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Abstract: Software security is a critical aspect of modern software products. The vulnerabilities
that reside in their source code could become a major weakness for enterprises that build or utilize
these products, as their exploitation could lead to devastating financial consequences. Therefore,
the development of mechanisms capable of identifying and discovering software vulnerabilities has
recently attracted the interest of the research community. Besides the studies that examine software
attributes in order to predict the existence of vulnerabilities in software components, there are also
studies that attempt to predict the future number of vulnerabilities based on the already reported
vulnerabilities of a project. In this paper, the evolution of vulnerabilities in a horizon of up to 24
months ahead is predicted using a univariate time series forecasting approach. Both statistical and
deep learning models are developed and compared based on security data coming from five popular
software projects. The results indicate that the two model categories produce similar forecasts for the
number of vulnerabilities expected in the future, without significant diversities. Another interesting
observation is that the selection of the best-performing model depends on the respective software
project.
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1. Introduction

The size and complexity of modern software systems are constantly increasing. Ad-
ditionally, the number of software vulnerabilities has significantly grown, leading to an
increase in the security concerns expressed both by the end users and the software enter-
prises. The exploitation of software vulnerabilities can lead to important financial damages,
which renders the need of decision makers to assess the security level of software products
absolutely necessary. They need to determine (i) whether software systems along with their
respective software components (e.g., packages, classes, methods, etc.) are vulnerable or
not, (ii) the impact of potential vulnerability exploits, and (iii) the likelihood that a specific
number of vulnerabilities will be reported in a certain period of time.

To deal with this, many researchers have proposed models capable of discovering
vulnerabilities. A lot of effort has been placed on the prediction of vulnerable software
components using software attributes extracted by the source code. In these studies,
researchers commonly train machine learning models based on either software metrics
(e.g., cohesion, coupling, and complexity metrics) [1-3] or text features [4-7]. They aim
to identify patterns in the source code that indicate that a file or a function is vulnerable
or not. However, these approaches do not predict the number of vulnerabilities in future
versions. Although they judge if a component contains vulnerabilities or not, they do not
provide any indication of the evolution of the number of their vulnerabilities in time.

An indication of the expected number of vulnerabilities and the trends of their oc-
currences can be a very useful tool for decision makers, enabling them to prioritize their
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valuable time and limited resources for testing an existing software project and patching
its reported vulnerabilities. For this purpose, there is a need for forecasting models that
can predict the trend and the number of vulnerabilities that are expected to be discovered
in a specific time horizon for a given software project. Studies that propose mechanisms
to model the evolution of the number of vulnerabilities in time [8,9] aim not to detect
vulnerabilities, but to forecast the number of vulnerabilities that are likely to be identified
in the future. These studies utilize either statistical or machine learning algorithms in order
to estimate the expected number of vulnerabilities based on the vulnerabilities that have
been already reported (e.g., in the National Vulnerability Database [10]). The majority of
these algorithms are time series models that keep track of all the vulnerabilities in terms of
calendar time and interpret that time as an independent variable [11]. Statistical models
such as Autoregressive Integrated Moving Average (ARIMA), Croston’s method, logistic
regression, and Exponential smoothing models have attracted the interest of the researchers
in the field [12,13]. Machine Learning (ML) models have been considered as well. Jabeen et
al. conducted a comparative analysis evaluating different statistical models with various
ML models such as Support Vector Machines and Bagging [14].

Other recent studies have also introduced Deep Learning (DL) models as predictors
capable of modelling the evolution of the vulnerabilities number in time [12,15]. Despite
the existing attempts, a lack in the literature of a thorough DL analysis for vulnerability
forecasting was noticed. In fact, although the existing studies [12,14,16] use neural networks
to forecast the vulnerabilities number, their predictive capacity has not been thoroughly
studied. Gencer et al. [15] recently conducted a more in-depth analysis, by considering
several DL algorithms; however, they focused only on Android systems. In addition to
that, the authors did not follow a project-specific approach, i.e., they did not build models
to predict the future number of vulnerabilities for each Android application, but they
aggregated all the vulnerabilities relative to Android applications and attempted to provide
forecast for their aggregated value. This way, their results cannot be generalised for the
task of predicting the number of vulnerabilities of a software project in a future version.

To this end, in the present paper we empirically examine the capacity of statistical and
DL models in forecasting the number of vulnerabilities that a software product may exhibit
in the future and we compare their predictive performance. For this purpose, we utilize
data provided by the National Vulnerability Database (NVD) that provides files with the
reported vulnerabilities of several software products. We gathered data about the reported
vulnerabilities of five popular software applications, which have been reported in the last
two decades (i.e., from 2002 to 2022), and, based on these data, we build several statistical
and DL models for each one of the five projects, for providing vulnerability forecasts in
a horizon of 24 months ahead. The produced models are evaluated and compared based
on their goodness-of-fit, as well as on their predictive performance on unseen data. To
the best of our knowledge, this is the first study that thoroughly evaluates the capacity of
DL models in vulnerability forecasting and compares their predictive performance with
traditional statistical models, in an attempt to emerge the DL models as adequate predictors
of software vulnerabilities numbers.

The rest of the paper is structured as follows. In Section 2, the related work in the
field of Vulnerability Forecasting in software systems is presented. Section 3 provides
information about the proposed models, the overall methodology and the experimental
setup. Finally, Section 4 thoroughly discusses the obtained results of our analysis, while
Section 5 sums up the paper, provides the overall conclusion and also discusses potential
future research directions.

2. Related Work

Examination of previous studies in the literature regarding vulnerability prediction

shows that approaches based on statistics, mathematical modeling, and ML have been used.

Code attribute-based models and time series-based models are the two primary categories
of these approaches. The models based on code attributes concentrate on identifying the
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relationship between code attributes and the existence of vulnerabilities. On the other hand,
time series-based models focus on predicting the number of vulnerabilities in a future time
step based on historical data.

Regarding the code-based models, Automated Static Analysis (ASA) is often used for
the early identification of security issues in the source code of software projects [17,18]. ASA
manages to identify potential security threats that reside in the source code, by applying
some pre-defined rules and identifying the violations of these rules. Based on ASA, more
advanced models have been also proposed [19]. Siavvas et al. proposed a model that
combines low-level indicators (i.e., security-relevant static analysis alerts and software
metrics) in order to generate a high-level security score that reflects the internal security
level of the examined software [19].

Apart from ASA, for the prediction of vulnerabilities in the source code the research
community has widely employed ML and DL algorithms that try to identify code patterns
or code attributes relative to the existence of vulnerabilities. Shin and Williams [1,2] ex-
amined how well software metrics, in particular complexity metrics, can predict software
vulnerabilities. Several regression models were developed to differentiate between vulner-
able and non-vulnerable functions. The effectiveness of feeding artificial neural networks
with software measures to anticipate cross-project vulnerabilities was examined by the
authors in [20]. Several ML models were developed, evaluated, and compared using a
dataset of popular PHP products.

Neuhaus et al. proposed Vulture [6], a vulnerability prediction model that identified
vulnerabilities based on import statements and function calls that are more frequent in vul-
nerable components. In VulDeePecker [5], Li et al. proposed a DL model for vulnerability
identification. They separated the original code into several lines of code that were seman-
tically connected, and then they used word2vec embeddings [21,22] to turn those lines
of code into vectors. Subsequently, a neural network was trained to identify library/API
function calls associated with known defects. In [23], the authors compared text mining
and software metrics approaches using several machine and DL models for vulnerability
prediction and then they attempted to combine these two approaches, as well.

Regarding the time series-based models, Alhazmi et al. proposed a time-based model
[11]. Their approach is based on the fact that interest in newly released software rises in the
beginning, peaks after a while, and then drops as new competitive versions are introduced.
Yasasin et al. examined the issue of estimating the quantity of software security flaws in
operating systems, browsers, and office applications [16]. They retrieved their data form
NVD and they used mainly stastistical models such as ARIMA and exponential smoothing.
They also investigated the suitability of the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE) in the measurement of vulnerability forecasting. Furthermore,
Jabeen et al., conducted an empirical analysis, where they compared different stiatistical
algorithms with ML techniques showing that many of the ML models provide better results
[14].

In this study, we propose an approach to predict the number of vulnerabilities in
an horizon of two years ahead using both statistical models and DL models. Actually,
we compare these two kinds of time series models. We follow a univariate approach,
considering only the number of the already reported vulnerabilities in the NVD regarding
two operating systems, two browsers and one of Office products (see Section 3.1). To
the best of our knowledge, it is the first thorough study that examines the capacity of
DL in the forecasting of software vulnerabilities. Gencer et al. [15] compared also the
ARIMA with several DL models but they focused solely on Android vulnerabilities by
considering Android as a whole. In contrary, we follow a project specific approach (i.e.,
specific browsers, operating systems) in order to be in line with a real world scenario where
a decision maker would desire to know the expected number of vulnerabilities for his/her
product. We are also differentiated from the [11,14] approaches, as we attempt to predict
the exact number of vulnerabilities until a specific month instead of the cumulative number
of vulnerabilities until that month.
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3. Methodology and Experimental Setup 144
3.1. Data Collection 145

The data used in the present study are collected from the publicly available American 146
National Vulnerability Database (NVD). The NVD is a vulnerability database formed and 147
maintained by the National Institute of Standard and Technology (NIST) of the US, which 148
provides a comprehensive list of unique vulnerability and exposure data. The widespread 14
contribution, public availability, and completeness of its security vulnerability information 1so
make it the most preferred vulnerability database in the related literature. 151

For the purposes of this work, we selected five popular software projects, namely sz
Google Chrome, Microsoft Internet Explorer, Apple macOS X, Ubuntu Linux, and Microsoft  1ss
Office. Asregards our selection criteria, we based our decision on the fact that these projects 1ss
represent popular categories of software systems, namely web browsers, operating systems, 1ss
and office tools. Furthermore, we tried to maintain a balance between open- and closed- 1se
source software. Finally, these projects have been extensively used in the related literature s
for vulnerability analysis, prediction, and forecasting tasks [12-14,16]. After selecting the 1ss
software projects covered in our analysis, we proceeded with collecting their corresponding  1se
vulnerability datasets from the NVD repository, starting from the first day of their release 10
up until the latest available record by the end of 2021. Since the objective of our work is to 162
forecast future security vulnerabilities, similarly to previous related studies, we grouped the  1e2
available data (i.e., number of reported vulnerabilities) for each project in monthly intervals. 1es
Table 1 lists the selected software projects, accompanied with additional information, such  1ea
as the total number of vulnerabilities, data collection period, etc. 165

Table 1. Selected software systems and their descriptive statistics.

Data
Softv.vare Domain Release Date  Open Source Collection Total. \.hflner-
Project . abilities
Period
Google Browser 2008 Partially 2008-2021 2136
Chrome
Internet Browser 1995 No 1997-2018 1039
Explorer
Apple
e X 0s 2001 No 2001-2021 2175
Ubuntu 0S 2004 Yes 2005-2021 361
Linux
Microsoft Office 1990 No 1999-2021 347
Office

Figure 1 presents the number of monthly vulnerabilities for the five selected vulnera- 1e6
bility datasets along with the software projects’ evolution. 167
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Figure 1. Vulnerability evolution of the five selected projects

3.2. Time Series Modelling

In line with previous related work on vulnerability forecasting [12,15,16], we follow a
multiple forecasting approach, in which we compare several forecasting methodologies
and evaluate their performance in terms of forecasting accuracy. More specifically, we fit
various forecasting models on the five obtained time series datasets of monthly security vul-
nerabilities and subsequently, we evaluate the results against a test set of held out security
vulnerability data. To do so, we employ and examine two main types of forecasting method-
ologies, ranging from simple statistical methods to more sophisticated DL approaches.
Statistical forecasting methods comprise single and triple exponential smoothing (SES,
TES) models, Autoregressive Integrated Moving Average (ARIMA) models, and Croston’s
methodology. On the other hand, DL, i.e., Neural Network-based approaches, comprise
models such as the Multi-Layer Perceptron (MLP), the Recurrent Neural Network (RNN)
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and its several variants, as well as the Convolutional Neural Network (CNN). Similar
statistical and DL approaches have been widely used in both practice and academia for
software quality evolution modelling and forecasting tasks [24-29], and more recently for
predicting the future evolution of software vulnerabilities [12-16].

Since the objective of this study is to investigate various forecasting methodologies
for their ability to predict the future evolution of software security vulnerabilities, we
define our dependent variable as the number of vulnerability occurrences at each time
interval. As mentioned previously, the number of vulnerabilities is aggregated by month,
and time is measured in terms of month and year. Our focus lies on univariate time series
modelling, meaning that the models will try to predict the number of vulnerabilities that
will be reported for a given project in a future point in time, based exclusively on past
observations of the number of reported vulnerabilities, without utilizing any additional
feature.

In what follows, we provide a brief description of the forecasting methods that will be
used in the context of this work for vulnerability forecasting. More specifically, in Section
3.2.1 we give an overview of the statistical models that we built as part of the present study,
whereas in Section 3.2.2 we present the DL models examined in this study.

3.2.1. Statistical Models

While there exist several forecasting methods that could be used for vulnerability
forecasting, like Artificial Neural Networks (ANNs), Support Vector Regression (SVR),
or Regression Trees (RT), the application of these methods usually requires extensive
parameter tuning and computational power. Therefore, as an initial approach towards
vulnerabilities forecasting we decided to investigate statistical models that are generally
more straightforward, less computationally expensive, and less data demanding. More
specifically, our statistical models’ set comprises four widely used models, namely single
exponential smoothing (SES), triple exponential smoothing (TES) - also known as Holt-
Winters model, Autoregressive Integrated Moving Average (ARIMA), and finally Croston’s
methodology.

Starting with the single exponential smoothing (SES), this simple model produces
forecasts by essentially using weighted averages, where the weights decrease exponentially
as observations lie further in the past. In other words, the more recent the observation
the higher the associated weight. To adjust the magnitude of the weights, a smoothing
parameter alpha (a) can be used, with smaller values of a giving more weight to the obser-
vations from the more distant past. Since SES only depends on the level of the series at the
last observation at time ¢, it has a "flat" forecast function, meaning that every step into the
future is predicted with the same value. Due to this limitation, this model is suitable only
for univariate data without a clear trend or seasonality patterns.

Triple Exponential Smoothing (TES), also known as Holt-Winters exponential smooth-
ing, is an extension of exponential smoothing that explicitly adds support for trend and
seasonality to the univariate time series. In addition to the alpha (a) smoothing factor, two
new parameters called beta (B) and gamma (7y) are added to the equation. Parameter 8 can
be used in order to add the trend component to the outcome variable, denoting the slope
of the time series at time f. In a similar way, a parameter () controls the influence on the
seasonal component. There are two variations to this method with respect to the seasonal
component, namely the additive and multiplicative method. The former is used when the
seasonal variations are constant over time, while the latter is preferred when the seasonal
variations are changing proportional to the level of the series.

A different, yet widely-used approach to time series forecasting are the Autoregressive
Integrated Moving Average (ARIMA) models, introduced by Box and Jenkins to deal with
the modeling of non-stationary time series [30]. While exponential smoothing models try to
model the trend and seasonality patterns in the data, ARIMA models focus on describing
the autocorrelations in the data. The ARIMA models are parameterized by adjusting three
distinct integers: p, d and g. Parameter p represents the autoregressive (AR) part of the
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model, i.e., regression of the time series onto itself. Parameter d stands for the integrated
(I) part of the model and incorporates the amount of differencing (i.e. the number of past
time points to subtract from the current value) to apply to the time series for becoming
stationary. Parameter g is the moving average (MA) part of the model. To estimate the
three ARIMA parameters, the Box and Jenkins ARIMA modelling strategy involves four
steps: Identification, Estimation, Diagnostic testing, and Application. When seasonality is
present in the data, a Seasonal ARIMA, i.e., an extension of ARIMA that explicitly supports
seasonal component can be formed by including three additional parameters, namely P, D
and Q. These parameters are similar to the non-seasonal ARIMA components, but focus on
the seasonal component.

An inherent characteristic of vulnerability evolution datasets is that they are mostly
zero-inflated and intermittent, meaning that they contain a lot of zero values and show a
high volatility when a value occurs. To tackle the challenge of forecasting such time series,
Croston proposed a solution, also known as Croston’s method [31]. Croston’s method
involves the decomposition of the original time series into two new time series, one without
zero values and a second one that captures duration of zero valued intervals. Subsequently,
to produce forecasts, separate simple exponential smoothing models are used to model the
two new series, using again the alpha (a) smoothing parameter (identical to both series) to
adjust the weights. Therefore, Croston’s methodology is also covered within the context of
this study to investigate whether it can address the specific nature of security vulnerability
time series data.

3.2.2. Deep Learning Models

In this section, a brief description of the DL models that are utilized in this work is
following. DL models are commonly based on artificial neural networks that are com-
putational models with numerous processing components that take inputs and produce
outputs in accordance with their predetermined activation functions. In this study, we
investigate the time series forecasting capacity of the Multi-Layer Perceptron (MLP), the
Recurrent Neural Network (RNN) and its several variants as well as the Convolutional
Neural Network (CNN).

Starting with the MLDP, it is a feed-forward artificial neural network (ANN) that is
made up of many perceptron layers. In particular, the MLP is frequently used in deep
learning to build Deep Neural Networks (DNNs), which are ANNs with a lot of hidden
layers between the input and output layer. The values of some particular variables known
as hyperparameters determine the overall training process of an ANN and, in turn, of an
MLP.

The most disseminated category of DNNs for data in the form of sequences (as happens
with time series data) are the RNNs. Unlike the feed-forward neural networks, the RNNs
are capable of processing entire sequences of data such as text features or time series data.
Their speciality lies in the fact that the output is not only affected by the weights applied to
the inputs, as in the case of traditional ANNSs, but is also affected by a hidden state vector
which contains information about the previous inputs. Thus the same input can give a
completely different result depending on the previous inputs that are part of the sequence.
In feed-forward ANNSs, information flows from the input layer to the output layer through
the hidden layers. It does not pass through a node twice. That is why they have no memory.
But in RNNs the information forms a cycle. When the RNN makes a decision, it takes
into account the current input and what it has learned from the inputs it has previously
received.

However, long data sequence learning is difficult for RNNs due to the issue of van-
ishing gradients [32]. When the gradient decreases further, the updates of the parameters
become insignificant and no actual learning is performed. The so-called Long-Short Term
Memory (LSTM) neural networks [33] give a solution to the problem of vanishing gradients.
LSTMs networks are an extension of the simple RNNs and have the ability to learn from
sequences with a very large number of time instants. This is because LSTM modules contain
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their information in memory like computer memory. Actually LSTMs can read, write and
erase information from their memory. The LSTM learns over time which information is
important and which is not. From an architectural view, the LSTM includes three gates,
the input gate, the output gate and the forget gate. The input gate decides what new infor-
mation will be stored in the LSTM’s memory, the output gate decides what information
will affect the output at the current time, while the forget gate erases information that it
considers unimportant.

Later the Gated Recurrent Unit (GRU) model was devised which can, like the LSTM,
overcome the vanishing gradient obstacle [34]. It is actually a variant of the LSTM that
contains two gates, the update gate and the reset gate. The difference with LSTM is that
the processes of the input and forget gates are handled by one gate, the update gate.
Another RNN variant, the bidirectional LSTM, often known as a biLSTM [35], is a sequence
processing model that consists of two LSTMs, one of which receives input forward and the
other of which receives it backward. With the help of BiLSTMs, the network has access
to more information, which benefits the algorithm’s context (e.g., knowing what values
immediately follow and precede a value in a sentence).

Convolutional Neural Networks (CNNs) [36] are often reliable when dealing with
sequential and time series data as well. One-dimensional CNNs can be used for univariate
time series forecasting even though CNNs were originally designed for two-dimensional
image data. An one-dimensional CNN model is a neural network with one convolutional
hidden layer that operates over an one-dimensional sequence and can be followed by (at
least) a second convolutional layer, when there are very long input sequences. After the
hidden layers, there is a pooling layer tasked with reducing the output of the convolutional
layers to its most important components. Subsequently, the feature maps that are extracted
by the convolutional part of the network are flattened in order to reduce their dimension
to a single one-dimensional vector. This one-dimensional network is given to a dense
layer that is fully connected and produces the forecasted value based on the selected loss
function.

3.2.3. Accuracy Metrics

In the literature, two of the most common categories of accuracy metrics when dealing
with forecasting tasks are the absolute metrics, such as the mean absolute error (MAE) or
root mean square error (RMSE), and the percentage-error metrics, such as the mean absolute
percentage error (MAPE) [37]. However, as this study deals with zero-inflated time series,
percentage-error metrics (such as the MAPE) are not appropriate, since their formula has
the disadvantage of producing infinite or undefined values for zero or close-to-zero actual
values, resulting to division by zero problems [38].

Therefore, in line with other related studies on vulnerability forecasting [12,14-16],
we evaluated and compared the predictive performance of the investigated models using
absolute metrics, and more specifically the Mean Absolute Error (MAE) as well as the
Root Mean Square Error (RMSE). Both of these error metrics are widely used in forecasting
tasks and can accurately reflect the performance of models fitted on zero-inflated time
series. MAE measures the average magnitude of the errors in a set of predictions, without
considering their direction. RMSE is a quadratic scoring rule that also measures the average
magnitude of the error. Both MAE and RMSE express average model prediction error in
units of the variable of interest and therefore can be easily interpreted. The equations of
MAE and RMSE are given below:

n PRp— A«
MAE = w )
n

Y (i —7i)? 2)

i=1

RMSE =

S|
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where 7 is the number of observations, y; is the actual value and ¥; is the forecast
value.

In addition to the selected predictive-power metrics introduced above, we also employ
the R? coefficient of determination in order to measure the goodness-of-fit of the investi-
gated models, i.e., how well the models fit on the data that were used during training. The
R?, which represents the square of correlation between the dependent and independent
variables, is a statistical measure that shows how close the data fit to the regression line. Its
formula is calculated as follows:

Y (vi —9i)?
RZ=1_Zi=1\Jt JU 3
T (yi— 1) ©)

where y; is the actual value and ¥; is the forecast value. R? values close to 1 indicate
an extremely good fit, whereas smaller values show a poor or no fit.

3.3. Fitting time series models

This section describes the methodology followed in order to build the various statistical
and DL models that were introduced in Section 3.2, with the purpose to fit and model
the vulnerability evolution of the five vulnerability datasets (i.e., software projects). As a
first step, we defined monthly periodicity for all datasets and subsequently we proceeded
with model parameterization. As mentioned in Section 3.2, in this work we followed a
train-test split approach. More specifically, each of the five vulnerability datasets was split
into two parts, where the the first n-24 observations were used for model fitting, while the
last 24 observations (i.e. 24 months) were used as held-out security vulnerability data for
testing and evaluating model performance on unseen data. The model parameterization
and fitting processes described in the rest of this section were performed solely on the
training parts of the datasets. Goodness-of-fit (i.e., training) results that were obtained
through fitting the models on the five selected software projects, as well as results on the
held-out (i.e., testing) data are presented and discussed later, in Section 4.

3.3.1. Statistical Models

In this subsection, we focus on describing the fitting and parameterization process
concerning the four selected statistical models covered in our study, i.e., SES, TES, ARIMA
and Croston methodology. Starting with the simplest model, namely SES, there is not
much tuning to be done, since the only parameter is the smoothing factor alpha (a). We
employed the StatsModels [39] library, a Python module that provides functionality for the
estimation of many different statistical models, in order to automatically estimate model
parameters for each dataset by maximizing the log-likelihood. Column "a (level)" in Table 2
lists the optimal SES (a) parameter value for each vulnerability dataset. Similarly to SES,
we employed the StatsModels library in order to also estimate the optimal beta () and
gamma (7y) parameters of the TES models for each time series dataset. As explained earlier,
parameter 8 can be used in order to add the trend component to the outcome variable,
while parameter 7y controls the influence on the seasonal component. Since our time series
are zero-inflated, we chose the additive method. Columns "f (trend)" and "y (seasonal)" of
Table 2 list the optimal TES (B and <y) parameter values for each vulnerability dataset.

Table 2. Optimal parameters for Exponential Smoothing models.

Software Project a (level) B (trend) 7 (seasonal)
Google Chrome 0.129 0.000 0.000
Internet Explorer 0.179 0.000 0.256
Apple macOS X 1.922¢-08 6.891e-13 4.383e-09
Ubuntu Linux 0.247 0.000 0.000

Microsoft Office 0.052 7.362e-15 2.256e-12
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After fitting the optimal SES an TES models, we proceeded with the more sophisticated
ARIMA methodology. A fundamental assumption in ARIMA analysis is stationarity, i.e., the
statistical properties (such as mean and variance) of a time series need to be constant over
time. Therefore, the first step towards our analysis included stationarity checks. We used
time series decomposition to deconstruct each time series dataset into several components,
representing one of the underlying categories of patterns, i.e. trend, seasonality, and
residual components of the data. By inspecting the decomposition plots, we observed
that in all covered cases, the seasonal component and the decreasing trend of the data
were nicely separated, leading to the conclusion that the series are not stationary in nature
and need to be adjusted in order to satisfy the necessary assumptions. The most common
practice for making a series stationary is to transform it through differencing. To verify
that a first-order difference would make the series stationary, we proceeded with all the
required steps, such as Auto-Correlation Function (ACF) correlograms analysis, as well
as Dickey—Fuller tests [40], which test the null hypothesis that a unit root is present in an
autoregressive model. Detailed results of the Dickey-Fuller tests on the data after applying
a first-order difference are presented in Table 3.

Table 3. Dickey-Fuller test on first-order differenced data.

Software Project Test Statistic p-value Critical Value (1%)
Google Chrome -6.267 4.087e-08 -3.475
Internet Explorer -4.762 0.0098 -3.460
Apple macOS X -7.021 6.550e-10 -3.459
Ubuntu Linux -6.897 1.310e-09 -3.468
Microsoft Office -7.529 3.604e-11 -3.457

For a time series to pass the Dickey—Fuller stationarity test, the “Test Statistic” value
should be lower than the “Critical Value”. Table 2 indicates that after applying a first-order
difference, the five examined time series become stationary, as the Test Statistic values
are lower that the Critical Values in all cases. This is also confirmed by inspecting the
significance of p—values (p<0.05). Since the number of required transformations to make
a time series stationary corresponds to the d parameter of the ARIMA(p,d,q) model [30],
setting the value of d = 1 for each model corresponding to the investigated datasets can be
safely supported by the above analysis.

As a next step, we aimed to identify the p (AR), 4 (MA), P (seasonal AR), and Q
(seasonal MA) parameters of the ARIMA models for each dataset, following the practical
recommendations through visual inspection of the AutoCorrelation Function (ACF) and
Partial AutoCorrelation Function (PACF) correlograms [30] of the first-order differenced
time series. Based on practical recommendations, if the ACF of the series disappears
gradually, and the PACF of the series disappears abruptly, it indicates an AR component.
An opposite behavior, i.e., the ACF disappears abruptly and the PACF disappear gradually,
indicates an MA component. In addition, if the ACF of the differenced series is positive at
lag s, where s is the number of periods in a season, it indicates a seasonal AR term, while a
negative ACF at lag s indicates a seasonal MA term.

When no clear conclusion can be reached by inspecting the ACF and PACF correlo-
grams, we turn towards the Akaike Information Criterion (AIC) minimization. For this
purpose, we employed the AutoArima library [41], a Python module that provides func-
tionality for identifying the optimal parameters for an ARIMA model based on a given
information criterion (e.g., AIC). Experiments were conducted by assigning various com-
binations of values (between 0 and 5) to the p g, P, and Q parameters, while keeping the
d parameter equal to 1. Table 4 provides details on the optimal parameters for ARIMA
models for each time series dataset, as identified using the above recommendations through
manual inspection and automated processes.
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Table 4. Optimal parameters for ARIMA models.

Seasonal Order

Software Project Order (AR, MA) S(AR L,MA,m)
Google Chrome (5,1,3) (1,0,0,12)
Internet Explorer 2,1,4) (1,0,1,12)
Apple macOS X (2,1,5) (1,0,1,12)
Ubuntu Linux 1,1,2) (1,0,0,12)
Microsoft Office 2,1,2) -

In time series analysis, it is a common practice to include a random walk model for the
purpose of comparing it with the selected models. The random walk model excludes the
auto-regressive (AR) and moving average (MA) parameters. Therefore, in the experiments
presented in the Section 4 we have also included ARIMA(0,1,0) as our baseline random
walk model.

Finally, regarding Croston’s methodology, we used Mohammadi’s python implemen-
tation [42] which also automatically optimises parameters on the training set. However,
this implementation does not provide APIs for returning the optimal parameters of the
fitted model, so we were not able to retrieve and list them within the context of this work.

3.3.2. Deep Learning Models
Data Transformation

In this section, we examine the capacity of the DL models to fit and model the evo-
lution of the number of reported vulnerabilities through time. In a similar way with the
statistical models, we consider as time intervals the monthly observations of the reported
vulnerabilities. For the purposes of training and evaluating our models we utilized the
five software products that we selected (see Section 3.1). We followed the train-test split
approach, where we used the first n-24 months to train our models and the rest (unseen
during the training phase) 24 months as a test-bed to compute the accuracy metrics.

As we perform a multi-step forecasting for a period of 24 time steps (i.e., months), we
take full advantage of the ability of neural networks to produce many outputs at once. In
other words, the models that we developed perform multi-output regression and predict
the entire forecast sequence in a single instance. The following equation describes this
process for an example of a three-step forecast, where a model predicts the dependent
variable for three steps ahead based on the knowledge of the last n observations.

prediction(t), prediction(t+1), prediction(t+2) = model(obs(t-1), obs(t-2), ..., obs(t-n))  (4)

As already stated, the goal of multi-output regression is to predict two or more
numerical values. In contrast to normal regression where a single value is predicted for
each sample, multi-output regression requires specialized algorithms that enable outputting
several values for each prediction, such as the neural networks that naturally can handle
multi-output regression problems. The neural networks can be easily configured for multi-
output forecasting by providing the number of the steps ahead as the number of nodes in
the output layer.

At this point, a description of the data transformation and preprocessing phases is
provided. In order to transform the data in sequences suitable for multi-output regression,
we employed the sliding window method. In the sliding window, multiple recent time
steps can be used to make the prediction for the next time steps. Our dataset consists
of the number of vulnerabilities per month. Hence, it is actually a sequence of numeric
values (i.e., number of vulnerabilities). The sliding window method splits that sequence to
smaller sequences of length equal to the look_back parameter that we define in a manner
that every generated sequence starts one step ahead of its previous one. The look_back
parameter determines the number of the recent observations (i.e., number of vulnerabilities
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of previous months) that are used by a model as a basis for the predictions. Hence, the
dataset from one large sequence is transformed to a list of sequences of length look_back.
For each one of these sequences the models learn to produce predictions for a number
of months ahead equal to the value of the steps_ahead parameter that, in our case, is pre-
defined equal to 24, as already explained (i.e., 24 months ahead). Table 5 sums up the
format of the input data along with their labels for an example of two steps ahead (i.e.,
steps_ahead=2) prediction based on sequences of the last 3 steps (i.e., look_back=3).

Table 5. The sliding window data for multi-output prediction (X stands for inputs, Y for outputs and
m for the monthly observations.)

X1 X, X3 Yq Y,
my my mg3 my ms
my m3 my ms mg
mg3 my ms5 mg myz

In addition, data normalization was carried out since DL approaches (e.g., neural
networks) perform better when data is normalized. For this purpose, we utilized the
Min-Max-Scaler [43] provided by scikit-learn [44], which converts features by scaling each
sample to a predetermined range between zero and one.

Models Training

For the construction of the DL models we utilized the popular framework named
Tensorflow [45] and the DL library called Keras [46] for the Python programming language.
We started the experiments with the most common neural network structures utilizing
commonly-used hyperparameters values. Subsequently, we tuned our models by applying
different hyperparameters investigating whether the tuning benefits the model each time
or not. The hyperparameters that we had to specify and that are essential for the definition
of our models are the following:

e optimizer: The algorithm that is responsible to adjust model weights in order to
maximize the loss function.

*  Dbatch size: The size of batches, (i.e., mini-batches) given in parallel to the network.

*  number of hidden layers: The number of hidden layers that make up the network.

*  number of neurons: The number of nodes that make up each hidden layer.

¢ activation function: The function that converts the input signal of an ANN node into
an output signal that will be used as an input signal at the next layer.

*  number of training epochs: The number of times when the whole training set "goes
through" the training process.

* convolutional filter: The number and the size of the convolutional filters in the
network (only for CNN).

We tried several values for the above hyperparameters in our attempt to find the
optimal architecture of our models. We considered the Adam, Nadam and Adagrad
optimizers [47] and regarding the activation functions, we considered the Rectified Linear
Units (ReLU) and the Hyperbolic Tangent (tanh) [48]. We also started with just one hidden
recurrent, convolutional or feed-forward layer and we increased the number of layers
incrementally, until reaching the three hidden layers. We also experimented with the
number of neurons per layer applying several values. Regarding the batch size, we first
defined a batch size equal to 16 that is the default value and then we attempted to apply
both bigger and smaller values and monitor the performance. For the selection of the
number of epochs, we adopted the Early Stopping [49] approach that allows for an arbitrary
large number of training epochs to be provided and stops training when the model’s
performance on a held out validation dataset stops increasing, preventing this way the
overfitting of the model. As regards the convolutional filters of the CNN, we did not



Version July 19, 2022 submitted to Electronics 13 of 22

notice any improvement by fluctuating the kernel size or the number of filters. Finally, the
look_back parameter (i.e., timesteps) was selected as 24.

In general, we observed that tuning does not affect the predictive efficiency of the
developed models significantly. This can be explained by the limited amount of data and
especially by the small number of the dataset’s samples that are defined by the number
of months containing reported vulnerabilities. Therefore, for each one of our models, we
chose the lightest architectures that provided sufficient results. Table 6 presents the final
selection of hyperparameters.

Table 6. The selected hyperparameters of the deep learning models.

Hyperparameter MLP RNNs CNN
Number of Layers 2 3 3
Number of Hidden 1 2 2
Layers
Number of Nodes 500 500-50 -
Number of Filters - - 256
Kernel Size - - 3
Weight Initialization Glorot Uniform Glorot Uniform Glorot Uniform
Technique (Xavier) (Xavier) (Xavier)
Learning Rate 0.01 0.01 0.01
Gl'adleITt ]?escent Adam Adam Adam
Optimizer
Batch Size 16 16 16
Activation Function ReLU tanh tanh
Loss Function mean squared error mean squared error mean squared error
Timesteps 24 24 24

4. Results and Discussion

In this section, the evaluation results that were obtained through fitting the models
(i.e., goodness-of-fit level) on the five selected software projects (see Section 3.3), as well as
results on the held-out (i.e., testing) data are presented and discussed. For the conduction
of all the experiments with deep neural networks the CUDA [50] platform running on
an NVIDIA GeForce GTX 1660 GPU was utilized. For the statistical models, we used an
i5-9600K CPU at 3.70 GHz with 16 GB RAM.

Table 7 provides the performance metrics that were obtained while examining the
goodness-of-fit (i.e., descriptive power) of the investigated models described above, as well
as their predictive power on unknown data, for each vulnerability dataset covered in our
study. As a reminder, the first three metrics (i.e., fit metrics) reflect the fitting performance
of the models on the first n-24 observations used for model training, whereas the remaining

two metrics (i.e., test metrics) reflect the model’s performance on the last 24 observations (i.e.

24 months). In Table 7, the best values of each metric for each software are demonstrated in
bold.
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Table 7. Comparison of statistical and deep learning models” descriptive and predictive power.

Software Project Model R2-fit MAE-fit RMSE-it MAE-test Rtl\;[sStE-
Google Chrome R%f}jim 0.578 11.949 18.634 19.083 24.244
SES 0.062 9.423 14.368 14.873 17.455
TES 0.136 9.680 13.791 14.248 17.697
ARIMA 0.291 8.938 12.490 14.027 17.191
Croston 0.201 9.016 12.876 15.926 21.166
MLP 0.124 10.007 13.280 13.955 15.888
LSTM -0.037 9.308 12.782 15.440 16.675
GRU -0.011 9.243 12.642 15.285 16.474
BiLSTM 0.227 8.981 13.887 16.890 20.388
CNN -0.066 9.604 12.936 14.634 16.291
Internet Explorer R"‘f/‘jﬁm -0.009 3.745 7.352 15.792 16.226
SES 0.443 2.959 5.458 10.562 11.181
TES 0.513 2.936 5.106 12510 13.928
ARIMA 0.546 3.018 4.928 7.051 7.679
Croston 0.637 2.535 4951 14.635 15.103
MLP 0.159 3.838 7.801 5.680 7.233
LSTM -0.062 3.880 7.468 3.487 4.054
GRU 0.071 3.872 7.493 3.636 4417
BiLSTM -0.099 3.732 7.602 3.265 3.859
CNN -0.054 3.795 7.451 5.340 5.999
Apple macOS X R?/G;im -0.930 11.823 18.804 77.375 82.276
SES 0.030 8.769 13.330 21.383 32.705
TES 0.090 8.932 12.915 21.345 32.042
ARIMA 0.124 8.548 12.670 20.555 33.767
Croston 0.233 7.940 11.853 21.783 32.481
MLP 0.007 9.677 12.575 21.617 31.689
LSTM 0.016 9.650 12.514 20.753 32.687
GRU 0.009 9.507 12.555 20.630 33.168
BiLSTM -0.254 8.328 14.121 19.810 36.230
CNN -0.045 10.125 12.900 20.907 32.015
Ubuntu Linux R%ﬁ}jﬁm 0.064 1.862 3917 1.375 2.031
SES 0.278 1.760 3.440 1513 2.014
TES 0.349 1.945 3.266 1.293 1.965
ARIMA 0.339 1.791 3.292 1.537 2.006
Croston 0.290 1.867 3.509 1.334 2.156
MLP -0.095 2.933 5.045 1333 2.086
LSTM 0.178 2.920 5233 1.272 1.964
GRU 0222 2.924 5.328 1.305 1.996
BiLSTM 0.165 2.835 5201 1331 2.085
CNN -0.144 2.863 5.155 1.383 1.965
Microsoft Office R%f};im -0.554 1.369 2.305 1.208 1.671
SES 0.089 1.097 1.765 1.254 1.617
TES 0.152 1.102 1.702 1.323 1.682
ARIMA 0.122 1.134 1.732 1.270 1.717
Croston 0.137 1.106 1.713 1.223 1.648
MLP -0.051 1.383 1.992 1.065 1.529
LSTM 010 1.368 1.932 1.263 1.695
GRU 0.018 1.426 1.959 1.283 1.672
BiLSTM 0.042 1.238 1.983 1.403 1.875

CNN -0.034 1.393 1.976 1.289 1.645
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By inspecting Table 7, the following observations can be deduced. First of all, none of
the models acts as a "silver bullet", meaning that there is a different optimal model for each
particular dataset (i.e., software project). As a matter of fact, the optimal models vary even
when compared per category, since there is no statistical or DL approach that performs
better than its competitors within the same class. On the other hand, we can clearly observe
that the statistical models present a better goodness-of-fit level, whereas the DL models
provide lowest errors on the test data of each project.

Regarding the goodness-of-fit level, we notice that in each covered dataset (i.e.,
software project) there is always a statistical model providing higher R? and lower MAE
and RMSE scores than the DL approaches. While in most of the cases the R? cannot be
considered high, possibly creating doubts about how well the models fit the data, both MAE
and RMSE are low enough (at least for the cases of Internet Explorer, Ubuntu Linux and
Microsoft Office) showing that the models” predictions are really close to the real values. To
provide a visual inspection of the models’ fit capabilities, Figure 2 shows the ARIMA model
(in red colour) fitted to the Google Chrome vulnerability dataset (in blue colour). Based
on Table 7, ARIMA demonstrated the best fitting performance as regards this particular
dataset. As can be seen by inspecting the plot, the ARIMA model has managed to learn the
peculiarities (e.g., level, trend, etc.) of Google Chrome’s vulnerability evolution patterns
to a quite satisfactory extent, with the only exception being a couple of random spikes,
where the number of reported vulnerabilities was unusually high. However, it should be
noted that, although the model cannot accurately estimate the exact value of the spikes,
the predicted values are higher than the mean value of the predictions, meaning that it can
indeed capture this trend, i.e., an expected sudden rise in the number of vulnerabilities.
This is important as the purpose of vulnerability forecasting models is to facilitate decision
making during the development of software products, by detecting potential future trends
in the number of reported vulnerabilities.

While we do not provide respective plots for the rest of the vulnerability datasets due
to reasons of brevity, we inform the reader that fitting lines very close to the ground truth
(i.e., showing similar promising performance) were also observed in the the rest of the
examined cases (i.e., software projects).

Vulnerabilities Forecast

—— vulnerabilities
—— Arima Fit

2021

Figure 2. Google Chrome vulnerability fit using ARIMA.

As regards the most important part of model evaluation, i.e., their predictive power
on the unseen data, by inspecting the results presented on Table 7, we can argue that as
far as the cases of Internet Explorer, Ubuntu Linux and Microsoft Office are concerned,
MAE and RMSE values indicate that both the statistical and DL models are quite efficient
in producing 24 steps ahead forecasts. On the other hand, in the cases of Google Chrome
and Apple MacOS the models provide forecasts that are quite far from the "ground truth"
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(i.e., the real values). To provide a visual inspection of the models’ predictive capabilities,
Figures 3, 4, 5, 6, and 7 show the forecasted values (in red colour) of the last 24 months
for each of the five examined software projects (ground truth in blue colour), generated
by the best-performing model in each particular case. As can be seen by inspecting these
plots, in most cases the models have managed to learn the peculiarities (e.g., levels, trends,
etc.) of the projects’ vulnerability evolution patterns to a quite satisfactory extent, with an
exception in the Apple macOS case where they are struggling to follow the random spikes
that reflect unusual high numbers of reported vulnerabilities.

google_chrome - Vulnerabilities Forecast
— wiinerabilities
= MLP forecast

201807 2015-01 2018-07 2020-01 202007 2021-01 2021-07 202201
Date

Figure 3. Google Chrome vulnerability forecasting for 24 steps ahead using MLP.
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Figure 4. Internet Explorer vulnerability forecasting for 24 steps ahead using BiLSTM.
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Figure 5. Apple macOS X vulnerability forecasting for 24 steps ahead using BiLSTM.
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Figure 6. Ubuntu Linux vulnerability forecasting for 24 steps ahead using LSTM.
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Figure 7. Microsoft Office vulnerability forecasting for 24 steps ahead using MLP.

Furthermore, from Table 7, one can observe that for each covered project both the
lowest MAE and RMSE values are obtained by employing DL models. However, it can
be noticed that the DL superiority is very slight, since the differences with the statistical
models, regarding MAE and RMSE, are very small. The only exception is the case of
Internet Explorer, where there is a clear advantage of DL. To complement our analysis, the
bar charts illustrated in Figure 8 and Figure 9 depict the slight lead of the DL models in a
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clear manner. We plotted the lowest MAE and RMSE values per project in Figure 8 and s
Figure 9 respectively. s71

Vulnerabilities Forecast 24 steps ahead
BN Best Statistical Model
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Figure 8. Comparison of the best statistical and deep learning models per project in terms of Mean
Absolute Error.
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Figure 9. Comparison of the best statistical and deep learning models per project in terms of Root
Mean Square Error.
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By inspecting Figure 8 and Figure 9, it can be argued that although deep learning seems sz
to be a promising option for vulnerability forecasting and, as regards the five demonstrated s7s
projects, a slightly more accurate option than the statistical models, the two types of sz
modelling approaches are very similar in terms of predictive performance, since their MAE sz
and RMSE deviate slightly. In order to verify this observation (i.e., investigate whether sz
there is an important difference in models’ predictive power) we conducted the Wilcoxon sz
signed rank test [51], which can define if there is an important statistical difference between sz
two paired samples (i.e., errors produced by statistical models and errors produced by s
DL models). For the needs of the Wilcoxon test, we computed the raw errors between the sso
actual and the predicted values for each one of the 24 timestamps of the testing period. se
Table 8 presents the results (i.e., p-values) of the Wilcoxon analysis. By inspecting the ss:
results, it is clear that important statistical difference between the two samples (i.e., errors) sss
can be observed only in the case of the Internet Explorer, since a statistical difference is  sss
considered important only if the p-value is lower than the 0.05 threshold. Hence, we cannot  sss
safely conclude that the DL models are better than the statistical models in vulnerability ses
forecasting, since, despite the fact that the former demonstrated lower errors compared to  ss
the latter, this difference was not observed to be statistically significant. ses

Table 8. Wilcoxon signed-rank test results of the best pairs of statistical and deep learning models.

Software Project p-value
Google Chrome 0.6634
Internet Explorer 0.0001
Apple macOS X 0.8115
Ubuntu Linux 0.8995
Microsoft Office 0.0950

To sum up, our experimental analysis has shown that the produced forecasting models, sss
either statistical or DL, can be deemed efficient for predicting the evolution of vulnerabilities  seo
up to a period of 24 months ahead for three of our examined datasets. More specifically, the so:
models provide satisfactorily accurate forecasts for the cases of Internet Explorer, Ubuntu  se2
Linux, and Microsoft Office, whereas they have difficulties in following the unusual spikes ses
and the outliers of Google Chrome and Apple MacOS. In these two cases the forecasts are  sos
not so close to the actual values due to the unusual behavior of their data with respect to the  ses
reported vulnerabilities. Contrary to the Internet Explorer, Ubuntu Linux, and Microsoft  ses
Office where both the statistical and the DL models generate sufficiently accurate forecasts, sor
we can observe that in Google Chrome and Apple MacOS both of the models types do not  ses
seem sufficient enough. This observation led us to the conclusion that the vulnerability seo
forecasting in Google Chrome and Apple MacOS is challenging not because of the models  soo
incapacity, but because of the inherent nature of their data. 601

Regarding the comparison of these two model types, which is the main subject of o2
the present study, we found out that although the statistical models achieved a better eos
goodness-of-fit level with higher R? in the training dataset, the DL models predicted more  eos
accurately the held-out test data providing lower MAE and RMSE scores. Despite their eos
marginal superiority, DL models’ results indicate that they can be considered a promising  eos
technique on the field of software vulnerabilities forecasting, especially in the near future oz
when more data about reported vulnerabilities are expected to become available. 608

However, based on the specific models that we applied and the specific datasets oo
that we utilized, none of the examined models managed to demonstrate good results 10
consistently in all the studied projects. Different models demonstrated better results in 61
different software projects. An interesting observation though was that the model type did  e:2
not seem to affect the predictive capability of the final forecasting models, since in the case 612
of the Internet Explorer, Ubuntu Linux, and Microsoft Office, both statistical and DL models 614
were able to provide sufficient predictions with highly similar predictive performance, e:s
whereas in the other two studied software products both of them failed to provide good e1s
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forecasts, again with highly similar performance. This leads to the conclusion that the
choice among statistical and DL models is still project-specific and associated to the project’s
particular vulnerability characteristics (e.g., unusual spikes, outliers, zero-inflated time
series, etc.).

5. Conclusions and Future Work

In this paper, we compared the capacity of statistical and Deep Learning (DL) models
in forecasting the future number (i.e., 24 months ahead) of vulnerabilities in software
projects. For this purpose, we gathered from NVD data about the number of reported
vulnerabilities for five popular software projects. We proceeded with the development of
several models and the evaluation of them both in terms of goodness-of-fit and predictive
power. We showed that DL-based models are competent enough to forecast vulnerabilities
and their performance is comparable to the traditional statistical models that are commonly
used in vulnerabilities forecasting. Actually, DL models were found to have slightly better
predictive power than the statistical models, but the observed difference in their predictive
performance was not observed to be statistically significant.

Furthermore, we noticed that the selection of the forecasting model is project-specific
as it depends on the special characteristics of each dataset. There were software projects
where a DL model had a clear advantage (e.g., Internet Explorer) and projects where the
best statistical and the best DL predictors were really close to each other (e.g., Ubuntu
Linux). There were also some projects (e.g., AppleMacOS) were the 2 years ahead forecast
appeared to be a really challenging task for either statistical or DL models.

There are several potential directions for future work. First of all, an interesting
direction would be to explore whether there are patterns inside the source code that can be
related to the evolution of the number of vulnerabilities and whether these patterns can be
identified by natural language processing techniques or by software metrics- based models.
In other words, we are planning to examine whether multi-variate forecasting models
could lead to better results in vulnerability forecasting, by incorporating features retrieved
from the source code of the software products. We also aim to utilize more information
that exists in NVD about the reported vulnerabilities, such as the severity and the impact
score of the vulnerabilities, in order to build multi-variate forecasting models.

Author Contributions: Conceptualization: LK.; methodology: LK., D.T and M.S.; software: I.K. and
D.T; validation: M.S. and D.T.; formal analysis: LK., D.T, M.S., A.A, A.C and D.K,; investigation: I.K.
and D.T.; resources: D.K.; related work: 1.K.; data curation: I.K. and D.T; writing—original draft
preparation: LK. and D.T; writing—review and editing: M.S., A.A and A.C; visualization: L.K. and
D.T.; supervision: A.A., A.C., M.S. and D.K,; project administration: D.K.; funding acquisition: D.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 research and innovation
program through the ...

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data that support the reported results can be found at https://nvd.nist.
gov/vuln/data-feeds.

Conflicts of Interest: The authors declare no conflict of interest.

1. Shin, Y,; Williams, L. Is complexity really the enemy of software security? In Proceedings of the Proceedings of the 4th ACM
workshop on Quality of protection, 2008, pp. 47-50.

2. Shin, Y;; Williams, L. An empirical model to predict security vulnerabilities using code complexity metrics. In Proceedings of the
Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, pp.

315-317.

3. Chowdhury, I; Zulkernine, M. Using complexity, coupling, and cohesion metrics as early indicators of vulnerabilities. Journal of
Systems Architecture 2011, 57, 294-313.

651

652

653

654


https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

Version July 19, 2022 submitted to Electronics 21 of 22

10.
11.

12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

Pang, Y.; Xue, X.; Wang, H. Predicting vulnerable software components through deep neural network. In Proceedings of the
Proceedings of the 2017 International Conference on Deep Learning Technologies, 2017, pp. 6-10.

Li, Z.; Zou, D.; Xu, S.; Ou, X; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based system for vulnerability
detection. arXiv preprint arXiv:1801.01681 2018.

Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A. Predicting vulnerable software components. In Proceedings of the Proceedings
of the 14th ACM conference on Computer and communications security, 2007, pp. 529-540.

Hovsepyan, A.; Scandariato, R.; Joosen, W.; Walden, J. Software vulnerability prediction using text analysis techniques. In
Proceedings of the Proceedings of the 4th international workshop on Security measurements and metrics, 2012, pp. 7-10.

Igbal, J.; Firdous, T.; Shrivastava, A.K.; Saraf, I. Modelling and predicting software vulnerabilities using a sigmoid function.
International Journal of Information Technology 2022, 14, 649-655.

Shrivastava, A.; Sharma, R.; Kapur, P. Vulnerability discovery model for a software system using stochastic differential equation.
In Proceedings of the 2015 International conference on futuristic trends on computational analysis and knowledge management
(ABLAZE). IEEE, 2015, pp. 199-205.

National Vulnerability Database. https://nvd.nist.gov. Accessed: 2022-06-30.

Alhazmi, O.H.; Malaiya, Y.K. Quantitative vulnerability assessment of systems software. In Proceedings of the Annual Reliability
and Maintainability Symposium, 2005. Proceedings. IEEE, 2005, pp. 615-620.

Leverett, E.; Rhode, M.; Wedgbury, A. Vulnerability Forecasting: theory and practice. Digital Threats: Research and Practice 2022.
Roumani, Y.; Nwankpa, ].K.; Roumani, Y.F. Time series modeling of vulnerabilities. Computers & Security 2015, 51, 32—40.
Jabeen, G.; Rahim, S.; Afzal, W.; Khan, D.; Khan, A.A_; Hussain, Z.; Bibi, T. Machine learning techniques for software vulnerability
prediction: a comparative study. Applied Intelligence 2022, pp. 1-22.

Gencer, K.; Basgiftgi, F. Time series forecast modeling of vulnerabilities in the android operating system using ARIMA and deep
learning methods. Sustainable Computing: Informatics and Systems 2021, 30, 100515.

Yasasin, E.; Prester, J.; Wagner, G.; Schryen, G. Forecasting IT security vulnerabilities—~An empirical analysis. Computers & Security
2020, 88, 101610.

Zheng, ].; Williams, L.; Nagappan, N.; Snipes, W.; Hudepohl, J.P.; Vouk, M.A. On the value of static analysis for fault detection in
software. IEEE transactions on software engineering 2006, 32, 240-253.

Gegick, M.; Williams, L. Toward the use of automated static analysis alerts for early identification of vulnerability-and attack-
prone components. In Proceedings of the Second International Conference on Internet Monitoring and Protection (ICIMP 2007).
IEEE, 2007, pp. 18-18.

Siavvas, M.; Kehagias, D.; Tzovaras, D.; Gelenbe, E. A hierarchical model for quantifying software security based on static
analysis alerts and software metrics. Software Quality Journal 2021, 29, 431-507.

Kalouptsoglou, I.; Siavvas, M.; Tsoukalas, D.; Kehagias, D. Cross-project vulnerability prediction based on software metrics and
deep learning. In Proceedings of the International Conference on Computational Science and Its Applications. Springer, 2020, pp.
877-893.

Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 2013.

Kalouptsoglou, I; Siavvas, M.; Kehagias, D.; Chatzigeorgiou, A.; Ampatzoglou, A. An empirical evaluation of the usefulness of
word embedding techniques in deep learning-based vulnerability prediction. In Proceedings of the Security in Computer and
Information Sciences: Second International Symposium, EuroCybersec 2021, Nice, France, October 25-26, 2021, Revised Selected
Papers. Springer Nature, 2022, p. 23.

Kalouptsoglou, L; Siavvas, M.; Kehagias, D.; Chatzigeorgiou, A.; Ampatzoglou, A. Examining the Capacity of Text Mining and
Software Metrics in Vulnerability Prediction. Entropy 2022, 24, 651.

Yazdi, H.S.; Mirbolouki, M.; Pietsch, P.; Kehrer, T.; Kelter, U. Analysis and prediction of design model evolution using time series.
In Proceedings of the International Conference on Advanced Information Systems Engineering. Springer, 2014, pp. 1-15.
Goulao, M.; Fonte, N.; Wermelinger, M.; e Abreu, F.B. Software evolution prediction using seasonal time analysis: a comparative
study. In Proceedings of the 2012 16th European Conference on Software Maintenance and Reengineering. IEEE, 2012, pp.
213-222.

Raja, U.; Hale, D.P,; Hale, ].E. Modeling software evolution defects: a time series approach. Journal of Software Maintenance and
Evolution: Research and Practice 2009, 21, 49-71.

Tsoukalas, D.; Jankovic, M.; Siavvas, M.; Kehagias, D.; Chatzigeorgiou, A.; Tzovaras, D. On the Applicability of Time Series
Models for Technical Debt Forecasting. In Proceedings of the 15th China-Europe International Symposium on Software
Engineering Education (CEISEE 2019), 2019. (in press), https:/ /doi.org/10.13140/RG.2.2.33152.79367.

Tsoukalas, D.; Kehagias, D.; Siavvas, M.; Chatzigeorgiou, A. Technical Debt Forecasting: An empirical study on open-source
repositories. In Proceedings of the Journal of Systems and Software, 2020, Vol. 170, p. 110777. https://doi.org/https:
//doi.org/10.1016/j.jss.2020.110777.

Mathioudaki, M.; Tsoukalas, D.; Siavvas, M.; Kehagias, D. Technical Debt Forecasting Based on Deep Learning Techniques. In
Proceedings of the International Conference on Computational Science and Its Applications. Springer, 2021, pp. 306-322.

Box, G.E,; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time series analysis: forecasting and control; John Wiley & Sons, 2015.

Croston, ].D. Forecasting and stock control for intermittent demands. Journal of the Operational Research Society 1972, 23, 289-303.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709


https://nvd.nist.gov
https://doi.org/10.13140/RG.2.2.33152.79367
https://doi.org/https://doi.org/10.1016/j.jss.2020.110777
https://doi.org/https://doi.org/10.1016/j.jss.2020.110777
https://doi.org/https://doi.org/10.1016/j.jss.2020.110777

Version July 19, 2022 submitted to Electronics 22 of 22

32.

33.
34.

35.
36.

37.
38.

39.

40.

41.
42.

43.

44.
45.
46.
47.
48.

49.
50.
51.

Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 1998, 6, 107-116.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735-1780.

Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555 2014.

Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing 1997, 45, 2673-2681.
LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, contour and grouping in
computer vision; Springer, 1999; pp. 319-345.

Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. International journal of forecasting 2006, 22, 679—-688.
Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting
2016, 32, 669-679.

Seabold, S.; Perktold, J. statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in
Science Conference, 2010.

Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American
statistical association 1979, 74, 427-431.

pmdarima: ARIMA estimators for Python. https://alkaline-ml.com/pmdarima/index.html. Accessed: 2022-06-30.

A python package to forecast intermittent time series using Croston’s method. https://pypi.org/project/croston/. Accessed:
2022-06-30.

A Python package that transforms features by scaling each feature to a given range. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html. Accessed: 2022-06-30.

Scikit-learn: Machine Learning in Python. https://scikit-learn.org/stable/. Accessed: 2022-06-30.

An end-to-end open source machine learning platform. https://www.tensorflow.org/. Accessed: 2022-06-30.

Keras API models. https://keras.io/api/models/. Accessed: 2022-06-30.

Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 2016.

Ding, B.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks. In Proceedings of the 2018
Chinese control and decision conference (CCDC). IEEE, 2018, pp. 1836-1841.

Early Stopping technique provided by Keras. https://keras.io/api/callbacks/early_stopping/. Accessed: 2022-06-30.

Cuda ToolKit. https://developernvidia.com/cuda-toolkit. Accessed: 2022-06-30.

Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull., 1, 80-83, 1945.

744

745

746

747

748

749

750

751

752

753

754


https://alkaline-ml.com/pmdarima/index.html
https://pypi.org/project/croston/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://keras.io/api/models/
https://keras.io/api/callbacks/early_stopping/
https://developer.nvidia.com/cuda-toolkit

	Introduction
	Related Work
	Methodology and Experimental Setup
	Data Collection
	Time Series Modelling
	Statistical Models
	Deep Learning Models
	Accuracy Metrics

	Fitting time series models
	Statistical Models
	Deep Learning Models


	Results and Discussion
	Conclusions and Future Work
	References

