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Abstract. Nowadays, the increasing flourishing of the language models
provides a new direction not only for the task of text generation, which
is their actual goal, but also for dealing with downstream tasks, such as
text classification. Vulnerability prediction is a task that has been heav-
ily connected with text mining techniques, since many studies in the
related literature utilize source code as text, and identify vulnerable pat-
terns through deep learning algorithms. Recently, there have appeared
studies which employ transfer learning techniques in order to benefit from
the large prior knowledge of the pre-trained models in order to perform
accurate vulnerability prediction. In this study, several large language
models, which are based on the Transformer architecture, are compared
in their ability to predict vulnerable software components by receiving
as input source code in textual format. More specifically, we fine-tune
BERT, the several BERT variants, GPT-2, and BART models in the
task of vulnerability prediction, we evaluate their performance, and we
conduct a comparative study between them in order to identify which
of these models are the most suitable and accurate ones on vulnerability
prediction.

Keywords: Vulnerability prediction · Text mining · Large language
models · Transformer-based models · BERT

1 Introduction

Nowadays, software security is considered a significant characteristic of the soft-
ware development life-cycle, based on the ISO/IEC 25010 International Stan-
dard on Software Quality [1]. A major concern of the software community from
the aspect of software security is the identification and the mitigation of the
software vulnerabilities that reside in the source code. Those vulnerabilities are
weaknesses in software systems, which can be exploited by external threats [2].
Their identification is considered crucial of the deployment of any software prod-
uct. Vulnerability Prediction (VP) is a technique capable of predicting hot-spots
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(e.g., files, classes, methods, etc.) of a software product that contain vulnerabili-
ties. Software enterprises can benefit from such a mechanism by allocating their
limited time and testing effort to potentially vulnerable segments.

Vulnerability prediction is commonly performed through machine learning
algorithms utilizing software attributes as input. The two largest categories of
Vulnerability Prediction Models (VPMs) are based either on code metrics or
text mining. Software metrics-based techniques utilize metrics like complexity
and coupling that can be retrieved using static code analyzers and can be used
as features to train a machine learning model [3–6]. On the other hand, text min-
ing approaches receive the text of the source code as input and through machine
learning models, they identify vulnerable patterns into the source code [7–11].
There are studies that have compared the performance of software metrics-based
and text mining-based models. They demonstrated that the advanced text min-
ing approaches provide more accurate predictions than software metrics-based
studies [12, 13].

Initially, text mining-based studies in VP were employing the Bag of Words
(BoW) technique, which represents the source code as a set of words. In BoW,
each word is accompanied with the number or the frequency of its appearances in
the analyzed software component and it is considered as a feature for a machine
learning classifier [7, 12]. Then researchers started to represent the source code
as tokens sequences. In this approach, deep learning models are utilized in order
to recognize vulnerable patterns in the sequences of source code tokens [14–
16]. To enhance the predictability of the models, the tokens are transformed
to numerical vectors by using word embedding methods such as word2vec [17]
and fastText [18]. Such techniques assist the models to capture semantic and
syntactic relations between the tokens. Later, researchers represented the source
code with text-rich graphs (e.g., Abstract Syntax Trees, Code Properties Graphs,
etc.) [19, 20]. More specifically, they extracted graphical representations of the
code, they employed Graphical Neural Networks (GNNs) to generate embeddings
of these representations and then, through deep learning models, they classified
the components as vulnerable or not.

Recent text mining-based studies adopted Natural Language Processing (NLP)
techniques to perform vulnerability prediction, taking advantage of the innova-
tive Transformer architecture [21]. In particular, they applied transfer learning
utilizing Transformer-based [21] large language models (LLMs) [22, 23], which
are pre-trained on large generic datasets for their primary tasks, such as next
word prediction or prediction of masked tokens [21, 24]. These models have man-
aged to learn syntax and semantics of thousands of tokens in several different
contexts. Hence, in the VP field, researchers can fine-tune them to adjust their
deep knowledge of natural language to the downstream task of classifying soft-
ware components as vulnerable or not.

The objective of our study is to identify the optimal choice among a variety
of pre-trained NLP models in the downstream task of vulnerability prediction
showcasing any differences in their performance. In this way, our study aims
at assisting researchers in their future endeavors to use transfer learning for
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vulnerability prediction, providing them indications of which of all the mod-
els found in the related literature are the most appropriate for this specific task.
For this purpose, we fine-tune several large pre-trained NLP models on a labeled
vulnerability-related dataset. More specifically, in this paper, we train, evaluate
and compare the following models, which are all based on the Transformer ar-
chitecture [21]:

– Bidirectional Encoder Representations from Transformers (BERT) [25]
– Robustly optimized BERT approach (RoBERTa) [26]
– A distilled version of BERT called DistilBERT [27]
– A Lite BERT (ALBERT) architecture [28]
– A bimodal (i.e., pre-trained on pairs of programming and natural language

samples) version of BERT called CodeBERT [29]
– Bidirectional Auto-Regressive Transformers (BART) [30]
– Generative Pre-trained Transformer (GPT) [24, 31]

The rest of the paper consists of the following parts: In Section 2 we provide a
summary of the state-of-the-art approaches in the VP field using text mining. In
Section 3, we provide details for the examined models and we describe thoroughly
the methodology that we follow to conduct the current study, while in Section
4, we present the results of our evaluation scheme. Finally, Section 5 concludes
the study and provides future research directions.

2 Related Work

In the related literature, vulnerability prediction using text mining has shown en-
couraging results [7, 12, 19, 32]. Early research efforts paid attention on the BoW
technique [7, 12]. Current efforts focus on identifying vulnerabilities by extract-
ing more meaningful patterns from the source code rather than the frequency of
the tokens. Commonly, these studies train Deep Learning (DL) models, such as
the Recurrent Neural Networks (RNNs), which are suitable for receiving large
sequences. In this approach, they feed the DL models with the analyzed software
components, each of which constitutes a sequence of tokens [14, 19]. The chal-
lenge of this task is to encode the syntactic and semantic patterns that reside
in the source code. The technique of representing the tokens as real-valued vec-
tors, which encode the meaning of the tokens, can contribute to this direction
significantly.

Towards this direction, the authors in [14, 33] employed the word2vec [34]
tool to create embedding vectors for the source code tokens, whereas Zhou et
al. [19] used the pre-trained word2vec vectors. Fang et al. [35] introduced the
fastEmbed model, which is based on the fastText embeddings. They recognized
essential textual characteristics that are pertaining to vulnerabilities and they
created a model for assessing the exploitability of the vulnerabilities on unbal-
anced datasets. In [36] the authors compared the BoW with other complex code
representations, which were automatically learned by the embedding layer of
DL models. Kalouptsoglou et al. compared the performance of word2vec and



I. Kalouptsoglou et al.

fastText word embeddings in enhancing the predictability of DL models in VP
[16]. They also examined the training of the Embedding layer, which contains
the embedding vectors, during the training of the rest layers of the DL model.
Their findings revealed that the use of a Convolutional Neural Network (CNN),
along with embeddings that have been produced by word2vec, succeeded the
highest accuracy.

Bagheri et al., conducted a comparison of different Python source code rep-
resentation methods for VP [22]. They investigated the efficiency of word2vec,
fastText, and BERT embedding vectors for code representation. At every case,
they used a Long Short-Term Memory (LSTM) model to classify the embedded
software components as vulnerable or not. Their findings suggested that all these
three techniques are suitable for representing source code for the task of VP, but
the BERT-based embedding method seemed to be the most promising one. Yuan
et al. [37] compared a CodeBERT-based embedding method with word2vec, fast-
Text, and GloVe [38] showing that the former outperforms the latter in the task
of vulnerability prediction.

Kim et al. [39] proposed a model called VulDeBERT, which is the BERT pre-
trained model fine-tuned on the downstream task of predicting vulnerabilities.
VulDeBERT succeeded a significantly better performance than the state-of-the-
art study of VulDeePecker [14]. In [23], Ziems et al. examined how transferring
knowledge from English language to raw computer code written in C/C++ can
enhance the effort of performing vulnerability prediction. Their results indicated
that their BERT-based model outperformed the LSTM model, which was tradi-
tionally the state-of-the-art method for learning sequences of text tokens. Hanif
et al. proposed the VulBERTa model [40], by pre-training a RoBERTa model on
real-world code data from open-source C/C++ projects and then fine-tuning it
on vulnerability-related data. They compared VulBERTa with several state-of-
the-art models showcasing its efficiency.

Fu et al. proposed LineVul in an effort to predict vulnerabilities in a low
level of granularity and specifically the line-level [41]. LineVul is a Transformer-
based model, which, based on the experimental results of the study, is more
accurate than the existing line-level prediction approaches. Steenhoek et al. re-
produced and compared 9 DL-based VP models, including in the comparison
some Transformer-based ones, which were found to be promising and need fur-
ther investigation [42]. Coimbra et al. in their study [43], presented an evaluation
of the Code2vec [44] model in contrast with simple Transformer-based methods
such as the RoBERTa. Through this study, they compared the graphical code
representation in the form of Abstract Syntax Tree, which is included in the
Code2vec model, with the pure textual representation of the source code. Their
findings highlight that the Code2vec model applied for vulnerability prediction
succeeded comparable results to simple Transformer-based models managing to
maintain much lower computational requirements.

From the above analysis, we can argue that the Transformer-based LLMs,
especially the BERT-based ones, have attracted recently the interest of the re-
search community in the VP field. The transferring of natural language knowl-
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edge to source code processing is considered as a promising solution for the
purpose of vulnerability prediction. Moreover, it seems that LLMs are capable
of learning complex patterns relative to vulnerabilities that reside in the source
code. However, researchers have utilized many variants of the Transformer ar-
chitecture for the downstream task of VP and, from their findings, it is not clear
if some of the variants are more suitable for this task than others. In the vast
majority of the existing research works, the predictive performance of the pre-
trained Transformer-based models was compared to the performance of basic
state-of-the-art text mining-based VPMs.

In the present study, in contrast with the studies in the existing literature, we
do not aim at proposing a model different or better than state-of-the-art models,
but we proceed with an empirical comparison of several pre-trained models in
the downstream task of VP, in an attempt to identify the optimal, if any, model.
For this purpose, we fine-tune BERT, GPT, BART, and several BERT variants
using a vulnerability-related dataset from real world software components writ-
ten in Python programming language. This way we examine the efficiency and
the accuracy of those techniques in VP and hence, we provide implications to
researchers for which models to focus on during their future efforts. The strength
of our study lies in the fact that we examine and fine-tune many Transformer
variants, including in our analysis both models from the same architecture (i.e.,
BERT variants) and different ones (i.e., BERT, GPT, and BART), and we also
follow the same procedure for all of them in order to extract fair conclusions. In
particular, the architecture as well as the pre-trained weights of all the exam-
ined models are retrieved from the same provider (i.e., Hugging Face). We also
follow the same evaluation scheme using the same evaluation metrics for all the
cases to ensure that we perform a fair and unbiased comparison. We employ the
same pre-processing procedure, as well. Therefore, our study can provide useful
implications to researchers on which models they need to pay more attention in
the future. Moreover, we provide replication material in order to enhance the
reproducibility of our study [45].

3 Study Design

This section describes the overall methodology that we followed in order to
fine-tune several pre-trained models to perform vulnerability prediction (VP).
We trained GPT-2, BART, and different variants of BERT using a real-world
dataset retrieved by commits on GitHub projects.

3.1 Dataset

For fine-tuning and evaluating the examined models, we used a dataset which
consists of source code files written in Python programming language. This
dataset is an extension of the dataset presented by Bagheri et al. [22], who
used a version control system as a data source for collecting source code com-
ponents. Specifically, they used GitHub since it has a high number of software
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projects. To create a labeled dataset, i.e., a dataset of files signed with a label
that declares if they are vulnerable or not, they scanned the commit messages
in Python GitHub projects. In particular, they searched for commits, which
contain vulnerability-fixing keywords in the commit message. They gathered a
large number of Python source files included in such commits. The version of
each file before the vulnerability-fixing commit (i.e., parent version) is consid-
ered as vulnerable, since it contains the vulnerability that required a patch,
whereas the version of the file in the vulnerability-fixing commit is considered
as non-vulnerable. However, in their study, Bagheri et al. [22] utilized only the
fragment of the diff file, which contains the difference between the vulnerable
and the fixed version, and they proposed models to separate the ”bad” and the
”good” parts of a file. In the current study, we extend their dataset by collecting
all the fixed versions from GitHub, which are actually the vulnerability-fixing
commits of the files reported in their dataset. Hence, we can construct models to
perform vulnerability prediction in file-level of granularity. Overall, the extended
dataset contains 4,184 Python files, 3,186 of which are considered as vulnerable
and 998 are considered as neutral (i.e., non-vulnerable).

Before proceeding with the process of training the vulnerability prediction
models (VPMs), we applied a series of pre-processing steps so as to transform the
dataset in the form of sequences of tokens. Initially, we removed all the comments
and the commands which import external libraries or other files. Subsequently,
we replaced all the numeric constants (e.g., integers, floats, etc.) and String
literals with two unique identifiers, ”numId$” and ”strId$” respectively. This
replacement was necessary in order to make the sequences of tokens more generic
and free from application specific constants, which could affect the performance
of the produced models. We also dropped all the empty lines, and finally, we
converted the source code of each file into a list of tokens retaining the order in
which the tokens appear in the file. The tokenized form of the dataset is provided
online for replication purposes [45].

3.2 Strategy

This section describes the large pre-trained models that we have included in
our study as well as the methodology that we have followed in order to fine-
tune these models to perform vulnerability prediction (VP). All the examined
models, which are based on the Transformer architecture, have been pre-trained
on a large corpus of textual data for a specific task in an unsupervised manner.

Models Characteristics To begin with, the BERTmodel presented by Google3

is pre-trained on the Masked Language Model (MLM) objective. Before being
fed into the neural network, 15 % of each sequence of tokens is replaced with
a masked token. Then the model aims at predicting the original value of the
masked tokens, based on the rest non-masked tokens. This way, BERT learns a
bidirectional representation of the sentences [25]. In a replication study of BERT,

3 https://about.google/
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Liu et al. [26] observed that BERT was significantly undertrained, and therefore,
they proposed a robustly optimized pre-training approach, called RoBERTa.
Later, Sanh et al. presented the DistilBERT [27] in an attempt to reduce the
size of the BERT model significantly and making it faster, while retaining the
97 % of its language understanding. Furthermore, Lan et al. proposed a BERT
variant called ALBERT in order to improve BERT performance by reducing its
memory consumption and increasing its training speed [28].

A RoBERTa-based model called CodeBERT, which was presented by Mi-
crosoft4, is the only one of the examined BERT variants that is not pre-trained
solely on the English natural language, but on natural language and program-
ming language pairs from 6 programming languages (i.e., Python, Java, JavaScript,
PHP, Ruby, Go). In particular, it has been trained on bimodal data that include
function-level natural language documentations and source code. During the pre-
training phase, CodeBERT learns general-purpose representations, which can
support applications that need both natural and programming languages, such
as natural language code search and code documentation generation [29].

A similar but different to BERT Transformer-based architecture is the Gen-
erative pre-trained transformer (GPT) [24] that was developed by OpenAI5.
GPT is not pre-trained on the MLM objective but on predicting the next word
in a sentence based on the context provided by the preceding words. It is more
suitable for text generation tasks such as questioning-answering and content
creation, but it can be fine-tuned for several NLP purposes including text clas-
sification, as well. In this study, we utilize the GPT-2 version of the GPT, which
is the latest open-source version. It has no major architectural differences in
contrast with the first GPT version, but it is much larger in terms of trainable
parameters, and also it has been trained on a much larger dataset. Hence, it is
considered to have a better language understanding.

Facebook AI6 has released its own Transformer pre-trained language model
named as BART. BART is a sequence-to-sequence pre-trained model, which is
particularly effective in natural language generation tasks, but it can be fine-
tuned in a large variety of NLP tasks including also text classification. To pre-
train BART, some text is first corrupted using a noise function, and then a model
learns to recreate the original text [30].

For all the aforementioned models, we utilize the implementations that are
provided by Hugging Face7 (HF). More specifically, for BERT we use the bert-
base model, which has 12 layers, 768 hidden size, 12 attention heads [21], and
110 millions (M) parameters. For RoBERTa we use the roberta-base model that
has the BERT architecture but 125M parameters, while for DistilBERT, which
is a lighter version of BERT, we use the distilbert-base model that contains 6
layers, 768 hidden nodes, 12 attention heads, and 66M parameters. Hugging Face
provides also the albert-base-v2 model for ALBERT, containing 11M parameters.

4 https://github.com/microsoft/CodeBERT
5 https://openai.com/
6 https://ai.facebook.com/
7 https://huggingface.co/
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For CodeBERT, we choose the codebert-base-mlm version, which has the same
architecture with roberta-base. Regarding GPT-2, we use the gpt2 model with
12 layers, 768 hidden size, 12 attention heads, and 117M parameters. Finally, for
BART that employs both the encoder and the decoder parts of the Transformer
architecture, we utilize the bart-base implementation, which has nearly 140M
trainable weights. It also contains 12 layers for both the encoder and the decoder,
768 hidden size, 12 encoder attention heads, and 12 decoder attention heads. All
the aforementioned statistics are summarized in Table 1.

Table 1. The characteristics of the pre-trained models considered in the study

Model Version Layers Hidden Size Attention heads Parameters

BERT bert-base 12 768 12 110M
RoBERTa roberta-base 12 768 12 125M
DistilBERT distilbert-base 6 768 12 66M
ALBERT albert-base-v2 12 768 12 11M
CodeBERT codebert-base-mlm 12 768 12 125M
GPT-2 gpt2 12 768 12 117M
BART bart-base 12 768 24 140M

Approach For the construction of the above-mentioned models, we followed an
approached that is illustrated in Figure 1. As can be seen in Figure 1, the process
includes three-phases: (1) pre-training, (2) fine-tuning, and (3) execution. The
pre-training has been implemented by each model provider. During pre-training,
a large textual dataset is tokenized in a format suitable for each Transformer-
based model. Then it is fed to the model, which learns a specific objective (e.g.,
masked word prediction, next word predicton, etc.) in an unsupervised manner.
This way, the trainable weights of the model have been trained to understand
natural language and there have been produced context aware word embedding
vectors, which encode the context of the words. In this study, we receive pre-
trained models and we implement the fine-tuning and the execution steps.

During fine-tuning, the training dataset described in Section 3.1 is utilized.
Each Python file with source code is pre-processed (see Section 3.1) and is tok-
enized. For the tokenization of the data, we use the tokenizer that corresponds to
each model and is provided by Hugging Face. After applying such a tokenizer,
the dataset is being transformed in a form that contains only words included
in each model’s vocabulary as well as some special tokens. For instance, when
using BERT for sequence classification, we need a special classification token
(i.e., [CLS]) to be placed in the beginning of each sequence, and another spe-
cial token (i.e., [SEP]) to separate the sequences. Subsequently, the tokenized
sequences along with their corresponding labels are going to be fed to our clas-
sifier that consists of the already trained Transformer-based model and a newly
added classification layer. This way, we train, in a supervised manner, the clas-
sification layer to separate the vulnerable from the non-vulnerable sequences.
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Simultaneously, the weights of the Transformer are also updated in order to be
adjusted to the needs of the specific classification task. During fine-tuning, the
hyperparameters that need to be determined are (1) the number of epochs, (2)
the learning rate, (3) the optimizer, (4) the loss function, and (5) the max length
of the sequences. For the selection of the first four, we applied several values to
each one in order to succeed optimal efficiency in the validation data (see Sec-
tion 3.3), while for the max length we used the maximum length that can be
processed by these Transformer-based models (i.e., length equal to 512). Table 2
presents the selected values of the hyperparameters. For all the examined models
we ended up with the same hyperparameters’ values except for GPT-2.

Table 2. Hyperparameters of the Transformer-based models

Model Epochs Learning rate Optimizer Loss function

BART and BERT variants 6 0.00005 Adam Cross-Entropy
GPT-2 4 0.00002 Adam Cross-Entropy

Finally, in the execution phase, after fine-tuning the optimal Transformer-
based classifier for the objective of VP, we can use it as our vulnerability predictor
in order to assess new Python files and classify them as vulnerable or not.

Fig. 1. An overview of the approach followed for fine-tuning Transformer-based pre-
trained models for vulnerability prediction.
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3.3 Evaluation Scheme

For the evaluation of the models that we fine-tuned for the task of VP, we
separated the dataset on three sets: (1) training, (2) validation, and (3) testing
sets. In this way, we can use the validation set for the selection of the optimal
models’ hyperparameters. Then, after the validation step, we train the selected
model on the whole training set that consists of both training and validation
sets, and subsequently, we proceed with evaluating the model’s predictive power
using the testing set (i.e., unseen data). This way, the process of identifying the
optimal hyperparameters, and therefore, the best models, is not affected by the
testing set. Hence, we avoid putting data bias on the developed models.

Regarding the quantitative measurement of the predictive performance of
deep learning classification models, a number of evaluation metrics are frequently
utilized in the literature. The number of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) that are produced by the
models is commonly used to determine these performance indicators. Regarding
the evaluation of the VPMs, we put a particular emphasis on the recall of the
created models since the higher the recall, the more actual vulnerabilities the
model predicts. However, precision is also crucial since it shows how many FP
were generated by the models and is associated to the time and effort needed
to review the outcome of the models. As a result, a score which considers both
precision and recall, such as F1-score and F2-score, is most suitable for evaluating
these models. Among these two F-scores, we choose as the main evaluation metric
the F2-score, since it gives a little more weight to recall than to precision, whereas
the F1-score gives equal weight to them. The mathematical formula of F2-score
is given below:

F2 =
5× precision× recall

4× precision+ recall
(1)

4 Results

This section presents the results of our comparative study among the Transformer-
based models, after fine-tuning them on the downstream task of VP. All the re-
ported results are the outcome of applying the fine-tuned models on the testing
set of the dataset (see Section 3.3). The experiments took place on a parallel
computing platform called CUDA8 that we have installed on a GeForce RTX
3060 Nvidia GPU. To enhance the reproducibility of the experiments, we provide
our scripts online [45].

In Table 3, we present the outcome of our evaluation scheme. More specif-
ically, Table 3 provides the values of accuracy, precision, recall, F1-score, and
F2-score, with the latter to be considered as the most critical metric, as ex-
plained in Section 3.3.

8 https://developer.nvidia.com/cuda-toolkit
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Table 3. Evaluation results of the utilization of different BERT variants, GPT-2, and
BART models in vulnerability prediction

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) F2-score (%)

BERT 90 81 79 80 79.4
RoBERTa 87 72 73 72 72.8
DistilBERT 91 81 81 81 81
ALBERT 88 80 67 73 69.25
CodeBERT 93 87 83 85 83.78
GPT-2 90 84 71 77 73.14
BART 87 70 80 75 77.78

As can be seen in Table 3, the highest F2-score, which is in bold, is achieved
by CodeBERT. Moreover, CodeBERT seems to be the best model in every eval-
uation metric. Of particular interest is the observation that CodeBERT achieves
an F2-score 11 % higher than RoBERTa, which has the same architecture but is
pre-trained on a different dataset. This observation highlights the importance of
the data utilized in the pre-training process. The fact that CodeBERT proved
to be the superior model in our analysis can be attributed to the nature of its
pre-training knowledge. As explained in Section 3.2, CodeBERT is the only one
of the examined models, which is not pre-trained only on natural language but
in natural language and programming language pairs. Based on this observation,
we can argue that in downstream tasks related to source code, it is beneficial to
use models that have prior knowledge of source code, as well. However, we have
to notice also that BERT achieves F2-score equal to 79.4 %, which is close to
CodeBERT’s 83.78 %, indicating that although not pre-trained in programming
languages, its good understanding of natural language is a sufficient basis for
being fine-tuned on the task of VP using a labeled dataset consisting of source
code.

Furthermore, regarding the comparison between the BERT variants, we can
see in Table 3 that the initial BERT model succeeds a significantly higher F2-
score than RoBERTa and ALBERT, but slightly lower scores than DistilBERT.
Hence, after CodeBERT which has prior knowledge of programming language,
the best BERT variant that is solely pre-trained on natural language, proved to
be the DistilBERT in our analysis. DistilBERT succeeds F2-score 81 %, which is
higher than BERT, RoBERTa, ALBERT by 1.6 %, 8.2 %, and 11.75 % respec-
tively. Regarding the comparison among the three different kinds of Transformer-
based models that we examined, BERT seems to be the most accurate one in
VP, at least on the utilized dataset. It succeeds an F2-score 1.6 % and 6.26 %
higher than BART and GPT-2 respectively.

We also investigated if there is any correlation between the performance of
the models and their size. Specifically, we examined if the F2-scores (see Table
3) of our 7 models is correlated with the number of trainable parameters of
the models (see Table 1). For this purpose, we employed the Spearman’s rank
coefficient [46]. Spearman’s correlation is a non-parametric statistical measure
used to determine whether there is a monotonic relationship between two ordinal
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variables, including its strength and direction. By using the ”stats” module of
the ”SciPy” library9, we computed the Spearman correlation coefficient equal to
0.198. We judged the strength of the correlation utilizing the guidelines provided
by Cohen et al. [47]. Cohen et al. state that a correlation of less than 0.3 is weak,
between 0.3 and 0.5 is moderate, and greater than 0.5 is strong. A positive
correlation that is close to one generally indicates that the studied rankings
are nearly identical. Therefore, a Spearman cofficient equal to 0.198 indicates
a weak positive correlation between the F2-scores and the number of trainable
parameters of the models. Hence, we can argue that the accuracy of the examined
models does not depend on the models size.

A remark on the limitations and the threats to the present work’s validity
is considered necessary. First, we have to note that the conclusions of our study
contain a threat of data validity, since they are based on our experiments on a
specific training and evaluation dataset that consists of open-source code writ-
ten in Python programming language. They cannot be considered as ground
truth. More studies applied on different datasets and for different programming
languages would contribute to the generalization of the findings. Furthermore,
all the employed models are retrieved from a library provided by Hugging Face.
These models is possible to have slight differences from the ones presented in
the respective publications. They are based on the same architectures but they
have been pre-trained with a different corpus, a different number of samples,
and probable a different set of hyperparameters. However, they are considered
the closest open-source implementations of the Transformer-based pre-trained
models.

5 Conclusions

In this paper, our aim was to compare several pre-trained models from the field
of natural language processing, which are based on the emerging deep learn-
ing architecture called Transformer, in their capacity to be fine-tuned on the
downstream task of vulnerability prediction. To achieve this, we utilize BERT,
DistilBERT, RoBERTa, ALBERT, CodeBERT, GPT-2, and BART models as
a basis for creating vulnerability prediction models. More specifically, we added
a classification layer on top of the Transformer-based models and then, we fine-
tuned them using a labeled vulnerability-related dataset. The findings of our
work indicate that CodeBERT is the best among the considered models in the
vulnerability prediction objective, which can be attributed to the fact that it has
not solely natural language-related prior knowledge, but it has also knowledge
of 6 programming languages. In particular, it is pre-trained on natural language
and programming language pairs.

Based on the aforementioned observation, future work includes the investiga-
tion of whether prior knowledge of natural language is useful for a downstream
task associated with source code, such as in the case of vulnerability prediction,

9 https://scipy.org/
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or pre-training models exclusively on source code will be proved a better ap-
proach for downstream tasks. For this purpose, we could pre-train from scratch
models such as GPT-2, BERT, and BART on their primary objective using
source code data, and then fine-tune them to perform vulnerability prediction.
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