
Secure Migration of Legacy Applications
to the Web

Zisis Karampaglis1, Anakreon Mentis1, Fotios Rafailidis1(B),
Paschalis Tsolakidis2, and Apostolos Ampatzoglou1

1 Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

{zkarampa,anakreon,frafaili,apamp}@csd.auth.gr
2 Chalmers University of Technology, Gothenburg, Sweden

pastso@chalmers.student.se

Abstract. In software engineering, migration of an application is the
process of moving the software from one execution platform to another.
Nowadays, many desktop applications tend to migrate to the web or
to the cloud. Desktop applications are not prepared to face the hostile
environment of the web where applications frequently receive harmful
data that attempt to exploit program vulnerabilities such as buffer over-
flows. We propose a migration process for desktop applications with a
text-based user interface, which mitigates existing security concerns and
enables the software to perform safely in the web without modifying its
of the source code. Additionally, we describe an open source tool that
facilitates our migration process.

Keywords: Software migration · Web application · User interface ·
Legacy application

1 Introduction

Migration of a software application is the process of moving it from one execution
platform to another that is thought to be a more fitting one for the purpose of its
operational use. For example, migration could mean replacing a Windows-based
environment with a Linux-based environment or vice versa.

Nowadays, the growing trend for providing Software as a Service (SaaS) and
the globalization of modern economy, demand the transfer of many systems to
the web or even to the cloud. Such a transfer involves obvious implementation
costs and security-related risks as well. Web applications are exposed to a large
and distributed user base that, by accident or malice, can provide input that is
harmful to the application execution and stored data.

In this paper we propose a migration process for legacy applications to the
web, that protects the application from harmful user provided input. The pro-
posed process uses an open-source tool developed by the authors for automati-
cally adapting the text-based user interfaces to web-based UI without changing
the program code.

A. Cerone et al. (Eds.): SEFM 2012 Satellite Events, LNCS 7991, pp. 229–243, 2014.
DOI: 10.1007/978-3-642-54338-8 19, c© Springer-Verlag Berlin Heidelberg 2014

230 Z. Karampaglis et al.

In Sect. 2, we discuss the current state of the art on how to modernize legacy
applications and on data sanitization techniques. In Sect. 3, we describe the pro-
posed migration process, along with a qualitative evaluation. Section 4 precuts
the developed tool. Section 5 examines threats to validity while Sect. 6 provides
conclusions derived from the outlined research and proposes future research and
development prospect.

2 Related Work

In this section of the paper we provide background information and related work
on the problems addressed in this paper, i.e. modernization of legacy applica-
tions and data sanitization. More specifically, in Sect. 2.1 we provide a literature
review of studies on processes for migrating legacy applications to more modern
environments. In Sect. 2.2, we describe basic concepts of data sanitization and
related work on tools that perform these tasks.

2.1 Modernization of Legacy Application

Bringing legacy applications at par to the latest technological standards has been
the focus of many research efforts. They propose a wide variety of processes and
methods to modernize the software components of the legacy applications as well
as the hardware they perform on. Modification of legacy code is an expensive and
error-prone task which most research efforts address only partially. A middleware
is usually introduced to provide the necessary stepping stone for the migration
of the application into a modern execution platform. Software modernization
is achieved by enhancing application properties such as availability, usability,
security, flexibility, interoperability, expandability and maintainability.

Modern operating systems prevent or limit direct access to system compo-
nents that raise interoperability issues with some legacy applications. In [19],
the authors propose the use of a Virtual Desktop Infrastructure that executes
the legacy application in its own OS. In [12], the authors propose the use of
a POSIX shell interpreter and an applet to allow the execution of an applica-
tion from different operating systems. In our approach we achieve migration of
desktop applications to the Web by introducing a TUI middleware maintain-
ing platform independency. Similarities with our approach can be found in [13],
where the authors describe two problems that legacy applications must surpass
to achieve web-integration: platform dependencies and quality requirements that
the application should meet. The authors show that both problems are efficiently
resolved by a middleware product.

In [10], several case studies of test-driven methods are presented to define
the flexibility of a legacy application in terms of security, by determining the
degree of coupling between business logic and access control. Highly coupled
applications are less flexible and require more modifications in the implementa-
tion to enhance security. In [9], the author presents an Interface Adapter Layer to
enable communication between a Common Object Request Broker Architecture

Secure Migration of Legacy Applications to the Web 231

(CORBA) platform and a legacy application. With this technique, the legacy
application maintains its autonomy, enhances its availability and improves its
security. The TUI library in this paper operates as a communication bus between
the Web and the legacy application, obtaining the aforementioned benefits.

Approaches to increase flexibility appear in [18] where the authors propose a
framework to enable Quality of Service (QoS) based on a network layer mecha-
nism, for legacy applications. The main constraint of introducing such a frame-
work is the inflexibility to modification and recompilation that comes with legacy
code. In order to surpass this obstacle the authors use a middleware component
that bridges the gap between the application and the network QoS entities. The
same applies for the Web implementation of our approach, which needs only the
recompilation of the UI Library and not of the legacy code.

An approach to usability comes from [7] where the authors suggest two proof-
of-concept techniques to change the user interface of legacy applications into an
innovative one. They separated the graphic output subsystem and the user inter-
face from the application and modified them to support modern ways of inter-
action without changing the core of the application. In this paper the API/TUI
is used in the same way to allow interaction from the Web without altering the
code of the legacy application.

An upward trend exists that supports the transition of legacy applications
towards a Service Oriented Architecture (SOA). Legacy applications are
usually transformed into Grid services or services of cloud computing. In [1],
the authors propose three approaches to transition legacy applications to Web
Services through Service Oriented Architecture (SOA). The reason for this tran-
sition is the increased need for new features in organizations legacy IT infrastruc-
ture. The three approaches are: a session based approach that changes only
the Graphical User Interface (GUI) keeping the code of the legacy application
unmodified, a transaction based approach to cover security issues that come with
the transition and a data based approach that expose the data of the application
to the Web.

In [21] the authors propose a method for migrating legacy applications into
Grid Services. The otherwise standalone applications are reused and wrapped
into the Grid technology by using the Globus Toolkit. The main benefit of this
approach is that multi-user access can be achieved without modifying the code of
the application for Internet functionality. Similar to [21], the authors of [6,8,11]
present their proposals for migrating legacy code into Grid services without
changing the source code of the application. The architecture of such an app-
roach is identical to the architecture of our tool. In [20], the authors provide a
solution to migrate a legacy application to the cloud. The Application Migra-
tion Solution (AMS) reconstructs the GUI of the application without changing
its source code. The solution also supports the compilation of more than one
application together, in order to create a more powerful, in terms of features,
application.

The authors of [4] use the Ubiquitous Web Application (UWA) framework
to reengineer a legacy application into the web. The benefits of their approach

232 Z. Karampaglis et al.

are good documentation and high usability/maintainability for the reengineered
application as opposed to a production-oriented approach based on studies from
past years. An extension of the above work from the same authors is in [5].
They used the Ubiquitous Web Applications Design Framework (UWA) and
an extended version with Transaction Design Model (UWAT+). Through this
approach they leveraged legacy applications into rich Internet ones and due to
the formality of the framework they minimized the time needed for the transition.

Expandability towards modern technologies seems that is not a top priority
for legacy applications. The authors of [2] present a solution to the problem of
continuous re-engineering for legacy applications. With constant maintenance to
keep an application up to date with the latest technological standards, its archi-
tectural structure becomes more difficult to expand. To mitigate the problem
they suggest the use of ArchJava in order to ensure the integrity of the original
architectural structure.

2.2 Data Sanitization

Sanitization takes user input and transforms it in order to eliminate potential
threats for the data and operation of the application. Threats exist due to the
use of characters known as metacharacters that have special meaning, when
processed by the various parts of a system. The transformation of user input is
applied by removing characters based on two methods. These methods are dis-
tinguished by using a white or black list of characters, which contain characters
that respectively can or cannot be harmful for the application.

For example, an SQL Injection attack consists of insertion or “injection”
of a SQL query via the input data from the client to the application using
meta-characters or special characters of SQL, such as ’, ’, AND, =. An SQL
injection attack can read sensitive data, modify data, and execute administration
operations. The example from [15] in Listing 19.1 uses a Prepared Statement.
Consider the string john is the value for input parameter user name, which is
a valid input. The application will search a user with the user name john and
will return all information for this user. On the opposite, if someone passes the
string 1 OR 1=1, this leads to an attack because the query that the program
submits to the database contains a tautology in the WHERE clause and gain
access to sensitive information regarding database users.

Listing 19.1. Sample code for SQL Injection

String firstname = req.getParameter("firstname");
String query = "SELECT * FROM authors

WHERE firstname = ? ";
PreparedStatement pstmt =

connection.prepareStatement(query);
pstmt.setString(1, firstname);
ResultSet results = pstmt.execute();

To prevent an SQL Injection Attack, we apply data sanitization. The quotes
’, ’ and = are removed from the string and the sanitized string will be 1OR11,

Secure Migration of Legacy Applications to the Web 233

which cannot be a tautology. Several characters can be meta-characters depend-
ing on the language of the application. Data sanitization aims to prevent harmful
input data to be inserted in an application. In [14] the authors propose a tech-
nique of automatic query sanitization to prevent SQL Injection attacks. They use
a combination of static analysis and program transformation to automatically
instrument web applications with sanitization code.

There are three different ways to apply data sanitization to the user data.
The first way is to use tools, which take user data, sanitize them and produce as
output the sanitized user data to be sent to the web application. Urlrewritefilter
is based on a tool that rewrites url using certain filters and sends the modified
url to the web application. Another tool for sanitizing html tags, attributes and
values is jsoop. Jetscripts Data Sanitizer and XSS cleaner prevents SQL Injec-
tion and XSS attacks by cleaning or sanitizing user-submitted data. This tool
is intended for users who write or modify scripts, or want an extra measure of
protection against malicious users. It requires some knowledge in php scripting.
The sanitizer can work in various modes such as numeric only, alphabetic only,
alphanumeric only, alphanumeric with punctuation and email validation mode.
Additionally to the above modes common command entities and Javascript spe-
cific entities are removed.

The second way is to use libraries that offer functions which sanitize input
data. The ESAPI library by OWASP provides libraries for many programming
languages such as Java, .net, ASP, PHP, PHP, ColdFusion, Python, JavaScript,
Objective-C, Ruby, C, CPP and Perl.

The third way is to use embedded functions in various languages that sanitize
input data depending on special characters for each language. At php, function
mysql real escape string() sanitizes special character of mysql at a string, which
is proposed to be sent to the mysql database. Other functions are filter input(),
escapeshellarg() and urlencode for php, etc. Finally, tools that are used to stati-
cally analyze the vulnerabilities of code written in C are presented and compared
in [3].

Security issues caused by invalid sanitization of user-provided input is the
focus of [16]. Cross-site scripting (XSS) exploits is prevented without any mod-
ifications to the application implementation.

3 Migration Process

A typical architecture for desktop applications is shown in Fig. 1. The application
receives input from the keyboard and renders the output on the user’s screen.
Both input and output are handled by a TUI library responsible for the trans-
lation of user input into a series of events and the application output into user
interface elements such as windows, labels and buttons. The application inter-
action with the user consists of appropriate reactions to the events generated by
the TUI library.

On the other hand, in a web–based architecture the user–provided data are
encoded as POST or GET variables transferred via the HTTP protocol. An

234 Z. Karampaglis et al.

Fig. 1. Legacy application architecture

application residing on the server processes the received user input and responds
with an HTML document displayed to the user by a web browser. To compensate
for the stateless nature of the HTTP protocol, web applications store information
that are required in conversations between the client and the server in cookies or
include the values in POST or GET variables in every exchange of data. Clearly,
this is in contrast with desktop applications that can preserve state between
subsequent user interactions.

Desktop applications operate in a relatively secure environment where the
user–provided input can be trusted and is checked only for accidental mistakes.
In contrast, malformed user input is often deliberately sent to web applications
with the explicit goal to disable it’s normal operation or to gain access to sensitive
data managed by the considered web application.

The proposed migration process aims at (a) transferring the application to
the web without modifying the application code base and (b) secure the appli-
cation from harmful input received from the web interface.

We propose a two step process to achieve those goals. To fulfill the first goal
we replace the TUI library with a modified version that does not receive the user–
provided input from the keyboard; instead it uses the information provided by
the GET and POST variables. Moreover, the modified TUI library produces an
HTML document which, when rendered by the browser, displays the application
output and TUI elements that enable further interactions. The second goal is
realized by the sanitizer component that blocks malformed input or transforms
potentially dangerous input into harmless data. The application architecture
produced from the proposed method is shown in Fig. 2.

Fig. 2. The architecture of the web–enabled legacy application

The proposed process clearly addresses both migration goals. The modified
TUI library retains the same API with the original version. All that is required

Secure Migration of Legacy Applications to the Web 235

for enabling the application in the web is a recompilation with the modified TUI
library. Also, since the sanitizer is not part of the application it can be modified
independently. We could integrate one of the many available open source tools
that provide sanitization services (see Sect. 2.2 for an overview).

In order to validate the usefulness of our approach, we have conducted an
interview with the project manager of a CRM created in the early 1980s for the
DOS operating system. After three years of development, the CRM was migrated
to the Windows OS. Currently, they are considering migrating the application
to the web which they estimate it will require an additional five year period.
The duration of migrating from Windows to the Web is estimated to be as long
as the transition from DOS to Windows, because of increased security threats
in the execution environment of web applications.

The above case suggests that an automated process for a secure migration of
legacy applications to the web would be useful for the software industry.

4 The Modified UI Library

In this section we show in detail the required process for modifying a Text
User Interfaces (TUI) library in order to enable applications that use it in the
web. The process is applied on an open source TUI named Turbo Vision [17],
a framework developed by Borland and later placed in the public domain. It
provides a reach user interface with various components such as menus, check
boxes, buttons, and many others. Figure 3 shows a Turbo Vision application.

The modified library expects user input not from input devices such as the
keyboard or the mouse but from a file or the standard input. Also, the application
output is not rendered on the screen. Instead, it is transformed into an XML
document which can be rendered to the user’s browser with the help of style
sheets or some other method able to produce an HTML document. Our library
is currently in beta version and is distributed1 freely under a permissive free
software license.

TVision components correspond to C++ classes that form the hierarchy
shown in Fig. 4. TView is the base class inherited by all components. We declared
additional methods in this class responsible for exporting the component’s state
into XML and for recovering a previous state from a textual format. When
needed, derived classes modify accordingly the implementation of the added
methods.

TGroup represents compound components that consist of other components.
In this class, the added methods of TView are reimplemented to invoke the
respective method for each of the contained components. For example, the
method responsible for serializing the component’s state into XML invokes the
same method of each contained component and returns the merged obtained
output.

TVision applications consists of one or more TDialog instances where only
one of them is active at any time. Dialogs are modal, the user can interact only
1 http://sourceforge.net/projects/tuimigrate

http://sourceforge.net/projects/tuimigrate

236 Z. Karampaglis et al.

Fig. 3. An example TUI application

Fig. 4. TVision classes and their hierarchy

with the active dialog and the other dialogs of the application are inaccessible
until the active one is closed. TDialog is a container for other components shown
in Table 1.

Secure Migration of Legacy Applications to the Web 237

Table 1. Main TVision components

Component Description

TButton Buttons
TCheckBoxes Group of check-box components
TFileDialog File selector
TInputLine Input for one line of text
TLabel Descriptive labels for other components
TMemo Multi-line text input control
TMenuView Abstract base class for menus
TRadioButtons Group of radio button components

User input from the keyboard or interactions with the mouse are translated
into events which the application can bind and react accordingly. In our modified
version of the library we retain the same mechanism only that the events are no
longer produced from input devices but from a specially formatted text content
that describes user actions. In essence, our modified implementation emulates
the user interactions and as far as the application code is concerned, nothing is
changed.

4.1 Input/Output

The library binds a port in order to communicate with the client application
(e.g. the sanitizer) and accepts two commands. One command produces an XML
description of the currently accessible dialog and the components it contains (e.g.
forms, menus, buttons etc.), while the other command asks the library to produce
interaction events from a textual representation. In the expected work-flow, the
user is presented with an HTML form produced by the XML description of the
active dialog, his interactions with the form are reflected on the values received
by the web server and the sanitizer submits to the library a description of the
user actions (e.g. the button clicked, value of a text field). Those actions are
translated into events and the new updated state of the application is presented
to the user with an other form.

The XML content that describes the application User Interface consists of
three main parts that list the attributes of application menus, windows and
dialogs:

Menu. Menus contain menu items as well as nested menus. Menu items can
be identified by a name or by an identifier and the schema defines the two
respective attributes. Moreover, menu items can be associated with an action
performed when the user selects it.

Window. This part describes the windows of the application. Windows have a
title and contain other components.

Dialog. The document contains a dialog description only if there is an active
dialog and describes all the components contained in the dialog. Since dialogs

238 Z. Karampaglis et al.

are modal, the previous two sections of the document are not included in
order to prevent the user from accessing menu entries or windows.

All elements (windows, dialogs, menus and components) have the following
common attributes: a unique identifier, a type, a content attribute that stores
the component’s value and a name. In Listing 19.2 we show an excerpt of the
XML Schema that defines in detail the structure of the XML document produced
by the library.

Listing 19.2. A small part of the output XML schema

<xs:element name="dialog">
<xs:complexType>

<xs:choice maxOccurs="unbounded">
<xs:element ref="label"/>
<xs:element ref="text"/>
<xs:element ref="button"/>
<xs:element ref="checkbox"/>
<xs:element ref="radiobutton"/>

</xs:choice>
</xs:complexType>
<xs:key name="formItemKey">

<xs:selector xpath="*"/>
<xs:field xpath="@id"/>

</xs:key>
<xs:keyref name="formItemRef" refer="formItemKey">

<xs:selector xpath="label"/>
<xs:field xpath="@idref"/>

</xs:keyref>
</xs:element>
<xs:element name="checkbox">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="item">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="selected"
type="xs:boolean"/>
<xs:attribute name="id"
type="xs:int" use="required"/>

....
</xs:sequence>
<xs:attribute ref="id" use="required"/>

</xs:complexType>
</xs:element>

Secure Migration of Legacy Applications to the Web 239

User actions are provided in a textual description where each line corresponds
to an action. Lines are expected to have one of the forms shown in Table 2.

Table 2. Available instructions for altering the TUI state

Form Description

name :: value Assigns a value to the component identified by the given name.
id <: value Assigns a value to the component identified by the given id.
name :> index Activates a component with the given index contained in a component

identified by the provided name.
id <> index Has the same effect as the previous command for the container with

the provided unique identifier.

Let us examine a user session to demonstrate our approach and see how
user interactions are handled by the application with the help of the modified
TUI library. At first the user is presented with an HTML form produced by the
window shown in Fig. 3 and selects the “Dialog” menu. The form is submitted
to the web server and the sanitizer components delivers to the application the
following instruction:

m202 <: active

which selects the application’s “Dialog” menu and performs the associated action.
The performed action creates a new modal dialog shown in Fig. 5 described in
XML in Listing 19.3. After the user modifies the values of the various controls,
it submits the form with the “OK” button delivering to the application the
following action description:

1 Delivery Instructions : : Hurry!
2 Cheeses :> 0
3 8 <> 2
4 6 <: Runny
5 OK : : true

In the first line, the library is instructed to set the value of the text component
associated with the label named “Delivery Instructions” to “Hurry!”. In Listing
19.3, the “idref” attribute of the label shows which component is associated with
the label. In the second line, the library finds the check box group component
associated with the label “Cheeses” and selects the first check box (index zero).
The third line performs the same action but it refers to the check box group by
id and selects the third check box. As a result of lines two and three, “Tilset”
is the only unselected check box. The fourth instruction sets the value of the
component with id 6 to “Runny” effectively selecting the second radio button of
the radio group labeled “Consistency”. Finally, the last action selects the button
labeled “OK” and performs its associated actions.

240 Z. Karampaglis et al.

Listing 19.3. XML produced from TUI of figure 5

<?xml version="1.0" encoding="UTF-8"?>
<program xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance">
<dialog>
<button id="1">Cancel</button>
<button id="2">OK</button>
<label id="3" idref="4">Delivery Instructions</label>
<text id="4"><![CDATA[Phone Mum!]]></text>
<label id="5" idref="6">Consistency</label>
<radiobutton id="6">

<item selected="false" id="0">Solid</item>
<item selected="false" id="1">Runny</item>
<item selected="true" id="2">Melted</item>

</radiobutton>
<label id="7" idref="8">Cheeses</label>
<checkbox id="8">

<item selected="true" id="0">Hvarti</item>
<item selected="false" id="1">Tilset</item>
<item selected="false" id="2">Jarlsberg</item>

</checkbox>
</dialog>

</program>

Fig. 5. An example of a modal dialog

Secure Migration of Legacy Applications to the Web 241

5 Future Work

At the current preliminary stage of development, we have provided an alter-
native implementation of a TUI library API that enables legacy applications to
operate in a Web environment. We are currently extending the sanitization com-
ponent with functionality offered by the OWASP security library which detects
and blocks user input that cause SQL injection attacks. When all components
of the architecture of the proposed migration approach are completed, we could
demonstrate a more detailed example with a web interface and the communica-
tion between the interface and the application. Then, we will be able to validate
empirically whether TUI application users are equally satisfied by the automat-
ically generated web-based UI. In addition, we will use the Turbo Vision library
for more applications and try to apply the above method to other TUI libraries.

6 Conclusions

This work proposes a process for automatically migrating legacy applications to
the web. It is a general method in the sense that it places no constraints on the
design and implementation of a legacy TUI application. As far as the application
is concerned, nothing is changed. It still invokes the same methods provided by
the TUI API although the user input is now provided by data sent remotely
with HTTP requests and the produced output is now transformed into HTML
instead of being displayed on the user’s screen. Also, the received data is cleared
of special characters that may threaten the integrity of the application data or
the security of the application. Common cases of errors such as SQL injection
attacks are handled by the data sanitizer. In order to demonstrate the feasibility
of the approach, we have implemented the API of a TUI library and a tool that
automatically transforms TUIs (textual user interfaces) to HTML based UIs.
The proposed process, reduces the migration cost and enables secure access to
previously locally executed applications in the demanding web environment.

Acknowledgement. This work was performed in the framework of the TRACER
(09SYN-72–942) project, which is funded by the Cooperation Programme of the Hel-
lenic Secretariat for Research & Technology.

References

1. Al Belushi, W., Baghdadi, Y.: An approach to wrap legacy applications into web
services. In: 2007 International Conference Service Systems and Service Manage-
ment, pp. 1–6 (2007)

2. Abi-Antoun, M., Coelho, W.: A case study in incremental architecture-based re-
engineering of a legacy application. In: 5th Working IEEE/IFIP Conference on
Software Architecture, 2005, WICSA 2005, p.p. 159–168 (2005)

242 Z. Karampaglis et al.

3. Chatzieleftheriou, G., Katsaros, P.: Test driving static analysis tools in search of
C code vulnerabilities. In: Proceedings of the 35th IEEE Computer Software and
Applications Conference Workshops (COMPSACW), Munich, Germany, pp. 96–
103. IEEE Computer Society (2011)

4. Distante, D., Perrone, V., Bochicchio, M.A.: Migrating to the Web legacy applica-
tion: the Sinfor project. In: Proceedings of the Fourth International Workshop on
Web Site Evolution, 2002, pp. 85–88 (2002)

5. Distante, D., Tilley, S., Canfora, G.: Towards a holistic approach to redesigning
legacy applications for the Web with UWAT+. In: Proceedings of the 10th Euro-
pean Conference on Software Maintenance and Reengineering, 2006, CSMR 2006,
pp. 5–10 (2006)

6. Lu, F., Huang, H., Xu, Z., Yu, H.: A middleware for legacy application wrapper.
In: First International Conference on Semantics, Knowledge and Grid, 2005, SKG
’05, pp. 47 (2005)

7. Besacier, G., Vernier, F.: Toward user interface virtualization: legacy applications
and innovative interaction systems. In: EICS ’09: Proceedings of the 1st ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 57–166.
New York (2009)

8. Kacsuk, P., Goyeneche, A., Delaitre, T., Kiss, T., Farkas, Z., Boczko, T.: High-
level grid application environment to use legacy codes as OGSA grid services. In:
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, pp. 428–435. Washington (2004)

9. Konstantas, D.: Migration of legacy applications to a CORBA platform: a case
study. In: Proceedings of the IFIP/IEEE International Conference on Distributed
Platforms: Client/Server and Beyond: DCE, CORBA, ODsanitP and Advanced
Distributed Applications, pp. 100–112 (1996)

10. Le Traon, Y., Mouelhi, T., Pretschner, A., Baudry, B.: Test-driven assessment
of access control in legacy applications. In: 2008 1st International Conference on
Software Testing, Verification, and Validation, pp. 238–247 (2008)

11. Zhu, L., Matsunaga, A., Sanjeepan, V., Lam, H., Fortes, J.A.B.: Application mod-
eling and representation for automatic grid-enabling of legacy applications. In:
First International Conference on e-Science and Grid Computing, pp. 8–31 (2005)

12. Marosi, A.C., Balaton, Z., Kacsuk, P.: GenWrapper: a generic wrapper for running
legacy applications on desktop grids. In: IEEE International Symposium on Parallel
& Distributed Processing, 2009, IPDPS 2009, pp. 1–6 (2009)

13. Mondal, S.A., Gupta, K.D.: Choosing a middleware for web-integration of a legacy
application. SIGSOFT Softw. Eng. Notes 25(3), 50–53 (2000). (New York)

14. Mui, R., Frankl, P.: Preventing SQL injection through automatic query sanitiza-
tion with ASSIST. In: Fourth International Workshop on Testing, Analysis and
Verification of Web Software, EPTCS 35, Antwerp, pp. 27–38 (2010)

15. Owasp. https://www.owasp.org/
16. Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive

sanitization for large-scale legacy web applications. In: CCS ’11: Proceedings of the
18th ACM Conference on Computer and Communications Security, pp. 601–614.
New York (2011)

17. Sigala Turbo Vision. http://www.sigala.it/sergio/tvision/index.html
18. Tsetsekas, C., Maniatis, S., Venieris, I.S.: Supporting QoS for legacy applications.

In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 108–116. Springer, Heidelberg
(2001)

https://www.owasp.org/
http://www.sigala.it/sergio/tvision/index.html

Secure Migration of Legacy Applications to the Web 243

19. Wong, D.: Kickin’ it old school!: dealing with legacy applications. In: SIGUCCS
’08: Proceedings of the 36th Annual ACM SIGUCCS Fall Conference: Moving
Mountains, Blazing Trails, pp. 55–58. New York (2008)

20. Meng, X., Shi, J., Liu, X., Liu, H., Wang, L.: Legacy application migration to
cloud. In: 2011 IEEE International Conference on Cloud Computing (CLOUD),
pp. 750–751 (2011)

21. Xiong, Y., Su, D.: Wrapping legacy applications into grid services: a case study of
a three services approach. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q.
(eds.) CSCWD. LNCS, vol. 4402, pp. 520–529. Springer, Heidelberg (2007)

	Secure Migration of Legacy Applications to the Web
	1 Introduction
	2 Related Work
	2.1 Modernization of Legacy Application
	2.2 Data Sanitization

	3 Migration Process
	4 The Modified UI Library
	4.1 Input/Output

	5 Future Work
	6 Conclusions
	References

