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Abstract 
Software security is a critical consideration for software development companies that want to 

provide their customers with high-quality and dependable software. The automated detection of 

software vulnerabilities is a critical aspect in software security. Vulnerability prediction is a 

mechanism that enables the detection and mitigation of software vulnerabilities early enough in 

the development cycle. Recently the scientific community has dedicated a lot of effort on the 

design of Deep learning models based on text mining techniques. Initially, Bag-of-Words was the 

most promising method but recently more complex models have been proposed focusing on the 

sequences of instructions in the source code. Recent research endeavors have started utilizing 

word embedding vectors, which are widely used in text classification tasks like semantic analysis, 

for representing the words (i.e., code instructions) in vector format. These vectors could be 

trained either jointly with the other layers of the neural network, or they can be pre-trained using 

popular algorithms like word2vec and fast-text. In this paper, we empirically examine whether 

the utilization of word embedding vectors that are pre-trained separately from the vulnerability 

predictor could lead to more accurate vulnerability prediction models. For the purposes of the 

present study, a popular vulnerability dataset maintained by NIST was utilized. The results of the 

analysis suggest that pre-training the embedding vectors separately from the neural network 

leads to better vulnerability predictors with respect to their effectiveness and performance.  

Introduction 
Vulnerability Prediction (VP) techniques aim to identify the software components that are more 

likely to contain vulnerabilities. Vulnerability prediction models (VPMs) are typically built using 

machine learning (ML) techniques that use software attributes as input to differentiate between 

vulnerable and clean (or neutral) software components. Several VPMs have been proposed over 

the years, each of which uses different software factors as inputs to predict the presence of 

vulnerable components [1]. Text mining-based techniques have been found to be the most 

reliable, according to the bibliography [2] and have attracted the most of the recent research 

interest [3], [4], [5], [6], [7], [8], [9], [10]. The first attempts in the field of vulnerability prediction 

using text mining, have focused on the concept of Bag-of-Words (BoW) as a method for predicting 

software vulnerabilities using the text terms and their respective appearance frequencies in the 

source code. Recently, researchers have shifted their focus from simple BoW to more complex 

approaches, investigating whether more complex textual patterns in the source code could lead 
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to more accurate vulnerability prediction. In particular, the authors in [4], [5], [8] transformed the 

source code into sequences of word tokens and trained deep neural networks capable of learning 

sequences of data (e.g., Recurrent Neural Networks). 

When using sequences of tokens to identify software components with vulnerabilities, 

vulnerability prediction has a lot in common with text classification tasks such as sentiment 

analysis [11]. The word embedding vectors are commonly used in the field of text classification. 

Word embedding is a term used to describe the representation of words for text analysis, typically 

in the form of a real-valued vector that encodes the meaning of the word in such a way that words 

that are close in the vector space are expected to have similar meanings. Most of the studies 

about VP make use of the word embeddings [4], [5], [6], [12]. Actually, without these embedding 

vectors each token will have been replaced by a one-hot vector with dimension equal to the size 

of vocabulary, making the whole process very time and memory consuming. 

Tokens can be embedded into vectors in a variety of ways. One option is to use an embedding 

layer that is jointly trained with the vulnerability prediction task [13]. Another method is to use 

an external word embedding tool, such as word2vec [14], to generate vector representations of 

each token. One can also use the vectors that are already generated from these tools (e.g. 

word2vec, Glove [15], Fast-text [16]) based on natural language documents of billions of words. 

Finally, there is also the option to produce custom embedding representations. 

The purpose of this study is to emerge the worth of the sophisticated embedding algorithms (e.g., 

word2vec, fast-text) in text mining-based vulnerability prediction showing their contribution to 

the effectiveness and the efficiency of the VPMs and to compare them with the use of a trainable 

embedding layer that updates its values during the training of the VP classifier. A dataset has been 

collected and an experimental analysis has been conducted by comparing the use of a simple 

embedding layer with the utilization of word2vec and fast-text algorithms. We also compare the 

word2vec and fast-text algorithms with each other. Finally, we compare our best model with a 

state-of-the-art model based on BoW and ML. All the produced results are presented in this paper. 

The remainder of the paper is organized as follows. Section 2 discusses related work regarding 

the utilization of word embeddings in the field vulnerability prediction. Section 3 provides the 

theoretical background in order to familiarize the reader with the main concepts of the present 

work. Section 4 discusses the methodology that we followed, while Section 5 presents the results 

of our analysis. Finally, Section 6 wraps up the paper and discusses future research directions. 

Related Work 
Vulnerability prediction using text mining is very popular and has demonstrated promising results 

in the related literature [2], [4], [9], [10]. Initial research endeavors focused on the concept of 

BoW (i.e., occurrences of tokens) [2][9]. Recent attempts focus on predicting the existence of 

vulnerabilities through learning more complex patterns from the source code. They consider the 

software components as sequences of tokens and train deep learning models capable of learning 

sequences, such as the Recurrent Neural Networks (RNNs) [4], [5]. The challenging part of these 

recent studies is to add syntactic and semantic meaning to the sequences of code tokens. Word 

embeddings are one of the most promising solutions. 



The word embedding vectors have evolved into an integral part of the text classification tasks 

since Mikolov et al. [17] proposed two architectures for learning distributed representations of 

words. The authors in [18], conducted a comparative study between different ML algorithms 

including fast-text, Glove and word2vec, while in [19] a deep learning method is proposed utilizing 

the semantic knowledge provided by the word embeddings. 

Word embeddings have already been used in the field of text mining-based vulnerability 

prediction. Dam et al. [8] mapped every code token with an index of their vocabulary and then 

they constructed an embedding matrix which contained a unique vector representation for every 

token of the vocabulary in the position that corresponds to the vocabulary index. In other words, 

the embedding matrix worked as a look-up table. 

The authors in [5] and [6] used the word2vec tool to generate embedding vectors for their 

vocabulary, while Zhou et al. [4] used the pre-trained word2vec vectors. Russel et al. in [12] 

created a vulnerability detection tool based on deep learning and capable of interpreting lexical 

source code. They conducted a comparative study between simple source code embedding using 

Bag-of-Words and more advanced code representations learned automatically by deep learning 

models inside the embedding layer. Fang et al. [20] proposed the fastEmbed model which is an 

extension of the fast-text algorithm. This way they developed a model for predicting the 

exploitability of software vulnerabilities on imbalanced datasets by understanding key features of 

vulnerability-related text. 

To this end, it is quite clear that a lot of studies make use of word embedding vectors as a 

representative format for the source code’s tokens (i.e., words). There are papers that refer the 

use of simple vector representations just in order to replace the text features [8], other papers 

that use the BoW methodology to represent the text in the source code [9], other studies that 

utilize the pre-trained embedding vectors produced by the pre-trained word2vec model [4], but 

most of them choose to encode the code tokens into embedding vectors trained on their own 

data [5], [6]. However, to the best of our knowledge, there is no study examining the difference 

between the internal embeddings that are trained in the embedding layer together with the 

classifier, and the external embeddings that are trained alone prior to the model’s training. The 

former are part of the supervised learning of the model and update their weights through the 

Backpropagation process [21], while the latter are trained once, using an advanced unsupervised 

algorithm, and then they can be saved for future use. Moreover, there is a need for an 

experimental analysis examining the improvement in terms of accuracy and performance that 

these word embeddings provide to the DL-based vulnerability predictors. In the present work, we 

attempt to address these open issues through an empirical analysis on a popular dataset. 

Furthermore, the present paper includes a comparison between two popular types of word 

embedding tools (i.e., word2vec, fast-text) as well as a comparison with a state-of-the-art BoW 

model. 

Theoretical Background 
In this section, we present the theoretical background of the technologies that we use. This 

section's information is critical for familiarizing the reader with the concepts of the text mining-

based VP and the word embedding representations. 



Vulnerability Prediction based on Text-Mining 
Vulnerability Prediction purpose is to identify software hotspots that are more likely to contain 

software vulnerabilities. These hotspots are actually parts of the source code that require more 

attention by the software developers and engineers from a security viewpoint. When the VPMs 

are based on text-mining they are trained on datasets constructed by the words (i.e., tokens) that 

appear in the source code. BoW constitutes the simplest text-mining method. In BoW, the code 

is divided into text tokens, each one of which is accompanied by the number of its occurrences in 

the source code. So each word corresponds to a feature, and the frequency of that feature in a 

component adds up to the value of that feature for that component. Aside from BoW, text-mining 

includes the process of converting the source code into a list of token sequences for use as input 

to Deep Learning (DL) models capable of parsing sequential data (e.g., recurrent neural networks). 

The sequences of tokens constitute the input of the DL models that, during the training phase, try 

to capture the syntactic information included in the source code, and in the execution phase to 

predict the existence of vulnerabilities in the software components. Text-mining also uses Natural 

Language Processing (NLP) methodologies such as word2vec pre-trained embedding vectors to 

extract semantic information from tokens. 

Word Embedding Vectors 
Word embedding methods use a corpus of text to learn a real-valued vector representation for a 

predefined fixed-sized vocabulary [17]. The learning process is either collaborative with the neural 

network model on a task, or unsupervised, using document statistics. An embedding layer is a 

word embedding learned in conjunction with a neural network model on a specific natural 

language processing task, such as document classification. It necessitates cleaning and preparing 

the document text so that each word can be one-hot encoded. The model specifies the size of the 

vector space. The vectors are seeded with small random numbers. The embedding layer is used 

at the front end of a neural network and is fitted in a supervised manner using the 

Backpropagation algorithm. However, it can be selected to be non-trainable. In this case, it has to 

be seeded with a pre-trained embedding matrix which has been trained using an external 

algorithm. 

Mikolov et al. [17] proposed two model architectures for computing continuous vector 

representations of words. They showed that these representations were able to capture syntactic 

and semantic word similarities. Both architectures are neural network-based ones for learning the 

underlying word representations for every word. The first proposed model, called Continuous 

Bag-of-Words Model (CBOW), tends to find the probability of a word occurring in a context. Thus, 

it generalizes over all the different contexts in which a word can be used. The second architecture, 

called continuous skip-gram model, instead of predicting the current word based on context, 

attempts to maximize classification of a word based on another word in the same sentence. To 

be more specific, every current word is fed into a log-linear classifier with a continuous projection 

layer, which predicts words within a certain range before and after the current word. 

Two of the most popular algorithms that can generate embedding vectors are the word2vec1 and 

fast-text2 models. Both of them are based on the two aforementioned architectures (i.e., CBOW, 

 
1 https://radimrehurek.com/gensim/models/word2vec.html 
2 https://radimrehurek.com/gensim/models/fasttext.html 



skip-gram). The difference between these tools lies in the fact that the word2vec considers each 

individual word to be the smallest unit for which a vector representation must be found, whereas 

fast-text considers a word to be formed by n-grams of character and therefore fast-text is 

generally better in finding the vector representation for rare words. 

Methodology  

Dataset 
As part of the current work, we created several VPMs for two widely-used programming 

languages, C and C++ combined. We used a vulnerability dataset derived from two National 

Institute of Standards and Technology (NIST) data sources: the National Vulnerability Database 

(NVD)3 and the Software Assurance Reference Dataset (SARD)4 . This dataset contains 7651 class 

files, 3438 of which are classified as vulnerable and the remaining 4213 as clean. The dataset has 

been presented by Li et al. [5]. 

Pre-Processing 
Before the construction of vulnerability prediction models, appropriate pre-processing is required 

in order to bring the dataset in a form appropriate to be used by the investigated techniques. To 

this end, we gathered the source code files written in the C and C++ programming languages and 

used a variety of pre-processing techniques to convert the datasets into a series of words-tokens. 

All comments, as well as the header/import instructions that declare the use of specific libraries 

in the class, were removed from the dataset. Subsequently, we removed the code-specific 

constants (i.e., numbers, literals, etc.), in order to make the produced sequences more 

generalizable. In particular, the numeric values (i.e., integers, floats, etc.) were then replaced by 

a unique identifier "numId$," while the string values and characters were replaced by a different 

unique identifier "strId$." All blank lines are also removed, and the text is finally transformed into 

a list of code tokens (i.e., new, char, strlen, etc.) in the order they appear in the source code. After 

data cleansing, these produced tokens are replaced by a unique integer (integer encoding 

process5) and these integers are mapped to one-hot vectors (one-hot encoding6). The 

aforementioned data cleansing process is illustrated in Figure 1. 

 
3 https://nvd.nist.gov/ 
4 https://samate.nist.gov/SRD/index.php 
5 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html 
6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html 



 

Figure 1: The data cleansing and tokenization process. 

Word Embedding Vectors Training   

In this study, in order to embed the text representations to numerical vectors different from the 

one-hot vectors, the word2vec and fast-text tools were utilized. The two models provide both the 

CBOW and skip-gram architecture. These tools also provide pre-trained vectors for a specific but 

large vocabulary. However, in our case, with a total vocabulary size equal to 11992 programming 

language words, the pre-trained (in natural language text) representations would not provide any 

improvement. Instead of that, we train the tools with our dataset. Each software component (i.e., 

source code file) constitutes a sequence of tokens and all the sequences of the dataset are used 

as the corpus for the training of the word2vec and fast-test models. These algorithms learn the 

syntactic and semantic relations between the code tokens and place them at the vector space. 

After training these embedding vectors for the words of the vocabulary then one can save them 

for future use, saving time of the training process. A comparative study between the CBOW and 

skip-gram architectures and between the word2vec and fast-text vectors is conducted in the 

Section 5. For the training of the embedding vectors, the parameters that were selected after 

tuning are listed in Table 1. 

Table 1: The selected parameters for the training of word2vec and fast-text embedding vectors. 

Parameters Word2vec Fast-text 

size 300 300 

window 40 40 

min_count 1 1 

Epochs 1 2 

 

In Table 1, the parameter “size” is the dimension of the embedding vectors, the “window” refers 

to the maximum distance between a target word and words surrounding the target word while 

the term “min_count” refers to the minimum count of words to consider during training. The 

algorithm ignores the words with occurrence less than the “min_count”. The parameter epochs 

is just the number of iterations that the model parses the data. 



In Figure 2, there is a depiction of word2vec vectors trained at the dataset used in the present 

study, generated by the t-distributed stochastic neighbor embedding (TSNE) algorithm [22]. 

Vectors that are in close proximity in the depicted figure, correspond to words that are in close 

proximity in the actual source code. For instance, in Figure 2 we can see that the tokens “for” and 

“i” which actually are used together in a lot of circumstances, are indeed placed one next to the 

other. The same applies also for the tokens “free” and “malloc”, which is another very 

representative example. 

 

Figure 2: The word2vec embedding vectors placed in the vector space by the TSNE algorithm. 

Model Selection 
In this analysis, various DL algorithms are used to create models that can distinguish between 

vulnerable and neutral source code files. As the input to the models consists of sequential data 

(i.e., series of tokens) we chose DL algorithms capable of handling sequences. The RNNs are the 

most suitable ones as language models [23]. Convolutional Neural Networks (CNNs) are used on 

code classification tasks, as well [4], [24]. Regarding the RNNs, there are several improved versions 



such as the Long-Short Term Memory networks (LSTMs) [25], the Gate Recurrent Units (GRUs) 

[26] and the Bidirectional LSTMs (BiLSTMs) [27], which can solve the vanishing gradient problem 

[28] that the original RNNs face. The hyper-parameters chosen for our RNN and CNN models are 

presented in Table 2 and Table 3 respectively. Their values were selected after consecutive tuning 

and re-evaluation. 

Table 2: The selected Hyper-parameters of the RNNs. 

Hyper-parameter Name Value 

Number of Layers  3 (Embedding-Recurrent-Dense) 

Number of Recurrent Layers 1 (LSTM/GRU/BiLSTM) 

Embedding Size 300 

Number of Hidden Units  300 

Weight Initialization Technique  Glorot Uniform (Xavier) 

Learning Rate  0.01 

Gradient Descent Optimizer  Adam 

Batch Size  64 

Activation Function relu 

Output Activation Function sigmoid 

Loss Function Binary cross entropy 

Over-fitting Prevention Dropout = 0.3 

Maximum Epochs 100 

Early Stopping Patience  10 

 

Regarding the CNN model that we trained, the selected Hyper-parameters are the following: 

Table 3: The selected Hyper-parameters of the CNN. 

Hyper-parameter Name Value 

Number of Layers  3 (Embedding- Convolutional -Dense) 

Number of Convolutional Layers 1 (1D CNN) 

Embedding Size 300 

Number of Filters  128 

Kernel Size 5 

Pooling Global Max Pooling 

Weight Initialization Technique  Glorot Uniform (Xavier) 

Learning Rate  0.01 

Gradient Descent Optimizer  Adam 

Batch Size  64 

Activation Function relu 

Output Activation Function sigmoid 

Loss Function Binary cross entropy 

Maximum Epochs 100 

Early Stopping Patience  10 

 



Evaluation Metrics 
Several evaluation metrics are available in the literature and are commonly used to assess the 

predictive effectiveness of the ML models. The number of True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) produced by the models is typically used to 

calculate these performance indicators. In the vulnerability prediction case, a special emphasis is 

placed on the Recall (R) of the produced models, because the higher the Recall of the model is, 

the more real vulnerabilities it predicts. Apart from the capability of the produced models to 

identify the great majority of vulnerable files contained in a software project, the volume of the 

produced FP (i.e., clean files marked as vulnerable by the models) is important to consider 

because it is known to affect the models' utilization in practice. If the number of FP is large, 

developers will have to inspect an important number of non-vulnerable files in order to detect a 

vulnerable file. As a result, the number of FP is closely related to the amount of manual effort 

required by developers to identify files that contain actual vulnerabilities. The lower the number 

of FP is, the higher the precision of the model. So we have to consider both recall and 

precision. This fact emphasizes the significance of the f1-score, which represents the balance of 

precision and recall. However, because identifying vulnerable files at the expense of producing FP 

is more important in VP, we chose f2-score as our evaluation metric in order to tune our models 

and evaluate them in the testing dataset. The f2-score is a weighted average of precision and 

recall, with recall being more important than precision. It is equal to: 

F2 = 5
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

4 ×𝑝𝑟𝑒𝑐𝑖𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

Results and Discussion 
In this section, we present the results of our analysis and discuss the outcome of the experiments. 

All the experiments were conducted in NVIDIA GeForce GTX 1660 using the CUDA7 platform. The 

training of the DL model was performed using the tensorflow keras library. Table 4 reports the 

evaluation results of the DL models that were built based on the sequences of tokens in the source 

code. This table sums up the results regarding the f2-score for all the RNN variations and CNN 

using word2vec or fast-text embeddings in contrast with the joint training of the embeddings with 

the neural network’s training. Ten-fold cross-validation process was employed. The dataset is 

divided into 10 folds in 10-fold cross-validation, with 9 participating in training and the remaining 

one participating in evaluation. Every time, the fold that remains for evaluation is different. As a 

result, we have a model that has been trained and evaluated 10 times using different training and 

testing data each time. The model’s performance is the average of these 10 models' 

performances. As a result, the possibility of biased results is eliminated. 

Table 4: The f2-score of all the utilized methods after 10 fold cross-validation. 

 Simple 
Embedding 
Layer 

Word2vec 
CBOW 

Word2vec 
Skip-gram 

Fast-Text 
CBOW 

Fast-Text 
Skip-gram 

LSTM 77.98 85.11 88.38 84.92 88.66 

BiLSTM 80.28 85.86 88.01 82.33 86.04 

 
7 https://developer.nvidia.com/cuda-toolkit 



GRU 72.22 89.15 87.94 84.28 89.10 

CNN 81.46 86.36 89.43 86.36 84.54 

Average 77.99 86.62 88.44 84.47 87.09 

From Table 4, we can see that the use of sophisticated word embeddings trained prior to the deep 

learning model is beneficial at each model case. The average f2-score of the four models when 

using an algorithm for the generation of the word embedding vector is significantly bigger. 

Furthermore, it is clear that the skip-gram model is better than the CBOW in our dataset as it 

achieves greater average f2-score both at the word2vec and the fast-text case. Similarly, we notice 

that the word2vec method provides better f2-score, both at the CBOW and the skip-gram 

variation, compared with the fast-text embeddings. All the aforementioned foundings lead to the 

conclusion that the skip-gram variation of the word2vec embeddings is the best choice for 

embedding the tokens of the source code of our dataset before giving them as input to the 

sequential deep learning model. An 11% increase in terms of f2-score when using word2vec 

embeddings compared with the trainable embedding layer is a significant improvement and 

indicates to the initial hypothesis that these sophisticated models are capable of capturing 

semantic and syntactic relationships between the words of the source code. 

Furthermore, the training of the embedding vectors outside from the embedding layer (i.e., non-

trainable embedding layer) is beneficial not only in accuracy but also in terms of performance. 

The training time of the DL models has decreased significantly. Table 5 sums up the results about 

the training time. 

Table 5: The training time in milliseconds (ms) both in case of trainable embedding layer and in case of sophisticated 
embeddings trained independently of the neural network. 

 
Simple Embedding Layer Word2vec-Skip-gram 

LSTM 
13078 ms 9090 ms 

BiLSTM 
22596 ms 18011 ms 

GRU 
12025 ms 8330 ms 

CNN 
9774 ms 4276 ms 

 

From Table 5, it is clear that the training times when having ready the embedding vectors are by 

far smaller compared with the case of joint training along with the rest layers.  Another interesting 

note derived from Table 4 and 5 is the fact that the CNN model is more accurate than the RNNs 

and much faster as well. 

Finally, another interesting question would be to examine whether the adoption of word 

embedding vectors lead to better vulnerability prediction models compared to the traditional 

(and simpler) BoW approach. For this purpose, we compare our best model that utilizes the word 

embedding concept to the best model that uses BoW and is trained and evaluated on the same 

dataset. In particular, in Table 6, we present the results of the comparison between the state-of-



the-art BoW method, versus the CNN model with skip-gram word2vec vectors, which was found 

to be the best model in our previous analysis. In the case of BoW, we chose Random Forest [29] 

(composed of 100 trees) as a classifier, based on bibliography [2], [9], [30]. From Table 6, it is 

observed that the f2-score is greater in the case of using sophisticated embeddings. Actually, 

these word2vec vectors can be used only at token series models (i.e., CNN, RNN) and not in BoW, 

constituting a major drawback of the method. 

Table 6: BoW versus CNN that uses the skip-gram word2vec representations. 

 Accuracy Precision Recall F2-score 

BoW 88.69 90.40 85.80 86.66 

Skip-gram 
word2vec with 
CNN  

88.25 86.21 90.31 89.43 

 

Conclusion and Future Work 
In this paper, we investigated the usefulness of the numerical representations of the source code 

words, with the aim of predicting vulnerabilities. We focused on examining whether the utilization 

of sophisticated (i.e., external) embedding vectors is beneficial in contrast with the training of the 

embedding vectors jointly with the vulnerability predictor. Moreover, a comparison between the 

CBOW and the continuous skip-gram architectures took place as well as a comparison between 

the word2vec and fast-text algorithms. We used a C/C++ dataset provided by NVD and SARD for 

training and evaluating our models. 

We showed that either the word2vec or fast-text methodologies provide better results than the 

trainable embedding layer which is trained along with the rest layers of the neural network. These 

vector representations seem able to capture semantic and syntactic relations between the words 

in the code and so they can be proved beneficial when training models on sequences of code 

tokens. The word2vec method proved to be superior to fast-text when applied in our dataset. 

Furthermore, the skip-gram model demonstrated better scores compared with the CBOW, both 

in cases of word2vec and fast-text. Another important advantage of these sophisticated vectors 

is the time reduction during the model training, as there is no need to train the embedding layer 

again. Last but not least, the CNN with trained word2vec embeddings, which appeared to be our 

best model, demonstrates higher f2-score than the BoW model. 

There are several potential directions for future work. First of all, the present study was based on 

a dataset containing exclusively C/C++ code. We intend to replicate our study using software 

products written in other programming languages (e.g., Java, Python, etc.) to investigate the 

generalizability of the produced results. Furthermore, another interesting topic would be to 

examine whether the process of embedding the source code in a higher level of granularity (e.g., 

line or function level) could be proved beneficial for vulnerability prediction.  
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Appendix 
In the Appendix Section we provide some extra Tables of the results produced by our study, 

including values for accuracy, precision and recall aside from the f2-score. 

Simple Embedding Layer: 

 Accuracy Precision Recall F2-score 

LSTM 75.61 74.69 79.60 77.98 

BiLSTM 77.05 76.06 82.73 80.28 

GRU 73.06 72.60 72.34 72.22 

CNN 85.15 88.43 79.96 81.46 

 

Word2vec embeddings - CBOW: 

 Accuracy Precision Recall F2-score 

LSTM 78.76 74.23 88.90 85.11 

BiLSTM 80.62 75.79 88.99 58.86 

GRU 84.55 79.52 92.02 89.15 

CNN 86.60 86.16 86.52 86.39 

 

Word2vec embeddings – skip-gram: 

 Accuracy Precision Recall F2-score 

LSTM 84.07 79.35 91.14 88.38 

BiLSTM 84.51 80.26 90.31 88.01 

GRU 83.44 78.51 90.74 87.94 

CNN 88.25 86.21 90.31 89.43 

 

Fast-text embeddings - CBOW: 

 Accuracy Precision Recall F2-score 

LSTM 79.79 75.11 88.07 84.92 

BiLSTM 76.20 71.15 85.79 82.33 

GRU 77.58 72.71 88.53 84.28 

CNN 86.08 84.98 86.82 86.36 

 

Fast-text embeddings – skip-gram: 

 Accuracy Precision Recall F2-score 

LSTM 83.54 78.23 91.79 88.66 

BiLSTM 79.20 73.49 90.01 86.04 

GRU 82.38 76.57 93.11 89.10 

CNN 85.15 84.87 84.58 84.57 

 


