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Abstract—Nowadays, security testing is an integral part of the
testing activities during the software development life-cycle. Over
the years, various techniques have been proposed to identify
security issues in the source code, especially vulnerabilities,
which can be exploited and cause severe damages. Recently,
Machine Learning techniques capable of predicting vulnerable
software components have appeared, among others, enhancing
the automation of the demanding process of identifying security
flaws. However, there is also a need for automating the process
of labeling detected vulnerabilities in vulnerability categories.
Traditionally, vulnerability categorization was conducted through
experts-based labeling. Later, automated methods were proposed
for determining the category of reported vulnerabilities in the
National Vulnerability Database based on their textual descrip-
tions. This work examines the vulnerability classification directly
from the source code during the detection phase. This way, a
vulnerability detection method will be able to provide complete
information and interpretation of its findings. Leveraging the
advances in the field of Artificial Intelligence and Natural Lan-
guage Processing, we construct and compare several multi-class
classification models for categorizing vulnerable code snippets.
We also discuss our findings by examining the strengths and the
weaknesses of the utilized techniques. The results highlight the
importance of the context-aware embeddings of the Transformer
architecture as well as the significance of transfer learning from
a programming language-related domain.

Index Terms—security testing; vulnerability categories; machine
learning; word embedding; Transformer; context-awareness

1. INTRODUCTION

Software security is considered a significant characteristic
of the software development life-cycle SDLC, based on the
ISO/IEC 25010 International Standard on Software Quality
[1]. A major concern of the software community from the as-
pect of software security is the identification, characterization,
and mitigation of the software vulnerabilities that reside in the
source code. Those vulnerabilities are weaknesses in software
systems, which can be exploited by external threats [2][3].
The utilization of security testing and especially vulnerability
detection tools is considered crucial for the deployment of any
software product. Software enterprises can benefit from such
mechanisms by allocating their limited time and fortification
efforts to potentially vulnerable segments.

As modern software systems become more complex and
interconnected, there is a constantly increasing number of
new identified vulnerabilities [4]. Thus, there is a need for

a classification scheme to group related and similar vul-
nerabilities. Therefore, the Common Weakness Enumeration
(CWE) system [5] was introduced by MITRE to categorize
weaknesses found in software systems. Each individual CWE
represents a single vulnerability type. However, CWE is an
expert-based system, where the founders of a vulnerability
are often different from the categorizers of it [6]. Moreover,
the aforementioned manual categorization usually is a time
consuming procedure. According to Spanos et al. [7], there
are delays between when a vulnerability is reported, when the
technical description is conducted, and when the vulnerability
is characterized with a CWE and a severity score.

Recently, approaches of employing Machine Learning (ML)
algorithms for automating the procedure of categorizing vul-
nerabilities have appeared. To enhance the manual classifi-
cation carried out by the security experts, Aivatoglou et al.
used ML to categorize reported vulnerabilities into CWEs
utilizing the technical descriptions provided from NVD for
each vulnerability [8]. Additionally, Liu et al. classified vul-
nerabilities gathered from cybersecurity articles and websites
into the groups of code injection, access issues, buff errors, and
SQL injection [9]. However, although these approaches may
automate the categorization of the already reported vulnerabili-
ties, they still need a formal and accurate vulnerability-specific
technical description to be provided first. In other words, none
of these methods are part of the software testing, since they do
not leverage information retrieved from the analyzed software
itself.

In contrast with vulnerability prediction techniques, which
are commonly built based on ML models that utilize software
attributes to predict vulnerable hot-spots (e.g., files, classes,
methods, etc.) in a software product [10][11][12], the pro-
cedure of labeling the predicted vulnerabilities is currently
disconnected from the software testing phase, raising questions
about the interpretability, and hence, the reliability of the
findings of the testing activities. ML-enabled vulnerability
prediction has grown significantly, but it still presents impor-
tant drawbacks, which stand as obstacles for its adoption in
practice. For instance, although it overcomes the limitations
of static analysis by producing much fewer false positives and
being able to identify not only coding violations of pre-defined
rules but also complex vulnerabilities [13][14], it lacks the



ability of static code analyzers to present specific lines and
categories of the security alerts.

Recent research endeavors in the field of software vul-
nerability prediction have attempted to reduce the level of
granularity of their predictions, focusing on localizing as
much as possible the vulnerable lines of code per component
[15][16]. For this purpose, they often employ explainable Ar-
tificial Intelligence (AI) methods (e.g., Attention mechanism)
in order to recognize the parts of the code that were the
most important in the model’s prediction of a vulnerability.
However, these techniques do not provide further information
about the category of the vulnerability, since they try to explain
the model’s decision of classifying a file or a function as
vulnerable in a binary classification scheme.

The purpose of this study is to present a mechanism of
classifying detected vulnerabilities, providing this way devel-
opers with valuable insights into the kind of the security issues
that exist in their software (e.g., command injection, deadlock,
SQL injection, etc.) during the testing phase of the SDLC
when the vulnerabilities are actually identified. To this end, we
conduct an extensive comparative analysis of several Natural
Language Processing (NLP) techniques applied in the textual
format of vulnerable source code snippets.

In particular, we examine two different text representations
methods (i) Bag-of-Words (BoW) and (ii) sequences of tokens
as well as four different word embedding algorithms (i)
Word2vec [17], (ii) fastText [18], (iii) Bidirectional Encoder
Representations from Transformers (BERT) [19], and (iv)
CodeBERT [20]. We also train different kinds of ML models
(e.g., Random Forest and Transformer). Furthermore, special
attention is paid on the adoption of transfer learning. Last but
not least, we provide insightful observations for the strengths
and the weaknesses of each examined algorithm based on the
results.

The rest of the paper consists of five main parts. In Section
2, we provide a summary of the state-of-the-art approaches
in the field of vulnerability classification to categories and in
Section 3, we provide the necessary theoretical background of
the examined text mining methods. In Section 4, we provide
details of the utilized dataset, the examined ML algorithms,
and the overall methodology of the current study. Section
5 presents the results of our evaluation scheme and finally,
Section 6 concludes the study and provides future research
directions.

2. RELATED WORK

Research studies about the characterization of security vul-
nerabilities focused on the technical description provided for
the reported software flaws. Initially, Neuhaus and Zimmer-
mann analyzed vulnerability reports in the CVE database,
represented as BoW, utilizing an unsupervised ML algorithm
(i.e., Latent Dirichlet Allocation) to find the most usual types
of vulnerability.

Then, Yamamoto et al. developed a method able to calculate
vulnerability scores based on the natural language descrip-
tion provided by CVE [21], while Wen et al. proposed an

automatic vulnerability categorization framework using text
mining on the vulnerability descriptions in NVD [6]. Subse-
quently, Aghaei et al. presented ThreatZoom, a tool capable
of classifying CVEs into CWEs from CVE descriptions using
Artificial Neural Networks (ANNSs) [22].

Furthermore, Yosifova et al. examined the performance of
several baseline ML models on predicting the vulnerability
type using as features the CVE descriptions [23]. In addition,
Aivatoglou et al. proposed a text analysis and ML-based
method to automate the process of vulnerability classification
using NVD descriptions, showcasing the high prediction ac-
curacy of tree-based models [8].

In the vulnerability prediction-related literature, where stud-
ies utilize software attributes to classify software components
as vulnerable or not, text mining techniques have demonstrated
encouraging results [11][24][25][26]. However, a very limited
number of studies has dealt with the objective of classifying
vulnerabilities to vulnerability categories as highlighted in a
systematic mapping study on software vulnerability prediction
[27].

Wartschinski et al. proposed VUDENC, which is a Deep
Learning (DL) based vulnerability detection model [28] con-
sidering several different vulnerability categories. Although in
their study they present also results per vulnerability category,
they focus on identifying which components are vulnerable,
by performing binary classification. Moreover, Kong et al.
dealt with the problem of identifying multi-type vulnerabil-
ities, using graph embeddings and graph neural networks,
but, although they included several CWEs in their dataset,
they focus on the discrimination between vulnerable and non-
vulnerable components, as well [29]. In fact, they are more
interested in exploring how best to capture the diverse code
representations of different types of vulnerabilities.

One of the initial attempts to classify software vulnerabili-
ties during the security testing phase is [30], where the authors
noticed the need for pinpointing types of vulnerabilities during
their detection phase. They proposed the use of DL, Bidirec-
tional Long-Short Time Memory (BiLSTM) neural network
specifically, to implement a multi-class vulnerability prediction
model. They also noticed that training a separate model for
each type of vulnerabilities and apply all of them to every
single sample of the testing data is neither a scalable nor an
effective enough solution.

Next, Mamede et al. explored the capabilities of
Transformer-based models on the classification of software
vulnerabilities [31]. Particularly, they trained several BERT
variants for multi-label vulnerability classification using a syn-
thetic dataset of Java source code. Moreover, Mazuera—Rozo
et al. examined several different source code representations
and ML classifiers in both binary and multi-class vulnerability
prediction showing a very high accuracy drop in both cases
when using real-world data instead of synthetic ones [32].

From the above analysis, we can argue that there is a lack of
fine-grained vulnerability classification mechanisms, operating
in the testing phase of the SDLC. Moreover, existing methods
have focused primarily on C/C++ and secondary on Java



vulnerabilities. The most promising work seems to be the study
of Zou et al. but their study [30] has several limitations, since
it: (i) identifies solely vulnerabilities related to API/library
function calls, (ii) cannot localize the identified vulnerabilities,
(iii) is based on a dataset that is largely synthetic, and (iv) deals
only with C/C++ code.

In the present study, we propose a method that enhances
the automation of the vulnerabilities’ categorization as op-
posed to the traditional expert-based labeling, by leveraging
Al and NLP algorithms. Concisely, the contributions of the
mechanism presented in this study to the relevant literature can
be summarised as follows: Firstly, this mechanism achieves
faster classification of vulnerabilities (i.e. from the security
testing phase) as opposed to other ML-based methods that
classify reported vulnerabilities based on their description
provided by NVD [8][9]. Secondly, the proposed scheme
provides increased confidence in the security test findings
by complementing them with the categories of vulnerabilities
identified. Thirdly, it categorizes vulnerable lines of code, and
hence, achieves a lower level of granularity of the vulnerability
classification process (i.e., code snippet level), as opposed to
studies that implement multi-class vulnerability prediction by
predicting which files or methods contain vulnerabilities and
of what kind [30][31][32].

Moreover, we classify real-world vulnerabilities (instead of
synthetic ones), which belong to categories of vulnerabili-
ties (e.g., command injection, path disclosure, open redirect,
etc.) that are considered major security issues in software
engineering. Furthermore, this study performs vulnerability
classification on source code written in Python, which is
one of the fastest growing and most popular programming
languages [33]. Finally, a discussion is conducted regarding the
relationship between the results obtained and the differences as
well as the technological developments in the NLP techniques
considered.

3. THEORETICAL BACKGROUND

In this section, a description of the main text mining tech-
niques utilized in the current study is provided. In particular,
details about the main concepts that we adopted from the NLP
domain to perform vulnerability classification are presented.
To train ML models to classify vulnerabilities based on code
snippets identified as vulnerable, we first needed to represent
the source code in a numerical way. For this purpose, we
used common textual representation methods. In particular,
we used (i) Bag-of-Words (BoW) and (ii) sequences of tokens
representations.

On the one hand, BoW is the simplest NLP method that
allows training ML models on text data. In the BoW approach,
code snippets are collected in a ’bag” that contains the words
of each snippet, without considering their sequential order.
This method constructs a vocabulary from the words of the
entire training dataset, with each code snippet represented
as a vector aligned with the vocabulary. The values of this
vector are the number of occurrences of each word in the code
snippet. This way, the textual data of the code snippets are

transformed to tabular data, allowing the code to be analyzed
through a structured numerical format.

On the other hand, in the sequences of tokens approach,
each code snippet is represented as a sequence of the words
included in the snippet. Therefore, the sequential order of the
tokens within the code snippets is preserved, giving a benefit
to ML algorithms that are capable of capturing the structural
dependencies hidden among the tokens of the source code.
After constructing token sequences, a word embedding method
has to be applied in order to feed ML models with numerical
vectors as well as to represent better the meaning of the words.

In order to vectorize the sequences of tokens, we employed
various sophisticated algorithms such as Word2vec, fastText
and Transformers. These algorithms are DL models capable of
learning semantic and syntactic relationships among the tokens
and place them at the vector space based on their similarity
and their actual position in the text (i.e., source code).

Word2vec, which was initially proposed by Mikolov et al.
and Google [17], is one of the most popular and widely used
techniques for vectorizing source code [34][35][36]. It oper-
ates under the premise that words sharing similar contexts also
share similar meanings. This method employs two primary
architectures, namely the Continuous Bag-of-Words and Skip-
gram [17]. Although Word2vec has proved to be efficient in a
variety of NLP tasks [37], it has several drawbacks, as well.
Specifically, it neither handles the out-of-vocabulary (OOV)
problem nor is able to capture contextual relationships.

To the contrary, fastText, which is another efficient word
embedding algorithm proposed by Bojanowski et al. and
Facebook AI [18], manages to handle the OOV problem by
considering sub-word information. More specifically, fastText
breaks words into smaller units, such as character n-grams,
and therefore, is able to handle OOV words. Similarly to
Word2vec, it has both Continuous Bag-of-Words and Skip-
gram architectures. However, it still has difficulty in un-
derstanding the complex semantic relationships and multiple
meanings of words. Therefore, both fastText and Word2vec
embeddings are called static or global embeddings as they are
unique per word and do not change based on the context.

A more evolved architecture namely the Transformer, which
was originally proposed by Vaswani et al. and Google [38],
managed to surpass the aforementioned issues of the tradi-
tional word embeddings techniques. Specifically, the Trans-
former architecture, which revolutionised the NLP field, in-
troduced the positional embeddings that can capture relative
positions of the tokens in the sequences. In other words, the
Transformer, through its positional embeddings, can capture
contextual patterns across the whole input sequence with posi-
tional information. Therefore, each word’s embedding vector is
not unique but depends on the context. As opposed to the static
vectors, Transformer-based word embeddings are considered
contextual embeddings.

One popular variant of the Transformer architecture is
the Bidirectional Encoder Representations from Transformers
(BERT) model that was proposed by Google [19]. It is an
encoder-only Transformer, which has been pre-trained on the



task of masked language modeling (MLM) using a large
corpus consisted of English Wikipedia and BookCorpus [39].
More specifically, it was trained to predict the original tokens
(i.e., words) in sentences where 15 % of them were randomly
masked by a special mask token.

In a replication study of BERT, Liu et al. [40] observed
that BERT was significantly undertrained, and therefore, they
proposed a robustly optimized pre-training approach, called
RoBERTa. Based on the RoBERTa model, Microsoft pre-
trained a model called CodeBERT [20], which is a bimodal
model that has been pre-trained not only on natural language
but also on six programming languages (i.e., Java, Python,
Go, Ruby, PHP, and JavaScript). In particular, Feng et al.
pre-trained it in pairs of function-level source code and the
corresponding documentation in natural language. During pre-
training, CodeBERT learnt general-purpose representations
that proved to be useful in tasks such as generation of code
documentation and code search based on natural language
queries [20].

4. METHODOLOGY

This section describes the overall methodology that we fol-
lowed in order to predict the types of software vulnerabilities.
In particular, we present the dataset utilized, the strategy of
constructing ML models, and the evaluation procedure. Figure
1 illustrates all the steps of our implementation: (i) data collec-
tion and preparation, (ii) model selection, (iii) model training,
parameterization and prediction, and (iv) model evaluation and
comparison.

4.1 Dataset

For training and evaluating the examined vulnerability clas-
sification approaches, we utilized a dataset that consists of
Python source code. This dataset is provided by Wartschinski
et al. [28], who used a version control system (i.e., GitHub) as
a data source for collecting source code components. To create
a dataset of files signed with a label that declares if they are
vulnerable or not, they scanned many commit messages in
GitHub projects written in Python programming language.

In particular, they searched for commits, which con-
tain vulnerability-fixing keywords in the commit message.
They gathered a large number of Python source files in-
cluded in such commits. The version of each file before the
vulnerability-fixing commit (i.e., parent version) is considered
as vulnerable, since it contains the vulnerability that required a
security patch. They also gathered the diff files, which contain
the differences between two consecutive commits. This way,
they managed to extract the specific lines which were repaired,
and hence, were considered as vulnerable.

All those collected vulnerable block of lines were also
characterized by a unique vulnerability category. This specific
labeling was conducted based on the keywords included in
the commit messages of the fixing commits. The authors of
[28] chose to include keywords indicative of seven common
vulnerability types, taking into account the OWASP Top 10
list [41]. Specifically, the dataset contains 4530 code blocks

TABLE I
DATASET CLASS DISTRIBUTION
Vulnerability category | No. of vulnerabilities
SQL injection 1431
XSRF 976
Command injection 721
Path disclosure 481
Open redirect 442
Remote code execution 334
XSS 145

categorized as SQL injection, Cross-Site Request Forgery
(XSRF), command injection, path disclosure, open redirect,
remote code execution, and Cross-Site Scripting (XSS) vulner-
abilities. Table I presents the distribution of the classes (i.e.,
vulnerability categories) in the dataset.

4.2 Study Design

In the first step, of our methodology, after retrieving the
vulnerability-related data, we pre-processed the code snippets
and we replaced all the numeric constants (e.g., integers, floats,
etc.) and String literals with two unique identifiers, “numlId$”
and 7strId$” respectively. This replacement was necessary
in order to make the code snippets more generic and free
from application specific constants, which could affect the
performance of the produced models.

Subsequently, in the model selection phase, we represented
the source code in two formats namely as BoW and sequences
of tokens. The former is in numerical form as it represents
the source code in a table of words with their number of
occurrences as features. For the latter, we transformed each
sequence to a numerical vector called embedding, comparing
several embedding methods (i.e., Word2vec, fastText, BERT,
and CodeBERT). For the actual implementation of these
techniques, we employed the algorithms provided by Gensim'
and Hugging Face (HF)? libraries.

For the cases of Word2vec and fastText (i.e., global embed-
dings), since we deal with a programming language-related
task, we trained word embedding vectors leveraging a large
code corpus that is provided by Wartschinski et al. [42]. This
corpus consists of functions written in Python programming
language and it contains 11.5 million lines of code in total.
Then we computed the mean among the embedding vectors
that correspond to the different words in each input sequence,
resulting in a single vector that represents the average of all
the word vectors in the sequence.

On the other hand, for the case of Transformer-based
models, there was no need for training embedding vectors
as they are models already pre-trained on large datasets.
Therefore, we utilized the pre-trained models provided by HF.
In addition, in this case, we fed the sequences of tokens to
the pre-trained models in inference mode and we extracted the
sentence-level embedding vectors from the last hidden state of

Thttps://radimrehurek.com/gensim/
Zhttps://huggingface.co/
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the Transformer. This way we gained a contextual embedding
vector for each sequence of tokens given as input.

Furthermore, either the BoW or the embedding vectors of
the sequences were fed to a ML model in order to perform
multi-class classification to vulnerability categories. For the
selection of the classifier, we examined several ML models
including Decision Trees (DT), K-Nearest Neighbors (KNN),
Support Vector Machines (SVM), and Random Forest (RF)
classifiers. We also examined the approach of fine-tuning the
pre-trained BERT and CodeBERT models to the downstream
task of vulnerability category prediction.

As opposed to the embeddings extraction approach, during
fine-tuning the whole model participates in the training to the
downstream task. Regarding the Transformer-based models
utilized (i.e., BERT and CodeBERT), we leveraged the pre-
trained models that are provided by HF. More specifically,
for BERT we used the bert-base model, which has 12 layers,
768 hidden size, 12 attention heads [38], and 110 millions
(M) parameters, whereas for CodeBERT we leveraged the
codebert-base-mlm version, which, similarly with roberta-
base, has the BERT architecture but 125M parameters.

In step 3 of Figure 1, we trained the aforementioned models
using the training set of the dataset. We conducted several
experiments until ending up with the optimal hyperparameters.
Then we utilized the optimized models to predict vulnerability
categories for the code snippets of the testing set. Finally, in
step 4, we evaluated the optimized models of all the different
approaches using common classification metrics in order to
identify the method which achieves the highest accuracy

) 4. Model Comparison [
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4.3 Evaluation Scheme

For the evaluation of the models that we trained for the task
of vulnerability classification, we applied the well established
technique called k-fold cross-validation [27]. During this pro-
cess, the dataset is separated in k different parts, specifically in
ten folds. Then, the nine folds are utilized as training set and
the rest one as testing set. The training and testing is repeated
ten times, each time selecting a different fold as the test set.
This way, we avoid putting data bias on the developed models,
assuring that the models can perform well on various parts of
the dataset and not on one random split.

As regards the measurement of the performance of the DL
models, we utilized common classification metrics, such as
accuracy, precision, recall, and F;-score, which are frequently
utilized in the literature [8][27]. The value of these perfor-
mance indicators is determined from the number of True
Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) that are produced by the models. For
facilitating the comparison among the examined techniques,
we pay more attention on the F;-score, which considers both
precision and recall giving equal weight to them, and therefore,
is most suitable for evaluating these models. On the contrary,
we do not pay so much attention on accuracy, since our dataset
is imbalanced and therefore accuracy could be misleading.

We have to clarify also that we present the macro average
values of the aforementioned metrics, instead of micro or
weighted average. Macro averaging is probably the most



straightforward averaging method as it is equal to the arith-
metic mean of all the per-class scores (e.g., F1-score), without
using any class weights for the aggregation. To the contrary,
weighted averaging, for instance, of F;-score, calculates all
the per-class F;-scores but when adding them, it uses a weight
depending on the number of true labels of every class, whereas
micro averaging computes TP, FP, TN, and FN separately for
every class and then computes the global F;-score [43]. Since
we consider all classes equally important, and therefore, we
do not have to take into account the number of samples per
class, we qualify the macro averaging method. Equations (1)
and (2) present the mathematical formulas of the F;-score and
the macro average of Fp-score for multi-class classification
respectively.

P 2 x precision X recall 2xTP 0
e precision +recall ~ 2x TP+ FP+ FN
1N
MacroPy = — ; Fy, )

, where i is the index of each class.

5. RESULTS AND DISCUSSION

This section presents the results of our experimental anal-
ysis. The experiments took place on a parallel computing
platform called CUDA that we have installed on a GeForce
RTX 3060 Nvidia GPU. To enhance the reproducibility of the
experiments, we will provide our scripts online [44].

Initially, an empirical comparison of several ML classifiers
(i.e., Decision Trees, Support Vector Machines, KNN, and
Random Forest) was conducted so as to identify the best
performing one for each utilized NLP technique (i.e., BoW,
Word2vec, fastText, BERT, and CodeBERT). Figure 2 pro-
vides a bar chart that shows the F;-scores of all the examined
models.

As can be seen, Decision Tree (DT) is the less accurate
model regardless of the NLP method, whereas the Random
Forest (RF) achieves the highest scores. The K-Nearest Neigh-
bors (KNN) and Support Vector Machines (SVM) models
are the second and third best models in all cases, with
one outperforming the other in some cases and vice versa.
Therefore, we can argue that RF, which is an Ensemble model
which combines the output of several decision trees [45], is
superior than the other examined classifiers. Hence, we qualify
it as our predictor in the subsequent experiments.

Regarding the comparison among the NLP method utilized
for text representation, in Table II the macro average values
of the classification metrics achieved by the best performing
ML model (i.e., Random Forest) are presented. We can see
that all of the examined methods achieve adequate prediction
performance with F;-scores above 75% except for Word2vec,
which suffers from the OOV problem and also does not
consider the context of each token when representing in with
a numerical vector.

To the contrary, fastText operates on character and sub-
word level, and therefore, it can represent efficiently OOV
tokens. However, it still overlooks the context of tokens in
different sequences. This is where BERT excels, since it
provides context-aware embeddings, managing to outperform
Word2vec by almost 10%, but it lacks knowledge of the
programming language. The BERT variant called CodeBERT
is a method that encompasses all the aforementioned concepts
as it is context-aware (like BERT), handles OOV problem
using sub-word tokenization (similarly to fastText), and has
prior knowledge of programming languages.

The findings presented in Table II show that the OOV
problem is a significant one, resulting in low performance
by Word2vec. Furthermore, fastText managed to surpass the
context-aware BERT highlighting the importance of having
domain-specific prior knowledge. Moreover, the fact that fast-
Text and CodeBERT are very close not only to each other
but also to BoW, with BoW actually to be a bit higher,
suggests that the classification process may pay attention to
the occurrence in the code snippets of specific tokens that
are indicative of a vulnerability category and instead have
difficulty in capturing syntactic patterns that reside in the
source code.

Subsequently, in order to depict clearer the role of the
prior knowledge in transfer learning-based vulnerability clas-
sification, we present Table III. On the one hand, Table
III contains the classification scores of our approach when
using pre-trained Word2vec, fastText, and BERT embeddings.
These pre-trained embeddings have been trained on large
corpuses of natural language and have learnt syntactics and
semantics of words. Word2vec was originally pre-trained on
a dataset of google news, while fastText was pre-trained on
Wikipedia data and BERT on a dataset comprising English
Widipedia and BookCorpus®. On the other hand, Table III
presents the classification scores for Word2vec and fastText
embeddings that we trained using a Python corpus, and also for
the CodeBERT which is already pre-trained on programming
languages-related data.

Based on the findings presented in Table III, it is clear that
in all cases the prior knowledge of domain-specific language
(i.e., programming language) is very beneficial in the task of
vulnerability classification. In particular, we can see that when
representing code snippets with code-aware embeddings, we
succeed higher scores in all of accuracy, precision, recall, and
F;-score metrics.

Finally, we proceeded with training the whole Transformer-
based models. More specifically, instead of extracting their
embeddings and feeding them to the ML classifiers, we fine-
tuned BERT and CodeBERT models on the downstream task
of vulnerability classification. Table IV compares the fine-
tuning and embeddings extraction approaches of employing
Large Language Models (LLMs).

By inspecting Table IV, the fine-tuning approach seems
to the optimal one, at least for this specific objective. The

3https://en.wikipedia.org/wiki/BookCorpus
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TABLE II
EVALUATION RESULTS OF THE RANDOM FOREST CLASSIFIER PER TEXT VECTORIZING METHOD

Vectorizing Method | Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)

Bag-of-Words 81.9 82.3 772 79.1

Word2vec 71.6 76.2 64.3 68.0

fastText 80.2 84.0 73.9 71.7

BERT 76.9 86.6 69.4 75.1

CodeBERT 80.7 87.6 72.9 78.0
TABLE III

CLASSIFICATION PERFORMANCE OF NLP MODELS WITH PRIOR KNOWLEDGE OF NATURAL LANGUAGE VERSUS PROGRAMMING LANGUAGE

Vectorizing Method Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
pre-trained Word2vec 68.1 73.2 59.9 63.8
re-trained Word2vec 71.6 76.2 64.3 68.0
pre-trained fastText 74.9 78.0 68.0 71.5
re-trained fastText 80.2 84.0 73.9 717.7
pre-trained BERT 76.9 86.6 69.4 75.1
pre-trained CodeBERT 80.7 87.6 72.9 78.0

results showcase (i) the benefit of performing fine-tuning
over feature extraction in both BERT and CodeBERT cases,
and (ii) the superiority of the fine-tuned CodeBERT over
the fine-tuned BERT. More specifically, when utilizing BERT
embeddings with a RF classifier, the accuracy achieved is
76.9%, with corresponding precision, recall, and F;-score
of 86.6%, 69.4%, and 75.1%, respectively. However, fine-
tuning BERT significantly improves results, with a significant
boost in Fj-score from 75.1% to 82.5%. This improvement
suggests that fine-tuning enables BERT to adapt better to the

specific nuances of the downstream task, leading to enhanced
predictive performance.

In addition, fine-tuned CodeBERT demonstrates higher
scores than fine-tuned BERT, confirming the findings of Table
IIT regarding the effectiveness of CodeBERT in capturing
code-related features. Moreover, fine-tuning CodeBERT re-
sults in a substantial performance gain compared to the fea-
tures (i.e., embeddings) extraction approach, achieving an F-
score of 85.5%, which is by far the highest F;-score reported
in this study. This improvement highlights the importance of
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TABLE IV

Vectorizing Method Accuracy (%) | Precision (%) | Recall (%) | Fi-score (%)
BERT + RF 76.9 86.6 69.4 75.1
BERT fine-tuning 84.5 82.4 82.7 82.5
CodeBERT + RF 80.7 87.6 72.9 78.0
CodeBERT fine-tuning 87.4 86.3 85.2 85.5

fine-tuning pre-trained models, pointing the capability of the
Transformer architecture to capture long-term dependencies
that RF cannot. Interestingly, although fine-tuning CodeBERT
enhances accuracy and recall, it presents a slight decrease in
precision when compared to its feature extraction alternative,
indicating a likely trade-off among recall and precision. All
things considered, these results highlight the importance of
fine-tuning Transformer-based LLMs in order to maximize
their performance in downstream tasks such as vulnerability
classification, especially when working with domain-specific
data (i.e., source code).

For reasons of clarity and completeness, at this point we
provide the detailed results of the best performing vulnerability
classification approach (i.e., fine-tuning CodeBERT). Table V
showcases the precision, recall, and F;-score of CodeBERT
for each of the seven vulnerability categories.

TABLE V
DETAILED RESULTS OF THE BEST PERFORMING CODEBERT MODEL

Category Precision (%) | Recall (%) | Fi-score (%)
SQL injection 90 90 90
XSRF 87 92 90
Open redirect 79 70 75
XSS 92 80 86
Remote code execution 78 85 81
Command injection 95 86 91
Path disclosure 82 94 87

6. CONCLUSION AND FUTURE WORK

In this paper, our purpose was to propose a different
approach of classifying security vulnerabilities to vulnerability
categories such as path disclosure, command injection, etc.
Primarily, we focused on the categorization of detected vul-
nerabilities from the testing phase of the SDLC as opposed to
traditional techniques, which classify reported vulnerabilities
based on descriptions provided by NVD. To this end, we lever-
aged several NLP text representation and text classification
techniques adopting a multi-class classification procedure.

During the conducted investigation, BoW, Word2vec, fast-
Text, BERT, and CodeBERT models were trained to represent
the vulnerable code snippets. Several ML models were also
compared in order to choose the best classification model that
is fed with the numerical (e.g., embedding) representation of
the code snippets. We also proceeded with fine-tuning BERT
and CodeBERT to leverage the Transformer architecture. The
findings demonstrate the superiority of CodeBERT model,
which is the one that handles the OOV issue using sub-
tokenization, has domain-specific prior knowledge, and also

has contextual understanding. The results show important
benefit from fine-tuning over extracting embeddings approach,
as well.

Several directions for future work can be followed. For
instance, an interesting analysis could include the application
of explainable Al techniques to reveal which parts of the code
snippets were the most influential in the models’ category
predictions. Additionally, we aim at implementing a complete
working prototype that will be able to parse the source code of
software projects, identify vulnerable components, detect the
specific code snippets that contain vulnerabilities, and then
classify them to vulnerability categories.
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