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e A Sequence-to-Sequence approach is proposed for line-level vulnerability localiza-
tion.

e The Sequence-to-Sequence approach outperforms XAl-based methods in vulnera-
bility detection.

e LLM hallucinations are mitigated by matching generated lines to real ones via
cosine similarity.
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Abstract

Context: The development of secure software systems depends on early and accurate
vulnerability identification. Manual inspection is a time-consuming process that requires
specialized knowledge. Therefore, as software complexity grows, automated solutions be-
come essential. Vulnerability Prediction (VP) is an emerging mechanism that identifies
whether software components contain vulnerabilities, commonly using Machine Learning
models trained on classifying components as vulnerable or clean. Recent explainability-
based approaches attempt to rank the lines based on their influence on the output of the
VP Models (VPMs). However, challenges remain in accurately localizing the vulnerable
lines.

Objective: This study aims to examine an alternative to explainability-based ap-
proaches to overcome their shortcomings. Specifically, explainability-based methods
depend on the type and accuracy of the file or function-level VPMs, inherit possible
misleading patterns, and cannot indicate the exact code snippet that is vulnerable nor
the number of vulnerable lines.

Method: To address these limitations, this study introduces an innovative approach
based on fine-tuning Large Language Models on a Sequence-to-Sequence objective to
directly return the vulnerable lines of a given function. The method is evaluated on the
Big-Vul dataset to assess its capacity for fine-grained vulnerability detection.

Results: The results demonstrate that the proposed method significantly outperforms
the explainability-based baseline both in terms of accuracy and cost-effectiveness.
Conclusions: The proposed approach marks a significant advancement in automated
vulnerability detection by enabling accurate line-level localization of vulnerabilities.
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1. Introduction

Security is an important characteristic of the Software Development Life-Cycle (SDLC)
according to the International Standard on Software Quality ISO/IEC 25010 [1]. How-
ever, in practice it is usually considered an afterthought and is not addressed until the
final stages of the overall SDLC. Software enterprises often neglect enhancing the secu-
rity and the resilience of their products on the altar of fast delivery [2] or due to lack
of security expertise [3]. As a result, the number of reported vulnerabilities continues to
rise each year, according to the published Common Vulnerabilities and Exposures (CVE)
records [4].

Software vulnerabilities are weaknesses within the source code that can be exploited
by one or more external threats [5]. They are often caused by a small number of common
programming errors made by developers during the coding phase, but their exploitation
can lead to devastating consequences in terms of data privacy and system confidentiality,
integrity, and availability as well as serious financial damage. For instance, one of the
most notable critical vulnerabilities, the LogdShell vulnerability was found in a widely-
used open-source logging library called Log4j. It can allow an attacker to control the
remote systems, execute malware and leak sensitive information (e.g., passwords), among
others [6].

To avoid similar circumstances, it is important for software houses to adopt proper
security assessment and vulnerability detection solutions from the early phases of the
SDLC [7]. However, the continuous increase in the number of security breaches and
vulnerabilities exploited, especially considering the fact that many vulnerabilities remain
undetected for years (e.g., Heartbleed remained unnoticed for two years and Log4Shell
for eight years) [8], demonstrates the insufficiency of the tools already in use. Hence,
there is a strong need for innovative and accurate vulnerability detection techniques.

1.1. Background

Existing vulnerability detection techniques are divided in traditional and data-driven
categories. The former include static and dynamic analysis whereas the latter leverage
Machine Learning (ML) to perform vulnerability prediction (VP). Static analysis tools
(e.g., SonarQube, Coverity, Checkmarx, etc.) [9] identify buggy lines of code based on
rules and code patterns defined by experts. However, static code analyzers often miss
certain types of vulnerabilities since not all vulnerabilities can be modeled by rules, and
every analyzer has its own detection rules and supports different vulnerability categories
[10]. Moreover, static analysis is too broad producing many false positives, overwhelming
security teams with a large amount of false alarms [11],[12]. On the other hand, dynamic
testing techniques, such as fuzzing and penetration testing, analyze running software
and simulate attacks to identify weaknesses. However, dynamic testing still produces
both false positives and false negatives, cannot be applied to every component, and has
difficulty on tracing the vulnerability in the code [13].

As regards the data-driven approach, VP involves constructing vulnerability predic-
tion models (VPMs), which are ML models trained on software attributes extracted
from the source code of files or functions/methods in order to predict the existence of
vulnerabilities in them. The VP-related research evolved from the construction of ML
models based on software metrics (e.g., complexity, cohesion, etc.) [14],[15],[16],[17] to
building Deep Learning (DL) models capable of learning patterns in the text of the
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source code, similarly to Natural Language Processing (NLP) tasks [18],[19],[20]. Typi-
cally text mining attempts represent the source code as sequences of tokens, where each
token is encoded with an embedding vector [21],[22], or as text-rich graphs, such as the
Code Property Graphs (CPGs) [23], which are fed to Graph Neural Networks (GNNs)
to extract a graph embedding of the source code [24],[25],[26]. Recently, with the break-
through of the Transformer architecture [27], the focus of the VP-related literature has
shifted to transfer learning approaches. Several studies employ pre-trained models to
build Large Language Models (LLMs)-based VPMs [28],[29],[30],[31]. It can be argued
that LLMs have dominated the VP field, but, despite being considered as a promising
solution for addressing open issues in the literature [32], the LLM-based VP solutions
still face important challenges [33].

1.2. Motivation for line-level vulnerability detection

A major challenge in the domain that hinders the adoption of ML-based VP solutions
in practice is the level of granularity at which the predictions are made. Most studies
in the literature are coarse-grained as they predict whether there are vulnerabilities at
file or function level of granularity [32]. Such predictions could be useful for the devel-
opment teams to prioritize their inspection and fortification efforts to specific software
components, but are still far from achieving complete vulnerability detection, since they
lack the ability to present the specific lines of the components containing the vulnera-
bilities, let alone the vulnerability categories [34]. Therefore, coarse-grained predictions
discourage software engineers from using such tools. It can be argued that the lower the
granularity, the more actionable the results and the easiest manual inspection, but it is
more difficult to build accurate mechanisms.

To clearly demonstrate the benefit from fine-grained VPMs, Figure 1 illustrates the
difference between the outputs of function-level and line-level approaches using a buffer
overflow example. In this example, processInput function receives user input and copies
it into a fixed-size buffer without verifying the input’s length. This operation introduces
a buffer overflow vulnerability, which can result in overwriting adjacent memory locations
and potentially lead to arbitrary code execution. In Figure 1, the entire processInput
function is highlighted with an outer, thicker red rectangle, representing the output of a
typical function-level VPM, which flags a whole function as potentially vulnerable. This
narrows the inspection focus (e.g., by a human reviewer) from the entire class to this
specific function. In contrast, the inner, thinner red rectangle highlights only the lines
directly responsible for the vulnerability, reflecting the output of a line-level prediction
approach. This finer-grained localization provides developers with much more actionable
guidance, allowing them to directly identify and remediate the exact code statements
that are vulnerable, rather than needing to manually inspect every line in the function.

1.8. Motivation for the proposed LocVul approach to Localize Vulnerabilities

The vast majority of fine-grained solutions in the VP-related literature employ ex-
plainable artificial intelligence (XAI) to interpret function or file-level predictions and,
thereby, localize vulnerabilities [33]. More specifically, current mechanisms that per-
form VP at a low granularity level focus on the adoption of XAI techniques to extract
the features’ importance in the predictions made by VPMs [35]. A prime example of
such solutions is the LineVul [36] study, in which, Fu et al. [36] proposed fine-tuning a
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#include <iostream>

#include <algorithm>

cLass UserInputProcessor {
public:
void benignMethod() {

}

void processInput(const char* input) {
std::cout << "Processing input..." << std::endl;
int letterCount 0;
for (size t i 9; i < strlen(input); ++i) {
if (std::isalpha(input[i])) letterCount++;

}

char buffer[8];
strcpy(buffer, input);

std::cout << "Input has " << letterCount << " letters.”
if (letterCount > 5) {

std::cout << "Long input detected." << std::endl;
3

std::cout “Buffer contains: " << buffer << std::endl;

}

void benignMethod2() {

}

main(int argc, char* argv[]) {

UserInputProcessor processor;

processor.benignMethod();

if (argc > 1) {
processor.processInput(argv[1]);

}

processor.benignMethod2();
return 0;

Figure 1: A motivating example of line-level vulnerability detection compared to coarser-grained predic-
tions.

pre-trained on code LLM (i.e., CodeBERT|37]) for function-level predictions and then
extracting its Self-Attention [27] weights to get line-level predictions, achieving quite ac-
curate VP at line-level of granularity. From this point on, line-level VP will be referred
to as Vulnerability Detection (VD).

However, such XAl-based solutions heavily depend on the function-level prediction
models. Thus, they can only be applied on top of the VPMs, limiting the choices and
possible improvements of VPMs of different kinds. In addition, VPMs often make a
correct prediction based on irrelevant or even spurious correlations among tokens in the
input sequence, which the VPMs erroneously associate with the existence of vulnerabil-
ities [38],[39]. Therefore, XAl is often prone to fail in correctly identifying vulnerable
lines. Moreover, such XAlI-based solutions assign Attention scores to tokens and, based
on them, assign importance scores to lines. Thus, although they can rank the lines pri-
oritizing the reviewer’s (e.g., developer) efforts to search for vulnerabilities starting from
the higher ranked lines, they are not able to directly showcase which or how many of the
lines are the vulnerable ones (i.e., there is no indication of when to stop the inspection).
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Figure 2 is provided to illustrate the aforementioned limitations of the XAl-based VD as
opposed to the proposed solution for Localizing Vulnerabilities (LocVul).

Explainable Al (XAI)

(B) XAl Output (ranked list of lines, in red the vulnerable ones)

Line number _ Text Line's Attention Score

7 // LOG(INFO) << "\n" << PrintPropList(ibus_prop_list, 0); 23.9
9 if (IFlattenPropertyList(ibus_prop_list, &prop_list)) { 19.6
1 void RegisterProperties(IBusPropList* ibus_prop_list) { 18.2
4 yList prop_list; // our 13
8 // here to dump |ibus_prop_list| 116
. . . L 5 if (ibus_prop_list) { 9.5
(A) Original Code (vulnerable lines in red) 15 // Notify the change. 57
void RegisterProperties (IBusPropList* ibus_prop_list) 10 // Clear properties on errors. 55
DLOG (INFO) << "RegisterProperties” << (ibus prop_list 2 "" : " (clear)"): 6 // You can call 39
L 17 } 14
ImePropertylist prop_list; // our representation. b 0o
if (ibus_prop_list) { return;
// You can call 13} 048
//  LOG(INFO) << "\n" << PrintPropList (ibus_prop_list, 0): 14} 0.47
// here to dump |ibus_prop_listi. 3 0
if (‘FlactenPropertyList (ibus_prop list, &prop list)) { 1 o
// Clear properties on erors.
 erurn, (C) LocVul Output (the lines detected as vulnerable in gray, then the rest)
) T
M RegisterProperties (NULL);
// Notify the change. register_ime properties_(language_library , prop_list);
register_ime_properties_(language_library , prop_list); )

LocVul (Seq2Seq approach)
E=HED0
O

// Notify the change.

Figure 2: A motivating example of the proposed LocVul method compared to XAl-based methods.

Specifically, Figure 2 (A) presents the source code of a given function included in
the dataset used, which contains a weak cryptography vulnerability. The exact location
of the vulnerability is highlighted with red lines. As can be seen in Figure 2 (B), the
explainability-based technique (e.g., Self-Attention mechanism) returns a list of the lines
of the function sorted from the most likely to be vulnerable to the least likely. In contrast,
as can be seen in Figure 2 (C), LocVul returns the exact set of lines it considers vulnerable,
as highlighted in gray. LocVul response can then be filled in by the remaining lines of
the function. Thus, LocVul’s response facilitates the inspection process, since the code
reviewer would have an indication of the number and the exact location of the vulnerable
lines. Moreover, one can see in Figure 2 (B) that there are several lines before the
vulnerable ones in the list proposed by the explainability-based method, which indicates
that although the VPM at the function level has correctly identified the vulnerable
function, it has also emphasized features that are not related to the vulnerability (i.e.,
spurious data associations).

1.4. Nowelty and contribution

In this study, we propose an alternative approach named LocVul to perform line-
level vulnerability prediction (i.e., vulnerability detection) that uses two distinct models
for function-level and line-level prediction respectively, managing to overcome the afore-
mentioned limitations. Specifically, in the proposed approach, the line-level model (i) is
independent from the function-level VPM and, therefore, can be implemented on the top
of metrics, text, graph-based or ensemble VPMs; (ii) does not propagate the error of the
spurious patterns learned by the VPMs; and (iii) first returns a string with the specific
lines it considers vulnerable and then returns a ranked list of lines so that the inspector
has both an indication of the exact lines identified as vulnerable and, complementarily,

5



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

a list of all lines sorted by their likelihood of being part of the vulnerability. Moreover,
LocVul achieves higher accuracy and better cost-effectiveness than XAlI-based methods.

LocVul is based on a Sequence-to-Sequence (Seq2Seq) approach, where a Text-to-Text
Transformer-based model [40] is trained on the task of extracting the vulnerable lines from
functions that are predicted as vulnerable by a text mining-based VPM. More specifically,
we first fine-tune a pre-trained model (i.e., CodeBERT) on the objective of classifying
functions as vulnerable or not and, also, we fine-tune a pre-trained Sequence-to-Sequence
model (i.e., CodeT5[41]) in the vulnerable lines extraction objective. Subsequently, we
execute the classification model on unseen data to predict vulnerable functions and, then,
we apply the Sequence-to-Sequence model on the predicted as vulnerable functions to
get the vulnerable code snippets that are included in them.

To the best of our knowledge, LocVul is the first Sequence-to-Sequence VD approach,
which manages not only to overcome the limitations of the XAl-based approaches, but
also to clearly surpass their detection accuracy. Additionally, this study observes that the
Sequence-to-Sequence model produces some imprecise outputs, which could be an im-
portant limitation of this approach. In particular, we observed that the developed model
often generates similar but not identical vulnerable lines as those present in the analyzed
function, which is considered an issue related to LLMs hallucinations [42]. Therefore,
the present study proceeds by proposing also a solution that eliminates this problem
by replacing the not-exact matches with the most similar lines in the original function
(see Section 3.3). Overall, the contributions of the current study can be summarized as
follows:

e A novel non-XAl-based VD mechanism is proposed based on a Sequence-to-Sequence
model: We propose a two-stage approach where (i) a CodeBERT-based classifier
is fine-tuned to identify vulnerable functions, and (ii) instead of explaining the
function-level predictions, a CodeT5-based Sequence-to-Sequence model is fine-
tuned to directly extract vulnerable lines from given vulnerable functions. The
approach is trained and evaluated in the Big-Vul dataset.

e Superior than state-of-the-art results are achieved in terms of accuracy and cost-
effectiveness: Our method significantly improves various evaluation metrics over the
Self-Attention XAI baseline in identifying vulnerable lines in vulnerable functions.

e A method to mitigate LLM hallucinations in VD is proposed: We propose a line
replacement post-processing step using cosine similarity between the embedding
vectors of the tokenized lines to match generated lines to those present in the
function, mitigating “hallucinated” outputs from CodeT5.

e A replication package of our LocVul implementation is published publicly: We
provide our source code, models, and guidelines to reproduce the results [43].

The rest of the paper includes Section 2, which summarizes the related work in the
literature and Section 3 that provides a detailed description of the proposed approach.
Subsequently, Section 4 sets up the experimental design, while the results of our exper-
imental analysis are presented in Section 5. Section 6 discusses the insights and lessons
learned from the analysis, and finally, Section 7 provides the conclusions of the study
and suggestions for future work.
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2. Related work

This section presents previous studies in the field of ML-based vulnerability prediction
(VP). Initially, we describe notable studies regarding VP in file and function level, and
subsequently, we discuss more fine-grained techniques.

2.1. Coarse-grained vulnerability prediction

Initial attempts at ML-based VP used software metrics as indicators of the exis-
tence of vulnerabilities. Shin and Williams [14],[44] were among the first to explore the
potential of complexity metrics to differentiate between vulnerable and non-vulnerable
functions. Chowdhury and Zulkernine [45] then presented a VP paradigm by using com-
plexity, cohesion, and coupling metrics and training several ML models. Furthermore,
Kalouptsoglou et al. [15] utilized a variety of statically extracted software metrics to
predict vulnerable files using the Multi-Layer Perception (MLP) classifier.

Moreover, text mining-based studies were presented in the literature, which were ini-
tially based on the Bag of Words (BoW) text representation format, where each software
component is a table, its words are the table’s columns, and the frequencies of the words
are the columns’ values [18],[46],[47]. Comparative studies [8],[48] have shown that text
mining-based VP is more accurate than software metrics-based VP, managing to capture
more complex patterns in the source code. Text mining-based approaches evolved from
the more simplistic BoW to the sequences of tokens representation format, which repre-
sents the source code of a file or function as a sequence of words (i.e., tokens). The tokens
sequence is then transformed to a sequence of embedding vectors [22] using algorithms
such as word2vec [49] and fastText [50]. In particular, Dam et al. [19] employed a Long
Short-Term Memory (LSTM) model to automatically predict vulnerable files. In addi-
tion, Li et al. [21] proposed VulDeePecker that utilizes a Bidirectional LSTM to identify
vulnerable code on tokens encoded with word2vec embeddings.

Furthermore, Bilgin et al. [24] proceeded with the extraction of the Abstract Syntax
Tree (AST) of C/C++ methods and the utilization of ML models to classify them to
vulnerable and non-vulnerable ones. Next, Zhou et al. [25] proposed the Devign model
based on graphical source code representations (i.e., ASTs, control and data flow graphs)
and leveraged a GNN to extract the graph embeddings of C/C++ functions, which
then were classified to vulnerable and non-vulnerable ones. Nonetheless, Chakraborty
et al. [26] revealed several limitations of the existing VP datasets and approaches and
proposed a CPG [23] and GNN-based methodology managing to outperform Devign.

Recently, after the breakthrough of the Transformer architecture [27], several studies
have employed transfer learning for VP leveraging the vast knowledge and the context-
aware patterns encapsulated in the pre-trained LLMs [33]. To this end, Bagheri et
al. [30] compared traditional embedding techniques (i.e., word2vec and fastText) to the
embeddings extracted from the Bidirectional Encoder Representations from Transformers
(BERT) [51] in their capacity to classify code snippets in vulnerable and non-vulnerable
ones. Furthermore, Kalouptsoglou et al. [29] fine-tuned three popular LLMs and their
pre-trained on code variants observing their superiority compared to traditional text
mining-based methods and also the superiority of the code variants. They also observed
an advantage of the encoder-only Transformer-based models in VP.

Moreover, several empirical studies conducted by researchers compared various pre-
trained models in the task of VP [52],[53]. In addition, Kim at al. [54] fine-tuned BERT to
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construct their VPM called VulDeBERT managing to outperform VulDeePecker, while
Hanif et al. [55] pre-trained on code a RoBERTa [56] model, added an MLP and a
Convolutional Neural Network (CNN), and fine-tuned it on vulnerability-related C/C+-+
data for VP, outperforming both Recurrent Neural Networks (RNN)-based and GNN-
based approaches.

2.2. Fine-grained vulnerability detection

In an attempt to provide fine-grained vulnerability predictions, Hin et al. [57] em-
ployed supervised statement-level training. In particular, they presented a GNN-based
model, namely LineVD, which classifies each line of the predicted as vulnerable func-
tions into vulnerable or not. Instead of classifying every line, Li et al. [58] proposed
the IVDetect model following an interpretable (i.e., explainable) ML-based approach.
Specifically, they represented the source code in Program Dependency Graphs (PDGs)
[59], performed function-level VP, and then interpreted the model’s decisions using the
GNNExplainer [60] method that derives interpretation sub-graphs. Those sub-graphs
correspond to hotspots in the source code that are more relative to the identified vul-
nerabilities. Similarly, LineFlowDP [61], which employed PDGs to represent source code
and GNNs to perform file-level prediction of defects (i.e., general bugs or malfunctions),
leveraged GNNExplainer [60] to explain the predictions and localize defects.

Nonetheless, Fu et al. [36] emphasized on the limitation of graph-based solutions,
such as IVDetect [58], in producing truly fine-grained interpretations, since sub-graphs
contain a lot of lines of code. To this end, they proposed LineVul [36] by leveraging
the capacity of the pre-trained CodeBERT [37] model. Specifically, they represented
source code in token sequences, they fine-tuned CodeBERT for the binary classification
task of VP, and then, they extracted the token scores through XAI (i.e., through Self-
Attention). By summing the token scores per line, LineVul can rank lines from most
likely to be vulnerable to least likely. In LineVul study, several XAl techniques were
examined concluding that the Self-Attention mechanism of the Transformer model is the
optimal explainability choice. It is also worth noting that all of them clearly outperformed
the CppCheck [62] static code analyzer. Furthermore, DeepLineDP [63] used Recurrent
Neural Networks (RNNs) to perform file-level defect prediction on sequences of source
code tokens, and then, employed an Attention layer [64] to explain the predictions, and
therefore, extract the tokens that contribute the most to the prediction of the defective
files.

However, Cheng et al. [38] observed poor performance of several XAl-based ap-
proaches in localizing vulnerabilities due to the existence of irrelevant features learned
by VPMs, the susceptibility of VPMs to perturbations not related to vulnerabilities, and
the ineffectiveness of the explainers in choosing meaningful characteristics. In addition,
Sotgiu et al. [39] investigated the capacity of explainability techniques to find the features
that contribute most to ML model decisions. Their study used an XAI method called
SHapley Additive exPlanations (SHAP) to highlight important issues in model construc-
tion that obstruct its ability to identify vulnerabilities. Specifically, they observed that a
Transformer-based VPM tends to learn spurious correlations among data. For instance,
the models often emphasize tokens, which should not have a discriminating role in pre-
diction (e.g., special characters of programming languages). They further observed that
the top-10 tokens, which led to a negative or positive decision, were the same for both
classes. Therefore, VD through explainability often leads to incorrect findings.
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2.3. Beyond state-of-the-art

In contrast to previous studies, we do not use an XAl-based technique but present
a Sequence-to-Sequence approach to achieve line-level VD, which, in addition to a list
of sorted lines to prioritize inspection efforts, can provide the inspector with a specific
set of lines that it considers vulnerable. To our knowledge, we are the first to pro-
pose a Sequence-to-Sequence method for vulnerability detection, which, in fact, not only
overcomes the limitations of XAl-based approaches (regarding the dependence on the
function-level VPM as well as the failure due to spurious patterns learned by the VPM),
but also achieves better results. Additionally, LocVul proposes a method to efficiently
handle approximate line predictions (i.e., LLM hallucinations in VD).

3. Overview of the LocVul approach

In this section, we provide a detailed presentation of the proposed approach. Figure
3 illustrates the high-level overview of the entire methodology. First, there is the phase
of training a function-level vulnerability prediction model. Subsequently, there is the
training phase of the line-level vulnerability detection model, and, finally there is the
inference phase where both models are executed to detect vulnerabilities in a function
under test.

Function-level LocVul Classifier Line-level

LocVul Detect:
Training Phase Training Phase ocyul betector]

</>
_—— éé}_' (N N Tokenized
- Tokenizatic clas::i::(ion -*, Tokenizatio; Functlon
-
Tokenized Vulnerability Data
- Postio
VU|_n€f§bl||W Data Function | e (Functions' & vulnerable
(Functions' source code lines' source code) Tokemzed - b e
& binary labels) Vulnerable —
Lines
CodeT5
L el B ettt bt
| Inference Phase
I
I %
I -%{" LocVul B I
| Vulnerabl Detector
! . ;} LocVul uinerable Detected
I | Tokenizatio: a — )
! Classifier Vulnerable [$9
i Tokenized Q Lines > an
! Unseen Data Function Most similar Code
(Functions' Clean line Reviewer

source code) r

Figure 3: Overview of the overall approach.

8.1. Function-level vulnerability prediction model

For VP at the function level, we use the pre-trained Transformer-based CodeBERT
model [37], which has demonstrated promising results in the literature [29],[34],[36],[39].
CodeBERT is a variant of the popular NLP model BERT, which has been pre-trained on
the Masked Language Modeling (MLM) target [51]. More specifically, CodeBERT has
the same encoder-only architecture as the optimized variant of BERT called RoBERTa
[56], but it is bimodal, i.e., it is pre-trained on pairs of source code written in six different
programming languages and documentations written in natural language [37].
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To construct the function-level predictor, we fine-tune CodeBERT in the task of bi-
nary classification of software functions to vulnerable or clean ones. Initially, as can be
seen in Figure 3, a large vulnerability dataset that consists of the source code of functions
and their corresponding binary labels (i.e., vulnerable or clean function) is leveraged as
historical knowledge to train the model. The source code is then tokenized by the Code-
BERT tokenizer in order to derive the tokenized functions, which are the actual input
to CodeBERT. This tokenizer utilizes subword-based tokenization to divide unknown
words into smaller words or characters. A classification head (i.e., a classification layer)
is placed on top of CodeBERT layers in order to facilitate its training in the VP objective.
CodeBERT along with the classification head constitute the LocVul Classifier.

3.2. Line-level vulnerability detection model

In the line-level training phase, we follow a Sequence-to-Sequence training paradigm.
Commonly, Sequence-to-Sequence models convert an input sequence into an output se-
quence, which can be of different lengths. These models are trained to pair the input
to the output and are particularly useful when understanding the context of the entire
sequence is required (tasks such as translation, summarization, etc.) [65]. Since our pur-
pose is to extract the vulnerable lines out of a given function, the task can be considered
a Sequence-to-Sequence task, where the source code of the function is the input sequence
and the source code of the vulnerable lines is the output sequence. Actually, the task
of VD can be treated like a summarization task, where the function is the text to be
summarized and the vulnerable lines correspond to the extractive summary.

To facilitate a Sequence-to-Sequence training, we employ an encoder-decoder model,
in contrast to the encoder-only CodeBERT that we utilize for binary classification. The
encoder-decoder architecture is naturally suited for tasks that require alignment between
input and output sequences. Specifically, we employ the pre-trained Transformer-based
model called Text-To-Text Transfer Transformer (T5) [66], which has learned to predict
masked spans of text during its pre-training. In particular, we use the CodeT5 variant of
T5, which has been pre-trained on programming languages [41]. As an encoder-decoder
model, CodeT5 is a very appropriate LLM for a task that extracts specific lines from a
given set of lines (i.e., functions). The encoder converts the input sequence into a vector
representation, and the decoder generates the output sequence from this representation.

As can be seen in Figure 3, for the purposes of training and evaluating our line-level
detection model, we leverage a large vulnerability database, which consists of source
code pairs of functions and their lines that are labeled as vulnerable. The pairs of source
code are then tokenized in order to produce pairs of tokenized functions and tokenized
vulnerable lines. Both tokenized pairs are given as input to CodeT5 model, which is
fine-tuned in the VD objective. The fine-tuned CodeTh model constitutes the LocVul
Detector.

3.3. Inference phase

Finally, there is the inference phase of the proposed methodology, as depicted in
Figure 3. During inference, unseen functions are given for analysis, they are tokenized,
and they are classified as vulnerable or clean by the LocVul Classifier (i.e., the fine-tuned
CodeBERT model). The predicted as vulnerable functions are then fed to the LocVul
Detector (i.e., the fine-tuned CodeT5 model), which extracts from the functions the lines
it considers vulnerable.
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In the methodology illustrated in Figure 3, after the vulnerable lines detection by
the LocVul Detector, a process of most similar line replacement is taking place in order
to address the problem of LLM hallucinations. This issue refers to cases where LLMs
generate output that is syntactically correct and contextually plausible, but does not
correspond to any actual line in the analyzed function [42]. In our case, we observed
that the vulnerable lines produced by the LocVul Detector (based on CodeT5) are often
almost but not entirely identical to actual lines in the function. For instance, instead
of correctly returning the line strcpy(buffer, input);, the model might hallucinate
a line such as copyString(buffer, input) ;, which does not exist in the original code.
These discrepancies can hinder both automated and manual vulnerability remediation,
as well as the reported localization accuracy.

To mitigate this, we implement a line replacement mechanism that, for each tokenized
line generated by the LocVul Detector that is not present in the original function (i.e.,
is hallucinated), computes the cosine similarity [67] between its embedding and those of
all the tokenized lines in the function. Subsequently, it replaces the generated line with
the most similar one from the actual lines. In this way, every reported vulnerable line
corresponds to a concrete line in the source code, substantially reducing hallucination-
induced errors.

As a final outcome, the concerned user, who is a security expert or a code reviewer,
receives, for each function flagged as vulnerable, the lines of the function that the LocVul
methodology detects as vulnerable. Specifically, in contrast to the XAl-based methods
that return all the lines of the functions ranked by a vulnerability likelihood, LocVul
approach returns a list of the specific lines detected as vulnerable as a first recommen-
dation, and then, the reviewer can continue inspecting the rest lines of the functions in
the order in which they appear in the source code. We have to specify that as a code
reviewer we consider a human that relies primarily on the output of the tool to guide
the inspection process, without assuming additional prior knowledge about the specific
vulnerability or function under review. In our evaluation, we simulate this reviewer by
having them examine the lines returned by LocVul in the provided order until the true
vulnerability is located.

4. Experimental design

This section initially expresses the Research Questions (RQs) that will guide the
entire experimental design. Subsequently, it presents the studied dataset, the details of
LocVul implementation, the scheme that we followed to evaluate our approach, and the
selection of the baseline method.

4.1. Research questions definition

In order to formulate the objectives of the study, the following RQs are defined:

e RQ;: How accurate is LocVul for line-level vulnerability detection?

RQ; investigates whether LocVul can outperform existing approaches in detect-
ing vulnerabilities that reside in source code. The accuracy of LocVul is mea-
sured through various evaluation metrics to determine whether it surpasses the
explainability-based approaches for identifying line-level vulnerabilities.
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e RQ,: What is the cost-effectiveness of LocVul for line-level vulnerability detection?

RQs is responsible for evaluating the cost-effectiveness of LocVul, which is a critical
factor for the actual employment of VD techniques. The analysis measures the
inspection effort that one has to devote to find actual vulnerable lines using LocVul
and compares it to existing explainability-based approaches.

4.2. Dataset

For the purposes of our experimental analysis, we leverage the Big-Vul dataset, which
was originally provided by Fan et al. [68]. Big-Vul is one of the most established and
widely-used datasets in the field [33],[36],[58],[69],[70]. In brief, Big-Vul is a large C/C++
vulnerability-related dataset that consists of open-source GitHub repositories labeled us-
ing information retrieved from the CVE database. Among various information (e.g.,
severity scores, vulnerability types, CVE summaries, etc.), it contains the code changes
associated with the vulnerability that actually correspond to the vulnerability fixes.
These code changes were retrieved from the commit history of the repositories. Overall,
Big-Vul contains 188,636 functions, which constitute the samples of the dataset, gathered
from 348 open-source C/C++ software repositories. In particular, the dataset includes
10,900 functions labeled as vulnerable and 177,736 functions that are considered clean or
at least neutral (i.e., no vulnerability has been found for them yet). Therefore, Big-Vul
is a dataset with a vulnerability ratio of 6.13 %.

We choose Big-Vul for our experiments, since it is not only a very large dataset, but
it is also considered as a benchmark in the VP domain [71], contains data from a variety
of projects, includes various vulnerability types, contains real vulnerabilities reported in
the CVE database, has a realistic class balance ratio (i.e., 6.13 %) [72], and will therefore
help to better position our study in the relevant domain. Moreover, it contains ground
truths on line-level granularity as opposed to other popular vulnerability-related datasets
that have only function-level labels (e.g., Devign [25], ReVeal[26], DiverseVul[52], etc.),
which is a critical factor in our study.

Furthermore, after conducting a literature review of the studies described in Section 2,
we observed that the most notable studies [36],[38],[57],[58], which deal with fine-grained
VD, used the Big-Vul dataset. Only Sotgiu et al. [39] preferred the Devign dataset
[25], which does not contain line-level labels, but their scope was not the detection of
vulnerable lines. Instead, they investigated the existence of spurious correlations and bias
in VPMs through XAI techniques. In addition, LineFlowDP [61] and DeepLineDP [63]
studies addressed the problem of detecting defective lines in defective files and, therefore,
their dataset contains bugs and general weaknesses in the source code, whereas our study
focuses exclusively on security vulnerabilities, which are a specific type of weaknesses that
threaten the security of software systems.

Before proceeding with training and evaluating the proposed models, we perform a
step of dataset splitting. More specifically, the dataset is divided into 80 % training, 10
% validation, and 10 % testing data. The training set is used for fine-tuning the models
(both function-level and line-level detection models), while the validation set is leveraged
to choose the optimal hyperparameters, and the testing set constitutes the unseen data
that we utilize for the final evaluation of the models.
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4.3. Implementation details

To conduct our experimental analysis, we use the Hugging Face Transformers library
[73] to load pre-trained Transformer-based models (i.e., CodeBERT and CodeT5) and
efficiently manage tokenization. We also utilize the PyTorch framework [74] to construct
our DL models. Furthermore, all experiments were carried out on the CUDA parallel
computing platform of a couple of NVIDIA GeForce RTX 4080 graphic cards.

As regards the classification model that is trained to predict vulnerable functions,
we first load the pre-trained CodeBERT model from Hugging Face and then fine-tune it
for the downstream task of binary classification. The codebert-base model that we load
from Hugging Face is an encoder-only model that consists of 12 layers with 768 hidden
size each and 12 Attention heads in each Attention block, containing overall 125 million
parameters (i.e., trainable weights).

In the fine-tuning phase, CodeBERT receives pairs of source code and binary labels
(i.e., vulnerable and non-vulnerable functions) and is trained to predict which ones are
vulnerable. During this process, all the layers and the weights of the CodeBERT model
are updated to be adjusted to the downstream task. Furthermore, a classification head,
which is a fully-connected layer, is appended to the model, and fine-tuning is performed
using a learning rate (LR) of 0.00002. A linear scheduler is applied to progressively reduce
the LR during training. The AdamW optimizer [75] is employed to optimize the gradient
descent process. To prevent over-fitting, the Early Stopping technique is used, ensuring
the optimal number of training epochs. Input sequences are limited to a maximum
length of 512 tokens, which is the upper bound supported by the model. Additionally,
zero padding is applied to standardize sequence lengths during the encoding process using
the tokenizer of CodeBERT. For sequences exceeding the maximum length, truncation
is performed to maintain consistency and compatibility with the model. Finally, the
Cross-Entropy loss [76] is selected to compare predicted probabilities with true labels.
The values of aforementioned hyperparameters are determined based on the values of
common classification metrics (e.g., Fi-score) during experimentation on the validation
data. A summary of the characteristics of the fine-tuned CodeBERT model is provided
in Table 1.

As regards the Sequence-to-Sequence (Seq2Seq) model trained for line-level vulner-
ability detection, we employ the pre-trained CodeT5 model [41] from Hugging Face.
Specifically, we load the codet5-base model, which comprises an encoder and a decoder,
each with 12 layers, a hidden size of 768 neurons per layer, and 12 Attention heads per
Attention block, resulting in approximately 223 million trainable parameters.

We then fine-tune it for the downstream task of aligning input sequences (i.e., vul-
nerable functions) with output target sequences (i.e. vulnerable lines). More specifically,
the models learns to generate target sequences that correspond to vulnerable lines within
the input functions. During this process, first, the input sequences are tokenized using
the CodeT5 tokenizer, which employs subword-based tokenization to handle both known
and unknown tokens, and then, all layers and weights of the model are updated to
adapt to the downstream task of vulnerability detection. Regarding the selection of the
configurable hyperparameters of the model, it is guided by performance on validation
data, evaluated using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
metric [77]. ROUGE-L in particular, is commonly used for Sequence-to-Sequence NLP
tasks to measure the Longest Common Subsequence (LCS) overlap among generated and
reference texts [78], maintaining the structure of the sequences.
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For the training process (i.e., fine-tuning), a LR of 0.00005 is selected, progressively
reduced using a linear scheduler throughout the training. To optimize the gradient
descent, we utilize the AdamW optimizer [75]. The Early Stopping technique is also
applied to determine the number of training epochs to not exceed the number that
the model no longer improves, preventing over-fitting. Additionally, zero padding is
employed to standardize sequence lengths across batches, and truncation is used for
sequences exceeding the maximum allowable length for this model (i.e., 512 tokens). The
aforementioned configurations of the fine-tuned CodeT5 model are summarized in Table
1.

Table 1: Characteristics of the fine-tuned CodeBERT and CodeT5 models for LocVul Classifier and
LocVul Detector, respectively.

Attribute CodeBERT CodeT5
Model Type Encoder Encoder-Decoder
Transformer Variant RoBERTa T5
Version codebert-base codetb-base
Transformer Layers 12 24
Hidden Size 768 768
Attention Heads 12 12
Number of Parameters ~ 125M ~ 223M
Learning Rate (LR) 0.00002 0.00005
Optimizer AdamW AdamW
Loss Function Cross-Entropy Cross-Entropy
Max Length 512 512

4.4. BEvaluation scheme

To assess our approach on the testing set, we use several evaluation metrics, which
have been established in the related literature [32],[36],[58],[61],[63]. We employ widely
used classification metrics [32] to evaluate the function-level predictions, while the line-
level performance of the model is measured through metrics commonly used in recom-
mendation systems, since VD methods traditionally provide a list of lines sorted from
the most likely to be vulnerable to the least ones, recommending that the top of the
list be inspected first [36],[58],[61],[63]. Moreover, different metrics are used to mea-
sure the accuracy and the cost effectiveness/effort-awareness of the line-level detectors
[36],[61],[63].

First, we assess the function-level predictions of the CodeBERT-based VPM (i.e.,
LocVul Classifier). Since the dataset is highly unbalanced (i.e., class balance ratio 6.13%),
classic Accuracy computed as %, where TP, TN, FP, and FN stand for
true positives, true negatives, false positives, and false negatives, is not sufficient in

itself. Therefore, all of Accuracy, Recall (szr%)’ Precision (Tﬁ_%), and Fi-score

(2XPrecisionxRecall) 510 considered. Being the harmonic mean of Precision and Recall
Precision+Recall )

F-score is considered the most critical metric in VP, providing a single metric capable
of measuring both [26],[32].
Subsequently, to evaluate the accuracy of the LocVul Detector, we compute Top-K
Accuracy (AQK), which is the most used measurement for line-level detection [36],[58],[61].
14
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Top-K Accuracy is defined as £ x 100%, where x is the number of vulnerable functions
whose at least one line is vulnerable in the top-K of the list, and N the total number
of vulnerable functions. It measures the percentage of functions for which the model
detects at least one truly vulnerable line in the top-K lines it considers most likely to be
vulnerable.

Similarly, we report the average value of the Top-K Precision (PQK) and Top-
K Recall (RQK) metrics across all functions. The former stands for the actual vul-

nerable lines detected in the top-K lines proposed by the model and is computed as
Number of vulnerable lines in K : : Number of vulnerable lines in K
Total number of lines in K The latter’ which is equa'l to Total number of vulnerable lines’

computes the truly vulnerable lines of the top-K lines proposed by the model among the
total of vulnerable lines in a function [10].

Nonetheless, Top-K Precision and Top-K Recall are indifferent to the order of vul-
nerable lines in the top-K ranking. They depict the number of vulnerable lines within
the top-K, regardless of their specific order. Therefore, we utilize Mean Reciprocal Rank
(MRR) and Mean Average Precision (MAP) at K, which are two rank-aware metrics.

Specifically, MRR@QK is a ranking quality metric, which is equal to the arithmetic
mean of the Reciprocal Ranks (RR) across all functions, where a RR is the inverse of
the position of the first vulnerable line. MRR@K is calculated as Ef\il ﬁ, where
N refers to the total number of vulnerable functions and rank; is the position of the first
vulnerable line for function ¢ in the top-K results [79]. If no vulnerable lines are found,
MRR is equal to zero.

Moreover, MAP@K is the mean of the Average Precision (AP) at K of all functions
analyzed. It considers the number of vulnerable lines in the top-K list and their position
in the list. First, we compute the AP per function by averaging the precision at each
position of vulnerable lines in the top-K ranking list. Particularly, MAPQK is calculated
as %22;1 APQK, where N presents the total number of vulnerable functions, and

APQK is calculated as - Zszl P@kxrel(k), where M refers to the number of vulnerable
lines in the top-K results for a specific function, K refers to the selected cutoff point,
P@k is the Top-k Precision, and rel(k) equals 1 if the line at position & is vulnerable and
0 if not [79].

Since such a VD tool would only be useful if it managed to rank the vulnerable lines
of the analyzed functions at the top of the recommended list of lines, we have to choose a
relatively small value of K. Therefore, we choose K = 10 to compute the aforementioned
metrics, following the example of prior studies [36],[58].

In addition, to measure the cost-effectiveness of the proposed approach, we use metrics
indicative of the effort required to achieve a sufficient line-level VD performance, First,
we employ one function-based measurement called Initial False Alarms (IFA) [36],[63],
which counts how many false alarms (i.e., non-vulnerable lines) occur before the first
truly vulnerable line in a function. The lower the IFA, the less effort and time is spent
by the code reviewer in inspecting non-vulnerable lines.

Furthermore, we also use Effort@K%Recall and Recall@K%LOC to measure cost-
effectiveness by considering the entire dataset under test as a whole [36],[63]. In partic-
ular, Effort@K%Recall measures how much effort, expressed in lines of code (LOC), is
required to identify the K% of the actual vulnerable lines of the entire testing set. The
lower the value of Effort@K%Recall, the less effort is required for the code reviewer to
find the K% of vulnerable lines. Moreover, Recall@QK%LOC calculates the number of
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true vulnerable lines found by making an effort equal to K LOC inspected. The higher
the Recall@QK%LOC the more vulnerable lines are found for a fixed amount of effort.
Similarly to [36], we use the Effort@20%Recall and the Recall@1%LOC.

Finally, to ensure that our analysis is not affected by randomness in data shuffling,
model training, and other computational processes, we repeat all experiments ten times
using a different random seed each time. We thus collect ten different values for each
evaluation metric and report their average.

4.5. Selection of baseline approach

To demonstrate the efficacy of LocVul in line-level VD, we compare it with the current
state-of-the-art. Specifically, during the evaluation of our experimental analysis presented
in Section 5, we conduct a one-to-one comparison with the most notable existing method
used for VD, as identified through our literature review in Section 2.

It is well-known in the literature that XAI techniques have been widely adopted to
address the challenge of VD at line-level of granularity [33],[35],[38]. By inspecting the
related studies described in Section 2, we observed that graph-based methods, such as
IVDetect [58], utilize the GNNExplainer [60] to interpret the predictions and, therefore,
localize the vulnerabilities. However, although they achieve high coarse-grained accu-
racy, they are disadvantaged in line-level detection compared to text mining-based XAI
approaches [36],[38].

Such a text mining-based methodology, which managed to outperform I'Vdetect lever-
aging XAI is the one proposed by Fu et al. namely LineVul [36]. They first fine-
tuned the CodeBERT model in VP, and then used the Self-Attention mechanism of the
Transformer-based model to explain its predictions. More specifically, LineVul summa-
rizes the Attention scores of the tokens included in the vulnerable functions to calculate
line-level scores and, subsequently, ranks the lines of the functions from the most likely
to be a vulnerable line to the least likely.

In addition, they compared Self-Attention against various other XAl techniques ap-
plied on textual code representations. The results presented in LineVul study [36],
demonstrated the superiority of Self-Attention among XAl-based techniques, since it
clearly outperformed all of Layer Integrated Gradient (LIG) [80], Saliency [81], DeepLift
[82],[83], DeepLiftSHAP [84], and GradientSHAP [84] approaches in identifying vulnera-
ble lines. They also showed a great superiority of Self-Attention compared to a traditional
(non-XAT based) approach, the static code analysis approach, through the CppCheck [62]
analyzer. Hence, it can be argued that the Self-Attention mechanism has emerged as the
cutting-edge approach for the detection of fine-grained vulnerabilities.

Accordingly, we choose the Self-Attention-based explainability method as our baseline
for comparison. We do not just report the results presented in the study by Fu et al. [36],
but we proceed with implementing it from our own (i.e., replicating their methodology)
to avoid bias in the results due to the potential inconsistency in the implementation
settings of the compared approaches (i.e., Self-Attention and our LocVul Detector). In
this way, we can also evaluate Self-Attention using a more broad and representative set
of evaluation metrics than those presented in LineVul study [36]. Moreover, it is not clear
in [36] whether the localization results were computed using only the true positives or
all the predicted as vulnerable samples, with the latter being what we consider to be the
approach corresponding to a real-world scenario.
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In particular, we implement the entire explainability-based methodology that lever-
ages the Self-Attention mechanism of CodeBERT to localize the vulnerable lines in the
functions based on the importance of the different tokens of the input in the function-level
prediction. During the development of this implementation, we consulted the LineVul
replication package [85]. From now on we will refer to this baseline as the Self-Attention
approach.

5. Results

In this section, the results of our entire analysis are presented. Specifically, we present
the evaluation results of the proposed Seq2Seq approach (i.e., LocVul) and we compare
it against the Self-Attention approach that we selected as our baseline (see Section 4.5).
Regarding the function-level VPM (i.e., LocVul Classifier), which is used as a fisrt step
for both the Seq2Seq and Self-Attention approaches during our experimental study, the
CodeBERT-based model achieves a high predictive performance in VP. Specifically, it
identifies vulnerable functions with 99.04% Accuracy, 95.62% Precision, 86.88% Recall,
and 91.04% Fi-score. Regarding line-level VD, we evaluate both the proposed Seq2Seq
model (i.e., LocVul Detector) and the state-of-the-art Self-Attention approach in their
capacity of localizing vulnerabilities. To this end, we provide a detailed analysis with
respect to the two RQs that we defined in Section 4.1.

5.1. RQy - Accuracy of LocVul for line-level vulnerability detection

An early sign that the Seq2Seq-based LocVul Detector has high detection accuracy
is the fact that, for around 60% of vulnerable functions, the set of lines generated by the
model exactly matches the ground truth vulnerable lines. Therefore, even if we ignore
the recommended line ranking lists, LocVul manages to identify the exact vulnerable
segment in 60% of the vulnerable functions. Nevertheless, to answer RQ;, we evaluate
the accuracy of LocVul and we compare it against Self-Attention using proper evaluation
metrics (see Section 4.4). Initially, we calculate the Top-10 Accuracy of the LocVul
Detector to measure how often it manages to detect one vulnerable line in the 10 first
lines it suggests for inspection. We then evaluate LocVul in terms of Top-10 Precision
and Top-10 Recall to also consider the number of lines detected in the 10 first lines.
Figure 4 presents the values of these metrics for LocVul compared to Self-Attention.

As can be seen in Figure 4, the LocVul Detector achieves a Top-10 Accuracy equal to
82.8%, which is 11.4% higher than the 71.4% of Self-Attention, showing that the proposed
model detects at least one vulnerable line in much more cases than the baseline. In
addition, the Top-10 Precision of LocVul is 26.9% compared to 19.0% of Self-Attention,
a result that indicates the superiority of LocVul in identifying multiple truly vulnerable
lines in the top-10 of the lines it suggests as vulnerable. Specifically, LocVul’s Top-10
Precision of 26.9% shows that the model identifies on average 2.69 actual vulnerable lines
in the top-10 recommended lines. Moreover, a Top-10 Recall equal to 79.0%, which is
much higher than Self-Attention’s 57.7%, highlights the ability of LocVul to detect many
of the function’s vulnerable lines in the top-10 ranking.

At this point, we should mention that the results obtained with the developed Self-
Attention approach for VD are slightly different from those reported in [36]. In particular,
Top-10 Accuracy is higher by 6.4%. This can be attributed mainly to the fact that, in
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Figure 4: Top-10 Accuracy, Precision, and Recall of LocVul compared to the baseline Self-Attention
method for line-level vulnerability detection.

our implementation, we remove the functions that are labeled as vulnerable but have
incomplete line-level labels (i.e., they have no information on which are the vulnerable
lines). Those samples act as noise in the line-level dataset and are also a barrier to
training the Seq2Seq model. Therefore, they have to be removed from both training and
testing sets.

Furthermore, to evaluate the accuracy of our approach in a rank-aware manner by
considering the order of the lines proposed as vulnerable by the model, we compute
the Mean Reciprocal Rank (MRR) and the Mean Average Precision (MAP) at top-10
ranking list. Figure 5 shows the results for LocVul and Self-Attention approaches in
terms of MRR@10 and MAP@10 in the left and right bar charts, respectively. Our
Seq2Seq-based LocVul approach manages to outperform the XAl-based Self-Attention
approach by almost double the score in terms of MRR@10 and MAP@Q10.

In particular, the LocVul Detector achieves MRR@10 equal to 79.4%, which is 35.8%
higher than Self-Attention’s 43.6% leading to the conclusion that it is able not only
to detect a vulnerable line in more functions than XAI techniques, but also to detect
it earlier in the ranking list of lines. In addition, MAP@10 of the LocVul Detector is
equal to 79.2% in contrast to Self-Attention, which has MAP@10 equal to 41.1%. This
observation demonstrates the enhanced capability of LocVul to detect more vulnerable
lines higher up in the ranking list compared to the Self-Attention mechanism.

Although a clear difference in the values of the accuracy-related evaluation metrics
between the two approaches is observed, we apply a statistical test to support further
our findings. In particular, we conduct the Wilcoxon Signed-Rank Test [86] to check
whether the paired accuracy scores, obtained from ten different random seed values, dif-
fer significantly between LocVul and Self-Attention. We repeat this analysis for all of
the Top-10 Accuracy, Precision, Recall, MRR@10, and MAP@10 metrics. Considering
as the null hypothesis that LocVul is not more accurate than Self-Attention for each
metric, the Wilcoxon test returns p-values of 0.00098 across all metrics, which are well
below the 0.05 significance threshold. Therefore, we reject the null hypothesis and state
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Figure 5: Top-10 Mean Reciprocal Rank and Mean Average Precision of LocVul compared to the baseline
Self-Attention method for line-level vulnerability detection.

that LocVul is significantly more accurate than Self-Attention. Hence, we can argue that:

The LocVul approach, which extracts vulnerable lines from the source code of
vulnerable functions using a code-aware Seq2Seq LLM, specifically CodeT5,
achieves high accuracy in vulnerability detection, outperforming the baseline
Self-Attention explainability method.

5.2. RQs - Cost-effectiveness of LocVul for line-level vulnerability detection

In RQ2, we investigate the cost-effectiveness of the proposed VD approach. In other
words, we evaluate the predictive performance of LocVul with respect to the effort re-
quired to achieve this performance. To this end, we compute the cost-effectiveness evalua-
tion metrics, which are described in Section 4.4. On the one hand, we evaluate LocVul by
calculating the IFA metric that evaluates cost-effectiveness by counting the false alarms
that one has to inspect until finding one truly vulnerable line in a function. On the other
hand, we evaluate LocVul using the Effort@20%Recall to measure the effort required to
find the 20% of the vulnerable lines in the entire testing set, while Recall@1%LOC is
used to find the truly vulnerable lines detected by inspecting a fix amount of LOC (i.e.,
the 1% of the total LOC) in the testing set. Figure 6 presents the values of these metrics
for the proposed LocVul approach compared to the baseline Self-Attention approach.

In particular, Figure 6a presents the IFA values of the compared approaches. Similarly
to previous studies [36],[61],[63], our evaluation is based on median IFA values. As
illustrated in Figure 6a, LocVul achieves a median IFA equal to 0, suggesting that the
Seq2Seq model manages to include a vulnerable line in the generated lines in most of
the functions (i.e., for at least half of the functions in the dataset). In contrast, the
Self-Attention mechanism achieves a higher median IFA equal to 2. This observation
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Figure 6: Cost-effectiveness evaluation of LocVul compared to the baseline Self-Attention method for
line-level vulnerability detection.

indicates that LocVul improves the baseline approach in terms of the number of false
alarms to inspect before finding a vulnerable line. In addition, as illustrated by the error
bars representing half the Interquartile Range (IQR/2), LocVul demonstrates minimal or
no variability, consistently achieving very low IFA values across all samples as opposed
to Self-Attention, which has a larger spread.

Furthermore, Figure 6b demonstrates that LocVul achieves Effort@20%Recall equal
to 0.57% against Self-Attention’s 0.61%. The smaller the Effort@20%Recall, the less
effort is required to detect vulnerabilities. Therefore, a code reviewer that uses LocVul
can put less effort into identifying 20% of the truly vulnerable lines. In addition, Figure
6¢ shows that LocVul’s Recall@1%LOC is 29.8% in contrast to Self-Attention’s 28.6%.
In other words, a code reviewer is able to detect 1.2% more vulnerable lines by inspecting
the top-1% recommended lines when using LocVul instead of the baseline Self-Attention
approach.

In addition, we perform the Wilcoxon Signed-Rank Test [86] to judge if the differ-
ences in the cost-effectiveness metrics between the LocVul and Self-Attention approaches
are statistically significant. Using the metrics computed for 10 repetitions of the experi-
ments with different random seeds, the p-values of the Wilcoxon test are equal to 0.00098,
0.02108, and 0.01368 for median IFA, Effort@20%Recall, and Recall@1%LOC metrics,
respectively. Although the differences in the means of the cost-effectiveness metrics are
not large, all the p-values are lower than the 0.05 threshold and, therefore, we can state
that the differences in cost-effectiveness between the two approaches are statistically sig-
nificant. Hence, considering IFA, Effort@20%Recall, and Recall@1%LOC scores, it is
concluded that:

The Seq2Seq-based LocVul approach offers a cost-effective solution for line-
level vulnerability detection, reducing the effort required to identify ac-
tual vulnerable lines compared to the baseline Self-Attention explainability
method.
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6. Discussion

In this section, we discuss the findings of our experimental analysis and provide useful
insights. First, we explore the benefit gained from the line replacement mechanism
that we implement to address LLM hallucinations in VD. Subsequently, implications to
researchers and practitioners are provided, and then, the threats to validity of our study
are disclosed.

6.1. Impact of the most similar line replacement mechanism

In Section 3.3, we described a similarity checking mechanism based on cosine similar-
ity between the embeddings of tokenized lines. This mechanism is applied when running
the LocVul Detector in order to check whether the line generated by the model is one of
the lines of the function being analyzed and, if not, to replace it with the corresponding
line by calculating which line is the most similar. In this way, the proposed methodology
manages to handle cases where the Seq2Seq model returns as vulnerable lines that are not
in the function (i.e., LLM hallucinations in this problem). Table 2 presents the evaluation
of the LocVul approach with and without employing the similarity check mechanism.

Table 2: Comparison of results achieved by LocVul with and without the most similar line replacement
mechanism.

Accuracy Metrics Cost-Effectiveness Metrics
Approach AQ@10 PQ@10 R@10 MRR@10 MAP@I10 | Median IFA Effort@20%Recall Recall@1%LOC
With Replacement 82.8% 26.9%  79.0% 79.4% 79.2% 0 0.57% 29.8%
Without Replacement | 80.6% 25.3%  74.3% 76.9% 76.5% 0 0.70% 25.4%

As shown in Table 2, the mechanism applied to replace the most similar lines provides
a benefit to the entire approach, which is reflected in all evaluation metrics used. In terms
of accuracy-related metrics, we can see that the proposed mechanism achieves a Top-10
Accuracy, Precision, and Recall gain equal to 2.2%, 1.6%, and 4.7%, respectively. It also
provides a gain of 2.5% and 2.7% in terms of MRR@10 and MAP@10, which means that
LocVul with similar line replacement manages not only to detect more vulnerable lines,
but also to place them higher in the list of the returned vulnerable lines compared to
LocVul without similar line replacement. One can also observe an advantage of the hal-
lucinations handling mechanism with regard to cost-effectiveness. Although median IFA
is still zero, both Effort@20%Recall and Recall@1%LOC are deteriorated when remov-
ing this mechanism. Specifically, the former increases by 0.13% and the latter decreases
by 4.4%, leading to the conclusion that without similar line replacement, more effort is
required by the code reviewer to find actual vulnerabilities using LocVul without being
confused by hallucinations.

In addition, to verify the benefit of the similar line replacement mechanism, we per-
form the Wilcoxon Signed-Rank Test [86] on the evaluation metrics obtained from ten
repetitions of the experiments with different random seeds. Specifically, we conduct the
test on both accuracy and cost-effectiveness metrics, namely Top-10 Accuracy, Top-10
Precision, Top-10 Recall, MRR@10, MAP@10, Effort@20%Recall, and Recall@1%LOC,
excluding median IFA, as it is zero in both cases. The Wilcoxon test returns p-values
equal to 0.00098 for all metrics. All the p-values are below the 0.05 threshold indicating
that there is a statistically significant benefit gained from the similar line replacement
mechanism in terms of both accuracy and cost-effectiveness in VD.
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6.2. Implications

Having presented a thorough evaluation of the proposed method, the results demon-
strate that the Seq2Seq approach for VD addresses important limitations of prior methods
and outperforms traditional VD techniques that rely on XAI. Unlike the state-of-the-art
Self-Attention-based approach, a Seq2Seq model, such as CodeT5, can directly identify
vulnerable lines in source code without ranking tokens by importance or depending on
error-prone function-level prediction models, which often capture spurious data correla-
tions. The experiments carried out in the context of RQ; and RQ> demonstrate that
fine-tuning a Seq2Seq model in detecting line-level vulnerabilities achieves both higher ac-
curacy and better cost-effectiveness than approaches based on interpreting function-level
predictions. These findings encourage stakeholders to focus on Seq2Seq-based solutions
for VD rather than using XAlI-based techniques by default.

Furthermore, we recommend that researchers further elaborate the Seq2Seq-based
approach, examining specific Seq2Seq training paradigms, in order to develop even more
accurate models. For instance, they could extend our analysis by comparing techniques
such as question-answering, machine translation, text generation, etc. In addition, we
suggest that researchers validate the accuracy of this approach on different datasets
and programming languages. Research on constructing new datasets with fine-grained
vulnerability labels is recommended, as well.

Moreover, we suggest researchers to enrich the VD-related literature by experiment-
ing with various LLMs, either of the same or larger scale. They could repeat our analysis
by fine-tuning models such as PLBART [87], GPT-4 [88], and Mistral [89] on the Seq2Seq
approach to localize vulnerabilities within functions. An interesting research direction
is also the exploration of innovative methods from the rapidly evolving field of artificial
intelligence, such as Reinforcement Learning from Human Feedback (RLHF) [90] to in-
crease the accuracy of the proposed VD approach, and Mixture of Experts (MoE) [91]
to enhance the detection of vulnerabilities of different categories.

In addition, the accuracy of LocVul combined with its cost-effectiveness and the
efficiency in its execution is an important practical advantage. Software development
workflows that require real- or near-real-time applications can benefit from models such
as CodeT5, which, when fine-tuned, can detect vulnerable lines in source code without
any substantial delay. Specifically, although training LLMs is a time-consuming process,
the perception time of LocVul (i.e., average time required to analyze one function during
model execution) is only 213.83 milliseconds (ms). Therefore, LocVul can detect with
sufficient accuracy where a vulnerability is located in the source code of a function in
213.83 ms, without necessarily requiring additional effort to inspect the line-ranking list,
as in the case of XAl-based solutions. Thus, we recommend that practitioners use such
solutions as copilots (e.g., through their Integrated Development Environments) in their
daily development activities to improve the overall security and productivity of the SDLC
with little or no disruptions to their regular workflows.

Furthermore, practitioners are suggested to use LocVul during software development
and testing, and to compare it with existing static code analysis solutions, which are
traditionally used for identifying potential vulnerabilities through source code scanning.
In this way, practitioners could provide useful insights regarding the comparison of solu-
tions like LocVul against static code analysis tools, which often demand substantial time
to analyze large code bases [92],[93]. Although transfer learning approaches have been

22



788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

shown to outperform static code analyzers in terms of accuracy [36], a holistic evaluation
considering the computational footprint of each approach would be useful.

6.3. Threats to validity

A remark about threats to the validity of our approach is needed. Threats to con-
struct validity concern the selection of the metrics used in our evaluation scheme. In
our experimental analysis, we use A@Q10, P@Q10, and R@Q10 to measure the accuracy of
LocVul and Self-Attention approaches. We also use MRR@10 and MAP@10 measure-
ments to evaluate the accuracy of the compared approaches in a rank-aware manner. In
addition, the use of the IFA, Effort@20%Recall and Recall@1%LOC metrics contributes
to a comprehensive assessment that takes into account cost-effectiveness. These met-
rics are widely used in the related literature [10],[36],[61],[63], which effectively mitigates
construct validity risks.

The primary threat to internal validity relates to hyperparameter selection when
fine-tuning our LocVul model. Although we have performed extensive hyperparameter
tuning, it is not certain that we have tested all possible combinations of hyperparameter
values. It can be difficult to discern the effects of specific model hyperparameters due to
the correlation between them, which could lead to a lower than ideal model performance.
To reduce this risk, we use a quite thorough hyperparameter tuning procedure based on
the Grid-search method [94].

Moreover, a threat to internal validity relates to the accuracy and correctness of our
own approach. To mitigate this concern, we have not only meticulously reviewed our
code, but also aim to make the code publicly available [43] to facilitate future replication
and validation of our findings. In addition, a potential threat to internal validity also
is the accurate implementation of the state-of-the-art Self-Attention approach that we
use as a baseline mechanism. It is important to ensure that this approach is faithfully
and correctly reproduced. To this end, we thoroughly inspected and consulted the code
provided by the LineVul study [36] and, additionally, we include the code we developed
for the Self-Attention approach in our replication package, along with the code for the
LocVul approach.

Finally, external validity is related to the generalizability of the LocVul approach. Our
study is limited to one dataset, which contains open-source projects written in C/C-++
language, and thereby, the findings may not extend to projects in other languages or
proprietary software. We selected Big-Vul [68], which is a widely-referenced dataset in
the vulnerability-related literature, especially in studies interested to line-level detection
[36],[57],[58]. It comsists of 348 different projects containing code changes and vulner-
abilities retrieved from GitHub and the CVE database, respectively. The size and the
trustworthiness of Big-Vul mitigates the generalizability risk. Other line-level datasets
including projects in different programming languages could be explored in the future.

7. Conclusions and future work

This study identified limitations in existing vulnerability detection (VD) techniques
and proposed the LocVul methodology, which is based on a Sequence-to-Sequence ap-
proach. Specifically, we proposed a two-step mechanism, which first, fine-tunes a Large
Language Model (LLM) in predicting the vulnerable functions (i.e., a classification task),
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and second, fine-tunes another LLM in extracting the vulnerable lines of a given func-
tion. The analysis found that LocVul achieved beyond state-of-the-art results, managing
to clearly surpass explainability-based solutions both in accuracy and cost-effectiveness.
Useful insights were also gained about the effective handling of the LLM hallucinations
in VD and about the potential of tools such as LocVul to act as a co-pilot in software
development.

Suggestions for future work include the construction of a complete Al-driven VD
pipeline that will identify vulnerable software components, localize the specific lines of the
vulnerabilities, classify them to vulnerability categories, and assign them severity scores.
We aim also at examining the accuracy of LocVul to other programming languages and
different application domains.
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