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Abstract

Recently software security community has exploited text mining and deep learning meth-
ods to identify vulnerabilities. To this end, the progress in the field of Natural Language
Processing (NLP) has opened a new direction in constructing Vulnerability Prediction
(VP) models by employing Transformer-based pre-trained models. This study inves-
tigates the capacity of Generative Pre-trained Transformer (GPT), and Bidirectional
Encoder Representations from Transformers (BERT) to enhance the VP process by cap-
turing semantic and syntactic information in the source code. Specifically, we examine
different ways of using CodeGPT and CodeBERT to build VP models to maximize the
benefit of their use for the downstream task of VP. To enhance the performance of
the models we explore fine-tuning, word embedding, and sentence embedding extraction
methods. We also compare VP models based on Transformers trained on code from
scratch or after natural language pre-training. Furthermore, we compare these architec-
tures to state-of-the-art text mining and graph-based approaches. The results showcase
that training a separate deep learning predictor with pre-trained word embeddings is a
more efficient approach in VP than either fine-tuning or extracting sentence-level fea-
tures. The findings also highlight the importance of context-aware embeddings in the
models’ attempt to identify vulnerable patterns in the source code.

Keywords: Software security, Deep learning, Transfer learning, Transformer,
Vulnerability prediction

1. Introduction

The security level of software systems is a major concern for software development
enterprises, which want to produce high-quality and secure software free of vulnerabilities.
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Security vulnerabilities are weaknesses in the software, which can be exploited by external
threats [1]. The number of new Common Vulnerabilities and Exposures (CVEs) that
are discovered annually has increased significantly since 2017 and continues its upward
trend!. Therefore, there is a need for techniques capable of identifying vulnerabilities in
software and hence, to prevent their exploitation. Vulnerability Prediction (VP) refers
to the set of techniques that can assist software developers to prioritize their inspection
efforts and time by identifying the vulnerable components of a software system.

The number of research publications in the field of VP is steadily growing [2]. Those
studies mainly propose Vulnerability Prediction Models (VPMs), which aim at classifying
the examined software components as vulnerable or not. VPMs commonly comprise
Machine Learning (ML) models, which are fed with software characteristics encoded
mainly in the form of software metrics or in textual form (i.e., text mining). Text
mining-based models seem to be the most promising ones [3],[4] and have attracted the
most research interest, as well [2].

Initially, text mining methods utilized the Bag of Words (BoW) technique for repre-
senting the source code as a set of words, each accompanied by the number of occurrences
or frequency of occurrence in the code [4],[5]. The advances in Deep Learning (DL) led
to the creation of more complex models, which are trained to learn sequential data that
consist of large sequences of tokens (i.e., words) of the source code [3],[6],(7],[8],[9]. In this
approach, the tokens of the source code are encoded with the so-called word embedding
vectors using algorithms such as word2vec [10] and then they are given as input into
DL models, usually into Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs).

Later studies appeared, which proposed the representation of the source code in text-
rich graphs (e.g., Abstract Syntax Trees, Code Property Graphs, etc.) [11],[12] in order
to capture more meaningful syntactic and semantic relationships between the tokens than
the traditional word embedding techniques (e.g., word2vec, fastText [13], etc.). Those
text-rich graphs are fed into Graph Neural Networks (GNNs) that generate the graph
embeddings of the analyzed software components and then the produced embeddings are
given as input to a ML classifier.

Recently, studies using transfer learning to construct accurate VPMs based on text
mining have begun to emerge [14],[15],[16]. Since the introduction of the Transformer
architecture [17], several pre-trained Large Language Models (LLMs) have been proposed
by the leading companies in Natural Language Processing (NLP) and Artificial Intelli-
gence (Al) fields, such as the Bidirectional Encoder Representations from Transformers
(BERT) [18] and the Generative Pre-trained from Transformer (GPT) [19]. Those mod-
els have acquired a deep understanding of Natural Language (NL) through being trained
in a primary task, such as the Masked Language Modeling (MLM), and they can be
further trained (i.e., fine-tuned) for several downstream tasks (e.g., text classification).

Such a downstream task which could benefit from transfer learning is text mining-
based VP. Early attempts of using Transformer-based models for VP, examined whether
extracting pre-trained Transformer embeddings (most commonly BERT embeddings),
instead of using embeddings generated by word2vec or fastText, is beneficial in predicting
vulnerabilities [14],[20]. Some other studies proceeded with fine-tuning Transformer-
based models on the classification task of VP using a labeled vulnerability-related dataset

Ihttps://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures
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[15],[16]. Most studies that employed pre-trained models for VP compared their approach
with previous state-of-the-art methods, and their findings indicated that transfer learning
is a promising solution in the field.

However, there is a variety of techniques and different directions (i.e., implementation
choices) considered when applying transfer learning for tasks related to code analysis
in general and VP in particular. First, as mentioned above, the studies in the VP-
related literature use different implementation choices to construct Transformer-based
VPMs. For instance, some studies use pre-trained models to extract their embeddings,
feed them to separate ML models, and train the models on the classification task (i.e.,
word embeddings extraction approach) [20], whereas some others train the entire pre-
trained model on VP (i.e., fine-tuning approach) [16],[21]. One can also freeze the pre-
trained layers, extract the sentence embeddings, and train only the classification head
(i.e., sentence-level embeddings extraction approach).

Moreover, there are questions as to whether bimodal LLMs that are pre-trained in
both NL and Programming Language (PL), or LLMs solely specialized in coding tasks
are more suitable for the task of VP. Such bimodal models may offer an advantage by
leveraging both semantic information from NL (e.g., relations between function names
and targeted functionalities) and contextual information from comments in the code,
which can potentially improve understanding of the code and, thus, improve the accuracy
of VP. In other words, it is a challenge to investigate whether the choice of including prior
knowledge of NL can assist code-oriented LLMs to capture those semantic relations in
source code that are similar to NL semantics or whether it is redundant. At this point,
we have to specify that by the term bimodal we refer to the two examined data formats
(i.e.,, PL and NL modalities). Therefore, when we refer to bimodal models in this study,
we are referring to models that have been pre-trained on these two kinds of data, whereas
mentioning unimodal models refers to models pre-trained exclusively on code.

Overall, it can be argued that there are various implementation choices that can be
made during the implementation of transfer learning-based VPMs. However, previous
research attempts just presented the model that was derived from their implementation
choices, without providing insight on how these choices affected the model performance
and which actually played the most important role in the final accuracy of the model.
To the best of our knowledge, no research endeavor exists that specifically evaluates the
impact of different implementation choices on the predictive performance of Transformer-
based VPMs. These questions are of high interest both for practitioners who would like
to understand how their implementation choices could affect the VPM performance, and
for facilitating further research in the field of VP.

To this end, this study aims at answering the aforementioned questions and dilemmas.
More specifically, our objective is to explore transfer learning for VP, with the intention
to not only check whether there is any benefit to applying transfer learning to VP, but
mainly to examine how we can benefit the most by leveraging the utilization of pre-
trained Transformer models for this purpose. In other words, the main objective of our
work is to examine which of the implementation choices that are fundamental part of
the Transformer-based model construction, seem to play a more important role in the
model’s accuracy in the downstream task of VP. It is important to shed some light on the
field with an empirical evaluation scheme and, therefore, to show which transfer learning
methods are most beneficial to VP, thereby assisting future research endeavors in selecting
the optimal ones. For instance, our study could guide researchers and practitioners on
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which of all the pre-trained models that continuously arise to choose for their analyses.

To conduct our analysis, we employ the CodeGPT [22] model, which is the pre-trained
on code variant of the GPT model, specifically the GPT-2 model, which is the latest open
source version of GPT. We also use the CodeBERT [23] model (i.e., pre-trained on code
variant of BERT). We proceed with the selection of these two models, which are vari-
ants of two of the most widely used Transformer-based models (i.e., GPT and BERT)
in software engineering and in VP [24], as representative examples of two distinct archi-
tectures. Specifically, CodeGPT-2 represents a decoder-only Transformer-based model,
whereas CodeBERT represents an encoder-only one. Briefly, our contributions are sum-
marized as follows:

o We investigated the two common ways of applying transfer learning in vulnerability
prediction: (i) feature-based approach (i.e., embedding extraction), and (ii) fine-
tuning approach.

e We compared the usage of pre-trained on code unimodal models to bimodal models
with both programming and natural language understanding.

e We identified the optimal way of utilizing CodeGPT-2 and CodeBERT in vulner-
ability prediction.

e We compared with several state-of-the-art approaches, including BoW and word2vec
embeddings, which, in contrast with Transformer’s embeddings, are not contextual
[25], as well as with graph-based models.

The rest of the paper is organized as follows: Section 2 provides a summary of the
existing work in the related literature. Section 3 describes thoroughly our approach, the
utilized dataset, our experimental setup, and the evaluation scheme that we follow. In
Section 4, we present the results of the conducted experiments, and in Section 5, we
discuss our findings and the lessons learned. Section 6 discusses threats to validity, and
finally, Section 7 concludes the paper and provides directions for future work.

2. Related work

In this section, we discuss related work on software VP using ML techniques. We
also present the background of the Transformer models, and subsequently, we provide an
overview of the previous studies that utilized variants of the Transformer architecture to
perform VP.

2.1. Vulnerability prediction

Vulnerability prediction models are commonly created using ML techniques that uti-
lize software attributes as features. The two most widespread input kinds of VPMs
are (i) software metrics, and (ii) text features. Shin and Williams [26],[27] examined
the capacity of complexity metrics to predict software vulnerabilities. Chowdhury and
Zulkernine [28] observed that metrics such as complexity, coupling, and cohesion can be
used efficiently to predict vulnerabilities using ML algorithms (e.g., Decision Trees, Naive
Bayes, etc.). Kalouptsoglou et al. [29] presented a Multilayer Perceptron (MLP)-based
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approach using several software metrics extracted by static code analysis as features in
order to perform cross-project VP with sufficient results.

Text mining-based attempts initially represented the source code as BoW, i.e., a set
of words along with their frequencies of appearance [5],[30]. Later on, various researchers
represented the source code as sequences of tokens (i.e., words), encoded the sequences
to numerical vectors, and provided them to DL models suitable for learning sequential
data, such as RNNs and CNNs. In particular, Dam et al. [6] trained a Long Short-Term
Memory (LSTM) model to learn sequences of tokens represented with numerical vectors.
Li et al. [8] proposed a Bidirectional LSTM model, which received as input slices of code
tokens after transforming them to word2vec embeddings. In [9], an empirical evaluation
of different techniques for word embedding software components took place, showcasing
the efficiency of word2vec. Moreover, Li et al. [31] proposed the SySeVR framework that
uses DL to detect vulnerabilities, focusing on obtaining code representations capable of
accommodating semantic and syntax information related to vulnerabilities.

In their study [11], Zhou et al. proposed Devign, a model based on GNNs, for identi-
fying vulnerable source code functions. They extracted graphical representations of the
source code such as Abstract Syntax Trees (AST), Control Flow Graphs (CFG), Data
Flow Graphs (DFG) etc., and through GNNs, they generated graph embeddings of the
source code functions. Those embeddings were then fed to a classifier in order to classify
the functions as vulnerable or not. Chakraborty et al. [12] presented a DL-based method
named ReVeal, where they extracted graphical representations of the source code, specif-
ically Code Property Graphs (CPGs) [32]. They fed the CPGs to GNNs to learn the
graph embeddings, and then, they used an MLP to classify the functions as vulnerable
or not. Through their analysis, they replicated several state-of-the-art methods. Their
findings highlighted the failure of the existing approaches to perform accurate VP on
real-world data and emerged the need for techniques of greater precision.

2.2. Transformer models

Bahdanau et al. [33] proposed the Attention mechanism in neural machine trans-
lation, addressing the issue of using a fixed-length context vector for input sentences.
Specifically, the Attention mechanism assigns Attention weights to each element of the
input sequence, and thus, it enables sequence-to-sequence models to generate new words
by searching specific positions, which contain the most relevant information [33]. Based
on the Attention mechanism, Vaswani et al. [17] introduced the Transformer architec-
ture for sequence-to-sequence tasks managing to outperform state-of-the-art models (e.g.,
CNN and LSTM) in accuracy and training cost.

Radford et al. [19] developed OpenAl GPT leveraging the decoder part of the Trans-
former architecture. GPT was pre-trained in next word prediction to gain a deep under-
standing of NL and then fine-tuned on objectives such as questioning-answering, sentence
similarity, etc. Next, Devlin et al. [18] introduced Google AT’s pre-trained model called
BERT, which utilizes the encoder part of the Transformer architecture. Having been
pre-trained on the MLM objective, where certain tokens of the input sentences have
been masked and then the model is trained to predict the masked tokens, BERT can be
fine-tuned in various downstream tasks. BERT has attracted much interest in the NLP
field, forming the basis for the development of many other models [34],[35],[36].

Furthermore, Facebook Al presented Bidirectional Auto-Regressive Transformers (BART)

[37], proposing a pre-trained autoencoder for sequence-to-sequence learning. By using
5
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both the encoder and decoder parts of the Transformer architecture, they pre-trained a
model that demonstrated high accuracy when fine-tuned in text generation tasks. Later
on, more pre-trained Transformer-based models appeared in the NLP-related literature,
such as Google’s Text-to-Text Transfer Transformer (T5) [38] and Language Model for
Dialog Application (LaMDA) [39].

2.3. Transformer models in vulnerability prediction

In an early attempt to employ Transformer models in VP, Bagheri et al. [20] presented
a comparison of various Python source code encoding techniques for VP. Specifically,
they examined the effectiveness of word2vec, fastText, and BERT embeddings along
with an LSTM model. Yuan et al. compared traditional word2vec, fastText, and glove
[40] embedding techniques with the embeddings gained from BERT’s code variant called
CodeBERT [41]. Their results highlighted the effectiveness of CodeBERT embeddings.

VulDeBERT was a study that applied fine-tuning on BERT pre-trained model to the
downstream task of VP, succeeding promising results [42]. VuIBERTa also managed to
surpass several state-of-the-art approaches having pre-trained knowledge of source code
[43]. Fu et al. proposed LineVul that was a promising attempt to employ a Transformer
model in VP [21]. In particular, they used the attention mechanism of the BERT archi-
tecture in order to detect vulnerabilities at line level. In a more recent endeavor, Purba et
al. utilized some of the most powerful LLMs to perform vulnerability detection showing
promising results in comparison with traditional static code analysis tools [44].

2.4. Beyond state-of-the-art

As opposed to the aforementioned studies, in this paper, we do not intend to propose
a new model, but we are interested in how to get the most out of transfer learning in
VP. More specifically, we empirically examine how implementation choices that are fun-
damental in the Transformer-based model construction process affect the performance
of the produced VPMs. Existing research works were limited to introducing a novel
Transformer-based VPM, without examining (at least reporting) how their implementa-
tion choices affected the model performance. In particular, Bagheri et al. [20] and Yuan
et al. [41], were limited to the utilization of pre-trained word embeddings without con-
sidering other transfer learning approaches. Furthermore, VulDeBERT [42], VulBERTa
[43] and LineVul [21] as well as the study of Purba et al. [44] applied solely fine-tuning
without examining whether the utilization of pre-trained embeddings with a common
ML algorithm could provide similar or even better results, or without trying to freeze
some pre-trained layers and train the rest ones.

Concisely, most studies in the VP field that use pre-trained models present an ap-
proach without neither explaining nor justifying their choice to use a specific model
architecture, a PL, NL or mixed PL and NL - pre-trained model, and a word embedding,
sentence embedding or fine-tuning approach. Usually, they do not even specify which
pre-trained model variant they use (e.g., unimodal or bimodal CodeBERT). To this
end, contrary to previous studies that focused solely on proposing a Transformer-based
VPM without examining the implementation choices that lead to improved accuracy, the
current study examines different approaches that can be followed during the implemen-
tation of transfer learning-based VPMs and attempts to shed some light regarding the
suitability and the accuracy of the different variations in the employment of pre-trained

6
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Transformer-based solutions for VP. Through this process, the best possible approach for
applying transfer learning in the field of VP emerges. Table 1 summarizes all the afore-
mentioned related studies that present VPMs in terms of dataset, code representation
format, model, evaluation metrics and, in case of Transformer-based models, the imple-
mentation choices made to build VPMs using transfer learning. We label the studies by
the name of the proposed model or, if there is no name, by the names of the authors.

Table 1: Summary of the various related studies presenting vulnerability prediction models.

Name Dataset Representation | Model Eval. Implem.
Metric Choice
Shin and | Firefox JS Software Statistical Accuracy, | N/A
Williams Engine metrics correlation Recall,
[26],[27] FNR
Chowdhury Mozilla Software Decision F1-score N/A
and Zulkernine | Firefox metrics Tree
28]
Kalouptsoglou PHP Drupal, Software MLP Recall N/A
ct al. [29] PHPMyAdmin, metrics
Moodle [4]
Scandariato et | Android OS BoW Random Fo-score N/A
al. [5] Platform Forest
Hovsepyan et | K9 mail BoW Support Accuracy | N/A
al. [30] client Vector Recall,
Machine Precision
Dam et al. [6] Android OS Sequence LSTM F1-score N/A
Platform, of tokens
Firefox
VulDeePecker NVD [45] + Sequence word2vec+ F1-score N/A
8] SARD [46] of tokens BIiLSTM
Kalouptsoglou | NVD [45] + Sequence word2vec+ Fa-score N/A
et al. [9] SARD [46] of tokens CNN/LSTM
SySeVR [31] NVD [43] + Sequence of word2vec+ F1-score N/A
SARD [46] tokens, AST, BiGRU
PDG
Devign [11 Devign [11 Graph GNN F1-score N/A
ReVeal [12 ReVeal [12 Graph GNN F1-score N/A
Bagheri et | Python Sequence CodeBERT+ | Fi-score Word
al. [20] GitHub [20] of tokens LSTM embedding
extraction
Yuan et al. [41] | NVD [45] + Sequence CodeBERT Precision, | Word
SARD [46] of tokens Recall embedding
extraction
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Name Dataset Representation | Model Eval. Implem.
Metric Choice
VulDeBERT NVD [45] + Sequence BERT F1-score Fine-tuning
[42] SARD [46] of tokens
VulBERTa [43] | Draper [47], Sequence RoBERTa F1-score Fine-tuning,
CodeXGLUE [22], | of tokens Sentence
D2A [48] embedding
extraction
Purba et | CVEfixes Sequence CodeGen, F1-score Fine-tuning
al. [44] [49] of tokens GPT-3.5,
Davinci
LineVul [21] Big-Vul Sequence CodeBERT F1-score Fine-tuning
[50] of tokens
Present study Big-Vul Sequence CodeBERT, F1-score Fine-tuning,
[50] of tokens CodeGPT- Word
2 embedding
extraction,
Sentence
embedding
extraction,
Data
modalities

3. Study design

In this section, the entire methodology of the current study is described. Initially, we
define the research questions that outline the analysis and explain the selection of the
implementation choices examined. Then we present the overview of our methodology
and subsequently we provide details for the dataset, the utilized models, the embeddings
(i.e., features) - based approaches, the fine-tuning method as well as the training and

evaluation procedures we followed.

8.1. Research questions definition

The research goals of the current study can be expressed through the following Re-
search Questions (RQs):

e RQ;: What is the impact of different transfer learning strategies on the perfor-
mance of Transformer-based models for vulnerability prediction?

RQ: investigates whether it is better for vulnerability prediction to fine-tune the
pre-trained models on this specific task (i.e., fine-tuning approach) or extract their
features and learn to classify them (i.e., feature-based approach). In addition, it
compares the two feature-based approaches by investigating whether it is better to
extract the sentence embeddings to represent the input and train a classifier or to
extract the pre-trained word embeddings and train a separate DL predictor.
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e RQ.: What are the computational trade-offs between different transfer learning
strategies in constructing Transformer-based vulnerability prediction models?

RQ2 aims at providing insights into trade-offs between performance and computa-
tional factors such as training time, memory requirements, model complexity, and
inference time, when selecting between fine-tuning and feature-based approaches
for constructing Transformer-based VPMs.

e RQ3: How does pre-training on both natural and programming languages impact
vulnerability prediction performance compared to pre-training on code alone?

RQjs is responsible for determining whether transfer learning from models pre-
trained in both natural and programming languages (i.e., bimodal pre-training)
enhances vulnerability prediction as opposed to models pre-trained exclusively in
programming languages (i.e., unimodal pre-training).

e RQ,: How do context-aware embeddings compare to traditional static embeddings
in vulnerability prediction?

RQ4 examines the impact of the context-aware embedding vectors, which are ex-
tracted from Transformer-based models, on the implementation of vulnerability
prediction solutions compared to traditional techniques that have been utilized for
embedding the source code in static vectors (i.e., global vectors), thereby extracting
insightful observations regarding the context-awareness of LLMs.

e RQs: How does the best-performing transfer learning approach compare against
state-of-the-art vulnerability prediction approaches?

RQ5 compares the optimal model, as identified in the previous RQs, in contrast to
some well established state-of-the-art approaches, which are based either on text
mining or on graphical representations.

3.2. Selection of implementation choices

As the primary motivation of this study is to shed some light in the fragmented
literature on Transformer-based VP, we explore how specific implementation choices in
constructing Transformer-based VPMs influence model accuracy. It is important to note
that our study does not aim to analyze all possible transfer learning implementation
choices and their combinations, but we focus on the key approaches that have already
been employed in the VP-related literature.

To the best of our knowledge, no prior research has systematically evaluated the
impact of different implementation choices on Transformer-based VPMs, and thus, in
the current empirical study we focus on providing recommendations on the fundamental
transfer learning strategies that have been previously utilized in VP research, as discussed
in Section 2. In particular, we compare the fine-tuning [21],[42],[43],[44] and feature-based
[20],[41],[43] (both sentence-level and word-level feature extraction) approaches, which
represent fundamental transfer learning methodologies for adapting Transformer models
to downstream tasks.

Concisely, we based the selection of implementation choices on whether they are fun-
damental in transfer learning, and whether they have already been used in the VP-related
literature, taking also into account the specific characteristics of the field. Hence, we de-
cided to proceed with the comparison of the fundamental fine-tuning and feature-based
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directions, which have shown promising performance in VP, as well as by evaluating a
domain-specific option regarding the benefit of incorporating prior knowledge of NL com-
pared to prior knowledge of source code data solely. This evaluation allows us to derive
actionable insights for practitioners and researchers interested in building Transformer-
based models for VP.

3.3. Methodology

This section provides a thorough presentation of the current study’s entire method-
ology. In Figure 1 there is the high-level overview of our implementation strategy. It
includes three main phases, namely data preparation, training setup, and model test-
ing and comparison. More details about the steps of these phases are provided in the
following subsections.

3.3.1. Data preparation

Regarding the utilized dataset, we used the Big-Vul dataset [50] that consists of source
code retrieved from public repositories found on GitHub, all written in the C/C++
programming languages. This dataset contains real world vulnerabilities that have been
reported in the Common Vulnerabilities and Exposures (CVEs) database.

For the construction of Big-Vul, Fan et al. [50] developed a tool capable of crawling
the public CVE database to gather all the available information of a CVE, including
the references linking to the relevant software products, which enabled them to search
the products with open-source git repositories [50]. This way, they found vulnerability-
related commits and extracted the corresponding changes in the source code in order
to get the changed parts between before and after repairing a vulnerability. The parent
version of these commits (i.e., version before repairing) is the one that contains the
reported vulnerability.

Through this process, they managed to create a dataset of 188,636 samples collected
from 348 open-source software projects with several vulnerability types included. Specif-
ically, the dataset has 10,900 vulnerable methods along with their fixes and 177,736 other
neutral (i.e., non-vulnerable) methods that can be considered as clean since no vulner-
ability has been reported for them yet. Hence, the dataset has a ratio of vulnerable
methods equal to 6.13 %.

After fetching Big-Vul dataset, we proceeded with data cleansing. For this purpose,
we examined the Croft et al. [51] study, which conducts a quality assessment to remove
noise in the data of some well established vulnerability datasets including Big-Vul. Based
on their findings, the Chromium project had to be removed from the dataset as it was
found to reduce the accuracy of the overall dataset by leading the vulnerability prediction
models to infer incorrect patterns between classes. In particular, Croft et al. noticed
that most of the vulnerability reports related to Chromium were improperly traced since
its repository is not naturally hosted by GitHub. They validated their observation by
showing a large drop in vulnerability prediction models accuracy when removing noisy
data from the testing set, indicating to incorrect patterns learnt during the training
phase. Therefore, we proceeded to the removal of Chromium from both the training and
evaluation sets in order to avoid introducing noise when constructing our models.

Next, we separated the dataset randomly in three different parts i.e., (i) training,
(ii) validation, and (iii) testing parts, following a common evaluation technique in ML
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and in VP specifically [2]. Specifically, we divided the entire dataset into two sets; one
for training and validation and one as a completely unseen set for testing purposes in
percentages of 90-10 %. We then divided the large set of 90 % further into training and
validation sets, again in percentages of 90-10 %. The training dataset was utilized for
the training of the examined models on the vulnerability-related data. The validation
set was utilized for evaluating the produced models during the hyperparameter selection
phase, whereas the testing set was used as a testbed for the final evaluation of the
analyzed approaches, and therefore, for the models’ comparison and the conclusions of
our analysis.

3.3.2. Training setup

In the training phase of the methodology, as can be seen in Figure 1, we fed the input
training data in the examined models in order to optimise them (i.e., find the optimal
hyperparameters), based on their performance on the validation data, and therefore,
produce the optimal model per each examined approach. In Figure 1, there are mentioned
the three different examined approaches for leveraging pre-trained models in VP; (i) fine-
tuning, (ii) sentence-level embeddings extraction, and (iii) word embeddings extraction.

For all the examined transfer learning approaches, we leveraged the pre-trained on
code variants of BERT and GPT-2 models, namely as CodeBERT and CodeGPT-2, which
have demonstrated promising results for code-related objectives [23],[21],[52]. CodeGPT-
2 is based on the GPT-2, which is the latest open-source version of the GPT model that
was developed by OpenAI%. GPT-2 employs the decoder part of the Transformer archi-
tecture and is pre-trained on the primary task of next word prediction. It is more suitable
for text generation tasks. In CodeXGLUF study [22], Lu et al. presented CodeGPT-2, a
variant of GPT-2, which was pre-trained on PL data retrieved from the Java and Python
sets of the CodeSearchNet® dataset. This model has the same decoder-only Transformer
architecture and pre-training objective (i.e., next word prediction) as the GPT-2 but has
prior knowledge of PL. Specifically, there are two versions of it; one that is pre-trained
from scratch on PL* and another which uses as a basis the GPT-2 weights and continues
its training on the code corpus (i.e., domain adaptive model)®. To distinguish them, the
latter is mentioned as CodeGPT-2-Adapted.

On the other hand, CodeBERT is an encoder-only architecture, which, as its name
implies, belongs to the BERT variants. BERT was originally pre-trained on the MLM
objective. In MLM, the 15% of the tokens sequences is masked and then the model
learns to predict the actual values of the masked tokens. An improved variant of BERT
is RoBERTa, which is trained on a much larger dataset with a more effective training
approach. The architecture of the RoBERTa model is the basis for CodeBERT, which
was developed by Microsoft Al. CodeBERT has two variants: (i) the CodeBERT-base
model®, which is pre-trained on natural and programming language pairs (i.e., bimodal
data), and (ii) the CodeBERT-base-MLM model”, which is pre-trained on source code

2https://openai.com/
3https://huggingface.co/datasets/code_search_net
‘https://huggingface.co/microsoft/CodeGPT-small-py
Shttps://huggingface.co/microsoft/CodeGPT-small-py-adaptedGPT2
Shttps://huggingface.co/microsoft/codebert-base
"https://huggingface.co/microsoft/codebert-base-mlm
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data in the task of predicting the masked tokens in code fractions. The former is pre-
trained on documentation and code pairs of the CodeSearchNet dataset, whereas the
latter is pre-trained on the code corpus of the CodeSearchNet dataset.

For the examined Transformer-based models, we used the Transformers library that
is provided by Hugging Face (HF)®. This library provides implementations of several
pre-trained NLP models, including CodeGPT-2, and CodeBERT, and also their pre-
trained weights. We used the HF library to load the aforementioned models in order
both to fine-tune the pre-trained models in the downstream task of VP and to extract
their sentence-level or word-level embeddings.

3.3.3. Fine-tuning experiments

To begin with, fine-tuning in VP is the process of training on a labeled dataset both
the layers of a pre-trained model and an extra classification layer placed on the top
of the existing model (classification head). In fine-tuning, the model adapts its prior
language knowledge on a specific objective. In this study, we fine-tuned CodeBERT and
CodeGPT-2 on the objective of VP, using the vulnerability dataset described in Section
3.3.1. During fine-tuning, the training dataset, in the format of sequences of tokens,
is fed to the VPM that consists of the pre-trained Transformer-based model and the
classification head, and then, both of them are trained and their weights are updated in
order to minimize a loss function, which is the Cross-Entropy loss®. Finally, the models
learn to classify software components as vulnerable or not.

CodeBERT and CodeGPT-2 were fine-tuned using their default Transformer archi-
tecture as provided by HF. Specifically, CodeBERT, similarly to RoBERTa, has 12 Trans-
former layers with 768 hidden size, 12 attention heads and a total of 125 millions pa-
rameters. CodeGPT-2, similarly to GPT-2, has also 12 layers, 768 hidden size, and 12
attention heads, but it has 117 millions parameters. We added a classification head, and,
then we proceeded with manual hyperparameter tuning based on empirical observations,
using as a starting point the default hyperparameter settings recommended in the origi-
nal studies of CodeBERT [23] and CodeGPT-2 [22], in order to determine the values of
the optimization hyperparameters, ending up with a learning rate (LR) set as 0.00002
(i.e., 2e-5) along with a linear scheduler where the LR decays linearly during the training
procedure. For the optimization of the gradient descent, we used AdamW (Weighted
Adam) optimizer [53]. The sequences of the input had a maximum length equal to 512,
the longest length they are capable of supporting. We employed also the Early Stopping
technique to determine the number of epochs. In addition, zero padding was used to
ensure that each sequence had the same length throughout the encoding of the textual
data using CodeBERT and CodeGPT-2 tokenizers, and the truncation approach was
used to trim sequences that exceeded the maximum length. Table 2 summarizes the
aforementioned characteristics of the fine-tuned CodeBERT and CodeGPT-2 models.

3.8.4. Sentence-level embedding extraction experiments
Apart from fine-tuning, we leveraged those LLMs in vulnerability prediction by fol-
lowing feature-based approaches. Specifically, we fed to them the input data and we

Shttps://huggingface.co/
Inttps://en.wikipedia.org/wiki/Cross-entropy
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Table 2: Characteristics of the models considered in the fine-tuning and sentence-level embedding ex-
traction approaches.

Attribute CodeBERT CodeGPT-2
Versions Base, Base-MLM Base, Adapted
Transformer Variant RoBERTa GPT-2
Transformer Layers 12 12
Fully Connected Layers 1 1
Hidden Size 768 768
Attention Heads 12 12
Learning Rate (LR) 0.00002 0.00002
Optimizer AdamW AdamW
Loss Function Cross-Entropy Cross-Entropy
Max Length 512 512

extracted the features of the last hidden layer (i.e., sentence-level embeddings). The
extracted embeddings were given then as input to an ML classifier, which actually is a
classification layer placed on top of the Transformer model and is called classification
head. During training, the pre-trained layers froze and the classification head learnt to
classify functions as vulnerable or not.

3.83.5. Word-level embedding extraction experiments

Furthermore, we employed LLMs by extracting their pre-trained word embedding
vectors. Word embedding is a method that represents words as vectors of real numbers.
These word vectors capture semantic and syntactic information about words, enhancing
the capabilities of ML models to learn textual data. A popular word embedding algo-
rithm is word2vec [10], which is the method most commonly used in the VP field [2].
However, LLMs have proposed a different embedding approach by producing context-
aware embedding vectors. During this approach, the way words are used in sequences
varies based on their context. This results in a word having different vector representa-
tions depending on the context. In our analysis, we transformed the sequences of source
code tokens to sequences of contextual (CodeBERT or CodeGPT-2) embedding vectors.
These sequences were the input to a DL model, which was trained in binary classification
to predict whether a sequence has vulnerabilities.

For the selection of the DL classifier, we examined various DL algorithms. We fo-
cused mainly on the RNNs, since they are the most capable neural networks (except
Transformers) for learning sequential data similar to language data. During training, we
used the validation data in order to configure the optimal hyperparameters of the DL
models. After an extensive hyperparameter tuning employing the Grid-search approach
[54], we ended up with Adam optimizer, learning rate equal to 0.001, and batch size 64.
We applied also the Early Stopping technique to determine the number of epochs before
the models start to overfit. To avoid overfitting, we also utilized dropout layers in all
layers (both hidden layers and dense output’s dense layer). For the initialization of the
weights, the Xavier Initialization was used. We put three recurrent layers (with 500-
100-200 nodes respectively) along with the tanh activation function. The loss function
utilized was the binary cross entropy with the Sigmoid activation function in the last
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Table 3: Optimal configurations of the deep learning model used in the word-level embedding extraction
approach.

Configuration Value
Embedding Model CodeBERT & CodeGPT-2
Embedding Type Contextual

Embedding Size 768

DL Classifier BiGRU

Recurrent Layers 3

Hidden Size 500 - 100 - 200
Initializer Xavier
Optimizer Adam
Learning Rate (LR) 0.001
Activation Function tanh
Output Activation Function Sigmoid
Loss Function Cross-Entropy
Dropout per Layer 0.2-0.1-0.1

layer. We also experimented with different kinds of recurrent layers. In particular, we
compared several RNN variants including LSTM, Gated Recurrent Unit (GRU), Bidi-
rectional LSTM (BiLSTM), and Bidirectional GRU (BiGRU). We also examined 1-D
CNNs since they have demonstrated competent performance in VP [2],[3],[9]. It turned
out that BiGRU is the best model for our case, at least for Big-Vul. A summary of the
alorementioned configurations of the DL classification model is provide in Table 3.

3.3.6. Traditional word embedding experiments

Finally, we used also traditional embedding methods in order to facilitate direct
comparison of context-aware embeddings versus static (i.e., global) embeddings, such as
word2vec ones. Static vectors represent each word in a unique matter, regardless their
particular context. To train static embeddings such as the word2vec vectors, we utilized
the training set of our dataset, while the validation set was used as a basis for selecting
the hyperparameters of the word embedding algorithms by employing the Grid-search
technique [54]. We applied the word2vec algorithm on this set in order to learn source
code-aware word2vec static embedding vectors. We then fed the sequences of word2vec
vectors to the DL model and we trained it to classify the sequences to vulnerable and
non-vulnerable. We repeated the whole process by employing also the fastText algorithm,
which, although still produces static vectors, it manages to tokenize also out of vocabulary
words, since it acts on sub-word and character level. To train the static word embeddings
on C/C++ data, the vector dimension, after several experimentations, was chosen equal
to 100 and the context window size equal to 20 words. We utilized Skip-gram and
Continuous Bag-of-Words (CBOW) variants for word2vec and fastText respectively. Last
but not least, for reasons of completeness, we proceeded also with the state-of-the-art
BoW representation. For the BoW approach, we utilized the Random Forest classifier,
which has been widely adopted in the literature of VP [2],[4],[21], often demonstrating
high accuracy.
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3.83.7. Model testing and comparison

For the evaluation of all the examined techniques, we quantify the produced results
using common classification metrics. In particular, we employed accuracy, recall, pre-
cision, Fi-score, and Fa-score. We consider as the most critical measurement for our
analysis the Fi-score, which considers equally both recall and precision and therefore
consists a measurement capable of reflecting the attempt to both increase the actual
vulnerabilities identified and to decrease the false positives. It is also the most utilized
metric in the VP-related literature [2] and thereby facilitates the comparison with other
studies. The mathematical formula of Fi-score is provided below:

- TP TP
2 X precision x recall 2X 7p1FF X TPIFN B 2xTP

 2xTP+FP+FN

(1)

Fi-score = precision + recall % + TPZ%

, where TP stands for True Positives, FP for False Positives, and FN for False Nega-
tives.

At this point, we have to notice that the experiments (i.e., both training and evalu-
ation processes) for each different examined approach were repeated ten times by using
a different seed each time, and their average values were calculated and reported. This
setting prevents our analysis from depending on the randomness that exists in various
processes during data shuffling, model training, computational calculations, etc.

4. Results

In this section, the study’s experimental results are presented with respect to the
research questions defined in Section 3.1. All the experiments took place on the CUDA!®
platform of a GeForce RTX 4080 Super Nvidia Graphics Processing Unit (GPU). The
results provided are derived from the testing part of the dataset. To facilitate the repro-
duction of the results, we also provide a replication package'®.

4.1. RQy - Most effective strategy for leveraging pre-trained Transformer-based models
in vulnerability prediction

In RQ; we examined the transfer learning approaches that one can follow to leverage
LLMs for the downstream task of VP. To this end, we employed the CodeBERT and
the CodeGPT-2 models. First, we fine-tuned in VP both of the pre-trained on code
CodeBERT-base-MLM and CodeGPT-2 models by updating the weights of all their
layers to adapt the models to this particular task. Next, we extracted their embeddings
at either sentence or word level and trained DL classification models in VP.

In case of sentence embeddings, we fed the input data to pre-trained models, sub-
sequently, we froze their pre-trained layers, and therefore the given sequences of tokens
were encoded as sentence-level embeddings. Those embeddings were given to the classifi-
cation head of the models, which was then trained on binary classification to discriminate
vulnerable and non-vulnerable functions. In case of word embedding, we extracted the

10https://developer.nvidia.com/cuda-toolkit
https://sites.google.com/view/vulgpt/
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word embedding vectors from the pre-trained models and provided them to the embed-
ding layer of a separate neural network. This way, we utilized the pre-trained models to
gain their prior knowledge so as to represent the source code tokens. We then trained the
neural network on the binary classification task of VP. Specifically, we trained a BIGRU
model, which proved to be the best one among the examined RNNs and the CNN on the
Big-Vul dataset, as described in Section 3.3.5.

Table 4 summarizes the evaluation results of the three approaches on the testing set.
Particularly, it presents the average values of ten different repetitions of the evaluation
per case. As can be seen, the word embedding extraction approach is the clear winner
among the two feature-based methods. Specifically, word embedding extraction from
CodeBERT and CodeGPT-2 leads to a VPM of Fi-score equal to 91.4% and 90.2%
respectively, whereas the sentence embedding extraction from these models achieves 67%
and 56.8% Fi-scores, which are much lower values. It seems that, by just training the
classification head, the models do not manage to capture efficiently the vulnerability
patterns.

Table 4: Evaluation results of fine-tuning and feature-based (sentence and word-level embedding extrac-
tion) approaches of transfer learning in vulnerability prediction.

Model / Metric (%) Accuracy | Precision Recall Fi-score Fa-score
CodoBERT fno-tuning 99.0 (£0.06) | 96.3 (£0.9) | 87.4 (£1.1) | 91.6 (£0.0) | 89.0 (£0.8)
CodeGPT-2 fine-tuning 98.8 (£0.04) | 96.0 (£0.7) | 85.2 (£0.7) | 90.3 (£0.3) | 87.2 (£0.5)
CodeBERT sentence-level | 96.8 (£0.91) | 98.3 (£2.5) | 50.8 (£3.1) | 67.0 (£3.5) | 56.2 (£4.1)
CodeGPT-2 sentence-level | 96.0 (£0.12) | 89.8 (£3.0) | 41.5 (£3.8) | 56.8 (£4.0) | 46.6 (£4.5)

( ( )

( ( )

CodeBERT word-level 98.9 (£0.04) | 96.0 (£1.0) | 87.4 (£1.3) | 91.4 (£0.4) | 88.9 (£0.9
CodeGPT-2 word-level 98.8 (+£0.06) | 96.4 (+£0.8) | 84.8 (+£0.9) | 90.2 (+£0.5) | 86.9 (+£0.7

As can be seen in Table 4, the word embedding extraction approach and the fine-
tuning approach, are really close to each other, both when using CodeBERT and CodeGPT-
2. Specifically, CodeBERT fine-tuning achieves an average F;-score equal to 91.6% with
a standard deviation of 0.6%, in contrast to CodeBERT word embedding that achieves
Fi-score 91.4% with standard deviation 0.4%. Similarly, CodeGPT-2 fine-tuning man-
ages to achieve an Fi-score equal to 90.3% on average, with standard deviation equal
to 0.3%, as opposed to CodeGPT-2 word embedding approach, which succeeds F1-score
90.2% with a standard deviation equal to 0.5%. We can discern a very slight lead of the
fine-tuned models but we can not single out just one as the best.

To facilitate the comparison, we proceeded with conducting a statistical test so as
to identify whether there is a statistical significance in the superiority of the fine-tuning
approach. Specifically, we performed the Wilcoxon-Signed Rank Test [55], which can
judge whether there is a statistically significant difference between two pairs (i.e., Fi-
scores achieved by fine-tuning and by word embeddings extraction). For this purpose, we
used all the ten Fi-scores computed by each model and each approach, and we utilized
them as pairs based on the seed’s value. Based on the Wilcoxon analysis, we found that
the p-values were 0.49 and 0.84 for CodeBERT and CodeGPT-2 respectively, which are
higher than the 0.05 threshold, and therefore we cannot state that there is a statistically
significant difference between the two approaches. Concisely, the results of the analysis
suggest that:
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Fine-tuning and word embedding extraction strategies achieve comparable
predictive performance in vulnerability prediction, while word embedding
extraction is the most accurate feature-based approach, outperforming sen-
tence embedding extraction.

4.2. RQy - Computational trade-offs between different transfer learning strategies in vul-
nerability prediction

To provide a comprehensive evaluation of Transformer-based VPMs, we analyze the
computational trade-offs associated with different transfer learning strategies. While
RQ; focused on prediction accuracy, this section examines key computational factors,
such as training time, memory requirements, implementation complexity, and execution
speed. Specifically, Table 5 presents the values of training time in seconds (s), GPU
memory consumption in gigabytes (GB), model size on disk in GB, number of trainable
parameters (i.e., indicator of model complexity), and inference time in seconds.

Table 5: Trade-offs between fine-tuning and feature-based (sentence and word-level embedding extrac-
tion) approaches in vulnerability prediction in terms of training time, memory requirements, model
complexity, and inference time.

Model/Metric Train. GPU Disk Train. Inf. F1-score
time memory | space params time
CodeBERT fine-tuning 7,091 8.20 1.46 | 124,647,170 | 0.00572 91.6
CodeGPT-2 fine-tuning 11,336 10.90 1.45 | 124,245504 | 0.00770 90.3
CodeBERT sentence-level 3,894 1.94 0.50 592,130 | 0.00574 67.0
CodeGPT-2 sentence-level 7,550 2.30 0.50 1,536 | 0.00775 56.8
CodeBERT word-level 1,515 4.68 0.66 4,954,801 | 0.00147 91.4
CodeGPT-2 word-level 4,883 4.68 0.66 4,954,801 | 0.00146 90.2

As can be seen in Table 5, fine-tuned models require the most training time, GPU
memory, disk space, and number of trainable parameters, as they modify all Transformer
layers during training. On the other hand, the sentence embedding extraction approach
has the smallest GPU memory and disk space as well as the fewest trainable parameters,
since it only trains the classification head, which is a feed-forward layer added on top
of the Transformer. Word embedding extraction, while requiring more parameters to be
trained and more GPU memory than sentence embeddings, still has substantially fewer
trainable parameters than fine-tuning and requires much less training time than both
fine-tuning and sentence-level embeddings.

In particular, the CodeBERT word embeddings method needed 1,515 seconds (less
than half an hour of training) approximately to be completed, and CodeBERT sen-
tence embedding extraction needed 3,894 seconds (about 1 hour of training), whereas
fine-tuning CodeBERT required 7,091 seconds (almost 2 hours of training). Significant
differences exist also in the CodeGPT-2 case. The CodeGPT-2 word embeddings-based
training of the RNN lasted 4,883 seconds (about 81 minutes), the sentence embedding
extraction needed 7,550 seconds (about 2 hours), while CodeGPT-2 fine-tuning needed
11,336 seconds (more than 3 hours). CodeGPT-2 training completed in more time than
CodeBERT, since it usually needed more epochs until reaching the optimal Fi-score. In
any case, both models’ fine-tuning proved to be a much more time-consuming process
than embedding extraction (i.e., training of classification head) and word embedding
extraction (i.e., DL model’s training).

18



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

Furthermore, as regards the memory requirements, CodeBERT sentence embedding
extraction requires 1.94 GB of GPU memory to feed the vectors and train the classifica-
tion head, and 0.5 GB for hosting the trained model, while CodeBERT word embedding
extraction needs 4.68 GB in GPU for training the DL classifier and 0.66 GB disk space for
hosting the model. In contrast, CodeBERT fine-tuning requires 8.2 GB of GPU memory
and 1.46 GB on disk. Similarly, in case of CodeGPT-2, sentence embedding extraction
requires 2.3 GB in GPU and 0.5 GB on the disk, word embedding extraction approach
requires 4.68 GB of GPU memory and 0.66 GB for hosting the trained model, while
fine-tuning demands 10.9 GB of GPU memory and 1.45 GB disk space.

Moreover, the CodeBERT sentence embedding extraction needs training of 592,130
parameters and CodeBERT word embeddings method includes 4,954,801 trainable pa-
rameters that need to be optimized during training, whereas the CodeBERT fine-tuning
approach requires the training of 124,647,170 parameters, which is a significantly higher
number. In case of CodeGPT-2, the sentence embedding extraction approach includes
1,536 trainable weights and the word embeddings extraction needs to update 4,954,801
trainable parameters (i.e., same number as in CodeBERT word embeddings, since the
trainable parameters regard the DL model, which is common) in contrast to the more
complex fine-tuning approach, which includes 124,245,504 trainable weights.

As regards the inference time, which is a crucial factor for real-world deployment, all
the three techniques exhibit quite short times. However, a substantially lower inference
time is observed for the word embedding extraction approach, making it particularly
suitable for real-time security applications. Such a low inference time demonstrates also
the advantage of word embedding extraction approach in terms of scalability in relation
with the size of the analyzed projects. Considering that it needs on average 1.47 ms to
analyze a function under test, it will be able to analyze an entire project of 100 functions
in 147 ms, while for a project of 1000 functions it will need 1,470 ms. It is also capable of
analyzing larger projects that consist, for instance, of 100,000 functions in only 147,000
ms, being resilient to the scale of the project’s size. On the contrary, fine-tuning, which
can analyze one function in 5.72 ms, needs 5,720 ms to analyze a project of 1000 functions,
and 572,000 ms for a larger project of 100,000 functions, which are substantially higher
values than those of word embedding extraction. This observation also highlights the
advantage of transfer learning approaches, and in particular word embedding extraction,
over static code analysis techniques, since static code analyzers, which are traditionally
used to scan software projects for vulnerabilities, often require a considerable amount of
more time to analyze large codebases [56],[57] and, therefore, often run in nightly builds
(i.e., no actual working time).

Overall, feature-based approaches achieve lower computational costs compared to
fine-tuning. Although fine-tuning provides a good predictive performance, it is the most
computationally expensive approach of the three considered. On the other hand, sen-
tence embedding extraction is the most lightweight choice, but it suffers from a significant
drop in accuracy metrics compared to fine-tuning and word embedding extraction ap-
proaches. Given its balance between efficiency and accuracy, word embedding extraction
emerges as the most practical choice. Concisely, regarding the question of what are the
computational trade-offs, the findings of the analysis of RQ2 suggest that:
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Word embedding extraction presents the optimal trade-offs between pre-
dictive performance and computational footprint compared to fine-tuning
and sentence embedding extraction approaches. Additionally, sentence em-
bedding extraction is the most lightweight approach in terms of memory re-
quirements and complexity, while word embedding extraction is the fastest
in both the training and inference phases.

Finally, considering both the results of RQ; and RQs, we can notice that word em-
bedding extraction and fine-tuning approaches achieve a substantially higher accuracy
than sentence embedding extraction. In addition, we notice that word embedding ex-
traction achieves almost equal predictive performance with fine-tuning, but by requiring
less training time, resources, and parameters to be trained. Moreover, it demonstrates
faster inference. Therefore, concisely, we argue that:

The most effective strategy to leverage transfer learning techniques in the
field of vulnerability prediction is the feature-based approach of extracting
the pre-trained word embedding vectors from code-oriented LLMs such as
CodeBERT, use them to represent the sequences of source code tokens, and
train a separate DL model specifically on the task of classifying functions
as vulnerable or not.

4.3. RQs - Contribution of prior knowledge of natural language in vulnerability prediction

After identifying in RQ; and RQs the optimal way of using transfer learning from
LLMs to VP, in the context of RQs, we examined whether it is preferable to use models
pre-trained on unimodal data (i.e., exclusively on programming language) or pre-trained
on bimodal data (i.e., both programming and natural language). For this purpose, we
employed the fine-tuning and word embeddings extraction approaches presented in Ta-
ble 4, where we used the unimodal versions of CodeBERT and CodeGPT-2, but we also
repeated the experiments by retaining the NL knowledge of the models (i.e., bimodal
models). Specifically, in the case of CodeBERT, we included in the analysis the bimodal
CodeBERT-base variant, which is pre-trained on pairs of documents and code. In addi-
tion, in the context of RQs, for CodeGPT-2, we used the CodeGPT-2-Adapted version,
which retains the pre-trained weights from the initial pre-training of GPT-2 on NL data
and is further pre-trained using code data. Table 6, shows the values of the evaluation
metrics for all these experiments.

The results shown in Table 6, which correspond to the average values of ten different
repetitions of the evaluation per case, do not clearly demonstrate an optimal approach. In
particular, unimodal CodeBERT achieves Fq-score 91.6% (+0.6%) and 91.4% (£0.4%)
in fine-tuning and word embedding cases respectively, compared to Fi-score of 91.5%
(£0.5%) and 91.3% (£0.3%) of the bimodal CodeBERT fine-tuning and word embed-
ding respectively. Similarly, unimodal CodeGPT-2 achieves Fi-score 90.3% (+0.3%) and
90.2% (£0.5%) in fine-tuning and word embedding approaches, as opposed to Fi-score
of 91.2% (£0.4%) and 90.5% (£0.2%) of the bimodal CodeGPT-2 fine-tuning and word
embedding approaches. We can see that the Fi-scores (and the other metrics as well)
are very close in unimodal and bimodal scenarios, in both CodeBERT and CodeGPT-2
models and in both fine-tuning and word embeddings approaches.

Therefore, we conducted the Wilcoxon-Signed Rank Test [55] to decide if there is
a statistically significant difference. The p-values among unimodal and bimodal models
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Table 6: Evaluation results of Transformer models pre-trained solely on source code versus ones pre-
trained on bimodal data, when utilized for vulnerability prediction.

Model / Metric (%) Accuracy | Precision Recall Fi-score Fa-score
unimodal CodeBERT 99.0 (£0.06) | 96.3 (£0.9) | 87.4 (£1.1) | 91.6 (£0.6) | 89.0 (£0.8)
fine-tuning
bimodal CodeBERT 98.9 (£0.05) | 96.6 (£0.8) | 87.0 (£1.0) | 91.5 (£0.5) | 88.7 (£0.7)
fine-tuning
unimodal CodeGPT-2 98.8 (£0.04) | 96.0 (£0.7) | 85.2 (£0.7) | 90.3 (£0.3) | 87.2 (£0.5)
fine-tuning
bimodal CodeGPT-2 98.9 (£0.04) | 95.2 (£0.8) | 87.6 (£0.8) | 91.2 (£0.4) | 89.0 (£0.6)
fine-tuning
unimodal CodeBERT 98.9 (£0.04) | 96.0 (£1.0) | 87.4 (£1.3) | 91.4 (£0.4) | 88.9 (£0.9)
embeddings
bimodal CodeBERT 98.9 (£0.04) | 96.1 (£1.3) | 86.9 (£1.0) | 91.3 (£0.3) | 88.6 (£0.7)
embeddings
unimodal CodeGPT-2 98.8 (£0.06) | 96.4 (£0.8) | 84.8 (£0.9) | 90.2 (£0.5) | 86.9 (£0.7)
embeddings
bimodal CodeGPT-2 98.8 (£0.03) | 96.9 (£0.9) | 84.9 (+0.6) | 90.5 (+0.2) | 87.1 (£0.4)
embeddings

were 0.49 for the CodeBERT fine-tuning case, 0.002 for the CodeGPT-2 fine-tuning, 0.69
for CodeBERT word embeddings, and 0.81 for CodeGPT-2 word embeddings. In three of
the four cases, the p-values were greater than 0.05, and therefore, we cannot state that
there is a statistically significant difference. Only the case of fine-tuning CodeGPT-2
presents a statistically significant difference with a Wilcoxon p-value lower than 0.05.
However, it happens only in one case and the absolute difference in Fi-score is quite
low (i.e., just 0.9%). Hence, our study cannot yield any clear answer as to which of the
bimodal and unimodal pre-trained models is better in VP. It can be argued that:

The prior knowledge of natural language does not offer a clear benefit in vul-
nerability prediction but, neither does it act as noise. It can be considered
neutral.

4.4. RQy - Benefit of context-aware embeddings compared to traditional static embeddings
in vulnerability prediction

In the context of RQ4, we conducted a comparison of the best transfer learning VP
approach that we identified in the previous RQs as opposed to other text mining-based
approaches that leverage traditional word embedding techniques, which produce static
vectors (i.e., a single global vector per word). As the best transfer learning method we
qualified the unimodal CodeBERT word embedding extraction, which emerged as the
optimal (i.e., most accurate and lightweight) one in the previous RQs, considering both
the Fi-score and the computational trade-offs. As regards the traditional techniques, we
chose word2vec and fastText as baselines due to their widespread use in VP research, with
word2vec being the most commonly employed [2],[8],[9],[11],[20], while fastText, which
addresses the out-of-vocabulary issue of word2vec, is also widely used in VP [2],[9],[20].
In addition, we employed the BoW text representation technique, which is also a widely
used method for representing source code and is often used as a baseline for text mining-
based VPMs [2],[3],[4],[21]. Our focus is to compare Transformer-based context-aware
embeddings against traditional static embeddings, and, therefore, we included embedding
techniques that are both static and word-level to ensure a fair comparison.
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Table 7: Comparison of contextual and static word embeddings in vulnerability prediction.

Model / Metric (%) Accuracy | Precision | Recall | Fi-score | Fa-score
word2vec 93.2 44.0 29.9 35.6 31.9
fast Text 94.3 63.8 21.0 31.6 24.3
BoW 93.0 40.7 15.1 22.0 17.2
CodeBERT embeddings 98.9 96.0 87.4 914 88.9

Subsequently, we conducted an experiment to compare the same DL architecture and
training paradigm (i.e., word embedding extraction and DL classifier) when (i) using word
embeddings extracted from LLMs, and when (ii) employing word embeddings learnt by
traditional text mining algorithms. This way, we can demonstrate the advantage of the
prior knowledge of the LLMs, which is expressed through the context-aware embedding
vectors. Specifically, we trained the word2vec and fastText models in the training part
of the dataset, we encoded the input’s sequences with word2vec and fastText vectors, we
fed them to a DL model, and we trained it on VP. Table 7 presents the evaluation scores
of the examined embedding approaches.

Based on Table 7, CodeBERT word embeddings demonstrated a much higher F1-
score by 55.8%, 59.8%, and 69.4% as opposed to word2vec, fastText, and BoW re-
spectively. Actually, they surpassed the static embeddings-based approach in all the 5
evaluation metrics. This observation indicates that there is an important benefit from
the use of context-aware vectors instead of the global (i.e., static) ones. In other words,
the ability of the Transformer-based models to learn, during the pre-training phase, the
words syntax and semantics based on their context and to give words different vectors
corresponding to their context, is an important factor that can enhance the performance
of the text mining-based VPMs. Hence, the results suggest that:

Transformer-based embeddings outperform traditional static embeddings,
demonstrating the advantage of context-awareness in vulnerability predic-
tion.

4.5. RQs - Comparison with other text mining-based and graph-based vulnerability pre-
diction approaches

The purpose of RQj5 is to demonstrate whether there is an advantage of the best
model (as identified in the previous RQs) as opposed to some of the most well-accepted,
established, and referenced in the literature VPMs, which are based either on text mining
(e.g, sequences of tokens) or on graphical representations of the source code (e.g., CPGs,
ASTs, CFGs, etc.). To this end, we compared the CodeBERT word embedding extraction
approach against 5 state-of-the-art DL-based VP approaches, namely VulDeePecker [§],
SySeVR [31], Devign [11], ReVeal [12], and Linevul [21], which are often used as baselines
in the current literature [12],[21],[58].

The aforementioned 5 models provide a comprehensive comparison between tra-
ditional text mining, Transformer-based text mining, and text-rich graph-based ap-
proaches. These methods represent key advances in the field, from LSTM-based text
processing in VulDeePecker and leveraging program dependencies in SySeVR to graph-
based learning in ReVeal and Devign as well as the use of LLMs in LineVul, covering
diverse approaches to VP. Table 8 presents the evaluation results of the CodeBERT
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Table 8: Comparison of CodeBERT word embedding extraction approach versus text mining-based and
graph-based state-of-the-art models on Big-Vul dataset.

Approach Precision (%) | Recall (%) | Fi-score (%)
VulDeePecker 12 49 19
SySeVR 15 74 27
Devign 18 52 26
ReVeal 19 74 30
LineVul 97 86 91
CodeBERT embeddings 96 87 91

word embedding extraction approach in contrast to the 5 baseline approaches. The ex-
perimental results of the baseline methods are based on the experiments conducted by
Fu et al. [21].

As can be seen in Table 8, the word embeddings from the pre-trained CodeBERT
model, fed in a DL classifier (i.e., transfer learning approach) managed to clearly sur-
pass all the popular VulDeePecker, SySeVR, Devign, and ReVeal models. Although
these models had presented important improvement over previous (non-transfer learn-
ing - based) VP approaches, CodeBERT word embedding extraction approach achieved
an improvement of 72%, 64%, 65%, and 61%, in terms of Fy-score, over VulDeePecker,
SySeVR, Devign, and ReVeal, respectively. One can observe the particular difficulty of
these models to achieve high precision, which suggests their limited capacity to eliminate
false positives. On the other hand, word embedding extraction achieved almost iden-
tical results with LineVul, which is the other Transformer-based method. This result
is actually expected, since LineVul methodology is based on the CodeBERT model. In
addition, it verifies the superiority of the Transformer-based solutions, also indicating
that the benefits gained from the large prior knowledge and the contextual awareness
might be a more valuable solution than graphical representations in VP.

Overall, the results presented in Table 8 not only enhance the argument that transfer
learning provides a great benefit in VP, with transfer learning solutions outperforming
state-of-the-art text mining-based ones, but also showcase that by using transfer learning,
even solely text mining-based models manage to perform well in VP, achieving better
results than even sophisticated graph-based models. Hence, we can argue that:

Transformer-based transfer learning surpasses state-of-the-art vulnerability
prediction models, including both text-mining and graph-based approaches.

4.6. Results on other datasets

To further validate the generalizability of our findings, we repeated our analysis using
two additional open-source datasets. In particular, we employed FFmpeg+QEMU [11]
and ReVeal [12] datasets, which have been both widely used in VP [12],[43],[51],[58],[59].
Table 9 presents the evaluation metrics of all the examined approaches. Specifically, it
provides precision, recall, and F;-score for both CodeBERT and CodeGPT-2 fine-tuning,
sentence embedding extraction, word embedding extraction, and the bimodal alternatives
(following the flow of the analysis on Big-Vul), as well as the text mining and graph-based
state-of-the-art VPMs, including the traditional embedding algorithms.
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Table 9: Evaluation results on the FFmpeg+QEMU and ReVeal datasets.

Dataset Approach Precision | Recall | Fi-score
CodeBERT fine-tuning 56 79 66
CodeGPT-2 fine-tuning 58 66 62
CodeBERT sentence embeddings 52 59 55
CodeGPT-2 sentence embeddings 50 59 54
CodeBERT word embeddings 55 79 65
CodeGPT-2 word embeddings 59 71 64
FFmpeg+QEMU - T CodeBERT fine-tuning 57 71 61
Bimodal CodeGPT-2 fine-tuning 55 76 64
Bimodal CodeBERT word embeddings 58 73 65
Bimodal CodeGPT-2 word embeddings 58 68 63
Word2Vec 53 48 51
FastText 50 78 60
BoW 51 56 54
VulDeePecker 47 29 35
SySeVR 48 66 56
LineVul 57 74 64
Devign 54 63 57
ReVeal 55 73 62
CodeBERT fine-tuning 38 58 46
CodeGPT-2 fine-tuning 32 66 43
CodeBERT sentence embeddings 29 29 29
CodeGPT-2 sentence embeddings 21 33 26
CodeBERT word embeddings 37 65 47
ReVeal CodeGPT-2 word embeddings 35 59 44
o Bimodal CodeBERT fine-tuning 36 62 46
Bimodal CodeGPT-2 fine-tuning 33 63 44
Bimodal CodeBERT word embeddings 36 66 47
Bimodal CodeGPT-2 word embeddings 34 63 44
Word2Vec 30 57 39
FastText 32 53 40
BoW 33 48 39
VulDeePecker 18 14 16
SySeVR 24 40 30
LineVul 39 57 46
Devign 35 27 30
ReVeal 31 61 41

To build the models based on word embedding extraction, we performed the DL
model selection process again and ended up choosing the CNN model as the DL classifier
for these two datasets, as opposed to Big-Vul, where we had chosen the BIGRU model.
Furthermore, to compare against state-of-the-art models, we retrieved the ReVeal scores
as they are provided by the ReVeal study [12]. In the case of Devign, we also reported its
results as provided in ReVeal study, since both ReVeal and our analysis utilized only the
FFmpeg and QEMU projects of the Devign dataset (i.e., half of the Devign projects),
which were those provided as open-source by its authors'2. Moreover, to facilitate a
fair comparison, the scores of the VulDeePecker and SySeVR were also retrieved by the
ReVeal study, which uses them as baseline methods. For LineVul, we proceeded with
replicating it, since it is a later study than ReVeal.

By inspecting Table 9, we can see that, in both FFmpeg+QEMU and ReVeal datasets,

12https://sites.google.com/view/devign
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and for both CodeBERT and CodeGPT-2 cases, the fine-tuning and word embedding ex-
traction approaches produced quite similar results, clearly outperforming the approach
of sentence embedding extraction. These findings align with our previous observations
on Big-Vul dataset, strengthening the effectiveness of Transformer-based word embed-
ding extraction, which has lower computational cost than fine-tuning. In addition, the
bimodal models (pre-trained in both source code and natural language) did not show
noticeable performance improvement over unimodal models (pre-trained only in source
code), confirming our previous findings.

Moreover, Transformer-based word embeddings outperformed static word embedding
techniques. In addition, although the predictive performance on FFmpeg+QEMU and
(especially) ReVeal datasets is quite lower than in Big-Vul, Transformer-based transfer
learning techniques still proved to be clearly more accurate than the VulDeePecker, Sy-
SeVR, and Devign baseline methods, and slightly more accurate than ReVeal. LineVul,
achieved comparable results with the examined transfer learning approaches, as it is also
based on the CodeBERT model, but with a higher computational cost than word embed-
ding extraction, since it employs a fine-tuning strategy, which updates the parameters of
all the Transformer layers.

Finally, the observation that the ReVeal model manages to be lower but close to
the examined Transformer-based approaches indicates that a potential combination of
textual and graphical representations of the source code will provide a real advantage
in the VPMs. This could be achieved either as an unified Transformer-based model,
which will have been pre-trained in a large amount of such multi-modal data, or by using
ensemble learning of Transformers and graph-based models.

In brief, our findings suggest that word embedding extraction consistently outper-
forms sentence embedding extraction across all datasets, being the most accurate feature-
based approach. Moreover, fine-tuning and word embedding extraction achieve com-
parable performance, with the latter requiring a much lower computational cost and,
therefore, being identified as the optimal implementation choice. In addition, bimodal
models do not offer a clear advantage over unimodal models. Furthermore, Transformer-
based word embeddings consistently outperform static embeddings, demonstrating the
importance of the context-aware embeddings, while Transformer-based transfer learning
approaches show higher accuracy than both text mining-based and graph-based state-
of-the-art VPMs, thus advancing the field of VP.

Hence, from the above analysis it is eminent that the same observations and conclu-
sions can be reached with those of the Big-Vul dataset, strengthening in that way the
generalizability of our findings and enhancing our confidence on the lack of potential bias
imposed by the selected dataset.

5. Discussion and implications

In this paper, we set specific RQs about the capacity of the emerging LLMs on VP,
examining the BERT and GPT-2 architectures, specifically their pre-trained on code
variants namely CodeBERT and CodeGPT-2, paying particular emphasis on identifying
the optimal implementation choices for leveraging transfer learning in VP tasks. The
results of our experiments demonstrated several insights about the best practices for
achieving high accuracy while maintaining computational efficiency. Therefore, in this
section, we discuss several implications for both practitioners and researchers.
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Table 10: Summary of the scenarios where each implementation choice is more suitable.

Implementation Choice Best-Suited Scenarios

Fine-tuning Appropriate for high-accuracy environments where com-
putational resources are not a constraint. Suitable for
large-scale security applications and software organiza-
tions with high-end GPU infrastructure.

Sentence Embedding Ex- | Most computationally efficient approach, which is an effi-
traction cient choice for resource-constrained environments where
efficiency is prioritized over accuracy, such as in cases of
rapid development of prototypes, and small-scale secu-
rity projects.

Word Embedding Extrac- | Approach that achieves both high accuracy in predicting
tion vulnerabilities and high computational efficiency. Consti-
tutes the best choice for resource-limited environments,
where achieving high accuracy is still a priority. It is also
a very effective method for large-scale security applica-
tions.

Our findings suggest that extracting word embeddings from LLMs and feeding them
to a separate classifier achieves better results than extracting sentence-level embeddings.
Furthermore, this approach achieves equal results with the fine-tuning method, but re-
quires a much shorter training time, substantially fewer trainable parameters, and much
less GPU memory compared to fine-tuning. More specifically, fine-tuning achieves high
scores in terms of accuracy metrics, but demands the most GPU memory, the largest
disk space, and the longest training times. On the contrary, the feature-based approach
of extracting sentence-level embeddings is the most computationally efficient approach,
but lacks in accuracy significantly. On the other hand, the word embedding extraction-
based approach manages to achieve high accuracy results by demanding low resources.
Therefore, it provides a balance between computational efficiency and predictive perfor-
mance, constituting a suitable choice for resource limited environments where achieving
high accuracy is still a priority. To summarize the scenarios in which each approach is
optimal, we provide Table 10.

In addition, given the low inference time per function of all the approaches, but espe-
cially of the word embedding extraction one, we suggest practitioners to use the examined
solutions as copilots within their Integrated Development Environments (IDEs). They
could integrate these models to identify potential vulnerabilities without disrupting their
development workflow. In this way, they could also compare transfer learning-based so-
lutions with existing vulnerability detection tools, making them a valuable alternative to
traditional static code analyzers. Moreover, for practitioners who develop their own Al-
based models, our findings can provide guidance regarding which implementation choices
to use. For instance, they could use as a starting point the word embedding extraction
approach to build LLM-based VPMs.

As regards the implications to researchers, this study found that different imple-
mentation choices significantly impact the performance and computational efficiency of
Transformer-based VPMs. To this end, researchers can extend our work by exploring
additional implementation choices. In particular, they can examine complex and combi-

26



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

natorial options such as hybrid Transformer architectures that employ both fine-tuning
and embedding extraction, hierarchical embeddings that represent multi-level structures
in data (e.g., modules, classes, functions, and statements), and Ensembles of LLMs so
that one model can help the others. Furthermore, we recommend that researchers enrich
the VP literature with new techniques that are constantly emerging as Al-driven code
analysis continues to evolve rapidly. For instance, future research endeavors could fo-
cus on examining techniques such as Retrieval-Augmented Generation (RAG), Mixture
of Experts (MoE), and Reinforcement Learning from Human Feedback (RLHF) during
building VPMs.

Moreover, experimentation with various LLMs of the same or larger scale is proposed
as a future research direction. Researchers can repeat this analysis using models such
as Mistral, Llama, and GPT-4 to construct VPMs and assess the generalizability of
our findings regarding the implementation choices in transfer learning. Furthermore, re-
searchers could explore the effectiveness in VP of additional embedding methods used in
NLP (e.g., SBERT [60], ELMo [61], CoVE [62], etc.). In addition, we suggest researchers
consider the importance of computational trade-offs in selecting transfer learning strate-
gies for VP. Given the already analyzed advantages and disadvantages of the examined
implementation choices regarding the computational footprint, future research could also
explore quantization techniques for LLM-based VP models, which could further reduce
memory requirements and training times.

Finally, we suggest researchers who build VPMs to explore further the utilization
of LLMs for constructing VPMs, focusing on the use of a code-oriented Transformer-
based model for contextual representation of source code tokens. We encourage them to
examine the word embeddings extraction approach first in their research and to attempt
to leverage both the power of pre-trained text-mining models and of models capable of
learning graphical representations to further improve the performance of the VPMs.

6. Threats to validity

This section discusses potential threats to the construct, internal, and external valid-
ity of our study. By critically evaluating methodological challenges and limitations, we
aim to enhance the transparency and reliability of our findings.

6.1. Construct validity

The validity of the study’s findings could have been affected by the accuracy of the
vulnerability-related data used for training and evaluating the developed models. The
identification of vulnerability-fixing commits is challenging, as it is possible that some
commits may not fully repair the underlying vulnerability or may only address a subset
of vulnerabilities within a given software component. Furthermore, there is a small
possibility that the data samples that were utilized as non-vulnerable may contain an
undetected vulnerability. Thereby, we considered them as neutral.

6.2. Internal validity

Regarding the internal validity, there is a potential limitation by the specific Trans-
former models chosen for the analysis. The selection of CodeGPT-2 and CodeBERT may
introduce a selection bias, as it cannot be excluded that other Transformer models or
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different pre-training techniques could lead to different results. Additionally, we may not
have tested all the possible combinations of hyperparameter values. The correlation be-
tween the models’ hyperparameters can make it difficult to isolate the effects of individual
hyperparameters, which could lead to sub-optimal model performance. To mitigate this
risk, the hyperparameter tuning process that we followed was really exhaustive.

6.3. Ezternal validity

External validity of this study concerns the use of datasets restricted to C/C++
source code. This narrow focus may restrict the generalizability of the findings to other
programming languages. Another external validity threat is the exclusive reliance on
open-source code. Open-source projects may differ in terms of development practices,
coding styles, and vulnerability patterns compared to proprietary software, potentially
reducing the applicability of the findings to commercial software development environ-
ments. To mitigate this threat, it would be useful to incorporate data from both open-
source and proprietary software projects in the future.

7. Conclusions and future work

In this work, our purpose was to examine the different implementation choices when
using transfer learning in the task of vulnerability prediction, and therefore, to highlight
the optimal approach. We compared the fine-tuning and sentence-level embedding ex-
traction approaches, and we investigated the possible benefits of extracting word embed-
dings from pre-trained LLMs so as to feed and train separate DL models in vulnerability
prediction. We also examined whether it is better to have LLMs pre-trained on both
source code and NL or only on source code for a code analysis task such as vulnerability
prediction. Moreover, we compared our best models with state-of-the-art vulnerability
prediction models.

The analysis demonstrated that, for the downstream task of vulnerability predic-
tion, there is no benefit of proceeding with the time-consuming approach of fine-tuning
instead of the LLM word embeddings extraction, and therefore, it suggests the latter,
which achieves the same accuracy but with by far smaller training cost. Furthermore,
regarding the question about the possible advantage of pre-training LLMs on bimodal
data (i.e., both on source code and natural language), the study concludes that it is
not necessarily beneficial but neither damaging for vulnerability prediction. Finally, this
study highlighted the importance of context aware embeddings for representing the source
code, which can lead to vulnerability predictors of much higher accuracy than static em-
bedding vectors and indicated that a combination of textual and graphical source code
representations through a multi-modal model could provide even better vulnerability
predictors.

Future work includes the interpretability of LLMs in vulnerability prediction as well as
the examination of their capabilities in the cross-project evaluation scenario. Regarding
the former, we aim at applying explainable AT techniques to identify the reasoning behind
the vulnerability predictions of the LLMs. For the latter, we are interested in comparing
the performance of LLMs to traditional techniques for predicting vulnerabilities in soft-
ware projects that are completely different from the projects that constitute the training
dataset. We plan also to explore additional LLMs and implementation choices, focusing
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on hybrid and complex architectures, to enhance predictive performance in vulnerability
prediction.
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