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Abstract

Context: The development of secure software systems depends on early and accurate
vulnerability identification. Manual inspection is a time-consuming process that requires
specialized knowledge. Therefore, as software complexity grows, automated solutions be-
come essential. Vulnerability Prediction (VP) is an emerging mechanism that identifies
whether software components contain vulnerabilities, commonly using Machine Learning
models trained on classifying components as vulnerable or clean. Recent explainability-
based approaches attempt to rank the lines based on their influence on the output of the
VP Models (VPMs). However, challenges remain in accurately localizing the vulnerable
lines.
Objective: This study aims to examine an alternative to explainability-based ap-
proaches to overcome their shortcomings. Specifically, explainability-based methods
depend on the type and accuracy of the file or function-level VPMs, inherit possible
misleading patterns, and cannot indicate the exact code snippet that is vulnerable nor
the number of vulnerable lines.
Method: To address these limitations, this study introduces an innovative approach
based on fine-tuning Large Language Models on a Sequence-to-Sequence objective to
directly return the vulnerable lines of a given function. The method is evaluated on the
Big-Vul dataset to assess its capacity for fine-grained vulnerability detection.
Results: The results demonstrate that the proposed method significantly outperforms
the explainability-based baseline both in terms of accuracy and cost-effectiveness.
Conclusions: The proposed approach marks a significant advancement in automated
vulnerability detection by enabling accurate line-level localization of vulnerabilities.
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1. Introduction1

Security is an important characteristic of the Software Development Life-Cycle (SDLC)2

according to the International Standard on Software Quality ISO/IEC 25010 [1]. How-3

ever, in practice it is usually considered an afterthought and is not addressed until the4

final stages of the overall SDLC. Software enterprises often neglect enhancing the secu-5

rity and the resilience of their products on the altar of fast delivery [2] or due to lack6

of security expertise [3]. As a result, the number of reported vulnerabilities continues to7

rise each year, according to the published Common Vulnerabilities and Exposures (CVE)8

records [4].9

Software vulnerabilities are weaknesses within the source code that can be exploited10

by one or more external threats [5]. They are often caused by a small number of common11

programming errors made by developers during the coding phase, but their exploitation12

can lead to devastating consequences in terms of data privacy and system confidentiality,13

integrity, and availability as well as serious financial damage. For instance, one of the14

most notable critical vulnerabilities, the Log4Shell vulnerability was found in a widely-15

used open-source logging library called Log4j. It can allow an attacker to control the16

remote systems, execute malware and leak sensitive information (e.g., passwords), among17

others [6].18

To avoid similar circumstances, it is important for software houses to adopt proper19

security assessment and vulnerability detection solutions from the early phases of the20

SDLC [7]. However, the continuous increase in the number of security breaches and21

vulnerabilities exploited, especially considering the fact that many vulnerabilities remain22

undetected for years (e.g., Heartbleed remained unnoticed for two years and Log4Shell23

for eight years) [8], demonstrates the insufficiency of the tools already in use. Hence,24

there is a strong need for innovative and accurate vulnerability detection techniques.25

1.1. Background26

Existing vulnerability detection techniques are divided in traditional and data-driven27

categories. The former include static and dynamic analysis whereas the latter leverage28

Machine Learning (ML) to perform vulnerability prediction (VP). Static analysis tools29

(e.g., SonarQube, Coverity, Checkmarx, etc.) [9] identify buggy lines of code based on30

rules and code patterns defined by experts. However, static code analyzers often miss31

certain types of vulnerabilities since not all vulnerabilities can be modeled by rules, and32

every analyzer has its own detection rules and supports different vulnerability categories33

[10]. Moreover, static analysis is too broad producing many false positives, overwhelming34

security teams with a large amount of false alarms [11],[12]. On the other hand, dynamic35

testing techniques, such as fuzzing and penetration testing, analyze running software36

and simulate attacks to identify weaknesses. However, dynamic testing still produces37

both false positives and false negatives, cannot be applied to every component, and has38

difficulty on tracing the vulnerability in the code [13].39

As regards the data-driven approach, VP involves constructing vulnerability predic-40

tion models (VPMs), which are ML models trained on software attributes extracted41

from the source code of files or functions/methods in order to predict the existence of42

vulnerabilities in them. The VP-related research evolved from the construction of ML43

models based on software metrics (e.g., complexity, cohesion, etc.) [14],[15],[16],[17] to44

building Deep Learning (DL) models capable of learning patterns in the text of the45
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source code, similarly to Natural Language Processing (NLP) tasks [18],[19],[20]. Typi-46

cally text mining attempts represent the source code as sequences of tokens, where each47

token is encoded with an embedding vector [21],[22], or as text-rich graphs, such as the48

Code Property Graphs (CPGs) [23], which are fed to Graph Neural Networks (GNNs)49

to extract a graph embedding of the source code [24],[25],[26]. Recently, with the break-50

through of the Transformer architecture [27], the focus of the VP-related literature has51

shifted to transfer learning approaches. Several studies employ pre-trained models to52

build Large Language Models (LLMs)-based VPMs [28],[29],[30],[31]. It can be argued53

that LLMs have dominated the VP field, but, despite being considered as a promising54

solution for addressing open issues in the literature [32], the LLM-based VP solutions55

still face important challenges [33].56

1.2. Motivation for line-level vulnerability detection57

A major challenge in the domain that hinders the adoption of ML-based VP solutions58

in practice is the level of granularity at which the predictions are made. Most studies59

in the literature are coarse-grained as they predict whether there are vulnerabilities at60

file or function level of granularity [32]. Such predictions could be useful for the devel-61

opment teams to prioritize their inspection and fortification efforts to specific software62

components, but are still far from achieving complete vulnerability detection, since they63

lack the ability to present the specific lines of the components containing the vulnera-64

bilities, let alone the vulnerability categories [34]. Therefore, coarse-grained predictions65

discourage software engineers from using such tools. It can be argued that the lower the66

granularity, the more actionable the results and the easiest manual inspection, but it is67

more difficult to build accurate mechanisms.68

To clearly demonstrate the benefit from fine-grained VPMs, Figure 1 illustrates the69

difference between the outputs of function-level and line-level approaches using a buffer70

overflow example. In this example, processInput function receives user input and copies71

it into a fixed-size buffer without verifying the input’s length. This operation introduces72

a buffer overflow vulnerability, which can result in overwriting adjacent memory locations73

and potentially lead to arbitrary code execution. In Figure 1, the entire processInput74

function is highlighted with an outer, thicker red rectangle, representing the output of a75

typical function-level VPM, which flags a whole function as potentially vulnerable. This76

narrows the inspection focus (e.g., by a human reviewer) from the entire class to this77

specific function. In contrast, the inner, thinner red rectangle highlights only the lines78

directly responsible for the vulnerability, reflecting the output of a line-level prediction79

approach. This finer-grained localization provides developers with much more actionable80

guidance, allowing them to directly identify and remediate the exact code statements81

that are vulnerable, rather than needing to manually inspect every line in the function.82

1.3. Motivation for the proposed LocVul approach to Localize Vulnerabilities83

The vast majority of fine-grained solutions in the VP-related literature employ ex-84

plainable artificial intelligence (XAI) to interpret function or file-level predictions and,85

thereby, localize vulnerabilities [33]. More specifically, current mechanisms that per-86

form VP at a low granularity level focus on the adoption of XAI techniques to extract87

the features’ importance in the predictions made by VPMs [35]. A prime example of88

such solutions is the LineVul [36] study, in which, Fu et al. [36] proposed fine-tuning a89
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Figure 1: A motivating example of line-level vulnerability detection compared to coarser-grained predic-
tions.

pre-trained on code LLM (i.e., CodeBERT[37]) for function-level predictions and then90

extracting its Self-Attention [27] weights to get line-level predictions, achieving quite ac-91

curate VP at line-level of granularity. From this point on, line-level VP will be referred92

to as Vulnerability Detection (VD).93

However, such XAI-based solutions heavily depend on the function-level prediction94

models. Thus, they can only be applied on top of the VPMs, limiting the choices and95

possible improvements of VPMs of different kinds. In addition, VPMs often make a96

correct prediction based on irrelevant or even spurious correlations among tokens in the97

input sequence, which the VPMs erroneously associate with the existence of vulnerabil-98

ities [38],[39]. Therefore, XAI is often prone to fail in correctly identifying vulnerable99

lines. Moreover, such XAI-based solutions assign Attention scores to tokens and, based100

on them, assign importance scores to lines. Thus, although they can rank the lines pri-101

oritizing the reviewer’s (e.g., developer) efforts to search for vulnerabilities starting from102

the higher ranked lines, they are not able to directly showcase which or how many of the103

lines are the vulnerable ones (i.e., there is no indication of when to stop the inspection).104
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Figure 2 is provided to illustrate the aforementioned limitations of the XAI-based VD as105

opposed to the proposed solution for Localizing Vulnerabilities (LocVul).106

Figure 2: A motivating example of the proposed LocVul method compared to XAI-based methods.

Specifically, Figure 2 (A) presents the source code of a given function included in107

the dataset used, which contains a weak cryptography vulnerability. The exact location108

of the vulnerability is highlighted with red lines. As can be seen in Figure 2 (B), the109

explainability-based technique (e.g., Self-Attention mechanism) returns a list of the lines110

of the function sorted from the most likely to be vulnerable to the least likely. In contrast,111

as can be seen in Figure 2 (C), LocVul returns the exact set of lines it considers vulnerable,112

as highlighted in gray. LocVul response can then be filled in by the remaining lines of113

the function. Thus, LocVul’s response facilitates the inspection process, since the code114

reviewer would have an indication of the number and the exact location of the vulnerable115

lines. Moreover, one can see in Figure 2 (B) that there are several lines before the116

vulnerable ones in the list proposed by the explainability-based method, which indicates117

that although the VPM at the function level has correctly identified the vulnerable118

function, it has also emphasized features that are not related to the vulnerability (i.e.,119

spurious data associations).120

1.4. Novelty and contribution121

In this study, we propose an alternative approach named LocVul to perform line-122

level vulnerability prediction (i.e., vulnerability detection) that uses two distinct models123

for function-level and line-level prediction respectively, managing to overcome the afore-124

mentioned limitations. Specifically, in the proposed approach, the line-level model (i) is125

independent from the function-level VPM and, therefore, can be implemented on the top126

of metrics, text, graph-based or ensemble VPMs; (ii) does not propagate the error of the127

spurious patterns learned by the VPMs; and (iii) first returns a string with the specific128

lines it considers vulnerable and then returns a ranked list of lines so that the inspector129

has both an indication of the exact lines identified as vulnerable and, complementarily,130
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a list of all lines sorted by their likelihood of being part of the vulnerability. Moreover,131

LocVul achieves higher accuracy and better cost-effectiveness than XAI-based methods.132

LocVul is based on a Sequence-to-Sequence (Seq2Seq) approach, where a Text-to-Text133

Transformer-based model [40] is trained on the task of extracting the vulnerable lines from134

functions that are predicted as vulnerable by a text mining-based VPM. More specifically,135

we first fine-tune a pre-trained model (i.e., CodeBERT) on the objective of classifying136

functions as vulnerable or not and, also, we fine-tune a pre-trained Sequence-to-Sequence137

model (i.e., CodeT5[41]) in the vulnerable lines extraction objective. Subsequently, we138

execute the classification model on unseen data to predict vulnerable functions and, then,139

we apply the Sequence-to-Sequence model on the predicted as vulnerable functions to140

get the vulnerable code snippets that are included in them.141

To the best of our knowledge, LocVul is the first Sequence-to-Sequence VD approach,142

which manages not only to overcome the limitations of the XAI-based approaches, but143

also to clearly surpass their detection accuracy. Additionally, this study observes that the144

Sequence-to-Sequence model produces some imprecise outputs, which could be an im-145

portant limitation of this approach. In particular, we observed that the developed model146

often generates similar but not identical vulnerable lines as those present in the analyzed147

function, which is considered an issue related to LLMs hallucinations [42]. Therefore,148

the present study proceeds by proposing also a solution that eliminates this problem149

by replacing the not-exact matches with the most similar lines in the original function150

(see Section 3.3). Overall, the contributions of the current study can be summarized as151

follows:152

• A novel non-XAI-based VD mechanism is proposed based on a Sequence-to-Sequence153

model: We propose a two-stage approach where (i) a CodeBERT-based classifier154

is fine-tuned to identify vulnerable functions, and (ii) instead of explaining the155

function-level predictions, a CodeT5-based Sequence-to-Sequence model is fine-156

tuned to directly extract vulnerable lines from given vulnerable functions. The157

approach is trained and evaluated in the Big-Vul dataset.158

• Superior than state-of-the-art results are achieved in terms of accuracy and cost-159

effectiveness: Our method significantly improves various evaluation metrics over the160

Self-Attention XAI baseline in identifying vulnerable lines in vulnerable functions.161

• A method to mitigate LLM hallucinations in VD is proposed: We propose a line162

replacement post-processing step using cosine similarity between the embedding163

vectors of the tokenized lines to match generated lines to those present in the164

function, mitigating “hallucinated” outputs from CodeT5.165

• A replication package of our LocVul implementation is published publicly: We166

provide our source code, models, and guidelines to reproduce the results [43].167

The rest of the paper includes Section 2, which summarizes the related work in the168

literature and Section 3 that provides a detailed description of the proposed approach.169

Subsequently, Section 4 sets up the experimental design, while the results of our exper-170

imental analysis are presented in Section 5. Section 6 discusses the insights and lessons171

learned from the analysis, and finally, Section 7 provides the conclusions of the study172

and suggestions for future work.173
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2. Related work174

This section presents previous studies in the field of ML-based vulnerability prediction175

(VP). Initially, we describe notable studies regarding VP in file and function level, and176

subsequently, we discuss more fine-grained techniques.177

2.1. Coarse-grained vulnerability prediction178

Initial attempts at ML-based VP used software metrics as indicators of the exis-179

tence of vulnerabilities. Shin and Williams [14],[44] were among the first to explore the180

potential of complexity metrics to differentiate between vulnerable and non-vulnerable181

functions. Chowdhury and Zulkernine [45] then presented a VP paradigm by using com-182

plexity, cohesion, and coupling metrics and training several ML models. Furthermore,183

Kalouptsoglou et al. [15] utilized a variety of statically extracted software metrics to184

predict vulnerable files using the Multi-Layer Perception (MLP) classifier.185

Moreover, text mining-based studies were presented in the literature, which were ini-186

tially based on the Bag of Words (BoW) text representation format, where each software187

component is a table, its words are the table’s columns, and the frequencies of the words188

are the columns’ values [18],[46],[47]. Comparative studies [8],[48] have shown that text189

mining-based VP is more accurate than software metrics-based VP, managing to capture190

more complex patterns in the source code. Text mining-based approaches evolved from191

the more simplistic BoW to the sequences of tokens representation format, which repre-192

sents the source code of a file or function as a sequence of words (i.e., tokens). The tokens193

sequence is then transformed to a sequence of embedding vectors [22] using algorithms194

such as word2vec [49] and fastText [50]. In particular, Dam et al. [19] employed a Long195

Short-Term Memory (LSTM) model to automatically predict vulnerable files. In addi-196

tion, Li et al. [21] proposed VulDeePecker that utilizes a Bidirectional LSTM to identify197

vulnerable code on tokens encoded with word2vec embeddings.198

Furthermore, Bilgin et al. [24] proceeded with the extraction of the Abstract Syntax199

Tree (AST) of C/C++ methods and the utilization of ML models to classify them to200

vulnerable and non-vulnerable ones. Next, Zhou et al. [25] proposed the Devign model201

based on graphical source code representations (i.e., ASTs, control and data flow graphs)202

and leveraged a GNN to extract the graph embeddings of C/C++ functions, which203

then were classified to vulnerable and non-vulnerable ones. Nonetheless, Chakraborty204

et al. [26] revealed several limitations of the existing VP datasets and approaches and205

proposed a CPG [23] and GNN-based methodology managing to outperform Devign.206

Recently, after the breakthrough of the Transformer architecture [27], several studies207

have employed transfer learning for VP leveraging the vast knowledge and the context-208

aware patterns encapsulated in the pre-trained LLMs [33]. To this end, Bagheri et209

al. [30] compared traditional embedding techniques (i.e., word2vec and fastText) to the210

embeddings extracted from the Bidirectional Encoder Representations from Transformers211

(BERT) [51] in their capacity to classify code snippets in vulnerable and non-vulnerable212

ones. Furthermore, Kalouptsoglou et al. [29] fine-tuned three popular LLMs and their213

pre-trained on code variants observing their superiority compared to traditional text214

mining-based methods and also the superiority of the code variants. They also observed215

an advantage of the encoder-only Transformer-based models in VP.216

Moreover, several empirical studies conducted by researchers compared various pre-217

trained models in the task of VP [52],[53]. In addition, Kim at al. [54] fine-tuned BERT to218
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construct their VPM called VulDeBERT managing to outperform VulDeePecker, while219

Hanif et al. [55] pre-trained on code a RoBERTa [56] model, added an MLP and a220

Convolutional Neural Network (CNN), and fine-tuned it on vulnerability-related C/C++221

data for VP, outperforming both Recurrent Neural Networks (RNN)-based and GNN-222

based approaches.223

2.2. Fine-grained vulnerability detection224

In an attempt to provide fine-grained vulnerability predictions, Hin et al. [57] em-225

ployed supervised statement-level training. In particular, they presented a GNN-based226

model, namely LineVD, which classifies each line of the predicted as vulnerable func-227

tions into vulnerable or not. Instead of classifying every line, Li et al. [58] proposed228

the IVDetect model following an interpretable (i.e., explainable) ML-based approach.229

Specifically, they represented the source code in Program Dependency Graphs (PDGs)230

[59], performed function-level VP, and then interpreted the model’s decisions using the231

GNNExplainer [60] method that derives interpretation sub-graphs. Those sub-graphs232

correspond to hotspots in the source code that are more relative to the identified vul-233

nerabilities. Similarly, LineFlowDP [61], which employed PDGs to represent source code234

and GNNs to perform file-level prediction of defects (i.e., general bugs or malfunctions),235

leveraged GNNExplainer [60] to explain the predictions and localize defects.236

Nonetheless, Fu et al. [36] emphasized on the limitation of graph-based solutions,237

such as IVDetect [58], in producing truly fine-grained interpretations, since sub-graphs238

contain a lot of lines of code. To this end, they proposed LineVul [36] by leveraging239

the capacity of the pre-trained CodeBERT [37] model. Specifically, they represented240

source code in token sequences, they fine-tuned CodeBERT for the binary classification241

task of VP, and then, they extracted the token scores through XAI (i.e., through Self-242

Attention). By summing the token scores per line, LineVul can rank lines from most243

likely to be vulnerable to least likely. In LineVul study, several XAI techniques were244

examined concluding that the Self-Attention mechanism of the Transformer model is the245

optimal explainability choice. It is also worth noting that all of them clearly outperformed246

the CppCheck [62] static code analyzer. Furthermore, DeepLineDP [63] used Recurrent247

Neural Networks (RNNs) to perform file-level defect prediction on sequences of source248

code tokens, and then, employed an Attention layer [64] to explain the predictions, and249

therefore, extract the tokens that contribute the most to the prediction of the defective250

files.251

However, Cheng et al. [38] observed poor performance of several XAI-based ap-252

proaches in localizing vulnerabilities due to the existence of irrelevant features learned253

by VPMs, the susceptibility of VPMs to perturbations not related to vulnerabilities, and254

the ineffectiveness of the explainers in choosing meaningful characteristics. In addition,255

Sotgiu et al. [39] investigated the capacity of explainability techniques to find the features256

that contribute most to ML model decisions. Their study used an XAI method called257

SHapley Additive exPlanations (SHAP) to highlight important issues in model construc-258

tion that obstruct its ability to identify vulnerabilities. Specifically, they observed that a259

Transformer-based VPM tends to learn spurious correlations among data. For instance,260

the models often emphasize tokens, which should not have a discriminating role in pre-261

diction (e.g., special characters of programming languages). They further observed that262

the top-10 tokens, which led to a negative or positive decision, were the same for both263

classes. Therefore, VD through explainability often leads to incorrect findings.264
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2.3. Beyond state-of-the-art265

In contrast to previous studies, we do not use an XAI-based technique but present266

a Sequence-to-Sequence approach to achieve line-level VD, which, in addition to a list267

of sorted lines to prioritize inspection efforts, can provide the inspector with a specific268

set of lines that it considers vulnerable. To our knowledge, we are the first to pro-269

pose a Sequence-to-Sequence method for vulnerability detection, which, in fact, not only270

overcomes the limitations of XAI-based approaches (regarding the dependence on the271

function-level VPM as well as the failure due to spurious patterns learned by the VPM),272

but also achieves better results. Additionally, LocVul proposes a method to efficiently273

handle approximate line predictions (i.e., LLM hallucinations in VD).274

3. Overview of the LocVul approach275

In this section, we provide a detailed presentation of the proposed approach. Figure276

3 illustrates the high-level overview of the entire methodology. First, there is the phase277

of training a function-level vulnerability prediction model. Subsequently, there is the278

training phase of the line-level vulnerability detection model, and, finally there is the279

inference phase where both models are executed to detect vulnerabilities in a function280

under test.281

Figure 3: Overview of the overall approach.

3.1. Function-level vulnerability prediction model282

For VP at the function level, we use the pre-trained Transformer-based CodeBERT283

model [37], which has demonstrated promising results in the literature [29],[34],[36],[39].284

CodeBERT is a variant of the popular NLP model BERT, which has been pre-trained on285

the Masked Language Modeling (MLM) target [51]. More specifically, CodeBERT has286

the same encoder-only architecture as the optimized variant of BERT called RoBERTa287

[56], but it is bimodal, i.e., it is pre-trained on pairs of source code written in six different288

programming languages and documentations written in natural language [37].289
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To construct the function-level predictor, we fine-tune CodeBERT in the task of bi-290

nary classification of software functions to vulnerable or clean ones. Initially, as can be291

seen in Figure 3, a large vulnerability dataset that consists of the source code of functions292

and their corresponding binary labels (i.e., vulnerable or clean function) is leveraged as293

historical knowledge to train the model. The source code is then tokenized by the Code-294

BERT tokenizer in order to derive the tokenized functions, which are the actual input295

to CodeBERT. This tokenizer utilizes subword-based tokenization to divide unknown296

words into smaller words or characters. A classification head (i.e., a classification layer)297

is placed on top of CodeBERT layers in order to facilitate its training in the VP objective.298

CodeBERT along with the classification head constitute the LocVul Classifier.299

3.2. Line-level vulnerability detection model300

In the line-level training phase, we follow a Sequence-to-Sequence training paradigm.301

Commonly, Sequence-to-Sequence models convert an input sequence into an output se-302

quence, which can be of different lengths. These models are trained to pair the input303

to the output and are particularly useful when understanding the context of the entire304

sequence is required (tasks such as translation, summarization, etc.) [65]. Since our pur-305

pose is to extract the vulnerable lines out of a given function, the task can be considered306

a Sequence-to-Sequence task, where the source code of the function is the input sequence307

and the source code of the vulnerable lines is the output sequence. Actually, the task308

of VD can be treated like a summarization task, where the function is the text to be309

summarized and the vulnerable lines correspond to the extractive summary.310

To facilitate a Sequence-to-Sequence training, we employ an encoder-decoder model,311

in contrast to the encoder-only CodeBERT that we utilize for binary classification. The312

encoder-decoder architecture is naturally suited for tasks that require alignment between313

input and output sequences. Specifically, we employ the pre-trained Transformer-based314

model called Text-To-Text Transfer Transformer (T5) [66], which has learned to predict315

masked spans of text during its pre-training. In particular, we use the CodeT5 variant of316

T5, which has been pre-trained on programming languages [41]. As an encoder-decoder317

model, CodeT5 is a very appropriate LLM for a task that extracts specific lines from a318

given set of lines (i.e., functions). The encoder converts the input sequence into a vector319

representation, and the decoder generates the output sequence from this representation.320

As can be seen in Figure 3, for the purposes of training and evaluating our line-level321

detection model, we leverage a large vulnerability database, which consists of source322

code pairs of functions and their lines that are labeled as vulnerable. The pairs of source323

code are then tokenized in order to produce pairs of tokenized functions and tokenized324

vulnerable lines. Both tokenized pairs are given as input to CodeT5 model, which is325

fine-tuned in the VD objective. The fine-tuned CodeT5 model constitutes the LocVul326

Detector.327

3.3. Inference phase328

Finally, there is the inference phase of the proposed methodology, as depicted in329

Figure 3. During inference, unseen functions are given for analysis, they are tokenized,330

and they are classified as vulnerable or clean by the LocVul Classifier (i.e., the fine-tuned331

CodeBERT model). The predicted as vulnerable functions are then fed to the LocVul332

Detector (i.e., the fine-tuned CodeT5 model), which extracts from the functions the lines333

it considers vulnerable.334
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In the methodology illustrated in Figure 3, after the vulnerable lines detection by335

the LocVul Detector, a process of most similar line replacement is taking place in order336

to address the problem of LLM hallucinations. This issue refers to cases where LLMs337

generate output that is syntactically correct and contextually plausible, but does not338

correspond to any actual line in the analyzed function [42]. In our case, we observed339

that the vulnerable lines produced by the LocVul Detector (based on CodeT5) are often340

almost but not entirely identical to actual lines in the function. For instance, instead341

of correctly returning the line strcpy(buffer, input);, the model might hallucinate342

a line such as copyString(buffer, input);, which does not exist in the original code.343

These discrepancies can hinder both automated and manual vulnerability remediation,344

as well as the reported localization accuracy.345

To mitigate this, we implement a line replacement mechanism that, for each tokenized346

line generated by the LocVul Detector that is not present in the original function (i.e.,347

is hallucinated), computes the cosine similarity [67] between its embedding and those of348

all the tokenized lines in the function. Subsequently, it replaces the generated line with349

the most similar one from the actual lines. In this way, every reported vulnerable line350

corresponds to a concrete line in the source code, substantially reducing hallucination-351

induced errors.352

As a final outcome, the concerned user, who is a security expert or a code reviewer,353

receives, for each function flagged as vulnerable, the lines of the function that the LocVul354

methodology detects as vulnerable. Specifically, in contrast to the XAI-based methods355

that return all the lines of the functions ranked by a vulnerability likelihood, LocVul356

approach returns a list of the specific lines detected as vulnerable as a first recommen-357

dation, and then, the reviewer can continue inspecting the rest lines of the functions in358

the order in which they appear in the source code. We have to specify that as a code359

reviewer we consider a human that relies primarily on the output of the tool to guide360

the inspection process, without assuming additional prior knowledge about the specific361

vulnerability or function under review. In our evaluation, we simulate this reviewer by362

having them examine the lines returned by LocVul in the provided order until the true363

vulnerability is located.364

4. Experimental design365

This section initially expresses the Research Questions (RQs) that will guide the366

entire experimental design. Subsequently, it presents the studied dataset, the details of367

LocVul implementation, the scheme that we followed to evaluate our approach, and the368

selection of the baseline method.369

4.1. Research questions definition370

In order to formulate the objectives of the study, the following RQs are defined:371

• RQ1: How accurate is LocVul for line-level vulnerability detection?372

RQ1 investigates whether LocVul can outperform existing approaches in detect-373

ing vulnerabilities that reside in source code. The accuracy of LocVul is mea-374

sured through various evaluation metrics to determine whether it surpasses the375

explainability-based approaches for identifying line-level vulnerabilities.376
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• RQ2: What is the cost-effectiveness of LocVul for line-level vulnerability detection?377

RQ2 is responsible for evaluating the cost-effectiveness of LocVul, which is a critical378

factor for the actual employment of VD techniques. The analysis measures the379

inspection effort that one has to devote to find actual vulnerable lines using LocVul380

and compares it to existing explainability-based approaches.381

4.2. Dataset382

For the purposes of our experimental analysis, we leverage the Big-Vul dataset, which383

was originally provided by Fan et al. [68]. Big-Vul is one of the most established and384

widely-used datasets in the field [33],[36],[58],[69],[70]. In brief, Big-Vul is a large C/C++385

vulnerability-related dataset that consists of open-source GitHub repositories labeled us-386

ing information retrieved from the CVE database. Among various information (e.g.,387

severity scores, vulnerability types, CVE summaries, etc.), it contains the code changes388

associated with the vulnerability that actually correspond to the vulnerability fixes.389

These code changes were retrieved from the commit history of the repositories. Overall,390

Big-Vul contains 188,636 functions, which constitute the samples of the dataset, gathered391

from 348 open-source C/C++ software repositories. In particular, the dataset includes392

10,900 functions labeled as vulnerable and 177,736 functions that are considered clean or393

at least neutral (i.e., no vulnerability has been found for them yet). Therefore, Big-Vul394

is a dataset with a vulnerability ratio of 6.13 %.395

We choose Big-Vul for our experiments, since it is not only a very large dataset, but396

it is also considered as a benchmark in the VP domain [71], contains data from a variety397

of projects, includes various vulnerability types, contains real vulnerabilities reported in398

the CVE database, has a realistic class balance ratio (i.e., 6.13 %) [72], and will therefore399

help to better position our study in the relevant domain. Moreover, it contains ground400

truths on line-level granularity as opposed to other popular vulnerability-related datasets401

that have only function-level labels (e.g., Devign [25], ReVeal[26], DiverseVul[52], etc.),402

which is a critical factor in our study.403

Furthermore, after conducting a literature review of the studies described in Section 2,404

we observed that the most notable studies [36],[38],[57],[58], which deal with fine-grained405

VD, used the Big-Vul dataset. Only Sotgiu et al. [39] preferred the Devign dataset406

[25], which does not contain line-level labels, but their scope was not the detection of407

vulnerable lines. Instead, they investigated the existence of spurious correlations and bias408

in VPMs through XAI techniques. In addition, LineFlowDP [61] and DeepLineDP [63]409

studies addressed the problem of detecting defective lines in defective files and, therefore,410

their dataset contains bugs and general weaknesses in the source code, whereas our study411

focuses exclusively on security vulnerabilities, which are a specific type of weaknesses that412

threaten the security of software systems.413

Before proceeding with training and evaluating the proposed models, we perform a414

step of dataset splitting. More specifically, the dataset is divided into 80 % training, 10415

% validation, and 10 % testing data. The training set is used for fine-tuning the models416

(both function-level and line-level detection models), while the validation set is leveraged417

to choose the optimal hyperparameters, and the testing set constitutes the unseen data418

that we utilize for the final evaluation of the models.419
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4.3. Implementation details420

To conduct our experimental analysis, we use the Hugging Face Transformers library421

[73] to load pre-trained Transformer-based models (i.e., CodeBERT and CodeT5) and422

efficiently manage tokenization. We also utilize the PyTorch framework [74] to construct423

our DL models. Furthermore, all experiments were carried out on the CUDA parallel424

computing platform of a couple of NVIDIA GeForce RTX 4080 graphic cards.425

As regards the classification model that is trained to predict vulnerable functions,426

we first load the pre-trained CodeBERT model from Hugging Face and then fine-tune it427

for the downstream task of binary classification. The codebert-base model that we load428

from Hugging Face is an encoder-only model that consists of 12 layers with 768 hidden429

size each and 12 Attention heads in each Attention block, containing overall 125 million430

parameters (i.e., trainable weights).431

In the fine-tuning phase, CodeBERT receives pairs of source code and binary labels432

(i.e., vulnerable and non-vulnerable functions) and is trained to predict which ones are433

vulnerable. During this process, all the layers and the weights of the CodeBERT model434

are updated to be adjusted to the downstream task. Furthermore, a classification head,435

which is a fully-connected layer, is appended to the model, and fine-tuning is performed436

using a learning rate (LR) of 0.00002. A linear scheduler is applied to progressively reduce437

the LR during training. The AdamW optimizer [75] is employed to optimize the gradient438

descent process. To prevent over-fitting, the Early Stopping technique is used, ensuring439

the optimal number of training epochs. Input sequences are limited to a maximum440

length of 512 tokens, which is the upper bound supported by the model. Additionally,441

zero padding is applied to standardize sequence lengths during the encoding process using442

the tokenizer of CodeBERT. For sequences exceeding the maximum length, truncation443

is performed to maintain consistency and compatibility with the model. Finally, the444

Cross-Entropy loss [76] is selected to compare predicted probabilities with true labels.445

The values of aforementioned hyperparameters are determined based on the values of446

common classification metrics (e.g., F1-score) during experimentation on the validation447

data. A summary of the characteristics of the fine-tuned CodeBERT model is provided448

in Table 1.449

As regards the Sequence-to-Sequence (Seq2Seq) model trained for line-level vulner-450

ability detection, we employ the pre-trained CodeT5 model [41] from Hugging Face.451

Specifically, we load the codet5-base model, which comprises an encoder and a decoder,452

each with 12 layers, a hidden size of 768 neurons per layer, and 12 Attention heads per453

Attention block, resulting in approximately 223 million trainable parameters.454

We then fine-tune it for the downstream task of aligning input sequences (i.e., vul-455

nerable functions) with output target sequences (i.e. vulnerable lines). More specifically,456

the models learns to generate target sequences that correspond to vulnerable lines within457

the input functions. During this process, first, the input sequences are tokenized using458

the CodeT5 tokenizer, which employs subword-based tokenization to handle both known459

and unknown tokens, and then, all layers and weights of the model are updated to460

adapt to the downstream task of vulnerability detection. Regarding the selection of the461

configurable hyperparameters of the model, it is guided by performance on validation462

data, evaluated using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE)463

metric [77]. ROUGE-L in particular, is commonly used for Sequence-to-Sequence NLP464

tasks to measure the Longest Common Subsequence (LCS) overlap among generated and465

reference texts [78], maintaining the structure of the sequences.466
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For the training process (i.e., fine-tuning), a LR of 0.00005 is selected, progressively467

reduced using a linear scheduler throughout the training. To optimize the gradient468

descent, we utilize the AdamW optimizer [75]. The Early Stopping technique is also469

applied to determine the number of training epochs to not exceed the number that470

the model no longer improves, preventing over-fitting. Additionally, zero padding is471

employed to standardize sequence lengths across batches, and truncation is used for472

sequences exceeding the maximum allowable length for this model (i.e., 512 tokens). The473

aforementioned configurations of the fine-tuned CodeT5 model are summarized in Table474

1.475

Table 1: Characteristics of the fine-tuned CodeBERT and CodeT5 models for LocVul Classifier and
LocVul Detector, respectively.

Attribute CodeBERT CodeT5
Model Type Encoder Encoder-Decoder

Transformer Variant RoBERTa T5
Version codebert-base codet5-base

Transformer Layers 12 24
Hidden Size 768 768

Attention Heads 12 12
Number of Parameters ∼ 125M ∼ 223M
Learning Rate (LR) 0.00002 0.00005

Optimizer AdamW AdamW
Loss Function Cross-Entropy Cross-Entropy
Max Length 512 512

4.4. Evaluation scheme476

To assess our approach on the testing set, we use several evaluation metrics, which477

have been established in the related literature [32],[36],[58],[61],[63]. We employ widely478

used classification metrics [32] to evaluate the function-level predictions, while the line-479

level performance of the model is measured through metrics commonly used in recom-480

mendation systems, since VD methods traditionally provide a list of lines sorted from481

the most likely to be vulnerable to the least ones, recommending that the top of the482

list be inspected first [36],[58],[61],[63]. Moreover, different metrics are used to mea-483

sure the accuracy and the cost effectiveness/effort-awareness of the line-level detectors484

[36],[61],[63].485

First, we assess the function-level predictions of the CodeBERT-based VPM (i.e.,486

LocVul Classifier). Since the dataset is highly unbalanced (i.e., class balance ratio 6.13%),487

classic Accuracy computed as TP+TN
TP+TN+FP+FN , where TP, TN, FP, and FN stand for488

true positives, true negatives, false positives, and false negatives, is not sufficient in489

itself. Therefore, all of Accuracy, Recall ( TP
TP+FN ), Precision ( TP

TP+FP ), and F1-score490

( 2×Precision×Recall
Precision+Recall ) are considered. Being the harmonic mean of Precision and Recall,491

F1-score is considered the most critical metric in VP, providing a single metric capable492

of measuring both [26],[32].493

Subsequently, to evaluate the accuracy of the LocVul Detector, we compute Top-K494

Accuracy (A@K), which is the most used measurement for line-level detection [36],[58],[61].495
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Top-K Accuracy is defined as x
N × 100%, where x is the number of vulnerable functions496

whose at least one line is vulnerable in the top-K of the list, and N the total number497

of vulnerable functions. It measures the percentage of functions for which the model498

detects at least one truly vulnerable line in the top-K lines it considers most likely to be499

vulnerable.500

Similarly, we report the average value of the Top-K Precision (P@K) and Top-501

K Recall (R@K) metrics across all functions. The former stands for the actual vul-502

nerable lines detected in the top-K lines proposed by the model and is computed as503

Number of vulnerable lines in K
Total number of lines in K . The latter, which is equal to Number of vulnerable lines in K

Total number of vulnerable lines ,504

computes the truly vulnerable lines of the top-K lines proposed by the model among the505

total of vulnerable lines in a function [10].506

Nonetheless, Top-K Precision and Top-K Recall are indifferent to the order of vul-507

nerable lines in the top-K ranking. They depict the number of vulnerable lines within508

the top-K, regardless of their specific order. Therefore, we utilize Mean Reciprocal Rank509

(MRR) and Mean Average Precision (MAP) at K, which are two rank-aware metrics.510

Specifically, MRR@K is a ranking quality metric, which is equal to the arithmetic511

mean of the Reciprocal Ranks (RR) across all functions, where a RR is the inverse of512

the position of the first vulnerable line. MRR@K is calculated as 1
N

∑N
i=1

1
ranki

, where513

N refers to the total number of vulnerable functions and ranki is the position of the first514

vulnerable line for function i in the top-K results [79]. If no vulnerable lines are found,515

MRR is equal to zero.516

Moreover, MAP@K is the mean of the Average Precision (AP) at K of all functions517

analyzed. It considers the number of vulnerable lines in the top-K list and their position518

in the list. First, we compute the AP per function by averaging the precision at each519

position of vulnerable lines in the top-K ranking list. Particularly, MAP@K is calculated520

as 1
N

∑N
n=1 AP@K, where N presents the total number of vulnerable functions, and521

AP@K is calculated as 1
M

∑K
k=1 P@k×rel(k), where M refers to the number of vulnerable522

lines in the top-K results for a specific function, K refers to the selected cutoff point,523

P@k is the Top-k Precision, and rel(k) equals 1 if the line at position k is vulnerable and524

0 if not [79].525

Since such a VD tool would only be useful if it managed to rank the vulnerable lines526

of the analyzed functions at the top of the recommended list of lines, we have to choose a527

relatively small value of K. Therefore, we choose K = 10 to compute the aforementioned528

metrics, following the example of prior studies [36],[58].529

In addition, to measure the cost-effectiveness of the proposed approach, we use metrics530

indicative of the effort required to achieve a sufficient line-level VD performance, First,531

we employ one function-based measurement called Initial False Alarms (IFA) [36],[63],532

which counts how many false alarms (i.e., non-vulnerable lines) occur before the first533

truly vulnerable line in a function. The lower the IFA, the less effort and time is spent534

by the code reviewer in inspecting non-vulnerable lines.535

Furthermore, we also use Effort@K%Recall and Recall@K%LOC to measure cost-536

effectiveness by considering the entire dataset under test as a whole [36],[63]. In partic-537

ular, Effort@K%Recall measures how much effort, expressed in lines of code (LOC), is538

required to identify the K% of the actual vulnerable lines of the entire testing set. The539

lower the value of Effort@K%Recall, the less effort is required for the code reviewer to540

find the K% of vulnerable lines. Moreover, Recall@K%LOC calculates the number of541
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true vulnerable lines found by making an effort equal to K LOC inspected. The higher542

the Recall@K%LOC the more vulnerable lines are found for a fixed amount of effort.543

Similarly to [36], we use the Effort@20%Recall and the Recall@1%LOC.544

Finally, to ensure that our analysis is not affected by randomness in data shuffling,545

model training, and other computational processes, we repeat all experiments ten times546

using a different random seed each time. We thus collect ten different values for each547

evaluation metric and report their average.548

4.5. Selection of baseline approach549

To demonstrate the efficacy of LocVul in line-level VD, we compare it with the current550

state-of-the-art. Specifically, during the evaluation of our experimental analysis presented551

in Section 5, we conduct a one-to-one comparison with the most notable existing method552

used for VD, as identified through our literature review in Section 2.553

It is well-known in the literature that XAI techniques have been widely adopted to554

address the challenge of VD at line-level of granularity [33],[35],[38]. By inspecting the555

related studies described in Section 2, we observed that graph-based methods, such as556

IVDetect [58], utilize the GNNExplainer [60] to interpret the predictions and, therefore,557

localize the vulnerabilities. However, although they achieve high coarse-grained accu-558

racy, they are disadvantaged in line-level detection compared to text mining-based XAI559

approaches [36],[38].560

Such a text mining-based methodology, which managed to outperform IVdetect lever-561

aging XAI is the one proposed by Fu et al. namely LineVul [36]. They first fine-562

tuned the CodeBERT model in VP, and then used the Self-Attention mechanism of the563

Transformer-based model to explain its predictions. More specifically, LineVul summa-564

rizes the Attention scores of the tokens included in the vulnerable functions to calculate565

line-level scores and, subsequently, ranks the lines of the functions from the most likely566

to be a vulnerable line to the least likely.567

In addition, they compared Self-Attention against various other XAI techniques ap-568

plied on textual code representations. The results presented in LineVul study [36],569

demonstrated the superiority of Self-Attention among XAI-based techniques, since it570

clearly outperformed all of Layer Integrated Gradient (LIG) [80], Saliency [81], DeepLift571

[82],[83], DeepLiftSHAP [84], and GradientSHAP [84] approaches in identifying vulnera-572

ble lines. They also showed a great superiority of Self-Attention compared to a traditional573

(non-XAI based) approach, the static code analysis approach, through the CppCheck [62]574

analyzer. Hence, it can be argued that the Self-Attention mechanism has emerged as the575

cutting-edge approach for the detection of fine-grained vulnerabilities.576

Accordingly, we choose the Self-Attention-based explainability method as our baseline577

for comparison. We do not just report the results presented in the study by Fu et al. [36],578

but we proceed with implementing it from our own (i.e., replicating their methodology)579

to avoid bias in the results due to the potential inconsistency in the implementation580

settings of the compared approaches (i.e., Self-Attention and our LocVul Detector). In581

this way, we can also evaluate Self-Attention using a more broad and representative set582

of evaluation metrics than those presented in LineVul study [36]. Moreover, it is not clear583

in [36] whether the localization results were computed using only the true positives or584

all the predicted as vulnerable samples, with the latter being what we consider to be the585

approach corresponding to a real-world scenario.586
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In particular, we implement the entire explainability-based methodology that lever-587

ages the Self-Attention mechanism of CodeBERT to localize the vulnerable lines in the588

functions based on the importance of the different tokens of the input in the function-level589

prediction. During the development of this implementation, we consulted the LineVul590

replication package [85]. From now on we will refer to this baseline as the Self-Attention591

approach.592

5. Results593

In this section, the results of our entire analysis are presented. Specifically, we present594

the evaluation results of the proposed Seq2Seq approach (i.e., LocVul) and we compare595

it against the Self-Attention approach that we selected as our baseline (see Section 4.5).596

Regarding the function-level VPM (i.e., LocVul Classifier), which is used as a fisrt step597

for both the Seq2Seq and Self-Attention approaches during our experimental study, the598

CodeBERT-based model achieves a high predictive performance in VP. Specifically, it599

identifies vulnerable functions with 99.04% Accuracy, 95.62% Precision, 86.88% Recall,600

and 91.04% F1-score. Regarding line-level VD, we evaluate both the proposed Seq2Seq601

model (i.e., LocVul Detector) and the state-of-the-art Self-Attention approach in their602

capacity of localizing vulnerabilities. To this end, we provide a detailed analysis with603

respect to the two RQs that we defined in Section 4.1.604

5.1. RQ1 - Accuracy of LocVul for line-level vulnerability detection605

An early sign that the Seq2Seq-based LocVul Detector has high detection accuracy606

is the fact that, for around 60% of vulnerable functions, the set of lines generated by the607

model exactly matches the ground truth vulnerable lines. Therefore, even if we ignore608

the recommended line ranking lists, LocVul manages to identify the exact vulnerable609

segment in 60% of the vulnerable functions. Nevertheless, to answer RQ1, we evaluate610

the accuracy of LocVul and we compare it against Self-Attention using proper evaluation611

metrics (see Section 4.4). Initially, we calculate the Top-10 Accuracy of the LocVul612

Detector to measure how often it manages to detect one vulnerable line in the 10 first613

lines it suggests for inspection. We then evaluate LocVul in terms of Top-10 Precision614

and Top-10 Recall to also consider the number of lines detected in the 10 first lines.615

Figure 4 presents the values of these metrics for LocVul compared to Self-Attention.616

As can be seen in Figure 4, the LocVul Detector achieves a Top-10 Accuracy equal to617

82.8%, which is 11.4% higher than the 71.4% of Self-Attention, showing that the proposed618

model detects at least one vulnerable line in much more cases than the baseline. In619

addition, the Top-10 Precision of LocVul is 26.9% compared to 19.0% of Self-Attention,620

a result that indicates the superiority of LocVul in identifying multiple truly vulnerable621

lines in the top-10 of the lines it suggests as vulnerable. Specifically, LocVul’s Top-10622

Precision of 26.9% shows that the model identifies on average 2.69 actual vulnerable lines623

in the top-10 recommended lines. Moreover, a Top-10 Recall equal to 79.0%, which is624

much higher than Self-Attention’s 57.7%, highlights the ability of LocVul to detect many625

of the function’s vulnerable lines in the top-10 ranking.626

At this point, we should mention that the results obtained with the developed Self-627

Attention approach for VD are slightly different from those reported in [36]. In particular,628

Top-10 Accuracy is higher by 6.4%. This can be attributed mainly to the fact that, in629
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(a) Comparison of Top-10 Accu-
racy (A@10). (↗) Higher A@10
- Better.

(b) Comparison of Top-10 Preci-
sion (P@10). (↗) Higher P@10 -
Better.

(c) Comparison of Top-10 Recall
(R@10). (↗) Higher R@10 - Bet-
ter.

Figure 4: Top-10 Accuracy, Precision, and Recall of LocVul compared to the baseline Self-Attention
method for line-level vulnerability detection.

our implementation, we remove the functions that are labeled as vulnerable but have630

incomplete line-level labels (i.e., they have no information on which are the vulnerable631

lines). Those samples act as noise in the line-level dataset and are also a barrier to632

training the Seq2Seq model. Therefore, they have to be removed from both training and633

testing sets.634

Furthermore, to evaluate the accuracy of our approach in a rank-aware manner by635

considering the order of the lines proposed as vulnerable by the model, we compute636

the Mean Reciprocal Rank (MRR) and the Mean Average Precision (MAP) at top-10637

ranking list. Figure 5 shows the results for LocVul and Self-Attention approaches in638

terms of MRR@10 and MAP@10 in the left and right bar charts, respectively. Our639

Seq2Seq-based LocVul approach manages to outperform the XAI-based Self-Attention640

approach by almost double the score in terms of MRR@10 and MAP@10.641

In particular, the LocVul Detector achieves MRR@10 equal to 79.4%, which is 35.8%642

higher than Self-Attention’s 43.6% leading to the conclusion that it is able not only643

to detect a vulnerable line in more functions than XAI techniques, but also to detect644

it earlier in the ranking list of lines. In addition, MAP@10 of the LocVul Detector is645

equal to 79.2% in contrast to Self-Attention, which has MAP@10 equal to 41.1%. This646

observation demonstrates the enhanced capability of LocVul to detect more vulnerable647

lines higher up in the ranking list compared to the Self-Attention mechanism.648

Although a clear difference in the values of the accuracy-related evaluation metrics649

between the two approaches is observed, we apply a statistical test to support further650

our findings. In particular, we conduct the Wilcoxon Signed-Rank Test [86] to check651

whether the paired accuracy scores, obtained from ten different random seed values, dif-652

fer significantly between LocVul and Self-Attention. We repeat this analysis for all of653

the Top-10 Accuracy, Precision, Recall, MRR@10, and MAP@10 metrics. Considering654

as the null hypothesis that LocVul is not more accurate than Self-Attention for each655

metric, the Wilcoxon test returns p-values of 0.00098 across all metrics, which are well656

below the 0.05 significance threshold. Therefore, we reject the null hypothesis and state657
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(a) Comparison of Top-10 Mean Reciprocal
Rank (MRR@10). (↗) Higher MRR@10 -
Better.

(b) Comparison of Top-10 Mean Aver-
age Precision (MAP@10). (↗) Higher
MAP@10 - Better.

Figure 5: Top-10 Mean Reciprocal Rank and Mean Average Precision of LocVul compared to the baseline
Self-Attention method for line-level vulnerability detection.

that LocVul is significantly more accurate than Self-Attention. Hence, we can argue that:658

659

The LocVul approach, which extracts vulnerable lines from the source code of
vulnerable functions using a code-aware Seq2Seq LLM, specifically CodeT5,
achieves high accuracy in vulnerability detection, outperforming the baseline
Self-Attention explainability method.

660

5.2. RQ2 - Cost-effectiveness of LocVul for line-level vulnerability detection661

In RQ2, we investigate the cost-effectiveness of the proposed VD approach. In other662

words, we evaluate the predictive performance of LocVul with respect to the effort re-663

quired to achieve this performance. To this end, we compute the cost-effectiveness evalua-664

tion metrics, which are described in Section 4.4. On the one hand, we evaluate LocVul by665

calculating the IFA metric that evaluates cost-effectiveness by counting the false alarms666

that one has to inspect until finding one truly vulnerable line in a function. On the other667

hand, we evaluate LocVul using the Effort@20%Recall to measure the effort required to668

find the 20% of the vulnerable lines in the entire testing set, while Recall@1%LOC is669

used to find the truly vulnerable lines detected by inspecting a fix amount of LOC (i.e.,670

the 1% of the total LOC) in the testing set. Figure 6 presents the values of these metrics671

for the proposed LocVul approach compared to the baseline Self-Attention approach.672

In particular, Figure 6a presents the IFA values of the compared approaches. Similarly673

to previous studies [36],[61],[63], our evaluation is based on median IFA values. As674

illustrated in Figure 6a, LocVul achieves a median IFA equal to 0, suggesting that the675

Seq2Seq model manages to include a vulnerable line in the generated lines in most of676

the functions (i.e., for at least half of the functions in the dataset). In contrast, the677

Self-Attention mechanism achieves a higher median IFA equal to 2. This observation678
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(a) Comparison of Initial False
Alarm (IFA). (↘) Lower IFA -
Better.

(b) Comparison of Ef-
fort@20%Recall. (↘) Lower
Effort@20%Recall - Better.

(c) Comparison of Re-
call@1%LOC. (↗) Higher
Recall@1%LOC - Better.

Figure 6: Cost-effectiveness evaluation of LocVul compared to the baseline Self-Attention method for
line-level vulnerability detection.

indicates that LocVul improves the baseline approach in terms of the number of false679

alarms to inspect before finding a vulnerable line. In addition, as illustrated by the error680

bars representing half the Interquartile Range (IQR/2), LocVul demonstrates minimal or681

no variability, consistently achieving very low IFA values across all samples as opposed682

to Self-Attention, which has a larger spread.683

Furthermore, Figure 6b demonstrates that LocVul achieves Effort@20%Recall equal684

to 0.57% against Self-Attention’s 0.61%. The smaller the Effort@20%Recall, the less685

effort is required to detect vulnerabilities. Therefore, a code reviewer that uses LocVul686

can put less effort into identifying 20% of the truly vulnerable lines. In addition, Figure687

6c shows that LocVul’s Recall@1%LOC is 29.8% in contrast to Self-Attention’s 28.6%.688

In other words, a code reviewer is able to detect 1.2% more vulnerable lines by inspecting689

the top-1% recommended lines when using LocVul instead of the baseline Self-Attention690

approach.691

In addition, we perform the Wilcoxon Signed-Rank Test [86] to judge if the differ-692

ences in the cost-effectiveness metrics between the LocVul and Self-Attention approaches693

are statistically significant. Using the metrics computed for 10 repetitions of the experi-694

ments with different random seeds, the p-values of the Wilcoxon test are equal to 0.00098,695

0.02108, and 0.01368 for median IFA, Effort@20%Recall, and Recall@1%LOC metrics,696

respectively. Although the differences in the means of the cost-effectiveness metrics are697

not large, all the p-values are lower than the 0.05 threshold and, therefore, we can state698

that the differences in cost-effectiveness between the two approaches are statistically sig-699

nificant. Hence, considering IFA, Effort@20%Recall, and Recall@1%LOC scores, it is700

concluded that:701

702

The Seq2Seq-based LocVul approach offers a cost-effective solution for line-
level vulnerability detection, reducing the effort required to identify ac-
tual vulnerable lines compared to the baseline Self-Attention explainability
method.

703
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6. Discussion704

In this section, we discuss the findings of our experimental analysis and provide useful705

insights. First, we explore the benefit gained from the line replacement mechanism706

that we implement to address LLM hallucinations in VD. Subsequently, implications to707

researchers and practitioners are provided, and then, the threats to validity of our study708

are disclosed.709

6.1. Impact of the most similar line replacement mechanism710

In Section 3.3, we described a similarity checking mechanism based on cosine similar-711

ity between the embeddings of tokenized lines. This mechanism is applied when running712

the LocVul Detector in order to check whether the line generated by the model is one of713

the lines of the function being analyzed and, if not, to replace it with the corresponding714

line by calculating which line is the most similar. In this way, the proposed methodology715

manages to handle cases where the Seq2Seq model returns as vulnerable lines that are not716

in the function (i.e., LLM hallucinations in this problem). Table 2 presents the evaluation717

of the LocVul approach with and without employing the similarity check mechanism.718

Table 2: Comparison of results achieved by LocVul with and without the most similar line replacement
mechanism.

Accuracy Metrics Cost-Effectiveness Metrics
Approach A@10 P@10 R@10 MRR@10 MAP@10 Median IFA Effort@20%Recall Recall@1%LOC
With Replacement 82.8% 26.9% 79.0% 79.4% 79.2% 0 0.57% 29.8%
Without Replacement 80.6% 25.3% 74.3% 76.9% 76.5% 0 0.70% 25.4%

As shown in Table 2, the mechanism applied to replace the most similar lines provides719

a benefit to the entire approach, which is reflected in all evaluation metrics used. In terms720

of accuracy-related metrics, we can see that the proposed mechanism achieves a Top-10721

Accuracy, Precision, and Recall gain equal to 2.2%, 1.6%, and 4.7%, respectively. It also722

provides a gain of 2.5% and 2.7% in terms of MRR@10 and MAP@10, which means that723

LocVul with similar line replacement manages not only to detect more vulnerable lines,724

but also to place them higher in the list of the returned vulnerable lines compared to725

LocVul without similar line replacement. One can also observe an advantage of the hal-726

lucinations handling mechanism with regard to cost-effectiveness. Although median IFA727

is still zero, both Effort@20%Recall and Recall@1%LOC are deteriorated when remov-728

ing this mechanism. Specifically, the former increases by 0.13% and the latter decreases729

by 4.4%, leading to the conclusion that without similar line replacement, more effort is730

required by the code reviewer to find actual vulnerabilities using LocVul without being731

confused by hallucinations.732

In addition, to verify the benefit of the similar line replacement mechanism, we per-733

form the Wilcoxon Signed-Rank Test [86] on the evaluation metrics obtained from ten734

repetitions of the experiments with different random seeds. Specifically, we conduct the735

test on both accuracy and cost-effectiveness metrics, namely Top-10 Accuracy, Top-10736

Precision, Top-10 Recall, MRR@10, MAP@10, Effort@20%Recall, and Recall@1%LOC,737

excluding median IFA, as it is zero in both cases. The Wilcoxon test returns p-values738

equal to 0.00098 for all metrics. All the p-values are below the 0.05 threshold indicating739

that there is a statistically significant benefit gained from the similar line replacement740

mechanism in terms of both accuracy and cost-effectiveness in VD.741
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6.2. Implications742

Having presented a thorough evaluation of the proposed method, the results demon-743

strate that the Seq2Seq approach for VD addresses important limitations of prior methods744

and outperforms traditional VD techniques that rely on XAI. Unlike the state-of-the-art745

Self-Attention-based approach, a Seq2Seq model, such as CodeT5, can directly identify746

vulnerable lines in source code without ranking tokens by importance or depending on747

error-prone function-level prediction models, which often capture spurious data correla-748

tions. The experiments carried out in the context of RQ1 and RQ2 demonstrate that749

fine-tuning a Seq2Seq model in detecting line-level vulnerabilities achieves both higher ac-750

curacy and better cost-effectiveness than approaches based on interpreting function-level751

predictions. These findings encourage stakeholders to focus on Seq2Seq-based solutions752

for VD rather than using XAI-based techniques by default.753

Furthermore, we recommend that researchers further elaborate the Seq2Seq-based754

approach, examining specific Seq2Seq training paradigms, in order to develop even more755

accurate models. For instance, they could extend our analysis by comparing techniques756

such as question-answering, machine translation, text generation, etc. In addition, we757

suggest that researchers validate the accuracy of this approach on different datasets758

and programming languages. Research on constructing new datasets with fine-grained759

vulnerability labels is recommended, as well.760

Moreover, we suggest researchers to enrich the VD-related literature by experiment-761

ing with various LLMs, either of the same or larger scale. They could repeat our analysis762

by fine-tuning models such as PLBART [87], GPT-4 [88], and Mistral [89] on the Seq2Seq763

approach to localize vulnerabilities within functions. An interesting research direction764

is also the exploration of innovative methods from the rapidly evolving field of artificial765

intelligence, such as Reinforcement Learning from Human Feedback (RLHF) [90] to in-766

crease the accuracy of the proposed VD approach, and Mixture of Experts (MoE) [91]767

to enhance the detection of vulnerabilities of different categories.768

In addition, the accuracy of LocVul combined with its cost-effectiveness and the769

efficiency in its execution is an important practical advantage. Software development770

workflows that require real- or near-real-time applications can benefit from models such771

as CodeT5, which, when fine-tuned, can detect vulnerable lines in source code without772

any substantial delay. Specifically, although training LLMs is a time-consuming process,773

the perception time of LocVul (i.e., average time required to analyze one function during774

model execution) is only 213.83 milliseconds (ms). Therefore, LocVul can detect with775

sufficient accuracy where a vulnerability is located in the source code of a function in776

213.83 ms, without necessarily requiring additional effort to inspect the line-ranking list,777

as in the case of XAI-based solutions. Thus, we recommend that practitioners use such778

solutions as copilots (e.g., through their Integrated Development Environments) in their779

daily development activities to improve the overall security and productivity of the SDLC780

with little or no disruptions to their regular workflows.781

Furthermore, practitioners are suggested to use LocVul during software development782

and testing, and to compare it with existing static code analysis solutions, which are783

traditionally used for identifying potential vulnerabilities through source code scanning.784

In this way, practitioners could provide useful insights regarding the comparison of solu-785

tions like LocVul against static code analysis tools, which often demand substantial time786

to analyze large code bases [92],[93]. Although transfer learning approaches have been787
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shown to outperform static code analyzers in terms of accuracy [36], a holistic evaluation788

considering the computational footprint of each approach would be useful.789

6.3. Threats to validity790

A remark about threats to the validity of our approach is needed. Threats to con-791

struct validity concern the selection of the metrics used in our evaluation scheme. In792

our experimental analysis, we use A@10, P@10, and R@10 to measure the accuracy of793

LocVul and Self-Attention approaches. We also use MRR@10 and MAP@10 measure-794

ments to evaluate the accuracy of the compared approaches in a rank-aware manner. In795

addition, the use of the IFA, Effort@20%Recall and Recall@1%LOC metrics contributes796

to a comprehensive assessment that takes into account cost-effectiveness. These met-797

rics are widely used in the related literature [10],[36],[61],[63], which effectively mitigates798

construct validity risks.799

The primary threat to internal validity relates to hyperparameter selection when800

fine-tuning our LocVul model. Although we have performed extensive hyperparameter801

tuning, it is not certain that we have tested all possible combinations of hyperparameter802

values. It can be difficult to discern the effects of specific model hyperparameters due to803

the correlation between them, which could lead to a lower than ideal model performance.804

To reduce this risk, we use a quite thorough hyperparameter tuning procedure based on805

the Grid-search method [94].806

Moreover, a threat to internal validity relates to the accuracy and correctness of our807

own approach. To mitigate this concern, we have not only meticulously reviewed our808

code, but also aim to make the code publicly available [43] to facilitate future replication809

and validation of our findings. In addition, a potential threat to internal validity also810

is the accurate implementation of the state-of-the-art Self-Attention approach that we811

use as a baseline mechanism. It is important to ensure that this approach is faithfully812

and correctly reproduced. To this end, we thoroughly inspected and consulted the code813

provided by the LineVul study [36] and, additionally, we include the code we developed814

for the Self-Attention approach in our replication package, along with the code for the815

LocVul approach.816

Finally, external validity is related to the generalizability of the LocVul approach. Our817

study is limited to one dataset, which contains open-source projects written in C/C++818

language, and thereby, the findings may not extend to projects in other languages or819

proprietary software. We selected Big-Vul [68], which is a widely-referenced dataset in820

the vulnerability-related literature, especially in studies interested to line-level detection821

[36],[57],[58]. It consists of 348 different projects containing code changes and vulner-822

abilities retrieved from GitHub and the CVE database, respectively. The size and the823

trustworthiness of Big-Vul mitigates the generalizability risk. Other line-level datasets824

including projects in different programming languages could be explored in the future.825

7. Conclusions and future work826

This study identified limitations in existing vulnerability detection (VD) techniques827

and proposed the LocVul methodology, which is based on a Sequence-to-Sequence ap-828

proach. Specifically, we proposed a two-step mechanism, which first, fine-tunes a Large829

Language Model (LLM) in predicting the vulnerable functions (i.e., a classification task),830

23



and second, fine-tunes another LLM in extracting the vulnerable lines of a given func-831

tion. The analysis found that LocVul achieved beyond state-of-the-art results, managing832

to clearly surpass explainability-based solutions both in accuracy and cost-effectiveness.833

Useful insights were also gained about the effective handling of the LLM hallucinations834

in VD and about the potential of tools such as LocVul to act as a co-pilot in software835

development.836

Suggestions for future work include the construction of a complete AI-driven VD837

pipeline that will identify vulnerable software components, localize the specific lines of the838

vulnerabilities, classify them to vulnerability categories, and assign them severity scores.839

We aim also at examining the accuracy of LocVul to other programming languages and840

different application domains.841
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