

Transfer Learning for Software Vulnerability Prediction using Transformer Models

Ilias Kalouptsoglou^{a,b,*}, Miltiadis Siavvas^a, Apostolos Ampatzoglou^b, Dionysios Kehagias^a, Alexander Chatzigeorgiou^b

^a*Centre for Research and Technology Hellas/Information Technologies Institute, 6th km Charilaou-Thermi Rd, Thermi, 57001, Thessaloniki, Greece*

^b*University of Macedonia/Department of Applied Informatics, Egnatia 156, Thessaloniki, 54696, Thessaloniki, Greece*

Abstract

Recently software security community has exploited text mining and deep learning methods to identify vulnerabilities. To this end, the progress in the field of Natural Language Processing (NLP) has opened a new direction in constructing Vulnerability Prediction (VP) models by employing Transformer-based pre-trained models. This study investigates the capacity of Generative Pre-trained Transformer (GPT), and Bidirectional Encoder Representations from Transformers (BERT) to enhance the VP process by capturing semantic and syntactic information in the source code. Specifically, we examine different ways of using CodeGPT and CodeBERT to build VP models to maximize the benefit of their use for the downstream task of VP. To enhance the performance of the models we explore fine-tuning, word embedding, and sentence embedding extraction methods. We also compare VP models based on Transformers trained on code from scratch or after natural language pre-training. Furthermore, we compare these architectures to state-of-the-art text mining and graph-based approaches. The results showcase that training a separate deep learning predictor with pre-trained word embeddings is a more efficient approach in VP than either fine-tuning or extracting sentence-level features. The findings also highlight the importance of context-aware embeddings in the models' attempt to identify vulnerable patterns in the source code.

Keywords: Software security, Deep learning, Transfer learning, Transformer, Vulnerability prediction

¹ 1. Introduction

² The security level of software systems is a major concern for software development
³ enterprises, which want to produce high-quality and secure software free of vulnerabilities.

^{*} Corresponding Author.

Email addresses: iliaskaloup@iti.gr, iliaskaloup@uom.edu.gr (Ilias Kalouptsoglou),
siavvasm@iti.gr (Miltiadis Siavvas), a.ampatzoglou@uom.edu.gr (Apostolos Ampatzoglou),
diok@iti.gr (Dionysios Kehagias), achat@uom.edu.gr (Alexander Chatzigeorgiou)

4 Security vulnerabilities are weaknesses in the software, which can be exploited by external
5 threats [1]. The number of new Common Vulnerabilities and Exposures (CVEs) that
6 are discovered annually has increased significantly since 2017 and continues its upward
7 trend¹. Therefore, there is a need for techniques capable of identifying vulnerabilities in
8 software and hence, to prevent their exploitation. Vulnerability Prediction (VP) refers
9 to the set of techniques that can assist software developers to prioritize their inspection
10 efforts and time by identifying the vulnerable components of a software system.

11 The number of research publications in the field of VP is steadily growing [2]. Those
12 studies mainly propose Vulnerability Prediction Models (VPMs), which aim at classifying
13 the examined software components as vulnerable or not. VPMs commonly comprise
14 Machine Learning (ML) models, which are fed with software characteristics encoded
15 mainly in the form of software metrics or in textual form (i.e., text mining). Text
16 mining-based models seem to be the most promising ones [3],[4] and have attracted the
17 most research interest, as well [2].

18 Initially, text mining methods utilized the Bag of Words (BoW) technique for repre-
19 senting the source code as a set of words, each accompanied by the number of occurrences
20 or frequency of occurrence in the code [4],[5]. The advances in Deep Learning (DL) led
21 to the creation of more complex models, which are trained to learn sequential data that
22 consist of large sequences of tokens (i.e., words) of the source code [3],[6],[7],[8],[9]. In this
23 approach, the tokens of the source code are encoded with the so-called word embedding
24 vectors using algorithms such as word2vec [10] and then they are given as input into
25 DL models, usually into Recurrent Neural Networks (RNNs) and Convolutional Neural
26 Networks (CNNs).

27 Later studies appeared, which proposed the representation of the source code in text-
28 rich graphs (e.g., Abstract Syntax Trees, Code Property Graphs, etc.) [11],[12] in order
29 to capture more meaningful syntactic and semantic relationships between the tokens than
30 the traditional word embedding techniques (e.g., word2vec, fastText [13], etc.). Those
31 text-rich graphs are fed into Graph Neural Networks (GNNs) that generate the graph
32 embeddings of the analyzed software components and then the produced embeddings are
33 given as input to a ML classifier.

34 Recently, studies using transfer learning to construct accurate VPMs based on text
35 mining have begun to emerge [14],[15],[16]. Since the introduction of the Transformer
36 architecture [17], several pre-trained Large Language Models (LLMs) have been proposed
37 by the leading companies in Natural Language Processing (NLP) and Artificial Intelli-
38 gence (AI) fields, such as the Bidirectional Encoder Representations from Transformers
39 (BERT) [18] and the Generative Pre-trained from Transformer (GPT) [19]. Those mod-
40 els have acquired a deep understanding of Natural Language (NL) through being trained
41 in a primary task, such as the Masked Language Modeling (MLM), and they can be
42 further trained (i.e., fine-tuned) for several downstream tasks (e.g., text classification).

43 Such a downstream task which could benefit from transfer learning is text mining-
44 based VP. Early attempts of using Transformer-based models for VP, examined whether
45 extracting pre-trained Transformer embeddings (most commonly BERT embeddings),
46 instead of using embeddings generated by word2vec or fastText, is beneficial in predicting
47 vulnerabilities [14],[20]. Some other studies proceeded with fine-tuning Transformer-
48 based models on the classification task of VP using a labeled vulnerability-related dataset

¹<https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures>

[15],[16]. Most studies that employed pre-trained models for VP compared their approach with previous state-of-the-art methods, and their findings indicated that transfer learning is a promising solution in the field.

However, there is a variety of techniques and different directions (i.e., implementation choices) considered when applying transfer learning for tasks related to code analysis in general and VP in particular. First, as mentioned above, the studies in the VP-related literature use different implementation choices to construct Transformer-based VPMs. For instance, some studies use pre-trained models to extract their embeddings, feed them to separate ML models, and train the models on the classification task (i.e., word embeddings extraction approach) [20], whereas some others train the entire pre-trained model on VP (i.e., fine-tuning approach) [16],[21]. One can also freeze the pre-trained layers, extract the sentence embeddings, and train only the classification head (i.e., sentence-level embeddings extraction approach).

Moreover, there are questions as to whether bimodal LLMs that are pre-trained in both NL and Programming Language (PL), or LLMs solely specialized in coding tasks are more suitable for the task of VP. Such bimodal models may offer an advantage by leveraging both semantic information from NL (e.g., relations between function names and targeted functionalities) and contextual information from comments in the code, which can potentially improve understanding of the code and, thus, improve the accuracy of VP. In other words, it is a challenge to investigate whether the choice of including prior knowledge of NL can assist code-oriented LLMs to capture those semantic relations in source code that are similar to NL semantics or whether it is redundant. At this point, we have to specify that by the term bimodal we refer to the two examined data formats (i.e., PL and NL modalities). Therefore, when we refer to bimodal models in this study, we are referring to models that have been pre-trained on these two kinds of data, whereas mentioning unimodal models refers to models pre-trained exclusively on code.

Overall, it can be argued that there are various implementation choices that can be made during the implementation of transfer learning-based VPMs. However, previous research attempts just presented the model that was derived from their implementation choices, without providing insight on how these choices affected the model performance and which actually played the most important role in the final accuracy of the model. To the best of our knowledge, no research endeavor exists that specifically evaluates the impact of different implementation choices on the predictive performance of Transformer-based VPMs. These questions are of high interest both for practitioners who would like to understand how their implementation choices could affect the VPM performance, and for facilitating further research in the field of VP.

To this end, this study aims at answering the aforementioned questions and dilemmas. More specifically, our objective is to explore transfer learning for VP, with the intention to not only check whether there is any benefit to applying transfer learning to VP, but mainly to examine how we can benefit the most by leveraging the utilization of pre-trained Transformer models for this purpose. In other words, the main objective of our work is to examine which of the implementation choices that are fundamental part of the Transformer-based model construction, seem to play a more important role in the model's accuracy in the downstream task of VP. It is important to shed some light on the field with an empirical evaluation scheme and, therefore, to show which transfer learning methods are most beneficial to VP, thereby assisting future research endeavors in selecting the optimal ones. For instance, our study could guide researchers and practitioners on

96 which of all the pre-trained models that continuously arise to choose for their analyses.
97 To conduct our analysis, we employ the CodeGPT [22] model, which is the pre-trained
98 on code variant of the GPT model, specifically the GPT-2 model, which is the latest open
99 source version of GPT. We also use the CodeBERT [23] model (i.e., pre-trained on code
100 variant of BERT). We proceed with the selection of these two models, which are vari-
101 ants of two of the most widely used Transformer-based models (i.e., GPT and BERT)
102 in software engineering and in VP [24], as representative examples of two distinct archi-
103 tectures. Specifically, CodeGPT-2 represents a decoder-only Transformer-based model,
104 whereas CodeBERT represents an encoder-only one. Briefly, our contributions are sum-
105 marized as follows:

106 • We investigated the two common ways of applying transfer learning in vulnerability
107 prediction: (i) feature-based approach (i.e., embedding extraction), and (ii) fine-
108 tuning approach.

109 • We compared the usage of pre-trained on code unimodal models to bimodal models
110 with both programming and natural language understanding.

111 • We identified the optimal way of utilizing CodeGPT-2 and CodeBERT in vuln-
112 erability prediction.

113 • We compared with several state-of-the-art approaches, including BoW and word2vec
114 embeddings, which, in contrast with Transformer’s embeddings, are not contextual
115 [25], as well as with graph-based models.

116 The rest of the paper is organized as follows: Section 2 provides a summary of the
117 existing work in the related literature. Section 3 describes thoroughly our approach, the
118 utilized dataset, our experimental setup, and the evaluation scheme that we follow. In
119 Section 4, we present the results of the conducted experiments, and in Section 5, we
120 discuss our findings and the lessons learned. Section 6 discusses threats to validity, and
121 finally, Section 7 concludes the paper and provides directions for future work.

122 **2. Related work**

123 In this section, we discuss related work on software VP using ML techniques. We
124 also present the background of the Transformer models, and subsequently, we provide an
125 overview of the previous studies that utilized variants of the Transformer architecture to
126 perform VP.

127 *2.1. Vulnerability prediction*

128 Vulnerability prediction models are commonly created using ML techniques that util-
129 ize software attributes as features. The two most widespread input kinds of VPMs
130 are (i) software metrics, and (ii) text features. Shin and Williams [26],[27] examined
131 the capacity of complexity metrics to predict software vulnerabilities. Chowdhury and
132 Zulkernine [28] observed that metrics such as complexity, coupling, and cohesion can be
133 used efficiently to predict vulnerabilities using ML algorithms (e.g., Decision Trees, Naive
134 Bayes, etc.). Kalouptsoglou et al. [29] presented a Multilayer Perceptron (MLP)-based

135 approach using several software metrics extracted by static code analysis as features in
136 order to perform cross-project VP with sufficient results.

137 Text mining-based attempts initially represented the source code as BoW, i.e., a set
138 of words along with their frequencies of appearance [5],[30]. Later on, various researchers
139 represented the source code as sequences of tokens (i.e., words), encoded the sequences
140 to numerical vectors, and provided them to DL models suitable for learning sequential
141 data, such as RNNs and CNNs. In particular, Dam et al. [6] trained a Long Short-Term
142 Memory (LSTM) model to learn sequences of tokens represented with numerical vectors.
143 Li et al. [8] proposed a Bidirectional LSTM model, which received as input slices of code
144 tokens after transforming them to word2vec embeddings. In [9], an empirical evaluation
145 of different techniques for word embedding software components took place, showcasing
146 the efficiency of word2vec. Moreover, Li et al. [31] proposed the SySeVR framework that
147 uses DL to detect vulnerabilities, focusing on obtaining code representations capable of
148 accommodating semantic and syntax information related to vulnerabilities.

149 In their study [11], Zhou et al. proposed Devign, a model based on GNNs, for identi-
150 fying vulnerable source code functions. They extracted graphical representations of the
151 source code such as Abstract Syntax Trees (AST), Control Flow Graphs (CFG), Data
152 Flow Graphs (DFG) etc., and through GNNs, they generated graph embeddings of the
153 source code functions. Those embeddings were then fed to a classifier in order to classify
154 the functions as vulnerable or not. Chakraborty et al. [12] presented a DL-based method
155 named ReVeal, where they extracted graphical representations of the source code, specif-
156 ically Code Property Graphs (CPGs) [32]. They fed the CPGs to GNNs to learn the
157 graph embeddings, and then, they used an MLP to classify the functions as vulnerable
158 or not. Through their analysis, they replicated several state-of-the-art methods. Their
159 findings highlighted the failure of the existing approaches to perform accurate VP on
160 real-world data and emerged the need for techniques of greater precision.

161 *2.2. Transformer models*

162 Bahdanau et al. [33] proposed the Attention mechanism in neural machine trans-
163 lation, addressing the issue of using a fixed-length context vector for input sentences.
164 Specifically, the Attention mechanism assigns Attention weights to each element of the
165 input sequence, and thus, it enables sequence-to-sequence models to generate new words
166 by searching specific positions, which contain the most relevant information [33]. Based
167 on the Attention mechanism, Vaswani et al. [17] introduced the Transformer architec-
168 ture for sequence-to-sequence tasks managing to outperform state-of-the-art models (e.g.,
169 CNN and LSTM) in accuracy and training cost.

170 Radford et al. [19] developed OpenAI GPT leveraging the decoder part of the Trans-
171 former architecture. GPT was pre-trained in next word prediction to gain a deep under-
172 standing of NL and then fine-tuned on objectives such as questioning-answering, sentence
173 similarity, etc. Next, Devlin et al. [18] introduced Google AI's pre-trained model called
174 BERT, which utilizes the encoder part of the Transformer architecture. Having been
175 pre-trained on the MLM objective, where certain tokens of the input sentences have
176 been masked and then the model is trained to predict the masked tokens, BERT can be
177 fine-tuned in various downstream tasks. BERT has attracted much interest in the NLP
178 field, forming the basis for the development of many other models [34],[35],[36].

179 Furthermore, Facebook AI presented Bidirectional Auto-Regressive Transformers (BART)
180 [37], proposing a pre-trained autoencoder for sequence-to-sequence learning. By using

181 both the encoder and decoder parts of the Transformer architecture, they pre-trained a
182 model that demonstrated high accuracy when fine-tuned in text generation tasks. Later
183 on, more pre-trained Transformer-based models appeared in the NLP-related literature,
184 such as Google’s Text-to-Text Transfer Transformer (T5) [38] and Language Model for
185 Dialog Application (LaMDA) [39].

186 *2.3. Transformer models in vulnerability prediction*

187 In an early attempt to employ Transformer models in VP, Bagheri et al. [20] presented
188 a comparison of various Python source code encoding techniques for VP. Specifically,
189 they examined the effectiveness of word2vec, fastText, and BERT embeddings along
190 with an LSTM model. Yuan et al. compared traditional word2vec, fastText, and glove
191 [40] embedding techniques with the embeddings gained from BERT’s code variant called
192 CodeBERT [41]. Their results highlighted the effectiveness of CodeBERT embeddings.

193 VulDeBERT was a study that applied fine-tuning on BERT pre-trained model to the
194 downstream task of VP, succeeding promising results [42]. VulBERTa also managed to
195 surpass several state-of-the-art approaches having pre-trained knowledge of source code
196 [43]. Fu et al. proposed LineVul that was a promising attempt to employ a Transformer
197 model in VP [21]. In particular, they used the attention mechanism of the BERT archi-
198 tecture in order to detect vulnerabilities at line level. In a more recent endeavor, Purba et
199 al. utilized some of the most powerful LLMs to perform vulnerability detection showing
200 promising results in comparison with traditional static code analysis tools [44].

201 *2.4. Beyond state-of-the-art*

202 As opposed to the aforementioned studies, in this paper, we do not intend to propose
203 a new model, but we are interested in how to get the most out of transfer learning in
204 VP. More specifically, we empirically examine how implementation choices that are fun-
205 damental in the Transformer-based model construction process affect the performance
206 of the produced VPMs. Existing research works were limited to introducing a novel
207 Transformer-based VPM, without examining (at least reporting) how their implementa-
208 tion choices affected the model performance. In particular, Bagheri et al. [20] and Yuan
209 et al. [41], were limited to the utilization of pre-trained word embeddings without con-
210 sidering other transfer learning approaches. Furthermore, VulDeBERT [42], VulBERTa
211 [43] and LineVul [21] as well as the study of Purba et al. [44] applied solely fine-tuning
212 without examining whether the utilization of pre-trained embeddings with a common
213 ML algorithm could provide similar or even better results, or without trying to freeze
214 some pre-trained layers and train the rest ones.

215 Concisely, most studies in the VP field that use pre-trained models present an ap-
216 proach without neither explaining nor justifying their choice to use a specific model
217 architecture, a PL, NL or mixed PL and NL - pre-trained model, and a word embedding,
218 sentence embedding or fine-tuning approach. Usually, they do not even specify which
219 pre-trained model variant they use (e.g., unimodal or bimodal CodeBERT). To this
220 end, contrary to previous studies that focused solely on proposing a Transformer-based
221 VPM without examining the implementation choices that lead to improved accuracy, the
222 current study examines different approaches that can be followed during the implemen-
223 tation of transfer learning-based VPMs and attempts to shed some light regarding the
224 suitability and the accuracy of the different variations in the employment of pre-trained

225 Transformer-based solutions for VP. Through this process, the best possible approach for
 226 applying transfer learning in the field of VP emerges. Table 1 summarizes all the afore-
 227 mentioned related studies that present VPMs in terms of dataset, code representation
 228 format, model, evaluation metrics and, in case of Transformer-based models, the imple-
 229 mentation choices made to build VPMs using transfer learning. We label the studies by
 230 the name of the proposed model or, if there is no name, by the names of the authors.

Table 1: Summary of the various related studies presenting vulnerability prediction models.

Name	Dataset	Representation	Model	Eval. Metric	Implem. Choice
Shin and Williams [26],[27]	Firefox JS Engine	Software metrics	Statistical correlation	Accuracy, Recall, FNR	N/A
Chowdhury and Zulkernine [28]	Mozilla Firefox	Software metrics	Decision Tree	F_1 -score	N/A
Kalouptsoglou et al. [29]	PHP Drupal, PHPMyAdmin, Moodle [4]	Software metrics	MLP	Recall	N/A
Scandariato et al. [5]	Android OS Platform	BoW	Random Forest	F_2 -score	N/A
Hovsepyan et al. [30]	K9 mail client	BoW	Support Vector Machine	Accuracy, Recall, Precision	N/A
Dam et al. [6]	Android OS Platform, Firefox	Sequence of tokens	LSTM	F_1 -score	N/A
VulDeePecker [8]	NVD [45] + SARD [46]	Sequence of tokens	word2vec + BiLSTM	F_1 -score	N/A
Kalouptsoglou et al. [9]	NVD [45] + SARD [46]	Sequence of tokens	word2vec + CNN/LSTM	F_2 -score	N/A
SySeVR [31]	NVD [45] + SARD [46]	Sequence of tokens, AST, PDG	word2vec + BiGRU	F_1 -score	N/A
Devign [11]	Devign [11]	Graph	GNN	F_1 -score	N/A
ReVeal [12]	ReVeal [12]	Graph	GNN	F_1 -score	N/A
Bagheri et al. [20]	Python GitHub [20]	Sequence of tokens	CodeBERT + LSTM	F_1 -score	Word embedding extraction
Yuan et al. [41]	NVD [45] + SARD [46]	Sequence of tokens	CodeBERT	Precision, Recall	Word embedding extraction

Name	Dataset	Representation	Model	Eval. Metric	Implem. Choice
VulDeBERT [42]	NVD [45] + SARD [46]	Sequence of tokens	BERT	F ₁ -score	Fine-tuning
VulBERTa [43]	Draper [47], CodeXGLUE [22], D2A [48]	Sequence of tokens	RoBERTa	F ₁ -score	Fine-tuning, Sentence embedding extraction
Purba et al. [44]	CVEfixes [49]	Sequence of tokens	CodeGen, GPT-3.5, Davinci	F ₁ -score	Fine-tuning
LineVul [21]	Big-Vul [50]	Sequence of tokens	CodeBERT	F ₁ -score	Fine-tuning
Present study	Big-Vul [50]	Sequence of tokens	CodeBERT, CodeGPT-2	F ₁ -score	Fine-tuning, Word embedding extraction, Sentence embedding extraction, Data modalities

231 **3. Study design**

232 In this section, the entire methodology of the current study is described. Initially, we
 233 define the research questions that outline the analysis and explain the selection of the
 234 implementation choices examined. Then we present the overview of our methodology
 235 and subsequently we provide details for the dataset, the utilized models, the embeddings
 236 (i.e., features) - based approaches, the fine-tuning method as well as the training and
 237 evaluation procedures we followed.

238 *3.1. Research questions definition*

239 The research goals of the current study can be expressed through the following Re-
 240 search Questions (RQs):

241 • **RQ₁**: What is the impact of different transfer learning strategies on the perfor-
 242 mance of Transformer-based models for vulnerability prediction?

243 RQ₁ investigates whether it is better for vulnerability prediction to fine-tune the
 244 pre-trained models on this specific task (i.e., fine-tuning approach) or extract their
 245 features and learn to classify them (i.e., feature-based approach). In addition, it
 246 compares the two feature-based approaches by investigating whether it is better to
 247 extract the sentence embeddings to represent the input and train a classifier or to
 248 extract the pre-trained word embeddings and train a separate DL predictor.

249 • **RQ₂**: What are the computational trade-offs between different transfer learning
250 strategies in constructing Transformer-based vulnerability prediction models?

251 RQ₂ aims at providing insights into trade-offs between performance and computa-
252 tional factors such as training time, memory requirements, model complexity, and
253 inference time, when selecting between fine-tuning and feature-based approaches
254 for constructing Transformer-based VPMs.

255 • **RQ₃**: How does pre-training on both natural and programming languages impact
256 vulnerability prediction performance compared to pre-training on code alone?

257 RQ₃ is responsible for determining whether transfer learning from models pre-
258 trained in both natural and programming languages (i.e., bimodal pre-training)
259 enhances vulnerability prediction as opposed to models pre-trained exclusively in
260 programming languages (i.e., unimodal pre-training).

261 • **RQ₄**: How do context-aware embeddings compare to traditional static embeddings
262 in vulnerability prediction?

263 RQ₄ examines the impact of the context-aware embedding vectors, which are ex-
264 tracted from Transformer-based models, on the implementation of vulnerability
265 prediction solutions compared to traditional techniques that have been utilized for
266 embedding the source code in static vectors (i.e., global vectors), thereby extracting
267 insightful observations regarding the context-awareness of LLMs.

268 • **RQ₅**: How does the best-performing transfer learning approach compare against
269 state-of-the-art vulnerability prediction approaches?

270 RQ₅ compares the optimal model, as identified in the previous RQs, in contrast to
271 some well established state-of-the-art approaches, which are based either on text
272 mining or on graphical representations.

273 3.2. Selection of implementation choices

274 As the primary motivation of this study is to shed some light in the fragmented
275 literature on Transformer-based VP, we explore how specific implementation choices in
276 constructing Transformer-based VPMs influence model accuracy. It is important to note
277 that our study does not aim to analyze all possible transfer learning implementation
278 choices and their combinations, but we focus on the key approaches that have already
279 been employed in the VP-related literature.

280 To the best of our knowledge, no prior research has systematically evaluated the
281 impact of different implementation choices on Transformer-based VPMs, and thus, in
282 the current empirical study we focus on providing recommendations on the fundamental
283 transfer learning strategies that have been previously utilized in VP research, as discussed
284 in Section 2. In particular, we compare the fine-tuning [21],[42],[43],[44] and feature-based
285 [20],[41],[43] (both sentence-level and word-level feature extraction) approaches, which
286 represent fundamental transfer learning methodologies for adapting Transformer models
287 to downstream tasks.

288 Concisely, we based the selection of implementation choices on whether they are fun-
289 damental in transfer learning, and whether they have already been used in the VP-related
290 literature, taking also into account the specific characteristics of the field. Hence, we de-
291 cided to proceed with the comparison of the fundamental fine-tuning and feature-based

292 directions, which have shown promising performance in VP, as well as by evaluating a
293 domain-specific option regarding the benefit of incorporating prior knowledge of NL com-
294 pared to prior knowledge of source code data solely. This evaluation allows us to derive
295 actionable insights for practitioners and researchers interested in building Transformer-
296 based models for VP.

297 *3.3. Methodology*

298 This section provides a thorough presentation of the current study’s entire method-
299 ology. In Figure 1 there is the high-level overview of our implementation strategy. It
300 includes three main phases, namely data preparation, training setup, and model test-
301 ing and comparison. More details about the steps of these phases are provided in the
302 following subsections.

303 *3.3.1. Data preparation*

304 Regarding the utilized dataset, we used the Big-Vul dataset [50] that consists of source
305 code retrieved from public repositories found on GitHub, all written in the C/C++
306 programming languages. This dataset contains real world vulnerabilities that have been
307 reported in the Common Vulnerabilities and Exposures (CVEs) database.

308 For the construction of Big-Vul, Fan et al. [50] developed a tool capable of crawling
309 the public CVE database to gather all the available information of a CVE, including
310 the references linking to the relevant software products, which enabled them to search
311 the products with open-source git repositories [50]. This way, they found vulnerability-
312 related commits and extracted the corresponding changes in the source code in order
313 to get the changed parts between before and after repairing a vulnerability. The parent
314 version of these commits (i.e., version before repairing) is the one that contains the
315 reported vulnerability.

316 Through this process, they managed to create a dataset of 188,636 samples collected
317 from 348 open-source software projects with several vulnerability types included. Specif-
318 ically, the dataset has 10,900 vulnerable methods along with their fixes and 177,736 other
319 neutral (i.e., non-vulnerable) methods that can be considered as clean since no vuln-
320 erability has been reported for them yet. Hence, the dataset has a ratio of vulnerable
321 methods equal to 6.13 %.

322 After fetching Big-Vul dataset, we proceeded with data cleansing. For this purpose,
323 we examined the Croft et al. [51] study, which conducts a quality assessment to remove
324 noise in the data of some well established vulnerability datasets including Big-Vul. Based
325 on their findings, the *Chromium* project had to be removed from the dataset as it was
326 found to reduce the accuracy of the overall dataset by leading the vulnerability prediction
327 models to infer incorrect patterns between classes. In particular, Croft et al. noticed
328 that most of the vulnerability reports related to *Chromium* were improperly traced since
329 its repository is not naturally hosted by GitHub. They validated their observation by
330 showing a large drop in vulnerability prediction models accuracy when removing noisy
331 data from the testing set, indicating to incorrect patterns learnt during the training
332 phase. Therefore, we proceeded to the removal of *Chromium* from both the training and
333 evaluation sets in order to avoid introducing noise when constructing our models.

334 Next, we separated the dataset randomly in three different parts i.e., (i) training,
335 (ii) validation, and (iii) testing parts, following a common evaluation technique in ML

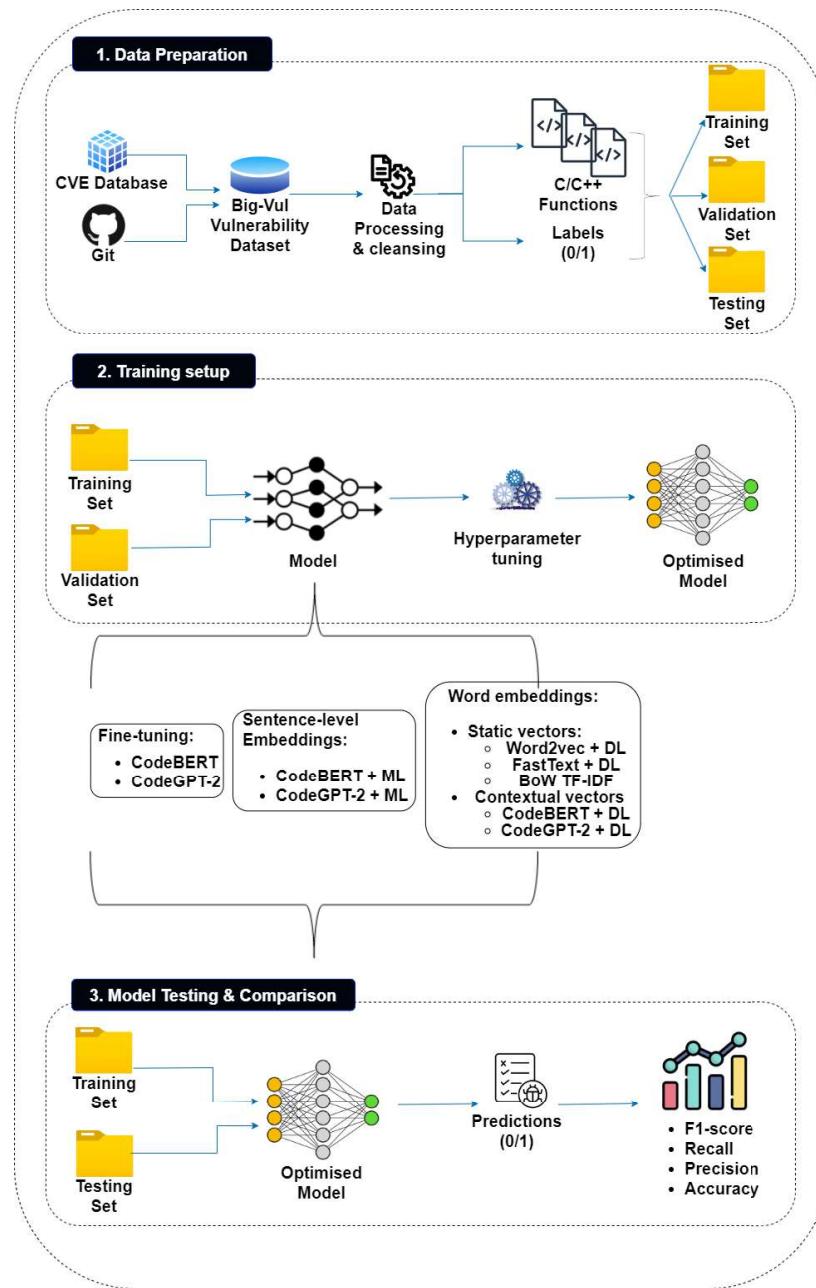


Figure 1: Overview of the overall approach.

336 and in VP specifically [2]. Specifically, we divided the entire dataset into two sets; one
337 for training and validation and one as a completely unseen set for testing purposes in
338 percentages of 90-10 %. We then divided the large set of 90 % further into training and
339 validation sets, again in percentages of 90-10 %. The training dataset was utilized for
340 the training of the examined models on the vulnerability-related data. The validation
341 set was utilized for evaluating the produced models during the hyperparameter selection
342 phase, whereas the testing set was used as a testbed for the final evaluation of the
343 analyzed approaches, and therefore, for the models' comparison and the conclusions of
344 our analysis.

345 *3.3.2. Training setup*

346 In the training phase of the methodology, as can be seen in Figure 1, we fed the input
347 training data in the examined models in order to optimise them (i.e., find the optimal
348 hyperparameters), based on their performance on the validation data, and therefore,
349 produce the optimal model per each examined approach. In Figure 1, there are mentioned
350 the three different examined approaches for leveraging pre-trained models in VP; (i) fine-
351 tuning, (ii) sentence-level embeddings extraction, and (iii) word embeddings extraction.

352 For all the examined transfer learning approaches, we leveraged the pre-trained on
353 code variants of BERT and GPT-2 models, namely as CodeBERT and CodeGPT-2, which
354 have demonstrated promising results for code-related objectives [23],[21],[52]. CodeGPT-
355 2 is based on the GPT-2, which is the latest open-source version of the GPT model that
356 was developed by OpenAI². GPT-2 employs the decoder part of the Transformer archi-
357 tecture and is pre-trained on the primary task of next word prediction. It is more suitable
358 for text generation tasks. In *CodeXGLUE* study [22], Lu et al. presented CodeGPT-2, a
359 variant of GPT-2, which was pre-trained on PL data retrieved from the Java and Python
360 sets of the *CodeSearchNet*³ dataset. This model has the same decoder-only Transformer
361 architecture and pre-training objective (i.e., next word prediction) as the GPT-2 but has
362 prior knowledge of PL. Specifically, there are two versions of it; one that is pre-trained
363 from scratch on PL⁴ and another which uses as a basis the GPT-2 weights and continues
364 its training on the code corpus (i.e., domain adaptive model)⁵. To distinguish them, the
365 latter is mentioned as *CodeGPT-2-Adapted*.

366 On the other hand, CodeBERT is an encoder-only architecture, which, as its name
367 implies, belongs to the BERT variants. BERT was originally pre-trained on the MLM
368 objective. In MLM, the 15% of the tokens sequences is masked and then the model
369 learns to predict the actual values of the masked tokens. An improved variant of BERT
370 is RoBERTa, which is trained on a much larger dataset with a more effective training
371 approach. The architecture of the RoBERTa model is the basis for CodeBERT, which
372 was developed by Microsoft AI. CodeBERT has two variants: (i) the *CodeBERT-base*
373 model⁶, which is pre-trained on natural and programming language pairs (i.e., bimodal
374 data), and (ii) the *CodeBERT-base-MLM* model⁷, which is pre-trained on source code

²<https://openai.com/>

³https://huggingface.co/datasets/code_search_net

⁴<https://huggingface.co/microsoft/CodeGPT-small-py>

⁵<https://huggingface.co/microsoft/CodeGPT-small-py-adaptedGPT2>

⁶<https://huggingface.co/microsoft/codebert-base>

⁷<https://huggingface.co/microsoft/codebert-base-mlm>

375 data in the task of predicting the masked tokens in code fractions. The former is pre-
376 trained on documentation and code pairs of the *CodeSearchNet* dataset, whereas the
377 latter is pre-trained on the code corpus of the *CodeSearchNet* dataset.

378 For the examined Transformer-based models, we used the *Transformers* library that
379 is provided by Hugging Face (HF)⁸. This library provides implementations of several
380 pre-trained NLP models, including CodeGPT-2, and CodeBERT, and also their pre-
381 trained weights. We used the HF library to load the aforementioned models in order
382 both to fine-tune the pre-trained models in the downstream task of VP and to extract
383 their sentence-level or word-level embeddings.

384 *3.3.3. Fine-tuning experiments*

385 To begin with, fine-tuning in VP is the process of training on a labeled dataset both
386 the layers of a pre-trained model and an extra classification layer placed on the top
387 of the existing model (classification head). In fine-tuning, the model adapts its prior
388 language knowledge on a specific objective. In this study, we fine-tuned CodeBERT and
389 CodeGPT-2 on the objective of VP, using the vulnerability dataset described in Section
390 3.3.1. During fine-tuning, the training dataset, in the format of sequences of tokens,
391 is fed to the VPM that consists of the pre-trained Transformer-based model and the
392 classification head, and then, both of them are trained and their weights are updated in
393 order to minimize a loss function, which is the Cross-Entropy loss⁹. Finally, the models
394 learn to classify software components as vulnerable or not.

395 CodeBERT and CodeGPT-2 were fine-tuned using their default Transformer archi-
396 tecture as provided by HF. Specifically, CodeBERT, similarly to RoBERTa, has 12 Trans-
397 former layers with 768 hidden size, 12 attention heads and a total of 125 millions pa-
398 rameters. CodeGPT-2, similarly to GPT-2, has also 12 layers, 768 hidden size, and 12
399 attention heads, but it has 117 millions parameters. We added a classification head, and,
400 then we proceeded with manual hyperparameter tuning based on empirical observations,
401 using as a starting point the default hyperparameter settings recommended in the origi-
402 nal studies of CodeBERT [23] and CodeGPT-2 [22], in order to determine the values of
403 the optimization hyperparameters, ending up with a learning rate (LR) set as 0.00002
404 (i.e., 2e-5) along with a linear scheduler where the LR decays linearly during the training
405 procedure. For the optimization of the gradient descent, we used AdamW (Weighted
406 Adam) optimizer [53]. The sequences of the input had a maximum length equal to 512,
407 the longest length they are capable of supporting. We employed also the Early Stopping
408 technique to determine the number of epochs. In addition, zero padding was used to
409 ensure that each sequence had the same length throughout the encoding of the textual
410 data using CodeBERT and CodeGPT-2 tokenizers, and the truncation approach was
411 used to trim sequences that exceeded the maximum length. Table 2 summarizes the
412 aforementioned characteristics of the fine-tuned CodeBERT and CodeGPT-2 models.

413 *3.3.4. Sentence-level embedding extraction experiments*

414 Apart from fine-tuning, we leveraged those LLMs in vulnerability prediction by fol-
415 lowing feature-based approaches. Specifically, we fed to them the input data and we

⁸<https://huggingface.co/>

⁹<https://en.wikipedia.org/wiki/Cross-entropy>

Table 2: Characteristics of the models considered in the fine-tuning and sentence-level embedding extraction approaches.

Attribute	CodeBERT	CodeGPT-2
Versions	Base, Base-MLM	Base, Adapted
Transformer Variant	RoBERTa	GPT-2
Transformer Layers	12	12
Fully Connected Layers	1	1
Hidden Size	768	768
Attention Heads	12	12
Learning Rate (LR)	0.00002	0.00002
Optimizer	AdamW	AdamW
Loss Function	Cross-Entropy	Cross-Entropy
Max Length	512	512

416 extracted the features of the last hidden layer (i.e., sentence-level embeddings). The
 417 extracted embeddings were given then as input to an ML classifier, which actually is a
 418 classification layer placed on top of the Transformer model and is called classification
 419 head. During training, the pre-trained layers froze and the classification head learnt to
 420 classify functions as vulnerable or not.

421 *3.3.5. Word-level embedding extraction experiments*

422 Furthermore, we employed LLMs by extracting their pre-trained word embedding
 423 vectors. Word embedding is a method that represents words as vectors of real numbers.
 424 These word vectors capture semantic and syntactic information about words, enhancing
 425 the capabilities of ML models to learn textual data. A popular word embedding algo-
 426 rithm is word2vec [10], which is the method most commonly used in the VP field [2].
 427 However, LLMs have proposed a different embedding approach by producing context-
 428 aware embedding vectors. During this approach, the way words are used in sequences
 429 varies based on their context. This results in a word having different vector representa-
 430 tions depending on the context. In our analysis, we transformed the sequences of source
 431 code tokens to sequences of contextual (CodeBERT or CodeGPT-2) embedding vectors.
 432 These sequences were the input to a DL model, which was trained in binary classification
 433 to predict whether a sequence has vulnerabilities.

434 For the selection of the DL classifier, we examined various DL algorithms. We fo-
 435 cused mainly on the RNNs, since they are the most capable neural networks (except
 436 Transformers) for learning sequential data similar to language data. During training, we
 437 used the validation data in order to configure the optimal hyperparameters of the DL
 438 models. After an extensive hyperparameter tuning employing the Grid-search approach
 439 [54], we ended up with Adam optimizer, learning rate equal to 0.001, and batch size 64.
 440 We applied also the Early Stopping technique to determine the number of epochs before
 441 the models start to overfit. To avoid overfitting, we also utilized dropout layers in all
 442 layers (both hidden layers and dense output's dense layer). For the initialization of the
 443 weights, the Xavier Initialization was used. We put three recurrent layers (with 500-
 444 100-200 nodes respectively) along with the tanh activation function. The loss function
 445 utilized was the binary cross entropy with the Sigmoid activation function in the last

Table 3: Optimal configurations of the deep learning model used in the word-level embedding extraction approach.

Configuration	Value
Embedding Model	CodeBERT & CodeGPT-2
Embedding Type	Contextual
Embedding Size	768
DL Classifier	BiGRU
Recurrent Layers	3
Hidden Size	500 - 100 - 200
Initializer	Xavier
Optimizer	Adam
Learning Rate (LR)	0.001
Activation Function	tanh
Output Activation Function	Sigmoid
Loss Function	Cross-Entropy
Dropout per Layer	0.2 - 0.1 - 0.1

446 layer. We also experimented with different kinds of recurrent layers. In particular, we
447 compared several RNN variants including LSTM, Gated Recurrent Unit (GRU), Bi-
448 direction LSTM (BiLSTM), and Bidirectional GRU (BiGRU). We also examined 1-D
449 CNNs since they have demonstrated competent performance in VP [2],[3],[9]. It turned
450 out that BiGRU is the best model for our case, at least for Big-Vul. A summary of the
451 aforementioned configurations of the DL classification model is provide in Table 3.

452 *3.3.6. Traditional word embedding experiments*

453 Finally, we used also traditional embedding methods in order to facilitate direct
454 comparison of context-aware embeddings versus static (i.e., global) embeddings, such as
455 word2vec ones. Static vectors represent each word in a unique matter, regardless their
456 particular context. To train static embeddings such as the word2vec vectors, we utilized
457 the training set of our dataset, while the validation set was used as a basis for selecting
458 the hyperparameters of the word embedding algorithms by employing the Grid-search
459 technique [54]. We applied the word2vec algorithm on this set in order to learn source
460 code-aware word2vec static embedding vectors. We then fed the sequences of word2vec
461 vectors to the DL model and we trained it to classify the sequences to vulnerable and
462 non-vulnerable. We repeated the whole process by employing also the fastText algorithm,
463 which, although still produces static vectors, it manages to tokenize also out of vocabulary
464 words, since it acts on sub-word and character level. To train the static word embeddings
465 on C/C++ data, the vector dimension, after several experimentations, was chosen equal
466 to 100 and the context window size equal to 20 words. We utilized Skip-gram and
467 Continuous Bag-of-Words (CBOW) variants for word2vec and fastText respectively. Last
468 but not least, for reasons of completeness, we proceeded also with the state-of-the-art
469 BoW representation. For the BoW approach, we utilized the Random Forest classifier,
470 which has been widely adopted in the literature of VP [2],[4],[21], often demonstrating
471 high accuracy.

472 *3.3.7. Model testing and comparison*

473 For the evaluation of all the examined techniques, we quantify the produced results
474 using common classification metrics. In particular, we employed accuracy, recall, pre-
475 cision, F_1 -score, and F_2 -score. We consider as the most critical measurement for our
476 analysis the F_1 -score, which considers equally both recall and precision and therefore
477 consists a measurement capable of reflecting the attempt to both increase the actual
478 vulnerabilities identified and to decrease the false positives. It is also the most utilized
479 metric in the VP-related literature [2] and thereby facilitates the comparison with other
480 studies. The mathematical formula of F_1 -score is provided below:

$$F_1\text{-score} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{2 \times \frac{TP}{TP+FP} \times \frac{TP}{TP+FN}}{\frac{TP}{TP+FP} + \frac{TP}{TP+FN}} = \frac{2 \times TP}{2 \times TP + FP + FN} \quad (1)$$

481 , where TP stands for True Positives, FP for False Positives, and FN for False Neg-
482 atives.

483 At this point, we have to notice that the experiments (i.e., both training and eval-
484 uation processes) for each different examined approach were repeated ten times by using
485 a different seed each time, and their average values were calculated and reported. This
486 setting prevents our analysis from depending on the randomness that exists in various
487 processes during data shuffling, model training, computational calculations, etc.

488 **4. Results**

489 In this section, the study's experimental results are presented with respect to the
490 research questions defined in Section 3.1. All the experiments took place on the CUDA¹⁰
491 platform of a GeForce RTX 4080 Super Nvidia Graphics Processing Unit (GPU). The
492 results provided are derived from the testing part of the dataset. To facilitate the repro-
493 duction of the results, we also provide a replication package¹¹.

494 *4.1. RQ₁ - Most effective strategy for leveraging pre-trained Transformer-based models
495 in vulnerability prediction*

496 In RQ₁ we examined the transfer learning approaches that one can follow to leverage
497 LLMs for the downstream task of VP. To this end, we employed the CodeBERT and
498 the CodeGPT-2 models. First, we fine-tuned in VP both of the pre-trained on code
499 *CodeBERT-base-MLM* and *CodeGPT-2* models by updating the weights of all their
500 layers to adapt the models to this particular task. Next, we extracted their embeddings
501 at either sentence or word level and trained DL classification models in VP.

502 In case of sentence embeddings, we fed the input data to pre-trained models, sub-
503 sequently, we froze their pre-trained layers, and therefore the given sequences of tokens
504 were encoded as sentence-level embeddings. Those embeddings were given to the classifi-
505 cation head of the models, which was then trained on binary classification to discriminate
506 vulnerable and non-vulnerable functions. In case of word embedding, we extracted the

¹⁰<https://developer.nvidia.com/cuda-toolkit>

¹¹<https://sites.google.com/view/vulgpt/>

507 word embedding vectors from the pre-trained models and provided them to the embedding
 508 layer of a separate neural network. This way, we utilized the pre-trained models to
 509 gain their prior knowledge so as to represent the source code tokens. We then trained the
 510 neural network on the binary classification task of VP. Specifically, we trained a BiGRU
 511 model, which proved to be the best one among the examined RNNs and the CNN on the
 512 Big-Vul dataset, as described in Section 3.3.5.

513 Table 4 summarizes the evaluation results of the three approaches on the testing set.
 514 Particularly, it presents the average values of ten different repetitions of the evaluation
 515 per case. As can be seen, the word embedding extraction approach is the clear winner
 516 among the two feature-based methods. Specifically, word embedding extraction from
 517 CodeBERT and CodeGPT-2 leads to a VPM of F_1 -score equal to 91.4% and 90.2%
 518 respectively, whereas the sentence embedding extraction from these models achieves 67%
 519 and 56.8% F_1 -scores, which are much lower values. It seems that, by just training the
 520 classification head, the models do not manage to capture efficiently the vulnerability
 521 patterns.

Table 4: Evaluation results of fine-tuning and feature-based (sentence and word-level embedding extraction) approaches of transfer learning in vulnerability prediction.

Model / Metric (%)	Accuracy	Precision	Recall	F_1 -score	F_2 -score
CodeBERT fine-tuning	99.0 (± 0.06)	96.3 (± 0.9)	87.4 (± 1.1)	91.6 (± 0.6)	89.0 (± 0.8)
CodeGPT-2 fine-tuning	98.8 (± 0.04)	96.0 (± 0.7)	85.2 (± 0.7)	90.3 (± 0.3)	87.2 (± 0.5)
CodeBERT sentence-level	96.8 (± 0.91)	98.3 (± 2.5)	50.8 (± 3.1)	67.0 (± 3.5)	56.2 (± 4.1)
CodeGPT-2 sentence-level	96.0 (± 0.12)	89.8 (± 3.0)	41.5 (± 3.8)	56.8 (± 4.0)	46.6 (± 4.5)
CodeBERT word-level	98.9 (± 0.04)	96.0 (± 1.0)	87.4 (± 1.3)	91.4 (± 0.4)	88.9 (± 0.9)
CodeGPT-2 word-level	98.8 (± 0.06)	96.4 (± 0.8)	84.8 (± 0.9)	90.2 (± 0.5)	86.9 (± 0.7)

522 As can be seen in Table 4, the word embedding extraction approach and the fine-
 523 tuning approach, are really close to each other, both when using CodeBERT and CodeGPT-
 524 2. Specifically, CodeBERT fine-tuning achieves an average F_1 -score equal to 91.6% with
 525 a standard deviation of 0.6%, in contrast to CodeBERT word embedding that achieves
 526 F_1 -score 91.4% with standard deviation 0.4%. Similarly, CodeGPT-2 fine-tuning man-
 527 ages to achieve an F_1 -score equal to 90.3% on average, with standard deviation equal
 528 to 0.3%, as opposed to CodeGPT-2 word embedding approach, which succeeds F_1 -score
 529 90.2% with a standard deviation equal to 0.5%. We can discern a very slight lead of the
 530 fine-tuned models but we can not single out just one as the best.

531 To facilitate the comparison, we proceeded with conducting a statistical test so as
 532 to identify whether there is a statistical significance in the superiority of the fine-tuning
 533 approach. Specifically, we performed the Wilcoxon-Signed Rank Test [55], which can
 534 judge whether there is a statistically significant difference between two pairs (i.e., F_1 -
 535 scores achieved by fine-tuning and by word embeddings extraction). For this purpose, we
 536 used all the ten F_1 -scores computed by each model and each approach, and we utilized
 537 them as pairs based on the seed’s value. Based on the Wilcoxon analysis, we found that
 538 the p-values were 0.49 and 0.84 for CodeBERT and CodeGPT-2 respectively, which are
 539 higher than the 0.05 threshold, and therefore we cannot state that there is a statistically
 540 significant difference between the two approaches. Concisely, the results of the analysis
 541 suggest that:

542 **Fine-tuning and word embedding extraction strategies achieve comparable
predictive performance in vulnerability prediction, while word embedding
extraction is the most accurate feature-based approach, outperforming sentence
embedding extraction.**

543 *4.2. RQ₂ - Computational trade-offs between different transfer learning strategies in vul-
544 nerability prediction*

545 To provide a comprehensive evaluation of Transformer-based VPMs, we analyze the
546 computational trade-offs associated with different transfer learning strategies. While
547 RQ₁ focused on prediction accuracy, this section examines key computational factors,
548 such as training time, memory requirements, implementation complexity, and execution
549 speed. Specifically, Table 5 presents the values of training time in seconds (s), GPU
550 memory consumption in gigabytes (GB), model size on disk in GB, number of trainable
551 parameters (i.e., indicator of model complexity), and inference time in seconds.

Table 5: Trade-offs between fine-tuning and feature-based (sentence and word-level embedding extraction) approaches in vulnerability prediction in terms of training time, memory requirements, model complexity, and inference time.

Model/Metric	Train. time	GPU memory	Disk space	Train. params	Inf. time	F ₁ -score
CodeBERT fine-tuning	7,091	8.20	1.46	124,647,170	0.00572	91.6
CodeGPT-2 fine-tuning	11,336	10.90	1.45	124,245,504	0.00770	90.3
CodeBERT sentence-level	3,894	1.94	0.50	592,130	0.00574	67.0
CodeGPT-2 sentence-level	7,550	2.30	0.50	1,536	0.00775	56.8
CodeBERT word-level	1,515	4.68	0.66	4,954,801	0.00147	91.4
CodeGPT-2 word-level	4,883	4.68	0.66	4,954,801	0.00146	90.2

552 As can be seen in Table 5, fine-tuned models require the most training time, GPU
553 memory, disk space, and number of trainable parameters, as they modify all Transformer
554 layers during training. On the other hand, the sentence embedding extraction approach
555 has the smallest GPU memory and disk space as well as the fewest trainable parameters,
556 since it only trains the classification head, which is a feed-forward layer added on top
557 of the Transformer. Word embedding extraction, while requiring more parameters to be
558 trained and more GPU memory than sentence embeddings, still has substantially fewer
559 trainable parameters than fine-tuning and requires much less training time than both
560 fine-tuning and sentence-level embeddings.

561 In particular, the CodeBERT word embeddings method needed 1,515 seconds (less
562 than half an hour of training) approximately to be completed, and CodeBERT sen-
563 tence embedding extraction needed 3,894 seconds (about 1 hour of training), whereas
564 fine-tuning CodeBERT required 7,091 seconds (almost 2 hours of training). Significant
565 differences exist also in the CodeGPT-2 case. The CodeGPT-2 word embeddings-based
566 training of the RNN lasted 4,883 seconds (about 81 minutes), the sentence embedding
567 extraction needed 7,550 seconds (about 2 hours), while CodeGPT-2 fine-tuning needed
568 11,336 seconds (more than 3 hours). CodeGPT-2 training completed in more time than
569 CodeBERT, since it usually needed more epochs until reaching the optimal F₁-score. In
570 any case, both models' fine-tuning proved to be a much more time-consuming process
571 than embedding extraction (i.e., training of classification head) and word embedding
572 extraction (i.e., DL model's training).

573 Furthermore, as regards the memory requirements, CodeBERT sentence embedding
574 extraction requires 1.94 GB of GPU memory to feed the vectors and train the classifica-
575 tion head, and 0.5 GB for hosting the trained model, while CodeBERT word embedding
576 extraction needs 4.68 GB in GPU for training the DL classifier and 0.66 GB disk space for
577 hosting the model. In contrast, CodeBERT fine-tuning requires 8.2 GB of GPU memory
578 and 1.46 GB on disk. Similarly, in case of CodeGPT-2, sentence embedding extraction
579 requires 2.3 GB in GPU and 0.5 GB on the disk, word embedding extraction approach
580 requires 4.68 GB of GPU memory and 0.66 GB for hosting the trained model, while
581 fine-tuning demands 10.9 GB of GPU memory and 1.45 GB disk space.

582 Moreover, the CodeBERT sentence embedding extraction needs training of 592,130
583 parameters and CodeBERT word embeddings method includes 4,954,801 trainable pa-
584 rameters that need to be optimized during training, whereas the CodeBERT fine-tuning
585 approach requires the training of 124,647,170 parameters, which is a significantly higher
586 number. In case of CodeGPT-2, the sentence embedding extraction approach includes
587 1,536 trainable weights and the word embeddings extraction needs to update 4,954,801
588 trainable parameters (i.e., same number as in CodeBERT word embeddings, since the
589 trainable parameters regard the DL model, which is common) in contrast to the more
590 complex fine-tuning approach, which includes 124,245,504 trainable weights.

591 As regards the inference time, which is a crucial factor for real-world deployment, all
592 the three techniques exhibit quite short times. However, a substantially lower inference
593 time is observed for the word embedding extraction approach, making it particularly
594 suitable for real-time security applications. Such a low inference time demonstrates also
595 the advantage of word embedding extraction approach in terms of scalability in relation
596 with the size of the analyzed projects. Considering that it needs on average 1.47 ms to
597 analyze a function under test, it will be able to analyze an entire project of 100 functions
598 in 147 ms, while for a project of 1000 functions it will need 1,470 ms. It is also capable of
599 analyzing larger projects that consist, for instance, of 100,000 functions in only 147,000
600 ms, being resilient to the scale of the project's size. On the contrary, fine-tuning, which
601 can analyze one function in 5.72 ms, needs 5,720 ms to analyze a project of 1000 functions,
602 and 572,000 ms for a larger project of 100,000 functions, which are substantially higher
603 values than those of word embedding extraction. This observation also highlights the
604 advantage of transfer learning approaches, and in particular word embedding extraction,
605 over static code analysis techniques, since static code analyzers, which are traditionally
606 used to scan software projects for vulnerabilities, often require a considerable amount of
607 more time to analyze large codebases [56],[57] and, therefore, often run in nightly builds
608 (i.e., no actual working time).

609 Overall, feature-based approaches achieve lower computational costs compared to
610 fine-tuning. Although fine-tuning provides a good predictive performance, it is the most
611 computationally expensive approach of the three considered. On the other hand, sen-
612 tence embedding extraction is the most lightweight choice, but it suffers from a significant
613 drop in accuracy metrics compared to fine-tuning and word embedding extraction ap-
614 proaches. Given its balance between efficiency and accuracy, word embedding extraction
615 emerges as the most practical choice. Concisely, regarding the question of what are the
616 computational trade-offs, the findings of the analysis of RQ₂ suggest that:

617

618 Word embedding extraction presents the optimal trade-offs between predictive performance and computational footprint compared to fine-tuning and sentence embedding extraction approaches. Additionally, sentence embedding extraction is the most lightweight approach in terms of memory requirements and complexity, while word embedding extraction is the fastest in both the training and inference phases.

619 Finally, considering both the results of RQ₁ and RQ₂, we can notice that word embedding extraction and fine-tuning approaches achieve a substantially higher accuracy than sentence embedding extraction. In addition, we notice that word embedding extraction achieves almost equal predictive performance with fine-tuning, but by requiring less training time, resources, and parameters to be trained. Moreover, it demonstrates faster inference. Therefore, concisely, we argue that:

620 **The most effective strategy to leverage transfer learning techniques in the field of vulnerability prediction is the feature-based approach of extracting the pre-trained word embedding vectors from code-oriented LLMs such as CodeBERT, use them to represent the sequences of source code tokens, and train a separate DL model specifically on the task of classifying functions as vulnerable or not.**

627 4.3. RQ₃ - Contribution of prior knowledge of natural language in vulnerability prediction

628 After identifying in RQ₁ and RQ₂ the optimal way of using transfer learning from LLMs to VP, in the context of RQ₃, we examined whether it is preferable to use models pre-trained on unimodal data (i.e., exclusively on programming language) or pre-trained on bimodal data (i.e., both programming and natural language). For this purpose, we employed the fine-tuning and word embeddings extraction approaches presented in Table 4, where we used the unimodal versions of CodeBERT and CodeGPT-2, but we also repeated the experiments by retaining the NL knowledge of the models (i.e., bimodal models). Specifically, in the case of CodeBERT, we included in the analysis the bimodal *CodeBERT-base* variant, which is pre-trained on pairs of documents and code. In addition, in the context of RQ₃, for CodeGPT-2, we used the *CodeGPT-2-Adapted* version, which retains the pre-trained weights from the initial pre-training of GPT-2 on NL data and is further pre-trained using code data. Table 6, shows the values of the evaluation metrics for all these experiments.

641 The results shown in Table 6, which correspond to the average values of ten different 642 repetitions of the evaluation per case, do not clearly demonstrate an optimal approach. In 643 particular, unimodal CodeBERT achieves F₁-score 91.6% ($\pm 0.6\%$) and 91.4% ($\pm 0.4\%$) 644 in fine-tuning and word embedding cases respectively, compared to F₁-score of 91.5% 645 ($\pm 0.5\%$) and 91.3% ($\pm 0.3\%$) of the bimodal CodeBERT fine-tuning and word embedding 646 respectively. Similarly, unimodal CodeGPT-2 achieves F₁-score 90.3% ($\pm 0.3\%$) and 90.2% 647 ($\pm 0.5\%$) in fine-tuning and word embedding approaches, as opposed to F₁-score of 91.2% 648 ($\pm 0.4\%$) and 90.5% ($\pm 0.2\%$) of the bimodal CodeGPT-2 fine-tuning and word 649 embedding approaches. We can see that the F₁-scores (and the other metrics as well) 650 are very close in unimodal and bimodal scenarios, in both CodeBERT and CodeGPT-2 651 models and in both fine-tuning and word embeddings approaches.

652 Therefore, we conducted the Wilcoxon-Signed Rank Test [55] to decide if there is 653 a statistically significant difference. The p-values among unimodal and bimodal models

Table 6: Evaluation results of Transformer models pre-trained solely on source code versus ones pre-trained on bimodal data, when utilized for vulnerability prediction.

Model / Metric (%)	Accuracy	Precision	Recall	F ₁ -score	F ₂ -score
unimodal CodeBERT fine-tuning	99.0 (± 0.06)	96.3 (± 0.9)	87.4 (± 1.1)	91.6 (± 0.6)	89.0 (± 0.8)
bimodal CodeBERT fine-tuning	98.9 (± 0.05)	96.6 (± 0.8)	87.0 (± 1.0)	91.5 (± 0.5)	88.7 (± 0.7)
unimodal CodeGPT-2 fine-tuning	98.8 (± 0.04)	96.0 (± 0.7)	85.2 (± 0.7)	90.3 (± 0.3)	87.2 (± 0.5)
bimodal CodeGPT-2 fine-tuning	98.9 (± 0.04)	95.2 (± 0.8)	87.6 (± 0.8)	91.2 (± 0.4)	89.0 (± 0.6)
unimodal CodeBERT embeddings	98.9 (± 0.04)	96.0 (± 1.0)	87.4 (± 1.3)	91.4 (± 0.4)	88.9 (± 0.9)
bimodal CodeBERT embeddings	98.9 (± 0.04)	96.1 (± 1.3)	86.9 (± 1.0)	91.3 (± 0.3)	88.6 (± 0.7)
unimodal CodeGPT-2 embeddings	98.8 (± 0.06)	96.4 (± 0.8)	84.8 (± 0.9)	90.2 (± 0.5)	86.9 (± 0.7)
bimodal CodeGPT-2 embeddings	98.8 (± 0.03)	96.9 (± 0.9)	84.9 (± 0.6)	90.5 (± 0.2)	87.1 (± 0.4)

were 0.49 for the CodeBERT fine-tuning case, 0.002 for the CodeGPT-2 fine-tuning, 0.69 for CodeBERT word embeddings, and 0.81 for CodeGPT-2 word embeddings. In three of the four cases, the p-values were greater than 0.05, and therefore, we cannot state that there is a statistically significant difference. Only the case of fine-tuning CodeGPT-2 presents a statistically significant difference with a Wilcoxon p-value lower than 0.05. However, it happens only in one case and the absolute difference in F₁-score is quite low (i.e., just 0.9%). Hence, our study cannot yield any clear answer as to which of the bimodal and unimodal pre-trained models is better in VP. It can be argued that:

The prior knowledge of natural language does not offer a clear benefit in vulnerability prediction but, neither does it act as noise. It can be considered neutral.

4.4. RQ₄ - Benefit of context-aware embeddings compared to traditional static embeddings in vulnerability prediction

In the context of RQ₄, we conducted a comparison of the best transfer learning VP approach that we identified in the previous RQs as opposed to other text mining-based approaches that leverage traditional word embedding techniques, which produce static vectors (i.e., a single global vector per word). As the best transfer learning method we qualified the unimodal CodeBERT word embedding extraction, which emerged as the optimal (i.e., most accurate and lightweight) one in the previous RQs, considering both the F₁-score and the computational trade-offs. As regards the traditional techniques, we chose word2vec and fastText as baselines due to their widespread use in VP research, with word2vec being the most commonly employed [2],[8],[9],[11],[20], while fastText, which addresses the out-of-vocabulary issue of word2vec, is also widely used in VP [2],[9],[20]. In addition, we employed the BoW text representation technique, which is also a widely used method for representing source code and is often used as a baseline for text mining-based VPMs [2],[3],[4],[21]. Our focus is to compare Transformer-based context-aware embeddings against traditional static embeddings, and, therefore, we included embedding techniques that are both static and word-level to ensure a fair comparison.

Table 7: Comparison of contextual and static word embeddings in vulnerability prediction.

Model / Metric (%)	Accuracy	Precision	Recall	F ₁ -score	F ₂ -score
word2vec	93.2	44.0	29.9	35.6	31.9
fastText	94.3	63.8	21.0	31.6	24.3
BoW	93.0	40.7	15.1	22.0	17.2
CodeBERT embeddings	98.9	96.0	87.4	91.4	88.9

681 Subsequently, we conducted an experiment to compare the same DL architecture and
682 training paradigm (i.e., word embedding extraction and DL classifier) when (i) using word
683 embeddings extracted from LLMs, and when (ii) employing word embeddings learnt by
684 traditional text mining algorithms. This way, we can demonstrate the advantage of the
685 prior knowledge of the LLMs, which is expressed through the context-aware embedding
686 vectors. Specifically, we trained the word2vec and fastText models in the training part
687 of the dataset, we encoded the input's sequences with word2vec and fastText vectors, we
688 fed them to a DL model, and we trained it on VP. Table 7 presents the evaluation scores
689 of the examined embedding approaches.

690 Based on Table 7, CodeBERT word embeddings demonstrated a much higher F1-
691 score by 55.8%, 59.8%, and 69.4% as opposed to word2vec, fastText, and BoW re-
692 spectively. Actually, they surpassed the static embeddings-based approach in all the 5
693 evaluation metrics. This observation indicates that there is an important benefit from
694 the use of context-aware vectors instead of the global (i.e., static) ones. In other words,
695 the ability of the Transformer-based models to learn, during the pre-training phase, the
696 words syntax and semantics based on their context and to give words different vectors
697 corresponding to their context, is an important factor that can enhance the performance
698 of the text mining-based VPMs. Hence, the results suggest that:

**Transformer-based embeddings outperform traditional static embeddings,
699 demonstrating the advantage of context-awareness in vulnerability prediction.**

700 *4.5. RQ₅ - Comparison with other text mining-based and graph-based vulnerability pre-
701 diction approaches*

702 The purpose of RQ₅ is to demonstrate whether there is an advantage of the best
703 model (as identified in the previous RQs) as opposed to some of the most well-accepted,
704 established, and referenced in the literature VPMs, which are based either on text mining
705 (e.g., sequences of tokens) or on graphical representations of the source code (e.g., CPGs,
706 ASTs, CFGs, etc.). To this end, we compared the CodeBERT word embedding extraction
707 approach against 5 state-of-the-art DL-based VP approaches, namely VulDeePecker [8],
708 SySeVR [31], Devign [11], ReVeal [12], and Linevul [21], which are often used as baselines
709 in the current literature [12],[21],[58].

710 The aforementioned 5 models provide a comprehensive comparison between tra-
711 ditional text mining, Transformer-based text mining, and text-rich graph-based ap-
712 proaches. These methods represent key advances in the field, from LSTM-based text
713 processing in VulDeePecker and leveraging program dependencies in SySeVR to graph-
714 based learning in ReVeal and Devign as well as the use of LLMs in LineVul, covering
715 diverse approaches to VP. Table 8 presents the evaluation results of the CodeBERT

Table 8: Comparison of CodeBERT word embedding extraction approach versus text mining-based and graph-based state-of-the-art models on Big-Vul dataset.

Approach	Precision (%)	Recall (%)	F ₁ -score (%)
VulDeePecker	12	49	19
SySeVR	15	74	27
Devign	18	52	26
ReVeal	19	74	30
LineVul	97	86	91
CodeBERT embeddings	96	87	91

716 word embedding extraction approach in contrast to the 5 baseline approaches. The ex-
 717 perimental results of the baseline methods are based on the experiments conducted by
 718 Fu et al. [21].

719 As can be seen in Table 8, the word embeddings from the pre-trained CodeBERT
 720 model, fed in a DL classifier (i.e., transfer learning approach) managed to clearly sur-
 721 pass all the popular VulDeePecker, SySeVR, Devign, and ReVeal models. Although
 722 these models had presented important improvement over previous (non-transfer learn-
 723 ing - based) VP approaches, CodeBERT word embedding extraction approach achieved
 724 an improvement of 72%, 64%, 65%, and 61%, in terms of F₁-score, over VulDeePecker,
 725 SySeVR, Devign, and ReVeal, respectively. One can observe the particular difficulty of
 726 these models to achieve high precision, which suggests their limited capacity to eliminate
 727 false positives. On the other hand, word embedding extraction achieved almost iden-
 728 tical results with LineVul, which is the other Transformer-based method. This result
 729 is actually expected, since LineVul methodology is based on the CodeBERT model. In
 730 addition, it verifies the superiority of the Transformer-based solutions, also indicating
 731 that the benefits gained from the large prior knowledge and the contextual awareness
 732 might be a more valuable solution than graphical representations in VP.

733 Overall, the results presented in Table 8 not only enhance the argument that transfer
 734 learning provides a great benefit in VP, with transfer learning solutions outperforming
 735 state-of-the-art text mining-based ones, but also showcase that by using transfer learning,
 736 even solely text mining-based models manage to perform well in VP, achieving better
 737 results than even sophisticated graph-based models. Hence, we can argue that:

738 **Transformer-based transfer learning surpasses state-of-the-art vulnerability
 739 prediction models, including both text-mining and graph-based approaches.**

740 4.6. Results on other datasets

741 To further validate the generalizability of our findings, we repeated our analysis using
 742 two additional open-source datasets. In particular, we employed FFmpeg+QEMU [11]
 743 and ReVeal [12] datasets, which have been both widely used in VP [12],[43],[51],[58],[59].
 744 Table 9 presents the evaluation metrics of all the examined approaches. Specifically, it
 745 provides precision, recall, and F₁-score for both CodeBERT and CodeGPT-2 fine-tuning,
 746 sentence embedding extraction, word embedding extraction, and the bimodal alternatives
 747 (following the flow of the analysis on Big-Vul), as well as the text mining and graph-based
 748 state-of-the-art VPMs, including the traditional embedding algorithms.

Table 9: Evaluation results on the FFmpeg+QEMU and ReVeal datasets.

Dataset	Approach	Precision	Recall	F ₁ -score
FFmpeg+QEMU	CodeBERT fine-tuning	56	79	66
	CodeGPT-2 fine-tuning	58	66	62
	CodeBERT sentence embeddings	52	59	55
	CodeGPT-2 sentence embeddings	50	59	54
	CodeBERT word embeddings	55	79	65
	CodeGPT-2 word embeddings	59	71	64
	Bimodal CodeBERT fine-tuning	57	74	64
	Bimodal CodeGPT-2 fine-tuning	55	76	64
	Bimodal CodeBERT word embeddings	58	73	65
	Bimodal CodeGPT-2 word embeddings	58	68	63
	Word2Vec	53	48	51
	FastText	50	78	60
	BoW	51	56	54
	VulDeePecker	47	29	35
ReVeal	SySeVR	48	66	56
	LineVul	57	74	64
	Devign	54	63	57
	ReVeal	55	73	62
	CodeBERT fine-tuning	38	58	46
	CodeGPT-2 fine-tuning	32	66	43
	CodeBERT sentence embeddings	29	29	29
	CodeGPT-2 sentence embeddings	21	33	26
	CodeBERT word embeddings	37	65	47
	CodeGPT-2 word embeddings	35	59	44
	Bimodal CodeBERT fine-tuning	36	62	46
	Bimodal CodeGPT-2 fine-tuning	33	63	44
	Bimodal CodeBERT word embeddings	36	66	47
	Bimodal CodeGPT-2 word embeddings	34	63	44
	Word2Vec	30	57	39
	FastText	32	53	40
	BoW	33	48	39
	VulDeePecker	18	14	16
	SySeVR	24	40	30
	LineVul	39	57	46
	Devign	35	27	30
	ReVeal	31	61	41

749 To build the models based on word embedding extraction, we performed the DL
 750 model selection process again and ended up choosing the CNN model as the DL classifier
 751 for these two datasets, as opposed to Big-Vul, where we had chosen the BiGRU model.
 752 Furthermore, to compare against state-of-the-art models, we retrieved the ReVeal scores
 753 as they are provided by the ReVeal study [12]. In the case of Devign, we also reported its
 754 results as provided in ReVeal study, since both ReVeal and our analysis utilized only the
 755 FFmpeg and QEMU projects of the Devign dataset (i.e., half of the Devign projects),
 756 which were those provided as open-source by its authors¹². Moreover, to facilitate a
 757 fair comparison, the scores of the VulDeePecker and SySeVR were also retrieved by the
 758 ReVeal study, which uses them as baseline methods. For LineVul, we proceeded with
 759 replicating it, since it is a later study than ReVeal.

760 By inspecting Table 9, we can see that, in both FFmpeg+QEMU and ReVeal datasets,

¹²<https://sites.google.com/view/devign>

761 and for both CodeBERT and CodeGPT-2 cases, the fine-tuning and word embedding ex-
762 traction approaches produced quite similar results, clearly outperforming the approach
763 of sentence embedding extraction. These findings align with our previous observations
764 on Big-Vul dataset, strengthening the effectiveness of Transformer-based word embed-
765 ding extraction, which has lower computational cost than fine-tuning. In addition, the
766 bimodal models (pre-trained in both source code and natural language) did not show
767 noticeable performance improvement over unimodal models (pre-trained only in source
768 code), confirming our previous findings.

769 Moreover, Transformer-based word embeddings outperformed static word embedding
770 techniques. In addition, although the predictive performance on FFmpeg+QEMU and
771 (especially) ReVeal datasets is quite lower than in Big-Vul, Transformer-based transfer
772 learning techniques still proved to be clearly more accurate than the VulDeePecker, Sy-
773 SeVR, and Devign baseline methods, and slightly more accurate than ReVeal. LineVul,
774 achieved comparable results with the examined transfer learning approaches, as it is also
775 based on the CodeBERT model, but with a higher computational cost than word embed-
776 ding extraction, since it employs a fine-tuning strategy, which updates the parameters of
777 all the Transformer layers.

778 Finally, the observation that the ReVeal model manages to be lower but close to
779 the examined Transformer-based approaches indicates that a potential combination of
780 textual and graphical representations of the source code will provide a real advantage
781 in the VPMs. This could be achieved either as an unified Transformer-based model,
782 which will have been pre-trained in a large amount of such multi-modal data, or by using
783 ensemble learning of Transformers and graph-based models.

784 In brief, our findings suggest that word embedding extraction consistently outper-
785 forms sentence embedding extraction across all datasets, being the most accurate feature-
786 based approach. Moreover, fine-tuning and word embedding extraction achieve com-
787 parable performance, with the latter requiring a much lower computational cost and,
788 therefore, being identified as the optimal implementation choice. In addition, bimodal
789 models do not offer a clear advantage over unimodal models. Furthermore, Transformer-
790 based word embeddings consistently outperform static embeddings, demonstrating the
791 importance of the context-aware embeddings, while Transformer-based transfer learning
792 approaches show higher accuracy than both text mining-based and graph-based state-
793 of-the-art VPMs, thus advancing the field of VP.

794 Hence, from the above analysis it is eminent that the same observations and conclu-
795 sions can be reached with those of the Big-Vul dataset, strengthening in that way the
796 generalizability of our findings and enhancing our confidence on the lack of potential bias
797 imposed by the selected dataset.

798 5. Discussion and implications

799 In this paper, we set specific RQs about the capacity of the emerging LLMs on VP,
800 examining the BERT and GPT-2 architectures, specifically their pre-trained on code
801 variants namely CodeBERT and CodeGPT-2, paying particular emphasis on identifying
802 the optimal implementation choices for leveraging transfer learning in VP tasks. The
803 results of our experiments demonstrated several insights about the best practices for
804 achieving high accuracy while maintaining computational efficiency. Therefore, in this
805 section, we discuss several implications for both practitioners and researchers.

Table 10: Summary of the scenarios where each implementation choice is more suitable.

Implementation Choice	Best-Suited Scenarios
Fine-tuning	Appropriate for high-accuracy environments where computational resources are not a constraint. Suitable for large-scale security applications and software organizations with high-end GPU infrastructure.
Sentence Embedding Extraction	Most computationally efficient approach, which is an efficient choice for resource-constrained environments where efficiency is prioritized over accuracy, such as in cases of rapid development of prototypes, and small-scale security projects.
Word Embedding Extraction	Approach that achieves both high accuracy in predicting vulnerabilities and high computational efficiency. Constitutes the best choice for resource-limited environments, where achieving high accuracy is still a priority. It is also a very effective method for large-scale security applications.

806 Our findings suggest that extracting word embeddings from LLMs and feeding them
 807 to a separate classifier achieves better results than extracting sentence-level embeddings.
 808 Furthermore, this approach achieves equal results with the fine-tuning method, but re-
 809 quires a much shorter training time, substantially fewer trainable parameters, and much
 810 less GPU memory compared to fine-tuning. More specifically, fine-tuning achieves high
 811 scores in terms of accuracy metrics, but demands the most GPU memory, the largest
 812 disk space, and the longest training times. On the contrary, the feature-based approach
 813 of extracting sentence-level embeddings is the most computationally efficient approach,
 814 but lacks in accuracy significantly. On the other hand, the word embedding extraction-
 815 based approach manages to achieve high accuracy results by demanding low resources.
 816 Therefore, it provides a balance between computational efficiency and predictive per-
 817 formance, constituting a suitable choice for resource limited environments where achieving
 818 high accuracy is still a priority. To summarize the scenarios in which each approach is
 819 optimal, we provide Table 10.

820 In addition, given the low inference time per function of all the approaches, but espe-
 821 cially of the word embedding extraction one, we suggest practitioners to use the examined
 822 solutions as copilots within their Integrated Development Environments (IDEs). They
 823 could integrate these models to identify potential vulnerabilities without disrupting their
 824 development workflow. In this way, they could also compare transfer learning-based so-
 825 lutions with existing vulnerability detection tools, making them a valuable alternative to
 826 traditional static code analyzers. Moreover, for practitioners who develop their own AI-
 827 based models, our findings can provide guidance regarding which implementation choices
 828 to use. For instance, they could use as a starting point the word embedding extraction
 829 approach to build LLM-based VPMs.

830 As regards the implications to researchers, this study found that different imple-
 831 mentation choices significantly impact the performance and computational efficiency of
 832 Transformer-based VPMs. To this end, researchers can extend our work by exploring
 833 additional implementation choices. In particular, they can examine complex and combi-

834 natorial options such as hybrid Transformer architectures that employ both fine-tuning
835 and embedding extraction, hierarchical embeddings that represent multi-level structures
836 in data (e.g., modules, classes, functions, and statements), and Ensembles of LLMs so
837 that one model can help the others. Furthermore, we recommend that researchers enrich
838 the VP literature with new techniques that are constantly emerging as AI-driven code
839 analysis continues to evolve rapidly. For instance, future research endeavors could fo-
840 cuse on examining techniques such as Retrieval-Augmented Generation (RAG), Mixture
841 of Experts (MoE), and Reinforcement Learning from Human Feedback (RLHF) during
842 building VPMs.

843 Moreover, experimentation with various LLMs of the same or larger scale is proposed
844 as a future research direction. Researchers can repeat this analysis using models such
845 as Mistral, Llama, and GPT-4 to construct VPMs and assess the generalizability of
846 our findings regarding the implementation choices in transfer learning. Furthermore, re-
847 searchers could explore the effectiveness in VP of additional embedding methods used in
848 NLP (e.g., SBERT [60], ELMo [61], CoVE [62], etc.). In addition, we suggest researchers
849 consider the importance of computational trade-offs in selecting transfer learning strate-
850 gies for VP. Given the already analyzed advantages and disadvantages of the examined
851 implementation choices regarding the computational footprint, future research could also
852 explore quantization techniques for LLM-based VP models, which could further reduce
853 memory requirements and training times.

854 Finally, we suggest researchers who build VPMs to explore further the utilization
855 of LLMs for constructing VPMs, focusing on the use of a code-oriented Transformer-
856 based model for contextual representation of source code tokens. We encourage them to
857 examine the word embeddings extraction approach first in their research and to attempt
858 to leverage both the power of pre-trained text-mining models and of models capable of
859 learning graphical representations to further improve the performance of the VPMs.

860 6. Threats to validity

861 This section discusses potential threats to the construct, internal, and external valid-
862 ity of our study. By critically evaluating methodological challenges and limitations, we
863 aim to enhance the transparency and reliability of our findings.

864 6.1. Construct validity

865 The validity of the study's findings could have been affected by the accuracy of the
866 vulnerability-related data used for training and evaluating the developed models. The
867 identification of vulnerability-fixing commits is challenging, as it is possible that some
868 commits may not fully repair the underlying vulnerability or may only address a subset
869 of vulnerabilities within a given software component. Furthermore, there is a small
870 possibility that the data samples that were utilized as non-vulnerable may contain an
871 undetected vulnerability. Thereby, we considered them as neutral.

872 6.2. Internal validity

873 Regarding the internal validity, there is a potential limitation by the specific Trans-
874 former models chosen for the analysis. The selection of CodeGPT-2 and CodeBERT may
875 introduce a selection bias, as it cannot be excluded that other Transformer models or

876 different pre-training techniques could lead to different results. Additionally, we may not
877 have tested all the possible combinations of hyperparameter values. The correlation be-
878 tween the models' hyperparameters can make it difficult to isolate the effects of individual
879 hyperparameters, which could lead to sub-optimal model performance. To mitigate this
880 risk, the hyperparameter tuning process that we followed was really exhaustive.

881 *6.3. External validity*

882 External validity of this study concerns the use of datasets restricted to C/C++
883 source code. This narrow focus may restrict the generalizability of the findings to other
884 programming languages. Another external validity threat is the exclusive reliance on
885 open-source code. Open-source projects may differ in terms of development practices,
886 coding styles, and vulnerability patterns compared to proprietary software, potentially
887 reducing the applicability of the findings to commercial software development environ-
888 ments. To mitigate this threat, it would be useful to incorporate data from both open-
889 source and proprietary software projects in the future.

890 **7. Conclusions and future work**

891 In this work, our purpose was to examine the different implementation choices when
892 using transfer learning in the task of vulnerability prediction, and therefore, to highlight
893 the optimal approach. We compared the fine-tuning and sentence-level embedding ex-
894 traction approaches, and we investigated the possible benefits of extracting word embed-
895 dings from pre-trained LLMs so as to feed and train separate DL models in vulnerability
896 prediction. We also examined whether it is better to have LLMs pre-trained on both
897 source code and NL or only on source code for a code analysis task such as vulnerability
898 prediction. Moreover, we compared our best models with state-of-the-art vulnerability
899 prediction models.

900 The analysis demonstrated that, for the downstream task of vulnerability predic-
901 tion, there is no benefit of proceeding with the time-consuming approach of fine-tuning
902 instead of the LLM word embeddings extraction, and therefore, it suggests the latter,
903 which achieves the same accuracy but with by far smaller training cost. Furthermore,
904 regarding the question about the possible advantage of pre-training LLMs on bimodal
905 data (i.e., both on source code and natural language), the study concludes that it is
906 not necessarily beneficial but neither damaging for vulnerability prediction. Finally, this
907 study highlighted the importance of context aware embeddings for representing the source
908 code, which can lead to vulnerability predictors of much higher accuracy than static em-
909 bedding vectors and indicated that a combination of textual and graphical source code
910 representations through a multi-modal model could provide even better vulnerability
911 predictors.

912 Future work includes the interpretability of LLMs in vulnerability prediction as well as
913 the examination of their capabilities in the cross-project evaluation scenario. Regarding
914 the former, we aim at applying explainable AI techniques to identify the reasoning behind
915 the vulnerability predictions of the LLMs. For the latter, we are interested in comparing
916 the performance of LLMs to traditional techniques for predicting vulnerabilities in soft-
917 ware projects that are completely different from the projects that constitute the training
918 dataset. We plan also to explore additional LLMs and implementation choices, focusing

919 on hybrid and complex architectures, to enhance predictive performance in vulnerability
920 prediction.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

Work reported in this paper has received funding from the European Union's Horizon Europe Research and Innovation Program through the DOSS project, Grant Number 101120270.

Appendix A.

Supplementary material related to this article (e.g., code and data) can be found online [63]: <https://sites.google.com/view/vulgpt>

CRediT authors' contribution statement

Ilias Kaloutsoglou: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - Original Draft, Visualization. **Miltiadis Siavvas:** Methodology, Validation, Formal analysis, Investigation, Writing - Review & Editing, Supervision. **Apostolos Ampatzoglou:** Methodology, Writing - Review & Editing, Supervision, Project administration. **Dionyssios Kehagias:** Writing - Review & Editing, Resources, Supervision, Project administration, Funding acquisition. **Alexander Chatzigeorgiou:** Methodology, Writing - Review & Editing, Supervision, Project administration.

References

- [1] ISO/IEC 27000:2018, <https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en> (Accessed: 2023-11-21).
- [2] I. Kaloutsoglou, M. Siavvas, A. Ampatzoglou, D. Kehagias, A. Chatzigeorgiou, Software vulnerability prediction: A systematic mapping study, *Information and Software Technology* 164 (2023) 107303. doi:<https://doi.org/10.1016/j.infsof.2023.107303>. URL <https://www.sciencedirect.com/science/article/pii/S095058492300157X>
- [3] I. Kaloutsoglou, M. Siavvas, D. Kehagias, A. Chatzigeorgiou, A. Ampatzoglou, Examining the capacity of text mining and software metrics in vulnerability prediction, *Entropy* 24 (5) (2022). doi:10.3390/e24050651. URL <https://www.mdpi.com/1099-4300/24/5/651>
- [4] J. Walden, J. Stuckman, R. Scandariato, Predicting vulnerable components: Software metrics vs text mining, in: 2014 IEEE 25th international symposium on software reliability engineering, IEEE, 2014, pp. 23–33.
- [5] R. Scandariato, J. Walden, A. Hovsepyan, W. Joosen, Predicting vulnerable software components via text mining, *IEEE Transactions on Software Engineering* 40 (10) (2014) 993–1006.
- [6] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, A. Ghose, Automatic feature learning for predicting vulnerable software components, *IEEE Transactions on Software Engineering* (2018).

- [7] Y. Pang, X. Xue, H. Wang, Predicting vulnerable software components through deep neural network, in: Proceedings of the 2017 International Conference on Deep Learning Technologies, 2017, pp. 6–10.
- [8] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong, Vuldeepecker: A deep learning-based system for vulnerability detection, arXiv preprint arXiv:1801.01681 (2018).
- [9] I. Kalouptsoglou, M. Siavvas, D. Kehagias, A. Chatzigeorgiou, A. Ampatzoglou, An empirical evaluation of the usefulness of word embedding techniques in deep learning-based vulnerability prediction, Security in Computer and Information Sciences (2021) 23.
- [10] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781 (2013).
URL <https://doi.org/10.48550/arXiv.1301.3781>
- [11] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks, arXiv preprint arXiv:1909.03496 (2019).
- [12] S. Chakraborty, R. Krishna, Y. Ding, B. Ray, Deep learning based vulnerability detection: Are we there yet?, IEEE Transactions on Software Engineering 48 (9) (2022) 3280–3296. doi:10.1109/TSE.2021.3087402.
- [13] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of tricks for efficient text classification, arXiv preprint arXiv:1607.01759 (2016).
URL <https://doi.org/10.48550/arXiv.1607.01759>
- [14] N. Ziems, S. Wu, Security vulnerability detection using deep learning natural language processing, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2021, pp. 1–6.
- [15] D. Coimbra, S. Reis, R. Abreu, C. Păsăreanu, H. Erdogmus, On using distributed representations of source code for the detection of c security vulnerabilities, arXiv preprint arXiv:2106.01367 (2021).
- [16] B. Steenhoek, M. M. Rahman, R. Jiles, W. Le, An empirical study of deep learning models for vulnerability detection, arXiv preprint arXiv:2212.08109 (2022).
- [17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998–6008.
- [18] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).
URL <https://doi.org/10.48550/arXiv.1810.04805>
- [19] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., Improving language understanding by generative pre-training, arXiv preprint arXiv:2106.01367 (2018).
- [20] A. Bagheri, P. Hegedüs, A comparison of different source code representation methods for vulnerability prediction in python, in: A. C. R. Paiva, A. R. Cavalli, P. Ventura Martins, R. Pérez-Castillo (Eds.), Quality of Information and Communications Technology, Springer International Publishing, Cham, 2021, pp. 267–281.
- [21] M. Fu, C. Tantithamthavorn, Linevul: A transformer-based line-level vulnerability prediction, in: 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, pp. 608–620. doi:10.1145/3524842.3528452.
- [22] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang, et al., Codexglue: A machine learning benchmark dataset for code understanding and generation, arXiv preprint arXiv:2102.04664 (2021).
- [23] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, et al., Codebert: A pre-trained model for programming and natural languages, arXiv preprint arXiv:2002.08155 (2020).
URL <https://doi.org/10.48550/arXiv.2002.08155>
- [24] M. Siavvas, I. Kalouptsoglou, E. Gelenbe, D. Kehagias, D. Tzovaras, Transforming the field of vulnerability prediction: Are large language models the key?, in: 2024 32nd International Conference on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE, 2024, pp. 1–6.
- [25] Q. Liu, M. J. Kusner, P. Blunsom, A survey on contextual embeddings, arXiv preprint arXiv:2003.07278 (2020).
- [26] Y. Shin, L. Williams, Is complexity really the enemy of software security?, in: Proceedings of the 4th ACM workshop on Quality of protection, 2008, pp. 47–50.
- [27] Y. Shin, L. Williams, An empirical model to predict security vulnerabilities using code complexity metrics, in: Proceedings of the Second ACM-IEEE international symposium on Empirical software

engineering and measurement, 2008, pp. 315–317. doi:10.1145/1414004.1414065.
 URL <https://doi.org/10.1145/1414004.1414065>

[28] I. Chowdhury, M. Zulkernine, Using complexity, coupling, and cohesion metrics as early indicators of vulnerabilities, *Journal of Systems Architecture* 57 (3) (2011) 294–313.

[29] I. Kalouptsoglou, M. Siavvas, D. Tsoukalas, D. Kehagias, Cross-project vulnerability prediction based on software metrics and deep learning, in: *International Conference on Computational Science and Its Applications*, Springer, 2020, pp. 877–893.

[30] A. Hovsepyan, R. Scandariato, W. Joosen, J. Walden, Software vulnerability prediction using text analysis techniques, in: *Proceedings of the 4th international workshop on Security measurements and metrics*, 2012, pp. 7–10.

[31] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sysevr: A framework for using deep learning to detect software vulnerabilities, *IEEE Transactions on Dependable and Secure Computing* 19 (4) (2021) 2244–2258.

[32] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling and discovering vulnerabilities with code property graphs, in: *2014 IEEE Symposium on Security and Privacy*, IEEE, 2014, pp. 590–604.

[33] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, *arXiv preprint arXiv:1409.0473* (2014).

[34] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, *arXiv preprint arXiv:1907.11692* (2019).

[35] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, *arXiv preprint arXiv:1910.01108* (2019).

[36] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: A lite bert for self-supervised learning of language representations, *arXiv preprint arXiv:1909.11942* (2019).

[37] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettlemoyer, Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, *arXiv preprint arXiv:1910.13461* (2019).

[38] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu, Exploring the limits of transfer learning with a unified text-to-text transformer, *The Journal of Machine Learning Research* 21 (1) (2020) 5485–5551.

[39] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al., Lamda: Language models for dialog applications, *arXiv preprint arXiv:2201.08239* (2022).

[40] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, 2014, pp. 1532–1543.

[41] X. Yuan, G. Lin, Y. Tai, J. Zhang, Deep neural embedding for software vulnerability discovery: Comparison and optimization, *Secur. Commun. Networks* 2022 (2022) 5203217:1–5203217:12.

[42] S. Kim, J. Choi, M. E. Ahmed, S. Nepal, H. Kim, Vuldebert: A vulnerability detection system using bert, in: *2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)*, 2022, pp. 69–74. doi:10.1109/ISSREW55968.2022.00042.

[43] H. Hanif, S. Maffeis, Vulberta: Simplified source code pre-training for vulnerability detection, in: *2022 International Joint Conference on Neural Networks (IJCNN)*, IEEE, 2022, pp. 1–8.

[44] M. D. Purba, A. Ghosh, B. J. Radford, B. Chu, Software vulnerability detection using large language models, in: *2023 IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW)*, 2023, pp. 112–119. doi:10.1109/ISSREW60843.2023.00058.

[45] H. Booth, D. Rike, G. A. Witte, The national vulnerability database (nvd): Overview (2013).

[46] P. E. Black, A software assurance reference dataset: Thousands of programs with known bugs, *Journal of research of the National Institute of Standards and Technology* 123 (2018) 1.

[47] C. Seas, G. Fitzpatrick, J. A. Hamilton, M. C. Carlisle, Automated vulnerability detection in source code using deep representation learning, in: *2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC)*, IEEE, 2024, pp. 0484–0490.

[48] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo, A. Morari, Z. Su, D2a: A dataset built for ai-based vulnerability detection methods using differential analysis, in: *2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)*, IEEE, 2021, pp. 111–120.

[49] G. Bhandari, A. Naseer, L. Moonen, Cvefixes: automated collection of vulnerabilities and their fixes from open-source software, in: *Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering*, 2021, pp. 30–39.

[50] J. Fan, Y. Li, S. Wang, T. N. Nguyen, Ac/c++ code vulnerability dataset with code changes and cve

summaries, in: Proceedings of the 17th International Conference on Mining Software Repositories, 2020, pp. 508–512.

[51] R. Croft, M. A. Babar, M. M. Kholoosi, Data quality for software vulnerability datasets, in: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), IEEE, 2023, pp. 121–133.

[52] I. Kalouptsoglou, M. Siavvas, A. Ampatzoglou, D. Kehagias, A. Chatzigeorgiou, Vulnerability classification on source code using text mining and deep learning techniques, in: 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), IEEE, 2024, pp. 47–56.

[53] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv:1711.05101 (2017).

[54] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization, Advances in neural information processing systems 24 (2011).

[55] F. Wilcoxon, Individual comparisons by ranking methods, in: Breakthroughs in statistics: Methodology and distribution, Springer, 1992, pp. 196–202.

[56] M. Siavvas, E. Gelenbe, D. Kehagias, D. Tzovaras, Static analysis-based approaches for secure software development, in: Security in Computer and Information Sciences, Springer International Publishing, 2018, pp. 142–157.

[57] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge, Why don't software developers use static analysis tools to find bugs?, in: 2013 35th International Conference on Software Engineering (ICSE), IEEE, 2013, pp. 672–681.

[58] Y. Li, S. Wang, T. N. Nguyen, Vulnerability detection with fine-grained interpretations, in: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2021, pp. 292–303.

[59] D. Hin, A. Kan, H. Chen, M. A. Babar, Linevd: statement-level vulnerability detection using graph neural networks, in: Proceedings of the 19th international conference on mining software repositories, 2022, pp. 596–607.

[60] N. Reimers, Sentence-bert: Sentence embeddings using siamese bert-networks, arXiv preprint arXiv:1908.10084 (2019).

[61] J. Sarzynska-Wawer, A. Wawer, A. Pawlak, J. Szymanowska, I. Stefaniak, M. Jarkiewicz, L. Okruszek, Detecting formal thought disorder by deep contextualized word representations, Psychiatry Research 304 (2021) 114135.

[62] B. McCann, J. Bradbury, C. Xiong, R. Socher, Learned in translation: Contextualized word vectors, Advances in neural information processing systems 30 (2017).

[63] Transfer Learning for Software Vulnerability Prediction using Transformer Models, <https://sites.google.com/view/vulgpt> (Accessed: 2024-07-03).