
Merging Smell Detectors: Evidence on the Agreement

of Multiple Tools

Anonymous Author†
Affiliation

 Email

Anonymous Author
 Affiliation

 email

Anonymous Author
 Affiliation

 email

Anonymous Author
 Affiliation

 email

ABSTRACT

Technical Debt estimation relies heavily on the use of static anal-

ysis tools looking for violations of pre-defined rules. Largely,

Technical Debt principal is attributed to the presence of low-level

code smells, unavoidably tying the effort for fixing the problems

with mere coding inefficiencies. At the same time, despite their

simple definition, the detection of most code smells is non-trivial

and subjective, rendering the assessment of Technical Debt prin-

cipal dubious. To this end, we have revisited the literature on code

smell detection approaches backed by tools and developed an

Eclipse plugin that incorporates six code smell detection ap-

proaches. The combined application of various smell detectors

can increase the certainty of identifying actual code smells that

matter to the development team. We also conduct a case study to

investigate the agreement among the employed code smell detec-

tors. To our surprise the level of agreement is quite low even for

relatively simple code smells threating the validity of existing TD

analysis tools and calling for increased attention to the precise

specification of code and design level issues.

CCS CONCEPTS

• Maintaining software • Software maintenance tools • Quality

assurance

KEYWORDS

Code Smells, Technical Debt, Principal, Refactoring

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2022.

Code Smell Detection: Evidence from multiple Tools. In Proceedings of

5th International Conference on Technical Debt (TechDebt’2022). ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/1234567890

1. Introduction

Poor software quality can be expressed in various ways: as non-

conformance to design principles, lack of design patterns, exces-

sive metric values, violations of heuristics, existence of Technical

Debt and through the presence of code smells. Code smells, intro-

duced by Fowler in 1999 [1], are defined as bad practices when

writing code and have become very popular among developers

since they capture in a systematic, yet simple manner, habits lead-

ing to less maintainable code. While an experienced developer can

usually identify code smells simply by looking through the code

given that he / she is familiar with their definition, smell identifi-

cation should be automated considering their frequency in even

small-scale systems. Code smells form one of the main pillars for

Technical Debt (TD) assessment in most contemporary TD man-

agement tools.

To facilitate the automatic identification of code smell instances

representing opportunities for refactoring, various tools have been

developed, either commercial or as research prototypes, that are

capable of detecting code smells and displaying them in a user-

friendly way. Such automation of the detection process can have a

very positive impact on both quality and productivity. An empiri-

cal study [2] showed that automated smell detection can save time

and when compared to a manual review of the results it increases

the confidence about the detected smells.

Although automated detection of smells can be of great help, extra

care needs to be taken when selecting a tool, since the adopted

detection techniques determine the obtained results. Rasool and

Arshad [3] presented a review of state-of-the-art tools for code

smell detection, which vividly showed that precision and recall

differ largely between tools even for those that rely on the same

technique. Such reviews are important because they can highlight

advantages and disadvantages of using these tools and distinguish

the most appropriate one in each occasion.

Despite the availability of various code smell detection tools, it

can be time consuming to either find already analyzed cases or get

access to executable files, plug-ins or source code of the tools of

interest, to extract conclusions from the results or to conduct case

studies. In this paper, we introduce an Eclipse plug-in [4], namely:

Smell Detection Merger, which incorporates six (6) code smell

detection tools (some of them were introduced as research prod-

ucts) and aggregates the results. Smell Detection Merger allows

the user to easily access and use the underlying tools to conduct

experiments in a direct way and get aggregate results.

Accurate code smell detection is of paramount importance in the

context of Technical Debt (TD) estimation for two reasons: First,

TD tools rely on static source code analyzers to identify code

smells as TD issues, whose refactoring effort is summed up to

measure the principal of the software. Unreliable smell detection

approaches render the resulting TD measurement inaccurate. As

an indicative example of the importance of code smells for TD

quantification, project commons-imaging of the Apache ecosys-

tem, entails according to the widely used SonarQube TD assess-

ment tool 1,307 TD issues of which 1,236 refer to code smells

TechDebt 2022, May, 2022, Pennsylvania USA F. Surname et al.

(94.5%). In terms of effort to repay TD, the principal is measures

as 26 days, out of which 25 days correspond to the effort for miti-

gating code smells. Second, most TD tools focus on code-level

smells leaving out smells pertaining to the design of methods,

classes and packages. We performed a case study on the level of

agreement among the examined smell detectors to shed light into

the maturity of the code smell concept in terms of common defini-

tion and common detection approaches.

The rest of the paper is organized as follows. Section 2 provides

an overview of related work. In section 3, the developed plug-in is

presented while Section 4 presents a case study on an open-source

project using our plug-in and sheds light into the level of agree-

ment among tools. Finally, we conclude in section 5.

2. Related Work

In the literature there are various tools on smell detection; there-

fore, comparisons between them are essential to determine which

of them produce the best results, their underlying detection tech-

niques and their accuracy. Fontana et al. [5], in their experimental

assessment, reviewed several code smell detectors and presented a

list of all the smells supported by the tools in order to find the

common ground between them. Their case study considered four

tools, namely JDeodorant, inFusion, PMD and CheckStyle while

findings on six code smells have been compared. Interestingly, the

results showed very high agreement ratio between the tools for

each smell type in all of the selected versions. A comparative

study was also conducted by Hamid et al. [6] that consisted of a

comparison of two tools, namely. JDeodorant and inCode, fol-

lowed by an extensive analysis of their detection results on two

common code smells, Feature Envy and God Class. The authors

concluded that the results between the tools differed significantly,

mainly due to the different approaches they follow on detecting

these smells.

Rasool and Arshad [3] performed an extensive review on the

state-of-the-art techniques and tools for mining code smells from

source code. Code smell detection techniques and tools are classi-

fied based on their detection methods into: manual detection, met-

rics-based, symptoms-based, probabilistic-based, visualization-

based, search-based and cooperative-based techniques. Based on

results in the literature the authors observed a wide disparity in the

results among different tools. The same conclusion was reached

through experimentation, in which the authors installed three code

smell detection tools, namely CheckStyle, JDeodorant, and PMD

for comparing their results on four common code smells.

Another extended review was conducted by Fernandes et al. [7]

on the state-of-the-art code smell detectors in order to provide an

overview for each tool. For each of the tools they listed essential

details like the programming language it was developed as well as

the target language that can be analyzed, the employed detection

technique, the code smells it can detect, if it is free to use, if a

GUI is provided, etc. In terms of this review, the authors per-

formed an experiment with four of the tools, i.e., inFusion, JDeo-

dorant, PMD, JSpIRIT and compared the results of detecting two

smells, namely Large Class and Long Method. Kaur and Dhiman

[8] performed a review of tools and techniques for code smell de-

tection. The authors highlighted that the comparison between

tools and approaches can be a challenging task due to the fact that

many of them are not publicly available to researchers and also

the experiments that are conducted with these tools, are often car-

ried out on different projects for different smell types. For their

review, they considered JDeodorant and CodeNose tools for the

detection of smells such as Feature Envy, Large Class, Long

Method, Long Parameter List, Refused Bequest.

Table 1 provides a summary of previous studies along with num-

ber of tools and smells considered in this paper. As it can be seen,

we perform our study with a larger set of tools and on a signifi-

cantly larger set of code smells.

Paper Tools Code Smells

Fontana et

al. [5]

JDeodorant

inFusion

PMD

CheckStyle

Duplicate Code, Feature Envy,

God Class, Large Class, Long

Method, Long Parameter List

Hamid et al.

[6]

JDeodorant

inCode

Feature Envy, God Class

Rasool and

Arshad [3]

CheckStyle

JDeodorant

PMD

Large Class, God Class, Long

Parameter List, Long Method

Fernandes

et al. [7]

inFusion

JDeodorant

PMD

JSpIRIT

Large Class, Long Method

Kaur and

Dhiman [8]

JDeodorant

CodeNose

Feature Envy, Large Class,

Long Method, Long Parameter

List, Refused Bequest

This work CheckStyle,

DuDe

PMD

JDeodorant

JSpIRIT

Organic

Brain Class, Brain Method,

Class Data Should be Private,

Complex Class, Data Class,

Dispersed Coupling, Duplicate

Code, Feature Envy, God

Class, Intensive Coupling, La-

zy Class, Long Method, Long

Parameter List, Message

Chain, Refused Bequest, Shot-

gun Surgery, Spaghetti Code,

Speculative Generality, Tradi-

tion Breaker, Type Checking

Table 1: Summary of related work experiments

3. Smell Detector Merger

For the purpose of this study, a non-systematic survey was con-

ducted to identify existing tools for code smell detection written in

Java, which support the examination of Java projects. During this

research, several tools were found, but only 6 were eventually in-

cluded under the umbrella of the unified detector we developed,

due to various difficulties. The search for tools was done in

Google Scholar to find articles related to code smell detectors, as

Code Smell Detection: Evidence from multiple Tools TechDebt 2022, May, 2022, Pennsylvania USA

well as reviews or comparisons of such tools. Primarily, we used

“code smell detection tools” and “code smell detection tech-

niques” as our search strings to get relevant results. These search-

es mainly returned literature reviews such as [7] and [8]. Such

studies present various detectors, their implemented detection

techniques and their accuracy. Many of the tools that we have

identified in these reviews or individually, were not available or

maintained by the original authors any more, while others were

not a good fit for our purpose, since their main feature was visual

representation of the detected smells directly in the IDE. In addi-

tion, there were a few more for which we could not get access to

their code and we had difficulties contacting their authors. Never-

theless, some of the tools we used are among the most commonly

seen tools in literature reviews related to code smell detection.

So far, we have integrated the following six tools: CheckStyle [9],

DuDe [10], PMD [11], JDeodorant [12], JSpIRIT [13], and Or-

ganic [14]. The plug-in was developed in Java 8 and tested using

Eclipse IDE version 2021-06 (4.20.0). The first half of the tools

are standalone and are executed by invoking either a jar or bat

file via our plug-in. The second half consists of plug-ins, which

were exported as jar files and then added to our plug-in as exter-

nal libraries to have access to their internal classes and methods.

For some of them, a few minor changes were made to their source

code that had no effect to their detection logic, to expose publicly

specific functionality for our convenience. In addition, we need to

highlight that some of the tools provide a level of customization,

though this is not currently supported via our plug-in. We aim to

include this as part of future work.

The code smells that each of the previously mentioned tools can

detect add up to a total count of twenty. Some of the smells are

more “popular” and can be detected by more than one tool (e.g.,

Long Method and God Class), while others are less popular and

can only be detected by a single tool (e.g., Tradition Breaker and

Type Checking). For more details about the smells that can be de-

tected by each tool, either the corresponding references or the

GitHub1 page of our plug-in can be used.

The developed plug-in offers various options to the user to cus-

tomize the detection process, by defining the set of tools to be

used for the detection, along with the type of smell (or all of them)

to be detected. After the completion of the detection process, the

results are displayed in a single view in the IDE, as shown in Fig-

ure 1. Each row displays a different smell that was detected and

consists of the smell type, the affected element (could be either a

class or a method) and a list of tools that detected the smell sepa-

rated with a comma. If needed, each column can be sorted alpha-

betically in ascending or descending order. Moreover, if the user

double-clicks on a smell, the corresponding resource will open in

the IDE at the line in which the smell was detected. Additionally,

the detected smells can be filtered to keep only those that were

detected by more than 2 (in absolute number) or 50% of the tools.

The previous two filtered sets can also be used as (tentative) gold

1 https://github.com/detectormerger/SmellDetectorMerger

standard sets. This is very important because as such they can be

utilized to calculate precision and recall for each of the tools for

all its supported smell types. Finally, it is worth mentioning that

the results of the detected smells as well as their filtered sets can

be exported to a CSV file for later use.

Figure 1: Smell detection results displayed in a single view

A notable advantage offered by this plug-in, is that it can save a

significant amount of time to researchers who want to perform

reviews for existing code smell detection tools. By using this

plug-in, one no longer has to get access to each separate tool,

download and install it independently, get the results for each one

of them and eventually compare the results with the rest. Instead,

the user can select the tools of interest as well as the smell(s) to be

detected and get the combined results with one click.

4. Empirical Evidence on Tools Agreement

To perform a preliminary evaluation of the tools, we conducted a

small-scale study on an open-source project. The project we used

is Apache HTTP Components [15]; which provides a set of low-

level tools for implementing the HTTP and other relevant proto-

cols. The project consists of four Maven sub-projects, which were

all imported in Eclipse and then each one was analyzed using

Smell Detector Merger. The results were exported to a CSV file in

order to post-process them.

Figure 2 provides an overview of the smells that were detected by

Smell Detector Merger. The top left cell indicates the aggregate

results, while all other cells correspond to a single smell. The bar

charts display the tools that detected each smell, along with the

total occurrences they found. It becomes obvious that in most cas-

es there is a notable difference in the total number of identified

smells between two or more tools. For some smell types the dif-

ference is substantial, as for example in the case of Shotgun Sur-

gery, for which JSpIRIT detected 91 instances, while Organic on-

ly 13. The same applies for Long Method, for which JDeodorant

detected the most instances (727 smells), while Organic detected

192 instances and CheckStyle, only reported 5 occurrences.

Through the figure the reader can grasp the popularity of each

smell, and can focus on the smells which can be detected by at

least two of the integrated tools. From the entire set of 20 support-

ed smells, 8 are detected by only one of the tools, while the other

12 are supported by more than one tools, enabling a comparison

of the results.

https://github.com/detectormerger/SmellDetectorMerger

TechDebt 2022, May, 2022, Pennsylvania USA F. Surname et al.

Figure 2: Overview of the detected smells and their total occurrences found per tool

Figure 3: Positive Specific Agreement

Apart from the number of identified smell instances, it is im-

portant to investigate the agreement on the detected code smells

among the tools. To achieve that, we relied on the positive specif-

ic agreement [16] measure which “is the conditional probability

that one rater will agree that a case is positive given that the oth-

er one rated it positive, where the role of the two raters is selected

randomly. It approximates the proportion of positive cases that

were agreed on”. We decided to use this measure because it only

takes into consideration the cases in which two or more tools

agree on a detected smell. In other words, artifacts which are not

being reported as smelly by the tools are of less interest in the

general case.

The results regarding the level of agreement are shown in Figure

3. Each sub-diagram corresponds to a smell (the top-left applies to

all smells), while the tools which are capable of detecting that

smell are shown vertically and horizontally. On the intersection of

two different tool the calculated positive specific agreement is

shown in color and numerically. It is striking that for most of the

cases, the calculated positive specific agreement has a value of 0

or one very close to that. This shows that the different techniques

used by the smell detectors, lead to very different reported smell

instances. This raises questions about which techniques are more

efficient and / or implemented in a better way, as well as which of

the reported cases correspond to an actual smell of the detected

type in a given software product. Without a commonly-agreed

ground truth it becomes challenging to rate the accuracy of each

tool. Nevertheless, instances on which multiple tools agree pro-

vide some level of confidence in the existence of a problem. It

should be noted that there are only a few exceptions to the previ-

ous observation, such as Dispersed Coupling which is detected by

JSpIRIT and Organic, God Class detected by JSpIRIT and PMD,

Long Parameter List found by CheckStyle and PMD, as well as

Long Method reported by JSpIRIT and Organic, where the posi-

tive specific agreement is equal or greater than 0.6. However, a

high level of agreement can be claimed only for values above 0.8

which is observed only in one case.

5. Conclusions and Threats to Validity

For the reliable assessment of Technical Debt in software projects

it is of paramount importance to accurately detect code smells,

which form one of the main pillars of TD. Code smell detection

tools can play an important role to this goal by automatically iden-

tifying refactoring opportunities. In this paper, we integrated six

widely used code smell detectors and conducted a case study with

an open-source project to find the total smell instances detected by

each tool, and to study the agreement among them. The results

showed that for most smells the agreement level is quite low, rais-

ing questions about their subjective criteria and rendering it un-

safe to consider a reported case as an actual smell.

We acknowledge that the presented case study suffers from

threats to external validity as only one project was analyzed. We

plan to conduct more systematic analysis on a larger number of

projects. To mitigate threats to construct validity we plan to ex-

periment with the configuration settings of each tool, wherever

this is possible, so as to obtain more meaningful results.

ACKNOWLEDGMENTS

Work reported in this paper has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation programme

under grant agreement No 871177 (project: SmartCLIDE).

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing

code, Addison-Wesley Professional, 1999.

[2] J. Schumacher, N. Zazworka, F. Shull, C. Seaman and M.

Shaw, "Building Empirical Support for Automated Code

Smell Detection," Proceedings of the 2010 ACM-IEEE inter-

national symposium on empirical software engineering and

measurement, pp. 1-10, 2010.

[3] G. Rasool and Z. Arshad, "A review of code smell mining

techniques," Journal of Software: Evolution and Process, pp.

867-895, 9 September 2015.

[4] E. Clayberg and D. Rubel, Eclipse Plug-ins, Addison Wesley

Professional, 2009.

[5] F. A. Fontana, P. Braione and M. Zanoni, "Automatic detec-

tion of bad smells in code: An experimental assessment,"

Journal of Object Technology, January 2012.

[6] A. Hamid, M. Ilyas, M. Hummayun and A. Nawaz, "A Com-

parative Study on Code Smell Detection Tools," International

Journal of Advanced Science and Technology, vol. 60, pp.

25-32, 2013.

[7] E. Fernandes, J. Oliveira, G. Vale, T. Paiva and E. Figueredo,

"A review-based comparative study of bad smell detection

tools," Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, pp. 1-

12, June 2016.

[8] A. Kaur and G. Dhiman, "A Review on Search-Based Tools

and Techniques to Identify Bad Code Smells in Object-

Oriented Systems," Harmony search and nature inspired op-

timization algorithms, pp. 909-921, January 2019.

[9] CheckStyle, Available: https://checkstyle.sourceforge.io/ .

[10] R. Wettel and R. Marinescu, "Archeology of code duplica-

tion: recovering duplication chains from small duplication

fragments," Seventh International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing (SYN-

ASC'05), p. 8, 2005.

[11] PMD, Available: https://pmd.github.io/

[12] N. Tsantalis and A. Chatzigeorgiou, "Identification of Move

Method Refactoring Opportunities," IEEE Transactions on

Software Engineering, vol. 35, no. 3, pp. 347-367, May/June

2009.

[13] S. Vidal, H. Vazquez, J. A. Dıaz-Pace, C. Marcos, A. Garcia

and W. Oizumi, "JSpIRIT: A Flexible Tool for the Analysis

of Code," 2015 34th International Conference of the Chilean

Computer Science Society (SCCC), pp. 1-6, 2015.

[14] Organic, Available: https://github.com/opus-research/organic

[15] Apache HTTP Components, Available: https://hc.apache.org/

[16] G. Hripcsak and A. S. Rothschild, "Agreement, the f-

measure, and reliability in information retrieval," Journal of

the American medical informatics association, vol. 12, no. 3,

pp. 296-298, 5 May 2005.

https://checkstyle.sourceforge.io/
https://pmd.github.io/
https://github.com/opus-research/organic
https://hc.apache.org/

