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Abstract: Software security is a critical aspect of modern software products. The vulnerabilities 1

that reside in their source code could become a major weakness for enterprises that build or utilize 2

these products, as their exploitation could lead to devastating financial consequences. Therefore, 3

the development of mechanisms capable of identifying and discovering software vulnerabilities has 4

recently attracted the interest of the research community. Besides the studies that examine software 5

attributes in order to predict the existence of vulnerabilities in software components, there are also 6

studies that attempt to predict the future number of vulnerabilities based on the already reported 7

vulnerabilities of a project. In this paper, the evolution of vulnerabilities in a horizon of up to 24 8

months ahead is predicted using a univariate time series forecasting approach. Both statistical and 9

deep learning models are developed and compared based on security data coming from five popular 10

software projects. The results indicate that the two model categories produce similar forecasts for the 11

number of vulnerabilities expected in the future, without significant diversities. Another interesting 12

observation is that the selection of the best-performing model depends on the respective software 13

project. 14

Keywords: software vulnerabilities; time series; forecasting; arima; deep learning 15

1. Introduction 16

The size and complexity of modern software systems are constantly increasing. Ad- 17

ditionally, the number of software vulnerabilities has significantly grown, leading to an 18

increase in the security concerns expressed both by the end users and the software enter- 19

prises. The exploitation of software vulnerabilities can lead to important financial damages, 20

which renders the need of decision makers to assess the security level of software products 21

absolutely necessary. They need to determine (i) whether software systems along with their 22

respective software components (e.g., packages, classes, methods, etc.) are vulnerable or 23

not, (ii) the impact of potential vulnerability exploits, and (iii) the likelihood that a specific 24

number of vulnerabilities will be reported in a certain period of time. 25

To deal with this, many researchers have proposed models capable of discovering 26

vulnerabilities. A lot of effort has been placed on the prediction of vulnerable software 27

components using software attributes extracted by the source code. In these studies, 28

researchers commonly train machine learning models based on either software metrics 29

(e.g., cohesion, coupling, and complexity metrics) [1–3] or text features [4–7]. They aim 30

to identify patterns in the source code that indicate that a file or a function is vulnerable 31

or not. However, these approaches do not predict the number of vulnerabilities in future 32

versions. Although they judge if a component contains vulnerabilities or not, they do not 33

provide any indication of the evolution of the number of their vulnerabilities in time. 34

An indication of the expected number of vulnerabilities and the trends of their oc- 35

currences can be a very useful tool for decision makers, enabling them to prioritize their 36
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valuable time and limited resources for testing an existing software project and patching 37

its reported vulnerabilities. For this purpose, there is a need for forecasting models that 38

can predict the trend and the number of vulnerabilities that are expected to be discovered 39

in a specific time horizon for a given software project. Studies that propose mechanisms 40

to model the evolution of the number of vulnerabilities in time [8,9] aim not to detect 41

vulnerabilities, but to forecast the number of vulnerabilities that are likely to be identified 42

in the future. These studies utilize either statistical or machine learning algorithms in order 43

to estimate the expected number of vulnerabilities based on the vulnerabilities that have 44

been already reported (e.g., in the National Vulnerability Database [10]). The majority of 45

these algorithms are time series models that keep track of all the vulnerabilities in terms of 46

calendar time and interpret that time as an independent variable [11]. Statistical models 47

such as Autoregressive Integrated Moving Average (ARIMA), Croston’s method, logistic 48

regression, and Exponential smoothing models have attracted the interest of the researchers 49

in the field [12,13]. Machine Learning (ML) models have been considered as well. Jabeen et 50

al. conducted a comparative analysis evaluating different statistical models with various 51

ML models such as Support Vector Machines and Bagging [14]. 52

Other recent studies have also introduced Deep Learning (DL) models as predictors 53

capable of modelling the evolution of the vulnerabilities number in time [12,15]. Despite 54

the existing attempts, a lack in the literature of a thorough DL analysis for vulnerability 55

forecasting was noticed. In fact, although the existing studies [12,14,16] use neural networks 56

to forecast the vulnerabilities number, their predictive capacity has not been thoroughly 57

studied. Gencer et al. [15] recently conducted a more in-depth analysis, by considering 58

several DL algorithms; however, they focused only on Android systems. In addition to 59

that, the authors did not follow a project-specific approach, i.e., they did not build models 60

to predict the future number of vulnerabilities for each Android application, but they 61

aggregated all the vulnerabilities relative to Android applications and attempted to provide 62

forecast for their aggregated value. This way, their results cannot be generalised for the 63

task of predicting the number of vulnerabilities of a software project in a future version. 64

To this end, in the present paper we empirically examine the capacity of statistical and 65

DL models in forecasting the number of vulnerabilities that a software product may exhibit 66

in the future and we compare their predictive performance. For this purpose, we utilize 67

data provided by the National Vulnerability Database (NVD) that provides files with the 68

reported vulnerabilities of several software products. We gathered data about the reported 69

vulnerabilities of five popular software applications, which have been reported in the last 70

two decades (i.e., from 2002 to 2022), and, based on these data, we build several statistical 71

and DL models for each one of the five projects, for providing vulnerability forecasts in 72

a horizon of 24 months ahead. The produced models are evaluated and compared based 73

on their goodness-of-fit, as well as on their predictive performance on unseen data. To 74

the best of our knowledge, this is the first study that thoroughly evaluates the capacity of 75

DL models in vulnerability forecasting and compares their predictive performance with 76

traditional statistical models, in an attempt to emerge the DL models as adequate predictors 77

of software vulnerabilities numbers. 78

The rest of the paper is structured as follows. In Section 2, the related work in the 79

field of Vulnerability Forecasting in software systems is presented. Section 3 provides 80

information about the proposed models, the overall methodology and the experimental 81

setup. Finally, Section 4 thoroughly discusses the obtained results of our analysis, while 82

Section 5 sums up the paper, provides the overall conclusion and also discusses potential 83

future research directions. 84

2. Related Work 85

Examination of previous studies in the literature regarding vulnerability prediction 86

shows that approaches based on statistics, mathematical modeling, and ML have been used. 87

Code attribute-based models and time series-based models are the two primary categories 88

of these approaches. The models based on code attributes concentrate on identifying the 89
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relationship between code attributes and the existence of vulnerabilities. On the other hand, 90

time series-based models focus on predicting the number of vulnerabilities in a future time 91

step based on historical data. 92

Regarding the code-based models, Automated Static Analysis (ASA) is often used for 93

the early identification of security issues in the source code of software projects [17,18]. ASA 94

manages to identify potential security threats that reside in the source code, by applying 95

some pre-defined rules and identifying the violations of these rules. Based on ASA, more 96

advanced models have been also proposed [19]. Siavvas et al. proposed a model that 97

combines low-level indicators (i.e., security-relevant static analysis alerts and software 98

metrics) in order to generate a high-level security score that reflects the internal security 99

level of the examined software [19]. 100

Apart from ASA, for the prediction of vulnerabilities in the source code the research 101

community has widely employed ML and DL algorithms that try to identify code patterns 102

or code attributes relative to the existence of vulnerabilities. Shin and Williams [1,2] ex- 103

amined how well software metrics, in particular complexity metrics, can predict software 104

vulnerabilities. Several regression models were developed to differentiate between vulner- 105

able and non-vulnerable functions. The effectiveness of feeding artificial neural networks 106

with software measures to anticipate cross-project vulnerabilities was examined by the 107

authors in [20]. Several ML models were developed, evaluated, and compared using a 108

dataset of popular PHP products. 109

Neuhaus et al. proposed Vulture [6], a vulnerability prediction model that identified 110

vulnerabilities based on import statements and function calls that are more frequent in vul- 111

nerable components. In VulDeePecker [5], Li et al. proposed a DL model for vulnerability 112

identification. They separated the original code into several lines of code that were seman- 113

tically connected, and then they used word2vec embeddings [21,22] to turn those lines 114

of code into vectors. Subsequently, a neural network was trained to identify library/API 115

function calls associated with known defects. In [23], the authors compared text mining 116

and software metrics approaches using several machine and DL models for vulnerability 117

prediction and then they attempted to combine these two approaches, as well. 118

Regarding the time series-based models, Alhazmi et al. proposed a time-based model 119

[11]. Their approach is based on the fact that interest in newly released software rises in the 120

beginning, peaks after a while, and then drops as new competitive versions are introduced. 121

Yasasin et al. examined the issue of estimating the quantity of software security flaws in 122

operating systems, browsers, and office applications [16]. They retrieved their data form 123

NVD and they used mainly stastistical models such as ARIMA and exponential smoothing. 124

They also investigated the suitability of the Mean Absolute Error (MAE) and the Root 125

Mean Square Error (RMSE) in the measurement of vulnerability forecasting. Furthermore, 126

Jabeen et al., conducted an empirical analysis, where they compared different stiatistical 127

algorithms with ML techniques showing that many of the ML models provide better results 128

[14]. 129

In this study, we propose an approach to predict the number of vulnerabilities in 130

an horizon of two years ahead using both statistical models and DL models. Actually, 131

we compare these two kinds of time series models. We follow a univariate approach, 132

considering only the number of the already reported vulnerabilities in the NVD regarding 133

two operating systems, two browsers and one of Office products (see Section 3.1). To 134

the best of our knowledge, it is the first thorough study that examines the capacity of 135

DL in the forecasting of software vulnerabilities. Gencer et al. [15] compared also the 136

ARIMA with several DL models but they focused solely on Android vulnerabilities by 137

considering Android as a whole. In contrary, we follow a project specific approach (i.e., 138

specific browsers, operating systems) in order to be in line with a real world scenario where 139

a decision maker would desire to know the expected number of vulnerabilities for his/her 140

product. We are also differentiated from the [11,14] approaches, as we attempt to predict 141

the exact number of vulnerabilities until a specific month instead of the cumulative number 142

of vulnerabilities until that month. 143
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3. Methodology and Experimental Setup 144

3.1. Data Collection 145

The data used in the present study are collected from the publicly available American 146

National Vulnerability Database (NVD). The NVD is a vulnerability database formed and 147

maintained by the National Institute of Standard and Technology (NIST) of the US, which 148

provides a comprehensive list of unique vulnerability and exposure data. The widespread 149

contribution, public availability, and completeness of its security vulnerability information 150

make it the most preferred vulnerability database in the related literature. 151

For the purposes of this work, we selected five popular software projects, namely 152

Google Chrome, Microsoft Internet Explorer, Apple macOS X, Ubuntu Linux, and Microsoft 153

Office. As regards our selection criteria, we based our decision on the fact that these projects 154

represent popular categories of software systems, namely web browsers, operating systems, 155

and office tools. Furthermore, we tried to maintain a balance between open- and closed- 156

source software. Finally, these projects have been extensively used in the related literature 157

for vulnerability analysis, prediction, and forecasting tasks [12–14,16]. After selecting the 158

software projects covered in our analysis, we proceeded with collecting their corresponding 159

vulnerability datasets from the NVD repository, starting from the first day of their release 160

up until the latest available record by the end of 2021. Since the objective of our work is to 161

forecast future security vulnerabilities, similarly to previous related studies, we grouped the 162

available data (i.e., number of reported vulnerabilities) for each project in monthly intervals. 163

Table 1 lists the selected software projects, accompanied with additional information, such 164

as the total number of vulnerabilities, data collection period, etc. 165

Table 1. Selected software systems and their descriptive statistics.

Software
Project Domain Release Date Open Source

Data
Collection

Period

Total Vulner-
abilities

Google
Chrome Browser 2008 Partially 2008-2021 2136

Internet
Explorer Browser 1995 No 1997-2018 1039

Apple
macOS X OS 2001 No 2001-2021 2175

Ubuntu
Linux OS 2004 Yes 2005-2021 361

Microsoft
Office Office 1990 No 1999-2021 347

Figure 1 presents the number of monthly vulnerabilities for the five selected vulnera- 166

bility datasets along with the software projects’ evolution. 167
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(a) Google Chrome (b) Internet Explorer

(c) Apple macOS X (d) Ubuntu Linux

(e) Microsoft Office

Figure 1. Vulnerability evolution of the five selected projects

3.2. Time Series Modelling 168

In line with previous related work on vulnerability forecasting [12,15,16], we follow a 169

multiple forecasting approach, in which we compare several forecasting methodologies 170

and evaluate their performance in terms of forecasting accuracy. More specifically, we fit 171

various forecasting models on the five obtained time series datasets of monthly security vul- 172

nerabilities and subsequently, we evaluate the results against a test set of held out security 173

vulnerability data. To do so, we employ and examine two main types of forecasting method- 174

ologies, ranging from simple statistical methods to more sophisticated DL approaches. 175

Statistical forecasting methods comprise single and triple exponential smoothing (SES, 176

TES) models, Autoregressive Integrated Moving Average (ARIMA) models, and Croston’s 177

methodology. On the other hand, DL, i.e., Neural Network-based approaches, comprise 178

models such as the Multi-Layer Perceptron (MLP), the Recurrent Neural Network (RNN) 179
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and its several variants, as well as the Convolutional Neural Network (CNN). Similar 180

statistical and DL approaches have been widely used in both practice and academia for 181

software quality evolution modelling and forecasting tasks [24–29], and more recently for 182

predicting the future evolution of software vulnerabilities [12–16]. 183

Since the objective of this study is to investigate various forecasting methodologies 184

for their ability to predict the future evolution of software security vulnerabilities, we 185

define our dependent variable as the number of vulnerability occurrences at each time 186

interval. As mentioned previously, the number of vulnerabilities is aggregated by month, 187

and time is measured in terms of month and year. Our focus lies on univariate time series 188

modelling, meaning that the models will try to predict the number of vulnerabilities that 189

will be reported for a given project in a future point in time, based exclusively on past 190

observations of the number of reported vulnerabilities, without utilizing any additional 191

feature. 192

In what follows, we provide a brief description of the forecasting methods that will be 193

used in the context of this work for vulnerability forecasting. More specifically, in Section 194

3.2.1 we give an overview of the statistical models that we built as part of the present study, 195

whereas in Section 3.2.2 we present the DL models examined in this study. 196

3.2.1. Statistical Models 197

While there exist several forecasting methods that could be used for vulnerability 198

forecasting, like Artificial Neural Networks (ANNs), Support Vector Regression (SVR), 199

or Regression Trees (RT), the application of these methods usually requires extensive 200

parameter tuning and computational power. Therefore, as an initial approach towards 201

vulnerabilities forecasting we decided to investigate statistical models that are generally 202

more straightforward, less computationally expensive, and less data demanding. More 203

specifically, our statistical models’ set comprises four widely used models, namely single 204

exponential smoothing (SES), triple exponential smoothing (TES) - also known as Holt- 205

Winters model, Autoregressive Integrated Moving Average (ARIMA), and finally Croston’s 206

methodology. 207

Starting with the single exponential smoothing (SES), this simple model produces 208

forecasts by essentially using weighted averages, where the weights decrease exponentially 209

as observations lie further in the past. In other words, the more recent the observation 210

the higher the associated weight. To adjust the magnitude of the weights, a smoothing 211

parameter alpha (a) can be used, with smaller values of a giving more weight to the obser- 212

vations from the more distant past. Since SES only depends on the level of the series at the 213

last observation at time t, it has a "flat" forecast function, meaning that every step into the 214

future is predicted with the same value. Due to this limitation, this model is suitable only 215

for univariate data without a clear trend or seasonality patterns. 216

Triple Exponential Smoothing (TES), also known as Holt-Winters exponential smooth- 217

ing, is an extension of exponential smoothing that explicitly adds support for trend and 218

seasonality to the univariate time series. In addition to the alpha (a) smoothing factor, two 219

new parameters called beta (β) and gamma (γ) are added to the equation. Parameter β can 220

be used in order to add the trend component to the outcome variable, denoting the slope 221

of the time series at time t. In a similar way, a parameter (γ) controls the influence on the 222

seasonal component. There are two variations to this method with respect to the seasonal 223

component, namely the additive and multiplicative method. The former is used when the 224

seasonal variations are constant over time, while the latter is preferred when the seasonal 225

variations are changing proportional to the level of the series. 226

A different, yet widely-used approach to time series forecasting are the Autoregressive 227

Integrated Moving Average (ARIMA) models, introduced by Box and Jenkins to deal with 228

the modeling of non-stationary time series [30]. While exponential smoothing models try to 229

model the trend and seasonality patterns in the data, ARIMA models focus on describing 230

the autocorrelations in the data. The ARIMA models are parameterized by adjusting three 231

distinct integers: p, d and q. Parameter p represents the autoregressive (AR) part of the 232
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model, i.e., regression of the time series onto itself. Parameter d stands for the integrated 233

(I) part of the model and incorporates the amount of differencing (i.e. the number of past 234

time points to subtract from the current value) to apply to the time series for becoming 235

stationary. Parameter q is the moving average (MA) part of the model. To estimate the 236

three ARIMA parameters, the Box and Jenkins ARIMA modelling strategy involves four 237

steps: Identification, Estimation, Diagnostic testing, and Application. When seasonality is 238

present in the data, a Seasonal ARIMA, i.e., an extension of ARIMA that explicitly supports 239

seasonal component can be formed by including three additional parameters, namely P, D 240

and Q. These parameters are similar to the non-seasonal ARIMA components, but focus on 241

the seasonal component. 242

An inherent characteristic of vulnerability evolution datasets is that they are mostly 243

zero-inflated and intermittent, meaning that they contain a lot of zero values and show a 244

high volatility when a value occurs. To tackle the challenge of forecasting such time series, 245

Croston proposed a solution, also known as Croston’s method [31]. Croston’s method 246

involves the decomposition of the original time series into two new time series, one without 247

zero values and a second one that captures duration of zero valued intervals. Subsequently, 248

to produce forecasts, separate simple exponential smoothing models are used to model the 249

two new series, using again the alpha (a) smoothing parameter (identical to both series) to 250

adjust the weights. Therefore, Croston’s methodology is also covered within the context of 251

this study to investigate whether it can address the specific nature of security vulnerability 252

time series data. 253

3.2.2. Deep Learning Models 254

In this section, a brief description of the DL models that are utilized in this work is 255

following. DL models are commonly based on artificial neural networks that are com- 256

putational models with numerous processing components that take inputs and produce 257

outputs in accordance with their predetermined activation functions. In this study, we 258

investigate the time series forecasting capacity of the Multi-Layer Perceptron (MLP), the 259

Recurrent Neural Network (RNN) and its several variants as well as the Convolutional 260

Neural Network (CNN). 261

Starting with the MLP, it is a feed-forward artificial neural network (ANN) that is 262

made up of many perceptron layers. In particular, the MLP is frequently used in deep 263

learning to build Deep Neural Networks (DNNs), which are ANNs with a lot of hidden 264

layers between the input and output layer. The values of some particular variables known 265

as hyperparameters determine the overall training process of an ANN and, in turn, of an 266

MLP. 267

The most disseminated category of DNNs for data in the form of sequences (as happens 268

with time series data) are the RNNs. Unlike the feed-forward neural networks, the RNNs 269

are capable of processing entire sequences of data such as text features or time series data. 270

Their speciality lies in the fact that the output is not only affected by the weights applied to 271

the inputs, as in the case of traditional ANNs, but is also affected by a hidden state vector 272

which contains information about the previous inputs. Thus the same input can give a 273

completely different result depending on the previous inputs that are part of the sequence. 274

In feed-forward ANNs, information flows from the input layer to the output layer through 275

the hidden layers. It does not pass through a node twice. That is why they have no memory. 276

But in RNNs the information forms a cycle. When the RNN makes a decision, it takes 277

into account the current input and what it has learned from the inputs it has previously 278

received. 279

However, long data sequence learning is difficult for RNNs due to the issue of van- 280

ishing gradients [32]. When the gradient decreases further, the updates of the parameters 281

become insignificant and no actual learning is performed. The so-called Long-Short Term 282

Memory (LSTM) neural networks [33] give a solution to the problem of vanishing gradients. 283

LSTMs networks are an extension of the simple RNNs and have the ability to learn from 284

sequences with a very large number of time instants. This is because LSTM modules contain 285
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their information in memory like computer memory. Actually LSTMs can read, write and 286

erase information from their memory. The LSTM learns over time which information is 287

important and which is not. From an architectural view, the LSTM includes three gates, 288

the input gate, the output gate and the forget gate. The input gate decides what new infor- 289

mation will be stored in the LSTM’s memory, the output gate decides what information 290

will affect the output at the current time, while the forget gate erases information that it 291

considers unimportant. 292

Later the Gated Recurrent Unit (GRU) model was devised which can, like the LSTM, 293

overcome the vanishing gradient obstacle [34]. It is actually a variant of the LSTM that 294

contains two gates, the update gate and the reset gate. The difference with LSTM is that 295

the processes of the input and forget gates are handled by one gate, the update gate. 296

Another RNN variant, the bidirectional LSTM, often known as a biLSTM [35], is a sequence 297

processing model that consists of two LSTMs, one of which receives input forward and the 298

other of which receives it backward. With the help of BiLSTMs, the network has access 299

to more information, which benefits the algorithm’s context (e.g., knowing what values 300

immediately follow and precede a value in a sentence). 301

Convolutional Neural Networks (CNNs) [36] are often reliable when dealing with 302

sequential and time series data as well. One-dimensional CNNs can be used for univariate 303

time series forecasting even though CNNs were originally designed for two-dimensional 304

image data. An one-dimensional CNN model is a neural network with one convolutional 305

hidden layer that operates over an one-dimensional sequence and can be followed by (at 306

least) a second convolutional layer, when there are very long input sequences. After the 307

hidden layers, there is a pooling layer tasked with reducing the output of the convolutional 308

layers to its most important components. Subsequently, the feature maps that are extracted 309

by the convolutional part of the network are flattened in order to reduce their dimension 310

to a single one-dimensional vector. This one-dimensional network is given to a dense 311

layer that is fully connected and produces the forecasted value based on the selected loss 312

function. 313

3.2.3. Accuracy Metrics 314

In the literature, two of the most common categories of accuracy metrics when dealing 315

with forecasting tasks are the absolute metrics, such as the mean absolute error (MAE) or 316

root mean square error (RMSE), and the percentage-error metrics, such as the mean absolute 317

percentage error (MAPE) [37]. However, as this study deals with zero-inflated time series, 318

percentage-error metrics (such as the MAPE) are not appropriate, since their formula has 319

the disadvantage of producing infinite or undefined values for zero or close-to-zero actual 320

values, resulting to division by zero problems [38]. 321

Therefore, in line with other related studies on vulnerability forecasting [12,14–16], 322

we evaluated and compared the predictive performance of the investigated models using 323

absolute metrics, and more specifically the Mean Absolute Error (MAE) as well as the 324

Root Mean Square Error (RMSE). Both of these error metrics are widely used in forecasting 325

tasks and can accurately reflect the performance of models fitted on zero-inflated time 326

series. MAE measures the average magnitude of the errors in a set of predictions, without 327

considering their direction. RMSE is a quadratic scoring rule that also measures the average 328

magnitude of the error. Both MAE and RMSE express average model prediction error in 329

units of the variable of interest and therefore can be easily interpreted. The equations of 330

MAE and RMSE are given below: 331

MAE =
∑n

i=1 |yi − ŷi|
n

(1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (2)
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where n is the number of observations, yi is the actual value and ŷi is the forecast 332

value. 333

In addition to the selected predictive-power metrics introduced above, we also employ 334

the R2 coefficient of determination in order to measure the goodness-of-fit of the investi- 335

gated models, i.e., how well the models fit on the data that were used during training. The 336

R2, which represents the square of correlation between the dependent and independent 337

variables, is a statistical measure that shows how close the data fit to the regression line. Its 338

formula is calculated as follows: 339

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷi)

(3)

where yi is the actual value and ŷi is the forecast value. R2 values close to 1 indicate 340

an extremely good fit, whereas smaller values show a poor or no fit. 341

3.3. Fitting time series models 342

This section describes the methodology followed in order to build the various statistical 343

and DL models that were introduced in Section 3.2, with the purpose to fit and model 344

the vulnerability evolution of the five vulnerability datasets (i.e., software projects). As a 345

first step, we defined monthly periodicity for all datasets and subsequently we proceeded 346

with model parameterization. As mentioned in Section 3.2, in this work we followed a 347

train-test split approach. More specifically, each of the five vulnerability datasets was split 348

into two parts, where the the first n-24 observations were used for model fitting, while the 349

last 24 observations (i.e. 24 months) were used as held-out security vulnerability data for 350

testing and evaluating model performance on unseen data. The model parameterization 351

and fitting processes described in the rest of this section were performed solely on the 352

training parts of the datasets. Goodness-of-fit (i.e., training) results that were obtained 353

through fitting the models on the five selected software projects, as well as results on the 354

held-out (i.e., testing) data are presented and discussed later, in Section 4. 355

3.3.1. Statistical Models 356

In this subsection, we focus on describing the fitting and parameterization process 357

concerning the four selected statistical models covered in our study, i.e., SES, TES, ARIMA 358

and Croston methodology. Starting with the simplest model, namely SES, there is not 359

much tuning to be done, since the only parameter is the smoothing factor alpha (a). We 360

employed the StatsModels [39] library, a Python module that provides functionality for the 361

estimation of many different statistical models, in order to automatically estimate model 362

parameters for each dataset by maximizing the log-likelihood. Column "a (level)" in Table 2 363

lists the optimal SES (a) parameter value for each vulnerability dataset. Similarly to SES, 364

we employed the StatsModels library in order to also estimate the optimal beta (β) and 365

gamma (γ) parameters of the TES models for each time series dataset. As explained earlier, 366

parameter β can be used in order to add the trend component to the outcome variable, 367

while parameter γ controls the influence on the seasonal component. Since our time series 368

are zero-inflated, we chose the additive method. Columns "β (trend)" and "γ (seasonal)" of 369

Table 2 list the optimal TES (β and γ) parameter values for each vulnerability dataset. 370

Table 2. Optimal parameters for Exponential Smoothing models.

Software Project a (level) β (trend) γ (seasonal)

Google Chrome 0.129 0.000 0.000
Internet Explorer 0.179 0.000 0.256
Apple macOS X 1.922e-08 6.891e-13 4.383e-09
Ubuntu Linux 0.247 0.000 0.000

Microsoft Office 0.052 7.362e-15 2.256e-12
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After fitting the optimal SES an TES models, we proceeded with the more sophisticated 371

ARIMA methodology. A fundamental assumption in ARIMA analysis is stationarity, i.e., the 372

statistical properties (such as mean and variance) of a time series need to be constant over 373

time. Therefore, the first step towards our analysis included stationarity checks. We used 374

time series decomposition to deconstruct each time series dataset into several components, 375

representing one of the underlying categories of patterns, i.e. trend, seasonality, and 376

residual components of the data. By inspecting the decomposition plots, we observed 377

that in all covered cases, the seasonal component and the decreasing trend of the data 378

were nicely separated, leading to the conclusion that the series are not stationary in nature 379

and need to be adjusted in order to satisfy the necessary assumptions. The most common 380

practice for making a series stationary is to transform it through differencing. To verify 381

that a first-order difference would make the series stationary, we proceeded with all the 382

required steps, such as Auto-Correlation Function (ACF) correlograms analysis, as well 383

as Dickey–Fuller tests [40], which test the null hypothesis that a unit root is present in an 384

autoregressive model. Detailed results of the Dickey-Fuller tests on the data after applying 385

a first-order difference are presented in Table 3. 386

Table 3. Dickey–Fuller test on first-order differenced data.

Software Project Test Statistic p-value Critical Value (1%)

Google Chrome -6.267 4.087e-08 -3.475
Internet Explorer -4.762 0.0098 -3.460
Apple macOS X -7.021 6.550e-10 -3.459
Ubuntu Linux -6.897 1.310e-09 -3.468

Microsoft Office -7.529 3.604e-11 -3.457

For a time series to pass the Dickey–Fuller stationarity test, the “Test Statistic” value 387

should be lower than the “Critical Value”. Table 2 indicates that after applying a first-order 388

difference, the five examined time series become stationary, as the Test Statistic values 389

are lower that the Critical Values in all cases. This is also confirmed by inspecting the 390

significance of p–values (p<0.05). Since the number of required transformations to make 391

a time series stationary corresponds to the d parameter of the ARIMA(p,d,q) model [30], 392

setting the value of d = 1 for each model corresponding to the investigated datasets can be 393

safely supported by the above analysis. 394

As a next step, we aimed to identify the p (AR), q (MA), P (seasonal AR), and Q 395

(seasonal MA) parameters of the ARIMA models for each dataset, following the practical 396

recommendations through visual inspection of the AutoCorrelation Function (ACF) and 397

Partial AutoCorrelation Function (PACF) correlograms [30] of the first-order differenced 398

time series. Based on practical recommendations, if the ACF of the series disappears 399

gradually, and the PACF of the series disappears abruptly, it indicates an AR component. 400

An opposite behavior, i.e., the ACF disappears abruptly and the PACF disappear gradually, 401

indicates an MA component. In addition, if the ACF of the differenced series is positive at 402

lag s, where s is the number of periods in a season, it indicates a seasonal AR term, while a 403

negative ACF at lag s indicates a seasonal MA term. 404

When no clear conclusion can be reached by inspecting the ACF and PACF correlo- 405

grams, we turn towards the Akaike Information Criterion (AIC) minimization. For this 406

purpose, we employed the AutoArima library [41], a Python module that provides func- 407

tionality for identifying the optimal parameters for an ARIMA model based on a given 408

information criterion (e.g., AIC). Experiments were conducted by assigning various com- 409

binations of values (between 0 and 5) to the p q, P, and Q parameters, while keeping the 410

d parameter equal to 1. Table 4 provides details on the optimal parameters for ARIMA 411

models for each time series dataset, as identified using the above recommendations through 412

manual inspection and automated processes. 413
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Table 4. Optimal parameters for ARIMA models.

Software Project Order (AR,I,MA) Seasonal Order
S(AR,I,MA,m)

Google Chrome (5, 1, 3) (1, 0, 0, 12)
Internet Explorer (2, 1, 4) (1, 0, 1, 12)
Apple macOS X (2, 1, 5) (1, 0, 1, 12)
Ubuntu Linux (1, 1, 2) (1, 0, 0, 12)

Microsoft Office (2, 1, 2) -

In time series analysis, it is a common practice to include a random walk model for the 414

purpose of comparing it with the selected models. The random walk model excludes the 415

auto-regressive (AR) and moving average (MA) parameters. Therefore, in the experiments 416

presented in the Section 4 we have also included ARIMA(0,1,0) as our baseline random 417

walk model. 418

Finally, regarding Croston’s methodology, we used Mohammadi’s python implemen- 419

tation [42] which also automatically optimises parameters on the training set. However, 420

this implementation does not provide APIs for returning the optimal parameters of the 421

fitted model, so we were not able to retrieve and list them within the context of this work. 422

3.3.2. Deep Learning Models 423

Data Transformation 424

In this section, we examine the capacity of the DL models to fit and model the evo- 425

lution of the number of reported vulnerabilities through time. In a similar way with the 426

statistical models, we consider as time intervals the monthly observations of the reported 427

vulnerabilities. For the purposes of training and evaluating our models we utilized the 428

five software products that we selected (see Section 3.1). We followed the train-test split 429

approach, where we used the first n-24 months to train our models and the rest (unseen 430

during the training phase) 24 months as a test-bed to compute the accuracy metrics. 431

As we perform a multi-step forecasting for a period of 24 time steps (i.e., months), we 432

take full advantage of the ability of neural networks to produce many outputs at once. In 433

other words, the models that we developed perform multi-output regression and predict 434

the entire forecast sequence in a single instance. The following equation describes this 435

process for an example of a three-step forecast, where a model predicts the dependent 436

variable for three steps ahead based on the knowledge of the last n observations. 437

prediction(t), prediction(t+1), prediction(t+2) = model(obs(t-1), obs(t-2), ..., obs(t-n)) (4)

As already stated, the goal of multi-output regression is to predict two or more 438

numerical values. In contrast to normal regression where a single value is predicted for 439

each sample, multi-output regression requires specialized algorithms that enable outputting 440

several values for each prediction, such as the neural networks that naturally can handle 441

multi-output regression problems. The neural networks can be easily configured for multi- 442

output forecasting by providing the number of the steps ahead as the number of nodes in 443

the output layer. 444

At this point, a description of the data transformation and preprocessing phases is 445

provided. In order to transform the data in sequences suitable for multi-output regression, 446

we employed the sliding window method. In the sliding window, multiple recent time 447

steps can be used to make the prediction for the next time steps. Our dataset consists 448

of the number of vulnerabilities per month. Hence, it is actually a sequence of numeric 449

values (i.e., number of vulnerabilities). The sliding window method splits that sequence to 450

smaller sequences of length equal to the look_back parameter that we define in a manner 451

that every generated sequence starts one step ahead of its previous one. The look_back 452

parameter determines the number of the recent observations (i.e., number of vulnerabilities 453
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of previous months) that are used by a model as a basis for the predictions. Hence, the 454

dataset from one large sequence is transformed to a list of sequences of length look_back. 455

For each one of these sequences the models learn to produce predictions for a number 456

of months ahead equal to the value of the steps_ahead parameter that, in our case, is pre- 457

defined equal to 24, as already explained (i.e., 24 months ahead). Table 5 sums up the 458

format of the input data along with their labels for an example of two steps ahead (i.e., 459

steps_ahead=2) prediction based on sequences of the last 3 steps (i.e., look_back=3). 460

Table 5. The sliding window data for multi-output prediction (X stands for inputs, Y for outputs and
m for the monthly observations.)

X1 X2 X3 Y1 Y2

m1 m2 m3 m4 m5
m2 m3 m4 m5 m6
m3 m4 m5 m6 m7

In addition, data normalization was carried out since DL approaches (e.g., neural 461

networks) perform better when data is normalized. For this purpose, we utilized the 462

Min-Max-Scaler [43] provided by scikit-learn [44], which converts features by scaling each 463

sample to a predetermined range between zero and one. 464

Models Training 465

For the construction of the DL models we utilized the popular framework named 466

Tensorflow [45] and the DL library called Keras [46] for the Python programming language. 467

We started the experiments with the most common neural network structures utilizing 468

commonly-used hyperparameters values. Subsequently, we tuned our models by applying 469

different hyperparameters investigating whether the tuning benefits the model each time 470

or not. The hyperparameters that we had to specify and that are essential for the definition 471

of our models are the following: 472

• optimizer: The algorithm that is responsible to adjust model weights in order to 473

maximize the loss function. 474

• batch size: The size of batches, (i.e., mini-batches) given in parallel to the network. 475

• number of hidden layers: The number of hidden layers that make up the network. 476

• number of neurons: The number of nodes that make up each hidden layer. 477

• activation function: The function that converts the input signal of an ANN node into 478

an output signal that will be used as an input signal at the next layer. 479

• number of training epochs: The number of times when the whole training set "goes 480

through" the training process. 481

• convolutional filter: The number and the size of the convolutional filters in the 482

network (only for CNN). 483

We tried several values for the above hyperparameters in our attempt to find the 484

optimal architecture of our models. We considered the Adam, Nadam and Adagrad 485

optimizers [47] and regarding the activation functions, we considered the Rectified Linear 486

Units (ReLU) and the Hyperbolic Tangent (tanh) [48]. We also started with just one hidden 487

recurrent, convolutional or feed-forward layer and we increased the number of layers 488

incrementally, until reaching the three hidden layers. We also experimented with the 489

number of neurons per layer applying several values. Regarding the batch size, we first 490

defined a batch size equal to 16 that is the default value and then we attempted to apply 491

both bigger and smaller values and monitor the performance. For the selection of the 492

number of epochs, we adopted the Early Stopping [49] approach that allows for an arbitrary 493

large number of training epochs to be provided and stops training when the model’s 494

performance on a held out validation dataset stops increasing, preventing this way the 495

overfitting of the model. As regards the convolutional filters of the CNN, we did not 496
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notice any improvement by fluctuating the kernel size or the number of filters. Finally, the 497

look_back parameter (i.e., timesteps) was selected as 24. 498

In general, we observed that tuning does not affect the predictive efficiency of the 499

developed models significantly. This can be explained by the limited amount of data and 500

especially by the small number of the dataset’s samples that are defined by the number 501

of months containing reported vulnerabilities. Therefore, for each one of our models, we 502

chose the lightest architectures that provided sufficient results. Table 6 presents the final 503

selection of hyperparameters. 504

Table 6. The selected hyperparameters of the deep learning models.

Hyperparameter MLP RNNs CNN

Number of Layers 2 3 3
Number of Hidden

Layers 1 2 2

Number of Nodes 500 500-50 -
Number of Filters - - 256

Kernel Size - - 3
Weight Initialization

Technique
Glorot Uniform

(Xavier)
Glorot Uniform

(Xavier)
Glorot Uniform

(Xavier)
Learning Rate 0.01 0.01 0.01

Gradient Descent
Optimizer Adam Adam Adam

Batch Size 16 16 16
Activation Function ReLU tanh tanh

Loss Function mean squared error mean squared error mean squared error
Timesteps 24 24 24

4. Results and Discussion 505

In this section, the evaluation results that were obtained through fitting the models 506

(i.e., goodness-of-fit level) on the five selected software projects (see Section 3.3), as well as 507

results on the held-out (i.e., testing) data are presented and discussed. For the conduction 508

of all the experiments with deep neural networks the CUDA [50] platform running on 509

an NVIDIA GeForce GTX 1660 GPU was utilized. For the statistical models, we used an 510

i5-9600K CPU at 3.70 GHz with 16 GB RAM. 511

Table 7 provides the performance metrics that were obtained while examining the 512

goodness-of-fit (i.e., descriptive power) of the investigated models described above, as well 513

as their predictive power on unknown data, for each vulnerability dataset covered in our 514

study. As a reminder, the first three metrics (i.e., fit metrics) reflect the fitting performance 515

of the models on the first n-24 observations used for model training, whereas the remaining 516

two metrics (i.e., test metrics) reflect the model’s performance on the last 24 observations (i.e. 517

24 months). In Table 7, the best values of each metric for each software are demonstrated in 518

bold. 519
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Table 7. Comparison of statistical and deep learning models’ descriptive and predictive power.

Software Project Model R2-fit MAE-fit RMSE-fit MAE-test RMSE-
test

Google Chrome Random
Walk -0.578 11.949 18.634 19.083 24.244

SES 0.062 9.423 14.368 14.873 17.455
TES 0.136 9.680 13.791 14.248 17.697

ARIMA 0.291 8.938 12.490 14.027 17.191
Croston 0.201 9.016 12.876 15.926 21.166

MLP -0.124 10.007 13.280 13.955 15.888
LSTM -0.037 9.308 12.782 15.440 16.675
GRU -0.011 9.243 12.642 15.285 16.474

BiLSTM -0.227 8.981 13.887 16.890 20.388
CNN -0.066 9.604 12.936 14.634 16.291

Internet Explorer Random
Walk -0.009 3.745 7.352 15.792 16.226

SES 0.443 2.959 5.458 10.562 11.181
TES 0.513 2.936 5.106 12.510 13.928

ARIMA 0.546 3.018 4.928 7.051 7.679
Croston 0.637 2.535 4.951 14.635 15.103

MLP -0.159 3.838 7.801 5.680 7.233
LSTM -0.062 3.880 7.468 3.487 4.054
GRU -0.071 3.872 7.493 3.636 4.417

BiLSTM -0.099 3.732 7.602 3.265 3.859
CNN -0.054 3.795 7.451 5.340 5.999

Apple macOS X Random
Walk -0.930 11.823 18.804 77.375 82.276

SES 0.030 8.769 13.330 21.383 32.705
TES 0.090 8.932 12.915 21.345 32.042

ARIMA 0.124 8.548 12.670 20.555 33.767
Croston 0.233 7.940 11.853 21.783 32.481

MLP 0.007 9.677 12.575 21.617 31.689
LSTM 0.016 9.650 12.514 20.753 32.687
GRU 0.009 9.507 12.555 20.630 33.168

BiLSTM -0.254 8.328 14.121 19.810 36.230
CNN -0.045 10.125 12.900 20.907 32.015

Ubuntu Linux Random
Walk 0.064 1.862 3.917 1.375 2.031

SES 0.278 1.760 3.440 1.513 2.014
TES 0.349 1.945 3.266 1.293 1.965

ARIMA 0.339 1.791 3.292 1.537 2.006
Croston 0.290 1.867 3.509 1.334 2.156

MLP -0.095 2.933 5.045 1.333 2.086
LSTM -0.178 2.920 5.233 1.272 1.964
GRU -0.222 2.924 5.328 1.305 1.996

BiLSTM -0.165 2.835 5.201 1.331 2.085
CNN -0.144 2.863 5.155 1.383 1.965

Microsoft Office Random
Walk -0.554 1.369 2.305 1.208 1.671

SES 0.089 1.097 1.765 1.254 1.617
TES 0.152 1.102 1.702 1.323 1.682

ARIMA 0.122 1.134 1.732 1.270 1.717
Croston 0.137 1.106 1.713 1.223 1.648

MLP -0.051 1.383 1.992 1.065 1.529
LSTM .010 1.368 1.932 1.263 1.695
GRU -0.018 1.426 1.959 1.283 1.672

BiLSTM -0.042 1.238 1.983 1.403 1.875
CNN -0.034 1.393 1.976 1.289 1.645
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By inspecting Table 7, the following observations can be deduced. First of all, none of 520

the models acts as a "silver bullet", meaning that there is a different optimal model for each 521

particular dataset (i.e., software project). As a matter of fact, the optimal models vary even 522

when compared per category, since there is no statistical or DL approach that performs 523

better than its competitors within the same class. On the other hand, we can clearly observe 524

that the statistical models present a better goodness-of-fit level, whereas the DL models 525

provide lowest errors on the test data of each project. 526

Regarding the goodness-of-fit level, we notice that in each covered dataset (i.e., 527

software project) there is always a statistical model providing higher R2 and lower MAE 528

and RMSE scores than the DL approaches. While in most of the cases the R2 cannot be 529

considered high, possibly creating doubts about how well the models fit the data, both MAE 530

and RMSE are low enough (at least for the cases of Internet Explorer, Ubuntu Linux and 531

Microsoft Office) showing that the models’ predictions are really close to the real values. To 532

provide a visual inspection of the models’ fit capabilities, Figure 2 shows the ARIMA model 533

(in red colour) fitted to the Google Chrome vulnerability dataset (in blue colour). Based 534

on Table 7, ARIMA demonstrated the best fitting performance as regards this particular 535

dataset. As can be seen by inspecting the plot, the ARIMA model has managed to learn the 536

peculiarities (e.g., level, trend, etc.) of Google Chrome’s vulnerability evolution patterns 537

to a quite satisfactory extent, with the only exception being a couple of random spikes, 538

where the number of reported vulnerabilities was unusually high. However, it should be 539

noted that, although the model cannot accurately estimate the exact value of the spikes, 540

the predicted values are higher than the mean value of the predictions, meaning that it can 541

indeed capture this trend, i.e., an expected sudden rise in the number of vulnerabilities. 542

This is important as the purpose of vulnerability forecasting models is to facilitate decision 543

making during the development of software products, by detecting potential future trends 544

in the number of reported vulnerabilities. 545

While we do not provide respective plots for the rest of the vulnerability datasets due 546

to reasons of brevity, we inform the reader that fitting lines very close to the ground truth 547

(i.e., showing similar promising performance) were also observed in the the rest of the 548

examined cases (i.e., software projects). 549

Figure 2. Google Chrome vulnerability fit using ARIMA.

As regards the most important part of model evaluation, i.e., their predictive power 550

on the unseen data, by inspecting the results presented on Table 7, we can argue that as 551

far as the cases of Internet Explorer, Ubuntu Linux and Microsoft Office are concerned, 552

MAE and RMSE values indicate that both the statistical and DL models are quite efficient 553

in producing 24 steps ahead forecasts. On the other hand, in the cases of Google Chrome 554

and Apple MacOS the models provide forecasts that are quite far from the "ground truth" 555
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(i.e., the real values). To provide a visual inspection of the models’ predictive capabilities, 556

Figures 3, 4, 5, 6, and 7 show the forecasted values (in red colour) of the last 24 months 557

for each of the five examined software projects (ground truth in blue colour), generated 558

by the best-performing model in each particular case. As can be seen by inspecting these 559

plots, in most cases the models have managed to learn the peculiarities (e.g., levels, trends, 560

etc.) of the projects’ vulnerability evolution patterns to a quite satisfactory extent, with an 561

exception in the Apple macOS case where they are struggling to follow the random spikes 562

that reflect unusual high numbers of reported vulnerabilities. 563

Figure 3. Google Chrome vulnerability forecasting for 24 steps ahead using MLP.

Figure 4. Internet Explorer vulnerability forecasting for 24 steps ahead using BiLSTM.
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Figure 5. Apple macOS X vulnerability forecasting for 24 steps ahead using BiLSTM.

Figure 6. Ubuntu Linux vulnerability forecasting for 24 steps ahead using LSTM.

Figure 7. Microsoft Office vulnerability forecasting for 24 steps ahead using MLP.

Furthermore, from Table 7, one can observe that for each covered project both the 564

lowest MAE and RMSE values are obtained by employing DL models. However, it can 565

be noticed that the DL superiority is very slight, since the differences with the statistical 566

models, regarding MAE and RMSE, are very small. The only exception is the case of 567

Internet Explorer, where there is a clear advantage of DL. To complement our analysis, the 568

bar charts illustrated in Figure 8 and Figure 9 depict the slight lead of the DL models in a 569
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clear manner. We plotted the lowest MAE and RMSE values per project in Figure 8 and 570

Figure 9 respectively. 571

Figure 8. Comparison of the best statistical and deep learning models per project in terms of Mean
Absolute Error.

Figure 9. Comparison of the best statistical and deep learning models per project in terms of Root
Mean Square Error.
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By inspecting Figure 8 and Figure 9, it can be argued that although deep learning seems 572

to be a promising option for vulnerability forecasting and, as regards the five demonstrated 573

projects, a slightly more accurate option than the statistical models, the two types of 574

modelling approaches are very similar in terms of predictive performance, since their MAE 575

and RMSE deviate slightly. In order to verify this observation (i.e., investigate whether 576

there is an important difference in models’ predictive power) we conducted the Wilcoxon 577

signed rank test [51], which can define if there is an important statistical difference between 578

two paired samples (i.e., errors produced by statistical models and errors produced by 579

DL models). For the needs of the Wilcoxon test, we computed the raw errors between the 580

actual and the predicted values for each one of the 24 timestamps of the testing period. 581

Table 8 presents the results (i.e., p-values) of the Wilcoxon analysis. By inspecting the 582

results, it is clear that important statistical difference between the two samples (i.e., errors) 583

can be observed only in the case of the Internet Explorer, since a statistical difference is 584

considered important only if the p-value is lower than the 0.05 threshold. Hence, we cannot 585

safely conclude that the DL models are better than the statistical models in vulnerability 586

forecasting, since, despite the fact that the former demonstrated lower errors compared to 587

the latter, this difference was not observed to be statistically significant. 588

Table 8. Wilcoxon signed-rank test results of the best pairs of statistical and deep learning models.

Software Project p-value

Google Chrome 0.6634
Internet Explorer 0.0001
Apple macOS X 0.8115
Ubuntu Linux 0.8995

Microsoft Office 0.0950

To sum up, our experimental analysis has shown that the produced forecasting models, 589

either statistical or DL, can be deemed efficient for predicting the evolution of vulnerabilities 590

up to a period of 24 months ahead for three of our examined datasets. More specifically, the 591

models provide satisfactorily accurate forecasts for the cases of Internet Explorer, Ubuntu 592

Linux, and Microsoft Office, whereas they have difficulties in following the unusual spikes 593

and the outliers of Google Chrome and Apple MacOS. In these two cases the forecasts are 594

not so close to the actual values due to the unusual behavior of their data with respect to the 595

reported vulnerabilities. Contrary to the Internet Explorer, Ubuntu Linux, and Microsoft 596

Office where both the statistical and the DL models generate sufficiently accurate forecasts, 597

we can observe that in Google Chrome and Apple MacOS both of the models types do not 598

seem sufficient enough. This observation led us to the conclusion that the vulnerability 599

forecasting in Google Chrome and Apple MacOS is challenging not because of the models 600

incapacity, but because of the inherent nature of their data. 601

Regarding the comparison of these two model types, which is the main subject of 602

the present study, we found out that although the statistical models achieved a better 603

goodness-of-fit level with higher R2 in the training dataset, the DL models predicted more 604

accurately the held-out test data providing lower MAE and RMSE scores. Despite their 605

marginal superiority, DL models’ results indicate that they can be considered a promising 606

technique on the field of software vulnerabilities forecasting, especially in the near future 607

when more data about reported vulnerabilities are expected to become available. 608

However, based on the specific models that we applied and the specific datasets 609

that we utilized, none of the examined models managed to demonstrate good results 610

consistently in all the studied projects. Different models demonstrated better results in 611

different software projects. An interesting observation though was that the model type did 612

not seem to affect the predictive capability of the final forecasting models, since in the case 613

of the Internet Explorer, Ubuntu Linux, and Microsoft Office, both statistical and DL models 614

were able to provide sufficient predictions with highly similar predictive performance, 615

whereas in the other two studied software products both of them failed to provide good 616
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forecasts, again with highly similar performance. This leads to the conclusion that the 617

choice among statistical and DL models is still project-specific and associated to the project’s 618

particular vulnerability characteristics (e.g., unusual spikes, outliers, zero-inflated time 619

series, etc.). 620

5. Conclusions and Future Work 621

In this paper, we compared the capacity of statistical and Deep Learning (DL) models 622

in forecasting the future number (i.e., 24 months ahead) of vulnerabilities in software 623

projects. For this purpose, we gathered from NVD data about the number of reported 624

vulnerabilities for five popular software projects. We proceeded with the development of 625

several models and the evaluation of them both in terms of goodness-of-fit and predictive 626

power. We showed that DL-based models are competent enough to forecast vulnerabilities 627

and their performance is comparable to the traditional statistical models that are commonly 628

used in vulnerabilities forecasting. Actually, DL models were found to have slightly better 629

predictive power than the statistical models, but the observed difference in their predictive 630

performance was not observed to be statistically significant. 631

Furthermore, we noticed that the selection of the forecasting model is project-specific 632

as it depends on the special characteristics of each dataset. There were software projects 633

where a DL model had a clear advantage (e.g., Internet Explorer) and projects where the 634

best statistical and the best DL predictors were really close to each other (e.g., Ubuntu 635

Linux). There were also some projects (e.g., AppleMacOS) were the 2 years ahead forecast 636

appeared to be a really challenging task for either statistical or DL models. 637

There are several potential directions for future work. First of all, an interesting 638

direction would be to explore whether there are patterns inside the source code that can be 639

related to the evolution of the number of vulnerabilities and whether these patterns can be 640

identified by natural language processing techniques or by software metrics- based models. 641

In other words, we are planning to examine whether multi-variate forecasting models 642

could lead to better results in vulnerability forecasting, by incorporating features retrieved 643

from the source code of the software products. We also aim to utilize more information 644

that exists in NVD about the reported vulnerabilities, such as the severity and the impact 645

score of the vulnerabilities, in order to build multi-variate forecasting models. 646

Author Contributions: Conceptualization: I.K.; methodology: I.K., D.T and M.S.; software: I.K. and 647

D.T; validation: M.S. and D.T.; formal analysis: I.K., D.T, M.S., A.A, A.C and D.K.; investigation: I.K. 648

and D.T.; resources: D.K.; related work: I.K.; data curation: I.K. and D.T; writing—original draft 649

preparation: I.K. and D.T; writing—review and editing: M.S., A.A and A.C.; visualization: I.K. and 650

D.T.; supervision: A.A., A.C., M.S. and D.K.; project administration: D.K.; funding acquisition: D.K. 651

All authors have read and agreed to the published version of the manuscript. 652

Funding: This research was funded by the European Union’s Horizon 2020 research and innovation 653

program through the ... 654

Institutional Review Board Statement: Not applicable. 655

Data Availability Statement: Data that support the reported results can be found at https://nvd.nist. 656

gov/vuln/data-feeds. 657

Conflicts of Interest: The authors declare no conflict of interest. 658

References 659

1. Shin, Y.; Williams, L. Is complexity really the enemy of software security? In Proceedings of the Proceedings of the 4th ACM 660

workshop on Quality of protection, 2008, pp. 47–50. 661

2. Shin, Y.; Williams, L. An empirical model to predict security vulnerabilities using code complexity metrics. In Proceedings of the 662

Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, pp. 663

315–317. 664

3. Chowdhury, I.; Zulkernine, M. Using complexity, coupling, and cohesion metrics as early indicators of vulnerabilities. Journal of 665

Systems Architecture 2011, 57, 294–313. 666

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds


Version July 19, 2022 submitted to Electronics 21 of 22

4. Pang, Y.; Xue, X.; Wang, H. Predicting vulnerable software components through deep neural network. In Proceedings of the 667

Proceedings of the 2017 International Conference on Deep Learning Technologies, 2017, pp. 6–10. 668

5. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based system for vulnerability 669

detection. arXiv preprint arXiv:1801.01681 2018. 670

6. Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A. Predicting vulnerable software components. In Proceedings of the Proceedings 671

of the 14th ACM conference on Computer and communications security, 2007, pp. 529–540. 672

7. Hovsepyan, A.; Scandariato, R.; Joosen, W.; Walden, J. Software vulnerability prediction using text analysis techniques. In 673

Proceedings of the Proceedings of the 4th international workshop on Security measurements and metrics, 2012, pp. 7–10. 674

8. Iqbal, J.; Firdous, T.; Shrivastava, A.K.; Saraf, I. Modelling and predicting software vulnerabilities using a sigmoid function. 675

International Journal of Information Technology 2022, 14, 649–655. 676

9. Shrivastava, A.; Sharma, R.; Kapur, P. Vulnerability discovery model for a software system using stochastic differential equation. 677

In Proceedings of the 2015 International conference on futuristic trends on computational analysis and knowledge management 678

(ABLAZE). IEEE, 2015, pp. 199–205. 679

10. National Vulnerability Database. https://nvd.nist.gov. Accessed: 2022-06-30. 680

11. Alhazmi, O.H.; Malaiya, Y.K. Quantitative vulnerability assessment of systems software. In Proceedings of the Annual Reliability 681

and Maintainability Symposium, 2005. Proceedings. IEEE, 2005, pp. 615–620. 682

12. Leverett, É.; Rhode, M.; Wedgbury, A. Vulnerability Forecasting: theory and practice. Digital Threats: Research and Practice 2022. 683

13. Roumani, Y.; Nwankpa, J.K.; Roumani, Y.F. Time series modeling of vulnerabilities. Computers & Security 2015, 51, 32–40. 684

14. Jabeen, G.; Rahim, S.; Afzal, W.; Khan, D.; Khan, A.A.; Hussain, Z.; Bibi, T. Machine learning techniques for software vulnerability 685

prediction: a comparative study. Applied Intelligence 2022, pp. 1–22. 686
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