
Vulnerability prediction using pre-trained models:
An empirical evaluation

Ilias Kalouptsoglou∗†, Miltiadis Siavvas∗, Apostolos Ampatzoglou†,
Dionysios Kehagias∗, and Alexander Chatzigeorgiou†

∗ Centre for Research and Technology Hellas/Information Technologies Institute, Thessaloniki, Greece
†University of Macedonia/Department of Applied Informatics, Thessaloniki, Greece

iliaskaloup@iti.gr, siavvasm@iti.gr, a.ampatzoglou@uom.edu.gr, diok@iti.gr, achat@uom.edu.gr

Abstract—The rise of Large Language Models (LLMs) has
provided new directions not just for natural language under-
standing and text generation but also for addressing downstream
tasks, such as text classification. A downstream text classification
task is vulnerability prediction, where segments of the source
code are classified as vulnerable or not. Several recent studies
have employed transfer learning in order to enhance vulnerability
prediction taking advantage from the prior knowledge of the pre-
trained LLMs. In the current study, different Transformer-based
pre-trained LLMs are examined and evaluated in their capacity
to identify vulnerability patterns in the source code and therefore
predict vulnerable software components. In particular, we fine-
tune in vulnerability prediction the BERT, GPT-2, and T5 models,
as well as their code-oriented variants namely CodeBERT,
CodeGPT, and CodeT5 respectively. Subsequently, we assess their
performance and we conduct an empirical comparison between
them to identify the models that are the most accurate ones in
vulnerability prediction.

Index Terms—Software security, Vulnerability prediction,
Transfer learning, Large language models, Transformer

I. INTRODUCTION

Nowadays, software security is considered a significant
characteristic of the software development life-cycle, based
on the ISO/IEC 25010 International Standard on Software
Quality [1]. A major concern of the software community from
the aspect of software security is the identification and the
mitigation of the software vulnerabilities that reside in the
source code. Those vulnerabilities are weaknesses in software
systems, which can be exploited by external threats [2]. Their
identification is considered crucial for the deployment of
any software product. A technique capable of predicting hot-
spots (e.g., files, classes, methods, etc.) of a software product
that contain vulnerabilities is Vulnerability Prediction (VP).
Software enterprises can benefit from such a mechanism by
allocating their limited time and testing effort to potentially
vulnerable components.

Vulnerability prediction is commonly performed through
Machine Learning (ML) algorithms utilizing software at-
tributes as input. The two largest categories of Vulnerability
Prediction Models (VPMs) are based either on code metrics or
text mining. Software metrics-based techniques utilize metrics
like complexity and coupling that can be retrieved using static
code analyzers and can be used as features to train a ML

model [3]–[6]. On the other hand, text mining approaches
receive the text of the source code as input and through
ML models, they identify textual vulnerable patterns into the
source code [7]–[11]. There are studies that have compared the
performance of software metrics-based and text mining-based
models. They demonstrated that the advanced text mining
approaches provide more accurate predictions than software
metrics-based studies [12], [13].

Initially, text mining-based studies in VP were employing
the Bag of Words (BoW) technique, which represents the
source code as a set of words. In BoW, each word is accom-
panied with the number or the frequency of its appearances
in the analyzed software component and it is considered
as a feature for a ML classifier [7], [12]. Then researchers
started to represent the source code as tokens sequences. In
this approach, deep learning models are utilized in order to
recognize vulnerable patterns in the sequences of source code
tokens [14]–[16]. To enhance the predictability of the models,
the tokens are transformed to numerical vectors by using
word embedding methods such as word2vec [17] and fastText
[18]. Such techniques assist the models to capture semantic
and syntactic relations between the tokens. Later, researchers
represented the source code with text-rich graphs (e.g., Ab-
stract Syntax Trees, Code Properties Graphs, etc.) [19], [20].
More specifically, they extracted graphical representations of
the code, they employed Graphical Neural Networks (GNNs)
to generate embeddings of these representations and then,
through deep learning models, they classified the components
as vulnerable or not.

Recent text mining-based studies adopted Natural Language
Processing (NLP) techniques to perform vulnerability predic-
tion, taking advantage of the innovative Transformer architec-
ture [21]. In particular, they applied transfer learning utilizing
Transformer-based [21] Large Language Models (LLMs) [22],
[23], which are pre-trained on large generic datasets for their
primary tasks, such as next word prediction or prediction of
masked tokens [21], [24]. These models have managed to
learn syntax and semantics of thousands of tokens in several
different contexts. Hence, in the VP field, researchers can
fine-tune them to adjust their deep language knowledge to
the downstream task of classifying software components as
vulnerable or not.

However, the wide variety of LLMs that have already



been proposed in the literature on NLP and the different
characteristics and specialties of each raise questions about
which ones are the most suitable and competent for code
analysis and in particular for the downstream task of VP. For
instance, there are LLMs focused on natural language (NL)
understanding whereas other have been designed for source
code analysis. Moreover, some LLMs utilize both the encoder
and decoder parts of the Transformer architecture whereas
some other use only the encoder or the decoder part.

The objective of this study is to identify the optimal choice
among a variety of pre-trained Transformer-based models in
the downstream task of VP showcasing any differences in
their performance. To this end, our study aims at assisting
researchers in their future endeavors to use transfer learning
for VP, providing them indications on which of the models
found in the related literature are the most appropriate for this
specific objective. For this purpose, we fine-tune several large
pre-trained models on a labeled vulnerability-related dataset
of Python source code. More specifically, in this paper, we
train (i.e., fine-tune), evaluate, and compare three NLP models
and their code-oriented variants, which are all based on the
Transformer architecture [21]. These are the following models:

• Bidirectional Encoder Representations from Transformers
(BERT) [25]

• Generative Pre-trained Transformer (GPT) [24], [26]
• Text-To-Text Transfer Transformer (T5) [27]
• CodeBERT [28]
• CodeGPT [29]
• CodeT5 [30]
The rest of the paper consists of the following parts: In Sec-

tion II we provide a summary of the state-of-the-art approaches
in the VP field focusing on the text mining-based ones. In
Section III, we provide details for the examined models and
we describe thoroughly the methodology that we follow to
conduct the current study, while in Section IV, we present
the results of our evaluation scheme. Section V discusses the
threats to validity, and finally, Section VI concludes the study
and provides future research directions.

II. RELATED WORK

The main VPMs in the literature utilize ML-based ap-
proaches that use software metrics [3]–[5], [31], [32] or text
mining [7]–[9] to predict vulnerabilities, as stated in [33],
[34]. Early efforts [3]–[5] proposed using statically extracted
metrics as indicators of vulnerabilities in software compo-
nents. More specifically, a method using software metrics
such as complexity, coupling, and cohesion was presented by
Chowdhury and Zulkernine [32], [35]. They analyzed Mozilla
Firefox and achieved an average recall of almost 75%. To
develop a VPM, Zimmerman et al. [36] conducted an empirical
study on Windows Vista, evaluating the effectiveness of code
churn, code complexity, dependencies, and organizational vari-
ables. They obtained low recall but high precision. Moreover,
Nguyen et al. [37] presented a model training method based
on a code metric extracted from the dependency graph and
tested it on the Mozilla JavaScript Engine.

In the related literature, VP using text mining has shown
encouraging results [7], [12], [19], [38]. Early research efforts
that employed text mining paid attention on the BoW tech-
nique [7], [12]. Next efforts focused on identifying vulnera-
bilities by extracting more meaningful patterns from the source
code rather than the frequency of the tokens. Commonly,
these studies train Deep Learning (DL) models, such as the
Recurrent Neural Networks (RNNs), which are suitable for
receiving large sequences. In this approach, they feed the DL
models with the analyzed software components, each of which
constitutes a sequence of tokens [14], [19]. The challenge of
this task is to encode the syntactic and semantic patterns that
reside in the source code. The technique of representing the
tokens as real-valued vectors, which encode the meaning of
the tokens, can contribute to this direction significantly.

Towards this direction, the authors in [14], [39] employed
the word2vec [17] tool to create embedding vectors for the
source code tokens, whereas Zhou et al. [19] used the pre-
trained word2vec vectors. Fang et al. [40] introduced the
fastEmbed model, which is based on the fastText embed-
dings. They recognized essential textual characteristics that
are pertaining to vulnerabilities and they created a model for
assessing the exploitability of the vulnerabilities on unbal-
anced datasets. In [41] the authors compared the BoW with
other complex code representations, which were automatically
learned by the embedding layer of DL models. Kalouptsoglou
et al. compared the performance of word2vec and fastText
word embeddings in enhancing the predictability of DL mod-
els in VP [16]. They also examined the training of the Embed-
ding layer, which contains the embedding vectors, during the
training of the rest layers of the DL model. Their findings
revealed that the use of a Convolutional Neural Network
(CNN), along with embeddings that have been produced by
word2vec, succeeded the highest accuracy.

In [13] the authors compared models built based on soft-
ware metrics with models based on text mining. The results
showed significant benefit from text mining. Moreover, a
systematic mapping study in the software VP domain [34]
observed the superiority of the text mining-based approaches
and the increased preference of the research community to
these methods. It also highlighted the need to explore the
use of Transformer-based pre-trained models that are already
commonly utilized in NLP through transfer learning.

Bagheri et al., conducted a comparison of different Python
source code representation methods for VP [22]. They in-
vestigated the efficiency of word2vec, fastText, and BERT
embedding vectors for code representation. At every case, they
used a Long Short-Term Memory (LSTM) model to classify
the embedded software components as vulnerable or not. Their
findings suggested that all these three techniques are suitable
for representing source code for the task of VP, but the BERT-
based embedding method seemed to be the most promising
one. Yuan et al. [42] compared a CodeBERT-based embedding
method with word2vec, fastText, and GloVe [43] showing that
the former outperforms the latter in the task of vulnerability
prediction.



Coimbra et al. in their study [44], presented an evaluation of
the Code2vec [45] model in contrast with simple Transformer-
based methods such as the RoBERTa. Through this study, they
compared the graphical code representation in the form of Ab-
stract Syntax Tree, which is included in the Code2vec model,
with the pure textual representation of the source code that
is encapsulated by simple Transformer-based models. Their
findings highlight that both approaches succeeded comparable
results.

Kim et al. [46] proposed a model called VulDeBERT,
which is the BERT pre-trained model fine-tuned on the
downstream task of predicting vulnerabilities. VulDeBERT
succeeded a significantly better performance than the state-
of-the-art study of VulDeePecker [14]. In [23], Ziems et al.
examined how transferring knowledge from English language
to raw computer code written in C/C++ can enhance the effort
of performing vulnerability prediction. Their results indicated
that their BERT-based model outperformed the LSTM model,
which was traditionally the state-of-the-art method for learning
sequences of text tokens.

Hanif et al. proposed the VulBERTa model [47], by pre-
training a RoBERTa model on real-world code data from open-
source C/C++ projects and then fine-tuning it on vulnerability-
related data. They compared VulBERTa with several state-of-
the-art models showcasing its efficiency. Fu et al. proposed
LineVul in an effort to predict vulnerabilities in a low level
of granularity and specifically the line-level [48]. LineVul is
a Transformer-based model, which, based on the experimental
results of the study, is more accurate than the existing line-
level prediction approaches. Steenhoek et al. reproduced and
compared 9 DL-based VP models, including in the compar-
ison some Transformer-based ones, which were found to be
promising and need further investigation [49].

Additionally, Zhang et al. [50] explored the capability of
LLMs to discover vulnerabilities by evaluating both propri-
etary models, such as ChatGPT, and open-source models, such
as CodeBERT. They employed prompt engineering techniques
for proprietary models and fine-tuning for open-source models.
Finally, Carletti et al. [51] investigated how modern DL
techniques perform in finding vulnerabilities in C/C++ source
code from real software projects. They compared common
text-mining DL methods with advanced approaches such as
Transformer and GNNs, aiming to establish a benchmark for
evaluating vulnerability detection methods.

From the above analysis, we can argue that the Transformer-
based LLMs, especially the BERT-based ones, have attracted
recently the interest of the research community in the VP
field. The transferring of natural language knowledge to source
code processing is considered as a promising solution for
the purpose of vulnerability prediction. Moreover, it seems
that LLMs are capable of learning complex patterns relative
to vulnerabilities that reside in the source code. However,
researchers have utilized many variants of the Transformer
architecture for the downstream task of VP and, from their
findings, it is not clear if some of the variants are more suitable
and accurate for this task than others. In the majority of the

existing research works, there is not any justification for the
selection of a specific LLM as a basis for a VP model.

In the present study, we proceed with an empirical com-
parison of several pre-trained models in the downstream task
of VP, in an attempt to identify the optimal, if any, model.
For this purpose, we leverage popular open-source pre-trained
LLMs and we fine-tune them using a vulnerability-related
dataset from real world software components written in Python
programming language. Specifically, we fine-tune BERT, GPT-
2, T5, and their pre-trained on code variants namely as
CodeBERT, CodeGPT-2, and CodeT5. First, we examine the
efficiency and the accuracy of those techniques in VP by
comparing them to state-of-the-art text mining techniques, and
then we compare them with each other. Therefore, we can
provide implications to researchers for which models to focus
on during their future efforts.

The strength of our study lies in the fact that we examine
and fine-tune many Transformer variants, considering encoder-
only (e.g., BERT), decoder-only (e.g. GPT), and encoder-
decoder (e.g., T5) model architectures. To this end, we present
our observations regarding the role of the encoder and decoder
parts as well as the role of the size of the models. Moreover, we
follow the same procedure for all of the LLM-based VPMs in
order to extract fair conclusions. In particular, the architecture
as well as the pre-trained weights of all the examined models
are retrieved from the same provider (i.e., Hugging Face).
We also follow the same evaluation scheme using the same
evaluation metrics for all the cases to ensure that we perform
a fair and unbiased comparison. We employ the same pre-
processing procedure, as well. Hence, our study can provide
useful implications to researchers on which models they need
to pay more attention in the future. Moreover, we provide
replication material in order to enhance the reproducibility of
our study [52].

III. STUDY DESIGN

This section describes the overall methodology that we
followed in order to fine-tune several pre-trained models to
perform vulnerability prediction (VP). We trained BERT, GPT-
2, T5, as well as CodeBERT, CodeGPT-2, and CodeT5 using
a real-world dataset retrieved by commits on GitHub projects.

A. Dataset

For fine-tuning and evaluating the examined models, we
used a dataset which consists of source code files written in
Python programming language. This dataset is an extension
of the dataset presented by Bagheri et al. [22], who used a
version control system as a data source for collecting source
code components. Specifically, they used GitHub since it has a
high number of software projects. To create a labeled dataset,
i.e., a dataset of files signed with a label that declares if
they are vulnerable or not, they scanned the commit messages
in Python GitHub projects. In particular, they searched for
commits, which contain vulnerability-fixing keywords in the
commit message. They gathered a large number of Python
source files included in such commits. The version of each file



before the vulnerability-fixing commit (i.e., parent version) is
considered as vulnerable, since it contains the vulnerability
that required a patch, whereas the version of the file in the
vulnerability-fixing commit is considered as non-vulnerable.

However, in their study, Bagheri et al. [22] utilized only the
fragment of the diff file, which contains the difference between
the vulnerable and the fixed version, and they proposed models
to separate the ”bad” and the ”good” parts of a file. In the
current study, we extend their dataset by collecting clean
(i.e., non-vulnerable) versions from GitHub. For this purpose,
we retrieved files from the latest version of the dataset’s
GitHub repositories, since the latest versions are the safest
versions that can be considered as non-vulnerable, because no
vulnerabilities have yet been reported for them. Hence, we
can construct models to perform vulnerability prediction in
file-level of granularity. Overall, the extended dataset contains
4,184 Python files, 3,186 of which are considered as vulnera-
ble and 998 are considered as neutral (i.e., non-vulnerable).

Before proceeding with the process of training the vulner-
ability prediction models (VPMs), we applied a series of pre-
processing steps so as to transform the dataset in the form of
sequences of tokens. Initially, we removed all the comments
and the commands which import external libraries or other
files. Subsequently, we replaced all the numeric constants (e.g.,
integers, floats, etc.) and String literals with two unique iden-
tifiers, ”numId$” and ”strId$” respectively. This replacement
was necessary in order to make the sequences of tokens more
generic and free from application specific constants, which
could affect the performance of the produced models. We also
dropped all the empty lines, and finally, we converted the
source code of each file into a list of tokens retaining the
order in which the tokens appear in the file. The tokenized
form of the dataset is provided online for replication purposes
[52].

B. Strategy

This section describes all the Large Language Models
(LLMs) that we have included in our study as well as the
methodology that we have followed in order to fine-tune
these models to perform vulnerability prediction (VP). All
the examined models, which are based on the Transformer
architecture, have been pre-trained on a large corpus of textual
data for a specific task.

1) Models Characteristics: To begin with, the BERT model
presented by Google AI 1 is pre-trained on the Masked Lan-
guage Modeling (MLM) objective. Before being fed into the
neural network, 15 % of each sequence of tokens is replaced
with a masked token. Then the model aims at predicting
the original value of the masked tokens, based on the rest
non-masked tokens. This way, BERT learns a bidirectional
representation of the sentences [25]. In a replication study of
BERT, Liu et al. [53] observed that BERT was significantly un-
dertrained, and therefore, they proposed a robustly optimized
pre-training approach, called RoBERTa.

1https://en.wikipedia.org/wiki/Google AI

A RoBERTa-based model called CodeBERT, which was
presented by Microsoft2, is the the examined BERT variant
that is not pre-trained solely on the English natural language,
but on natural language and programming language pairs from
6 programming languages (i.e., Python, Java, JavaScript, PHP,
Ruby, Go). In particular, it has been trained on bimodal data
that include function-level natural language documentations
and source code. During the pre-training phase, CodeBERT
learns general-purpose representations, which can support ap-
plications that need both natural and programming languages,
such as natural language code search and code documentation
generation [28].

A similar but different to BERT Transformer-based archi-
tecture is the Generative pre-trained transformer (GPT) [24]
that was developed by OpenAI3. GPT is not pre-trained on the
MLM objective but on predicting the next word in a sentence
based on the context provided by the preceding words. It is
more suitable for text generation tasks such as questioning-
answering and content creation, but it can be fine-tuned for
several NLP purposes including text classification, as well. In
this study, we utilize the GPT-2 version of the GPT, which
is the latest open-source version. It has no major architectural
differences in contrast with the first GPT version, but it is
much larger in terms of trainable parameters, and also it has
been trained on a much larger dataset. Hence, it is considered
to have a better language understanding.

Lu et al. introduced CodeGPT-2 [29], a variant of GPT-2. It
was pre-trained using programming language data obtained
from the Java and Python subsets of the CodeSearchNet4

dataset. It was specifically designed using prior knowledge of
programming languages, although it retains the same Trans-
former decoder-only architecture and the next-token prediction
objective as GPT-2. The utility of CodeGPT-2 in software de-
velopment and code understanding activities can be increased
by its fine-tuning for a variety of coding tasks, including code
completion, code summarization, and error detection among
others [29].

Google AI has released another Transformer-based pre-
trained language model named T5. T5, introduced by Raffel
et al. [27], is an encoder-decoder model pre-trained on a
combination of unsupervised and supervised tasks, where each
task is converted into a text-to-text format. Using a large
dataset, spans of text are masked during pre-training and the
model learns to predict these missing spans. This versatile
approach allows T5 to be fine-tuned for various specific
NLP tasks, achieving strong performance across numerous
benchmarks [27].

Finally, Wang et al. provided CodeT5 [30] by training
the T5 model on the semantics of code using identifiers
provided by developers. CodeT5 uses the Text-To-Text Trans-
fer Transformer framework, which has been pre-trained in a
variety of programming languages from the CodeSearchNet

2https://github.com/microsoft/CodeBERT
3https://openai.com/
4https://huggingface.co/datasets/code search net



dataset. By leveraging the encoder and decoder parts of
the T5 architecture, this model performs well on a variety
of code interpretation and generation tasks, including code
summarization, code generation, code translation, and code
completion [30].

For all the aforementioned models, we utilize the imple-
mentations that are provided by Hugging Face5 (HF). More
specifically, for BERT we use the bert-base model, which has
12 layers, 768 hidden size, 12 attention heads in each attention
block [21], and 110 millions (M) parameters. For CodeBERT,
we choose the codebert-base-mlm version, which has the same
architecture with roberta-base. Specifically, it is a slight dif-
ferentiation of the BERT architecture with 125M parameters.
Regarding GPT-2, we use the gpt2 model with 12 layers,
768 hidden size, 12 attention heads, and 124M parameters.
Similarly, CodeGPT-2 consists of 12 layers, 768 hidden size,
12 attention heads, and 124M trainable parameters. Finally, for
T5 and CodeT5 models that employ both the encoder and the
decoder parts of the Transformer architecture, we utilize the
t5-base and codet5-base implementations respectively, which
have nearly 220M trainable weights. They also contain 12
layers for both the encoder and the decoder (i.e., 24 in total),
768 hidden size, and 12 attention heads in each attention block.
All the aforementioned statistics are summarized in Table I.

2) Approach: For the construction of the aforementioned
models, we followed an approached that is illustrated in Fig.
1. As can be seen in Fig. 1, the process includes three-phases:
(1) pre-training, (2) fine-tuning, and (3) execution. The pre-
training has been implemented by each model provider. During
pre-training, a large textual dataset is tokenized in a format
suitable for each Transformer-based model. Then it is fed
to the model, which learns a specific objective (e.g., masked
word prediction, next word predicton, etc.) in an unsupervised
manner. This way, the trainable weights of the model have
been trained to understand natural language and there have
been produced context aware word embedding vectors, which
encode the context of the words. In this study, we receive
pre-trained models and we implement the fine-tuning and the
execution steps for VP.

During fine-tuning, the training dataset described in Section
III-A is utilized. Each Python file with source code is pre-
processed (see Section III-A) and is tokenized. For the tok-
enization of the data, we use the tokenizer that corresponds to
each model and is provided by Hugging Face. After applying
such a tokenizer, the dataset is being transformed in a form that
contains only words included in each model’s vocabulary as
well as some special tokens. For instance, when using BERT
for sequence classification, we need a special classification
token (i.e., [CLS]) to be placed in the beginning of each
sequence, and another special token (i.e., [SEP]) to separate
the sequences. Subsequently, the tokenized sequences along
with their corresponding labels are going to be fed to our
classifier that consists of the already trained Transformer-

5https://huggingface.co/

based model and a newly added classification layer (i.e., the
classification head).

This way, we train, in a supervised manner, the classifica-
tion layer to separate the vulnerable from the non-vulnerable
sequences. Simultaneously, the weights of the Transformer are
also updated in order to be adjusted to the needs of the specific
classification task. During fine-tuning, the hyperparameters
that need to be determined are (1) the number of epochs, (2)
the learning rate, (3) the optimizer, (4) the loss function, and
(5) the max length of the sequences. For the selection of the
first four, we applied several values to each one in order to
succeed optimal efficiency in the validation data (see Section
III-C), while for the max length we used the maximum length
of the sequences of tokens in the dataset that can be processed
by these Transformer-based models.

In particular, for each examined model, we used its pre-
trained Transformer-based architecture along with an addi-
tional classification head and we train it using a learning rate
equal to 0.00002. For GPT-based models a linear scheduler
was also applied. For the gradient descent’s optimization, we
leveraged the Weighted Adam (AdamW) [54] for the BERT
and T5-based models, and simple Adam [55] in case of GPT
models. For the selection of the epochs number, we applied the
Early Stopping technique6. In addition, the maximum length
was configured equal to 512, which is the maximum input
size that those models can receive. While the text data were
encoded using the corresponding tokenizers, zero padding was
used to ensure constant sequence length and the truncation
technique was used to truncate sequences that were longer
than the allowed length. Finally, the loss function was the
Cross-Entropy loss [56] in every case.

In the execution phase, after fine-tuning the optimised
Transformer-based classifiers for the objective of VP, we can
use them as our vulnerability predictors in order to assess new
Python files and classify them as vulnerable or not.

C. Evaluation Scheme

For the evaluation of the models that we fine-tuned for
the task of VP, we separated the dataset on three sets: (1)
training, (2) validation, and (3) testing sets. In this way, we
can use the validation set for the selection of the optimal
models’ hyperparameters. Then, after the validation step, we
train the selected model on the training set, and subsequently,
we proceed with evaluating the model’s predictive power using
the testing set (i.e., unseen data). This way, the process of
identifying the optimal hyperparameters, and therefore, the
best models, is not affected by the testing set. Hence, we avoid
putting data bias on the developed models.

Regarding the quantitative measurement of the predictive
performance of deep learning classification models, a number
of evaluation metrics are frequently utilized in the literature.
The number of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN) that are produced by
the models is commonly used to determine these performance

6https://en.wikipedia.org/wiki/Early stopping



Fig. 1. An overview of the approach followed for fine-tuning Transformer-based pre-trained models for vulnerability prediction.



TABLE I
THE CHARACTERISTICS OF THE PRE-TRAINED MODELS CONSIDERED IN THE STUDY

Model Version Layers Hidden Size Attention heads Parameters
BERT bert-base-uncased 12 768 12 110M
CodeBERT codebert-base-mlm 12 768 12 125M
GPT-2 gpt2 12 768 12 124M
CodeGPT-2 CodeGPT-small-py 12 768 12 124M
T5 t5-base 24 768 12 220M
codeT5 codet5-base 24 768 12 220M

indicators. For the evaluation of the VPMs, we put a particular
emphasis on the recall of the created models since the higher
the recall, the more actual vulnerabilities the model predicts.
However, precision is also important since it shows how many
FP were generated by the models and is associated to the time
and effort needed to review the outcome of the models. As
a result, a score which considers both precision and recall,
such as F1-score and F2-score, is most suitable for evaluating
these models. Among these two F-scores, we choose as the
main evaluation metric the F2-score, since it gives a little more
weight to recall (and therefore to the identification of real
vulnerabilities) than to precision, whereas the F1-score gives
equal weight to them. The mathematical formula of F2-score
is given below:

F2 =
5× precision× recall

4× precision+ recall
(1)

IV. RESULTS AND DISCUSSION

This section presents the results of our comparative study
among the Transformer-based models, after fine-tuning them
on the downstream task of VP. The experiments took place
on a parallel computing platform called CUDA7 that we
have installed on a GeForce RTX 4080 Nvidia GPU. For the
implementation of the Transformer-based methods, we utilized
the PyTorch framework, whereas for the state-of-the-are text
mining-based approaches, we used the Tensorflow framework.
To enhance the reproducibility of the experiments, we provide
our scripts online [52].

All the reported results are the outcome of applying the fine-
tuned LLMs on the testing set of the dataset (see Section III-C)
along with some state-of-the-art text mining-based approaches.
In Table II, we present the outcome of our evaluation scheme.
More specifically, Table II provides the values of accuracy,
precision, recall, F1-score, and F2-score, with the latter to be
considered as the most critical metric, as explained in Section
III-C.

First, Table II presents the superiority of the LLM-
based VPMs over three state-of-the-art text mining-based
approaches. In particular, we compare the fine-tuned LLMs to
(i) BoW, (ii) Term Frequency–Inverse Document Frequency
(TF-IDF)8, which is a BoW variant, and (iii) word2vec word
embeddings along with a DL classifier. The two BoW-based
methods used a ML classifier to classify files as vulnerable or

7https://developer.nvidia.com/cuda-toolkit
8https://en.wikipedia.org/wiki/Tf%E2%80%93idf

non-vulnerable. The best classifier proved to be the Random
Forest model. On the other hand, the word2vec embeddings
were fed to an LSTM model, which has demonstrated the best
results among non-Transformer models in the VP literature
[34]. The results in Table II show that:
All examined LLMs manage to achieve superior results
compared to BoW, TF-IDF, and word2vec, highlighting
the important benefit gained by leveraging transfer learn-
ing in VP.

Furthermore, we can notice that all the three pre-trained
on code LLMs manage to outperform their NLP variants.
In particular, CodeBERT surpasses BERT by 3.2% in terms
of F2-score, while both CodeGPT-2 and CodeT5 outperform
GPT-2 and T5 by 2.3%. This observation highlights the
importance of the data utilized in the pre-training process.
The fact that CodeBERT, CodeGPT-2, and CodeT5 proved to
be the superior models can be attributed to the nature of their
pre-training knowledge. Hence, we can argue that:
In the VP downstream task, which is a source code
related task, it is beneficial to use models that have prior
knowledge of programming languages.

In addition, as can be seen in Table II, the highest F2-score
(i.e., 84.3%), which is in bold, is achieved by CodeBERT but
the second highest is achieved by BERT instead of CodeT5 or
CodeGPT-2. In other words, BERT surpasses clearly not only
the other two NLP models but also their code-aware variants.
This finding suggests that Transformer-based models that
leverage the encoder part of the Transformer architecture (e.g.,
BERT and CodeBERT) may be more capable in predicting
vulnerable software components as opposed to models that
include only the decoder (e.g., GPT-2 and CodeGPT-2) or the
whole Transformer architecture (e.g., T5 and CodeT5), and
therefore, a more detailed analysis can be conducted in this
direction. Concisely, we noticed that:
The encoder-only BERT and CodeBERT outperformed
the decoder-only GPT-2 and CodeGPT-2 as well as the
encoder-decoder T5 and CodeT5.

We also investigated if there is any correlation between the
performance of the models and their size. Specifically, we
examined if the F2-scores (see Table II) of our six fine-tuned
models is correlated with the number of trainable parameters
of these models, which is presented in Table III. For this
purpose, we employed the Spearman’s rank coefficient [57].
Spearman’s correlation is a non-parametric statistical measure
used to determine whether there is a monotonic relationship



TABLE II
EVALUATION RESULTS OF THE OVERALL ANALYSIS

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) F2-score (%)
BoW 89.7 96.7 59.0 73.2 63.9
TF-IDF 90.2 98.3 60.0 74.5 65.0
Word2vec 85.2 69.3 68.0 68.7 68.2
BERT 93.0 90.8 79.0 84.5 81.1
GPT-2 87.3 77.0 67.0 71.6 68.8
T5 91.1 88.9 72.0 79.5 74.8
CodeBERT 90.9 78.1 86.1 81.9 84.3
CodeGPT-2 88.7 81.1 68.9 74.5 71.1
CodeT5 90.9 86.0 74.0 79.5 76.1

TABLE III
NUMBER OF TRAINABLE PARAMETERS OF THE FINE-TUNED MODELS.

Model
Number of Trainable

Parameters
BERT 109,485,314
GPT-2 124,443,648
T5 223,475,714
CodeBERT 124,648,706
CodeGPT-2 124,248,576
CodeT5 223,475,714

between two ordinal variables, including its strength and
direction. By using the ”stats” module of the ”SciPy” library9,
we computed the Spearman correlation coefficient equal to
0.058. We judged the strength of the correlation utilizing the
guidelines provided by Cohen et al. [58]. Cohen et al. state that
a correlation of less than 0.3 is weak, between 0.3 and 0.5 is
moderate, and greater than 0.5 is strong. A positive correlation
that is close to one generally indicates that the studied rankings
are nearly identical. Therefore, a Spearman cofficient equal
to 0.058 indicates a very weak positive correlation between
the F2-scores and the number of trainable parameters of the
models. Hence, we can argue that:
The efficiency (expressed by the F2-score) of the examined
LLMs fine-tuned in vulnerability prediction does not de-
pend significantly on the number of trainable parameters
and, therefore, on the size of the models.

V. THREATS TO VALIDITY

A remark on the limitations and the threats to the present
work’s validity is considered necessary. First, we have to
note that the conclusions of our study contain a threat of
data validity, since they are based on our experiments on
a specific training and evaluation dataset that consists of
open-source code written in Python programming language.
More studies applied on different datasets and for different
programming languages would contribute to the generalization
of the findings.

Furthermore, a threat to internal validity is that not all
possible combinations of hyperparameter values have been
explored. The interdependence of model hyperparameters can
make it challenging to identify the impact of individual

9https://scipy.org/

hyperparameters, possibly resulting in sub-optimal model per-
formance. To address this, we undertook a comprehensive
hyperparameter tuning process.

Finally, an external validity threat concerns the fact that all
the employed models are retrieved from a Transformers library
provided by Hugging Face. These models is possible to have
slight differences from the ones presented in the respective
publications. They are based on the same architectures but,
although they are considered the closest open-source imple-
mentations of the Transformer-based pre-trained models, they
have been pre-trained within a slightly different setting.

VI. CONCLUSIONS

In this paper, our aim was to compare several pre-trained
models from the field of natural language processing, which
are based on the emerging deep learning architecture called
Transformer, in their capacity to be fine-tuned on the down-
stream task of vulnerability prediction. To achieve this, we uti-
lize BERT, CodeBERT, GPT-2, CodeGPT-2, T5, and CodeT5
models as a basis for creating vulnerability prediction models.
More specifically, we added a classification layer on top of
the Transformer-based models and then, we fine-tuned them
using a labeled vulnerability-related dataset.

The findings of our work showed that the three pre-trained
on code LLMs achieved superior results as opposed to their
pre-trained on natural language variants. We also observed an
important benefit from the encoder part of the Transformer
since encoder-only models (i.e., BERT and CodeBERT) were
the two best performers. Moreover, we did not notice a
statistically significant relationship between the performance
of the fine-tuned LLMs and their size (i.e., number of trainable
weights). Finally, all LLM-based VP solutions outperformed
traditional text mining-based methods.

Based on the aforementioned observation, future work in-
cludes the investigation of whether prior knowledge of natural
language is useful for a downstream task associated with
source code, such as in the case of vulnerability prediction, or
pre-training models exclusively on source code will be proved
a better approach for downstream tasks. In addition, future
research endeavors may examine explainability techniques to
reduce the level of code granularity to function-level or even
to line-level.



REFERENCES

[1] ISO/IEC, ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models. ISO/IEC, 2011.

[2] ——, “ISO/IEC 27000:2018,” https://www.iso.org/obp/ui/#iso:std:iso-
iec:27000:ed-5:v1:en, Accessed: 2023-04-03.

[3] Y. Shin and L. Williams, “Is complexity really the enemy of software
security?” in Proceedings of the 4th ACM workshop on Quality of
protection, 2008, pp. 47–50.

[4] ——, “An empirical model to predict security vulnerabilities using
code complexity metrics,” in Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 315–317. [Online]. Available:
https://doi.org/10.1145/1414004.1414065

[5] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities,” Journal of
Systems Architecture, vol. 57, no. 3, pp. 294–313, 2011.

[6] I. Kalouptsoglou, M. Siavvas, D. Tsoukalas, and D. Kehagias, “Cross-
project vulnerability prediction based on software metrics and deep
learning,” in International Conference on Computational Science and
Its Applications. Springer, 2020, pp. 877–893.

[7] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[8] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security, 2007, pp. 529–
540.

[9] Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable software com-
ponents through deep neural network,” in Proceedings of the 2017
International Conference on Deep Learning Technologies, 2017, pp. 6–
10.

[10] K. Filus, M. Siavvas, J. Domańska, and E. Gelenbe, “The random neural
network as a bonding model for software vulnerability prediction,” in
Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems. Springer, 2020, pp. 102–116.

[11] H. K. Dam, T. Tran, and T. Pham, “A deep language model for software
code,” arXiv preprint arXiv:1608.02715, 2016.

[12] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in 2014 IEEE 25th
international symposium on software reliability engineering. IEEE,
2014, pp. 23–33.

[13] I. Kalouptsoglou, M. Siavvas, D. Kehagias, A. Chatzigeorgiou, and
A. Ampatzoglou, “Examining the capacity of text mining and software
metrics in vulnerability prediction,” Entropy, vol. 24, no. 5, 2022.
[Online]. Available: https://www.mdpi.com/1099-4300/24/5/651

[14] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[15] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and
A. Ghose, “Automatic feature learning for predicting vulnerable software
components,” IEEE Transactions on Software Engineering, 2018.

[16] I. Kalouptsoglou, M. Siavvas, D. Kehagias, A. Chatzigeorgiou, and
A. Ampatzoglou, “An empirical evaluation of the usefulness of word
embedding techniques in deep learning-based vulnerability prediction,”
in EuroCybersec2021,Lecture Notes in Communications in Computer
and Information Science, 10 2021.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[18] Fast Text, “fastText,” https://fasttext.cc/, Accessed: 2023-04-03.
[19] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulner-

ability identification by learning comprehensive program semantics via
graph neural networks,” arXiv preprint arXiv:1909.03496, 2019.

[20] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering, 2021.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[22] A. Bagheri and P. Hegedűs, “A comparison of different source code
representation methods for vulnerability prediction in python,” in Quality
of Information and Communications Technology, A. C. R. Paiva, A. R.
Cavalli, P. Ventura Martins, and R. Pérez-Castillo, Eds. Cham: Springer
International Publishing, 2021, pp. 267–281.

[23] N. Ziems and S. Wu, “Security vulnerability detection using deep
learning natural language processing,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2021, pp. 1–6.

[24] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[27] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1–67, 2020.

[28] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[29] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[30] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[31] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE transactions on software engineering,
vol. 37, no. 6, pp. 772–787, 2010.

[32] I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source
code structures,” in Proceedings of the fourth international workshop on
Software engineering for secure systems, 2008, pp. 57–64.

[33] M. Jimenez, M. Papadakis, and Y. Le Traon, “Vulnerability prediction
models: A case study on the linux kernel,” in 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2016, pp. 1–10.

[34] I. Kalouptsoglou, M. Siavvas, A. Ampatzoglou, D. Kehagias,
and A. Chatzigeorgiou, “Software vulnerability prediction:
A systematic mapping study,” Information and Software
Technology, vol. 164, p. 107303, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095058492300157X

[35] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and
cohesion metrics be used as early indicators of vulnerabilities?” in
Proceedings of the 2010 ACM Symposium on Applied Computing, 2010,
pp. 1963–1969.

[36] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,” in
2010 Third international conference on software testing, verification and
validation. IEEE, 2010, pp. 421–428.

[37] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software compo-
nents with dependency graphs,” in Proceedings of the 6th international
workshop on security measurements and metrics, 2010, pp. 1–8.

[38] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software
vulnerability prediction using text analysis techniques,” in Proceedings
of the 4th international workshop on Security measurements and metrics,
2012, pp. 7–10.

[39] S. Cao, X. Sun, L. Bo, Y. Wei, and B. Li, “Bgnn4vd: Constructing bidi-
rectional graph neural-network for vulnerability detection,” Information
and Software Technology, vol. 136, p. 106576, 2021.

[40] Y. Fang, Y. Liu, C. Huang, and L. Liu, “Fastembed: Predicting vul-
nerability exploitation possibility based on ensemble machine learning
algorithm,” Plos one, vol. 15, no. 2, p. e0228439, 2020.

[41] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE international conference on machine learning and applications
(ICMLA). IEEE, 2018, pp. 757–762.



[42] X. Yuan, G. Lin, Y. Tai, and J. Zhang, “Deep neural embedding for
software vulnerability discovery: Comparison and optimization,” Secur.
Commun. Networks, vol. 2022, pp. 5 203 217:1–5 203 217:12, 2022.

[43] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[44] D. Coimbra, S. Reis, R. Abreu, C. Păsăreanu, and H. Erdogmus, “On
using distributed representations of source code for the detection of c
security vulnerabilities,” arXiv preprint arXiv:2106.01367, 2021.

[45] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec:
Learning distributed representations of code,” Proc. ACM Program.
Lang., vol. 3, no. POPL, jan 2019. [Online]. Available:
https://doi.org/10.1145/3290353

[46] S. Kim, J. Choi, M. E. Ahmed, S. Nepal, and H. Kim, “Vuldebert: A
vulnerability detection system using bert,” in 2022 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
2022, pp. 69–74.

[47] H. Hanif and S. Maffeis, “Vulberta: Simplified source code pre-training
for vulnerability detection,” in 2022 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2022, pp. 1–8.

[48] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR), 2022, pp. 608–620.

[49] B. Steenhoek, M. M. Rahman, R. Jiles, and W. Le, “An empirical study
of deep learning models for vulnerability detection,” arXiv preprint
arXiv:2212.08109, 2022.

[50] J. Zhang, C. Wang, A. Li, W. Sun, C. Zhang, W. Ma, and Y. Liu,
“An empirical study of automated vulnerability localization with large
language models,” arXiv preprint arXiv:2404.00287, 2024.

[51] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Predicting source
code vulnerabilities using deep learning: A fair comparison on real data,”
2024.

[52] Kalouptsoglou, Ilias and Siavvas, Miltiadis and Ampatzoglou,
Apostolos and Kehagias, Dionysios and Chatzigeorgiou,
Alexander, “Vulnerability prediction using pre-trained models,”
https://sites.google.com/view/vpllm/, Accessed: 2024-08-01.

[53] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[54] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv:1711.05101, 2017.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[56] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions:
Theoretical analysis and applications,” in International conference on
Machine learning. PMLR, 2023, pp. 23 803–23 828.

[57] C. Spearman, “The proof and measurement of association between two
things.” 1961.

[58] J. Cohen, Statistical power analysis for the behavioral sciences. Aca-
demic press, 2013.


