, we conducted a 

small-scale study on an open-source project. The project we used 

is Apache HTTP Components [15]; which provides a set of low-

level tools for implementing the HTTP and other relevant proto-

cols. The project consists of four Maven sub-projects, which were 

all imported in Eclipse and then each one was analyzed using 

Smell Detector Merger. The results were exported to a CSV file in 

order to post-process them. 

Figure 2 provides an overview of the smells that were detected by 

Smell Detector Merger. The top left cell indicates the aggregate 

results, while all other cells correspond to a single smell. The bar 

charts display the tools that detected each smell, along with the 

total occurrences they found. It becomes obvious that in most cas-

es there is a notable difference in the total number of identified 

smells between two or more tools. For some smell types the dif-

ference is substantial, as for example in the case of Shotgun Sur-

gery, for which JSpIRIT detected 91 instances, while Organic on-

ly 13. The same applies for Long Method, for which JDeodorant 

detected the most instances (727 smells), while Organic detected 

192 instances and CheckStyle, only reported 5 occurrences. 

Through the figure the reader can grasp the popularity of each 

smell, and can focus on the smells which can be detected by at 

least two of the integrated tools. From the entire set of 20 support-

ed smells, 8 are detected by only one of the tools, while the other 

12 are supported by more than one tools, enabling a comparison 

of the results. 

 

https://github.com/detectormerger/SmellDetectorMerger
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Figure 2: Overview of the detected smells and their total occurrences found per tool 

 
Figure 3: Positive Specific Agreement



Apart from the number of identified smell instances, it is im-

portant to investigate the agreement on the detected code smells 

among the tools. To achieve that, we relied on the positive specif-

ic agreement [16] measure which “is the conditional probability 

that one rater will agree that a case is positive given that the oth-

er one rated it positive, where the role of the two raters is selected 

randomly. It approximates the proportion of positive cases that 

were agreed on”. We decided to use this measure because it only 

takes into consideration the cases in which two or more tools 

agree on a detected smell. In other words, artifacts which are not 

being reported as smelly by the tools are of less interest in the 

general case. 

The results regarding the level of agreement are shown in Figure 

3. Each sub-diagram corresponds to a smell (the top-left applies to 

all smells), while the tools which are capable of detecting that 

smell are shown vertically and horizontally. On the intersection of 

two different tool the calculated positive specific agreement is 

shown in color and numerically. It is striking that for most of the 

cases, the calculated positive specific agreement has a value of 0 

or one very close to that. This shows that the different techniques 

used by the smell detectors, lead to very different reported smell 

instances. This raises questions about which techniques are more 

efficient and / or implemented in a better way, as well as which of 

the reported cases correspond to an actual smell of the detected 

type in a given software product. Without a commonly-agreed 

ground truth it becomes challenging to rate the accuracy of each 

tool. Nevertheless, instances on which multiple tools agree pro-

vide some level of confidence in the existence of a problem.  It 

should be noted that there are only a few exceptions to the previ-

ous observation, such as Dispersed Coupling which is detected by 

JSpIRIT and Organic, God Class detected by JSpIRIT and PMD, 

Long Parameter List found by CheckStyle and PMD, as well as 

Long Method reported by JSpIRIT and Organic, where the posi-

tive specific agreement is equal or greater than 0.6. However, a 

high level of agreement can be claimed only for values above 0.8 

which is observed only in one case. 

5. Conclusions and Threats to Validity 

For the reliable assessment of Technical Debt in software projects 

it is of paramount importance to accurately detect code smells, 

which form one of the main pillars of TD. Code smell detection 

tools can play an important role to this goal by automatically iden-

tifying refactoring opportunities. In this paper, we integrated six 

widely used code smell detectors and conducted a case study with 

an open-source project to find the total smell instances detected by 

each tool, and to study the agreement among them. The results 

showed that for most smells the agreement level is quite low, rais-

ing questions about their subjective criteria and rendering it un-

safe to consider a reported case as an actual smell. 

We acknowledge that the presented case study suffers from 

threats to external validity as only one project was analyzed. We 

plan to conduct more systematic analysis on a larger number of 

projects. To mitigate threats to construct validity we plan to ex-

periment with the configuration settings of each tool, wherever 

this is possible, so as to obtain more meaningful results.  
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