
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Semi-Automated Approach for Resolving Data-

Driven Architecture Missmatches

Christos Karathanasis

Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

christoskarathanasisac@gmail.com

Apostolos Ampatzoglou

Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

apostolos.ampatzoglou@gmail.com

 Theodoros Maikantis

Hephaestus Lab, Dept. of Chemistry

International Hellenic University

Thessaloniki, Greece

teomaik19@gmail.com

Alexandros Chatzigeorgiou

Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

achat@uom.edu.gr

Nikolaos Nikolaidis

Department of Applied Informatics

University of Macedonia

Thessaloniki, Greece

nnikolaidis.se@gmail.com

Nikolaos Mittas

Hephaestus Lab, Dept. of Chemistry

International Hellenic University

Kavala, Greece

nmittas@chem.ihu.gr

Abstract—In contemporary software development, there is a

need for delivering solutions that require the integration of mul-

tiple software systems, each one relying on different architec-

tural decisions. For instance, an e-shop solutions must com-

municate with the ERP solution that the company possesses to

handle prices, products, and stock. However, such an integra-

tion is not always a trivial issue since interoperability problems

might arise. A root cause for such interoperability issues is ar-

chitecture mismatches: e.g., caused by heterogeneity on how

data are stored and are expected to be exchanged in the two sys-

tems. Interoperability problems can cause delays to the develop-

ment, require extended communication with different teams,

and usually adds complexity to the system. In this paper, we pro-

pose a semi-automated AI-based approach and a middleware

software solution (“a connector”) to aid software engineers in

“connecting” applications with heterogeneous data storing sche-

mas. We have validated our approach and tool with a company

that connects ERP systems with e-shops, through a qualitative

study.

Keywords—architecture mismatch, technical debt, heterogenous

data, interoperable software, software connectors

I. INTRODUCTION

In the fast-paced realm of modern business, where data
serves as the lifeblood of decision-making [1], the seamless
integration of diverse software applications has become a piv-
otal factor in sustaining operational efficiency and innovation.
As businesses increasingly rely on a multitude of software so-
lutions to drive various aspects of their operations through dig-
italization [2], the challenge of interoperability emerges as a
critical bottleneck [3]. As data storage and presentation occur
autonomously within distinct systems, the crucial capacity of
diverse software systems to communicate and share data be-
comes essential, exerting a significant impact on the speed,
agility, and adaptability of organizations within the constantly
evolving technological landscape. A notable example con-
cerns, the pressing need for a data interface between databases
and Enterprise Resource Planning (ERP) systems. This imper-
ative need stems from the escalating complexities associated
with managing vast datasets and the central role played by
ERP systems in orchestrating streamlined organizational pro-
cesses. However, navigating the intricate terrain of crafting an
effective interface proves to be a formidable challenge, char-
acterized by diverse data structures, disparate functionalities,
and the demanding requirement for real-time synchronization.

To underscore the critical need for a well-designed inter-
face, envision a software development company seeking to in-
tegrate its customer’s database with an ERP system. The cus-
tomer organization needs real-time information to facilitate
decision-making, inventory management, customer service,
and customer relationship management. All this information
is contained within a database that stores customer infor-
mation, purchase history, and inventory data. The main issue
that arises in creating and maintaining a suitable interface is
the different logic with which data is stored in the two systems,
reflecting different architectural assumptions and choices.
This illustrative scenario vividly underscores the strategic ad-
vantage of bridging the gap between disparate datasets and the
multifaceted functionalities of ERP systems.

While the necessity for integration is evident, the prevail-
ing state of affairs often involves manual integration pro-
cesses, introducing inherent challenges. The current landscape
heavily relies on human expertise to navigate the intricacies of
both databases and ERP systems. Both the creation and up-
keep of such solutions are demanding and time-intensive chal-
lenges for a company. In terms of development, there is a need
to write code in the form of queries and services. The queries
extract data based on the sophisticated logic stored in the ERP
and then this data must undergo processing to align with the
targeted logic for transmission. Afterwards, the data is trans-
mitted, and the e-commerce store update is executed. Execut-
ing this entire process demands a profound understanding of
the operational logic of both systems, necessitating collabora-
tion between the ERP management team and the e-commerce
store management team. The resulting code includes business
logic and is highly tailored, exclusively addressing the nu-
ances of this specific interface. We can see that such a solution
is high demanding in terms of effort and person-hours but of-
fers no further value other than the targeted use case. As a re-
sult, the tailor-made software solution being non-reusable by
its creator results in a higher selling price, while reusability or
ease of creation would have led to a lower cost. Though feasi-
ble, this manual intervention introduces inefficiencies, ele-
vates the risk of errors, and demands extensive time and re-
sources. These issues are part of the Architectural Technical
Debt (ATD) for a service-oriented architecture [4]. The ensu-
ing problems stemming from manual integration underscore
the urgency for a more efficient and automated solution. Find-
ing a seamless balance between the intricacies of development
and the imperative need for automated integration will un-
doubtedly enhance the overall efficiency and reliability of the
system.

mailto:nmittas@chem.ihu.gr

In recognition of these challenges, the integration process
can be revolutionized through automation. Leveraging ad-
vanced technologies, particularly Machine Learning models,
presents a transformative approach to system integration. The
innovative idea revolves around training models on the intri-
cacies of the database and the ERP system, offering a potential
solution to the complexities posed by manual processes.

The subsequent sections of the paper are structured as fol-
lows: Section 2 gives an overview of the background infor-
mation and related work. Section 3 presents the proposed ap-
proach in terms of architecture and methodology, while Sec-
tion 4 presents the tool that has been created. Finally, Section
5 presents the results of our validation efforts and Section 6
concludes the work and discusses potential limitations.

II. RELATED WORK

In this section, we present existing studies and background
information regarding our research area. First, we present
studies regarding the architectural technical debt, and how it
is connected with the interoperability of data. Moreover, we
present the notion of heterogenic data and the problem they
introduce to microservices; finally, we present some existing
approaches to similar problems.

A. Architectural Technical Debt in Microservices

De Toledo et al. [4] by studying a big project, that used the
microservices architecture, with about 100 services in total
tried to find ATD issues. Through the analysis of documents
and interviews, they came up with a list of issues, and they
mapped each one to the notions of Interest and Principal. One
of the most noteworthy findings was the issue regarding the
communication of the services since it was noted as one of the
most important ones. This issue can become more intense
when the business logic is inside the communication layer.
Moreover, De Toledo et al. [5] investigated the most known
microservice-specific ATD issues. Through interviewing 47
practitioners they found out the issues encountered in migra-
tion, in the future, and more difficult to resolve. From this
study, we can see that the microservice coupling, insufficient
metadata, and data sharing/synchronization are the most rec-
ognizable. This goes to show the importance of the connection
between services and the data they share. A similar study [6],
with the use of 25 interviews resulted in the same outcomes.
They found in total of 16 ATD issues, including insufficient
metadata in messages, lack of communication standards
among microservices, inadequate use of APIs, and use of busi-
ness logic in communication among services.

B. Microservices with Heterogenic Semantic Data

Sharing knowledge coming from different and heteroge-
neous environments and services is becoming more and more
common. The study of Nace and Aissani [7] shows exactly
that, and the need that semantic communication has for mov-
ing forward. They also conducted a throw review of two web
solutions JAVA RMI and CORBA, by also stating that a more
improved solution is needed. Nagarajan et al. [8] also investi-
gated and noted the need for semantic communication, but
they also proposed a new approach with predefined mappings.
However, the mapping and matching issues are still noted as
a big problem that needs to be addressed in the future.

With the need to solve the semantic data in the communi-
cation of services, Viennot et al. [9] proposed Synapse. This
platform lets services share data in a semantic and scalable

way while supporting a wide variety of SQL and NoSQL da-
tabases. Similarly, Marques-Lucena [10] proposed an ap-
proach for semantic web services, along with a mapping strat-
egy. However an easy-to-use integration for the mapping be-
tween the elements is still missing.

C. Connection of Heterogenic Data Services

The problem of heterogeneous data emerged from the be-
ginning of services and even more in the last years with mi-
croservices, and a lot of studies have been conducted in order
to find the best way to communicate. Huf and Siqueira [11],
tried to find out how heterogeneous services can be composed.
They studied 66 documents, published from 2005 to 2018, and
despite the large number, there are still several open issues.
Resende and Feng [12], recognizing the problem of heteroge-
neous data in service-oriented architectures, tried to introduce
the Service Data Object specification in order to resolve part
of this issue. Moreover, Tan et al. [13] proposed a solution in
order to solve this problem, by providing a high-level taxon-
omy. This solution was also compared with four existing ones,
but none of them is better just each of them providing different
features.

With the increasing big data, Sowe et al. [14] noted that
this problem is still present and more intense. Kong et al. [15]
tried to present the problems for connecting ERP systems with
E-Commerce. They proposed a methodology based on web
services but the issue of data heterogeneity still remained.
Similar methodologies have been proposed but without hav-
ing a lot of traction and without solving the mapping issue
[16][17].

III. PROPOSED METHODOLOGY

In this section, we present the proposed methodology which
can help with the connection of heterogeneous data software.
The four points and steps of this solution are the following:

• Initially, by utilizing artificial intelligence we train a
model specific to the needs of the service we want to
connect.

• Secondly, we use the trained model, which can
generate SQL queries leveraging natural language,
thereby supporting the creation of the SQL query
which will select the data to be sent from one
application to another.

• Third, again with the help of artificial intelligence, we
provide a way that implements the mapping between
the data returned by the previous SQL query step and
the JSON file that the second application can receive
and consume.

• Finally, after the previous two steps have been
successfully completed, the application produces a
project that implements the connection and is ready for
use.

A. AI Used Tools

In the last years, an increasing use of AI models has been
used in software. Even though the AI model evaluation varies
a lot in different studies [18][19], we cannot overlook their
accuracy in simple demonstrative problems and repetitive
tasks [20]. In the context of our approach, for easier the con-
nection of heterogeneous data software components, we rely
on two different AI “co-pilots”.

First of all, Vanna AI is a natural language processing
model specialized in generating SQL queries1. It can be tai-
lored to each project while training can take place by import-
ing data related to the database schema, with the use of the
documentation as well as by importing SQL queries. Usually,
a combination of the above methods is required to adequately
train a model and achieve greater accuracy. Once the model is
ready, the user can enter queries in natural language and re-
ceive the corresponding SQL queries. In case the users are not
satisfied with the resulting queries, further model training can
take place.

Vanna provides an API and a Python library through
which it can be used. In general, the API makes it possible to
create new models, train existing ones and, of course, execute
queries on them. It is worth noting that Vanna can generate
queries for any type of database.

Finally, Hugging Chat is a natural language processing
model from Hugging Face2. We should note that it has a sim-
ilar function to the well-known ChatGPT system. The reason
this particular model was chosen is the open-source nature of
the project and the free API without any restrictions on the
number of calls. In addition, a Python library (hugchat) is pro-
vided which facilitates the use of the API.

IV. PROPOSED TOOL

To automate the proposed methodology and bring it closer
to the developers, we developed the Data Mismatch Con-
nector tool. This tool was created as a web application with
the use of the Blazor framework and the Radzen library in C#.
We note that the code of the application3, along with the ac-
companying Python scripts for Hugging Chat4 and Vanna5
can be found online. The main functionalities of the applica-
tion are: a) the training of the model; b) the SQL query gener-
ator; c) the C# class generator; and d) the generation of the
mapping.

In order to present the tool, we selected a simple use case,
with dummy tables, that could be part of a real-world case.
When opening the application, the first step is to connect to
the database, to be able to access the tables and perform the
SQL queries. After this step, the user can create or select a
Vanna AI model, that is going to be used in the next views of
the application. When creating a new model, the user has three
options to feed the model with data. We should note that more
information will always help with the accuracy of the model.
The three options for training the model which are visible in
Figure 1, are: 1) by providing the table/view names and docu-
mentation for each one, 2) by providing SQL queries for the
tables, and 3) through documentation in the form of free text.

1 https://vanna.ai

2 https://huggingface.co
3 https://github.com/ChristosKarathanasisac/integra-

tion_builder_project

Fig. 1. Model training.

Another useful feature of the application is the generation
of SQL queries, and at this point, the user can test only this
functionality in order to know if the model is well-trained (see
Figure 2). We should note that the model can be retrained at
any moment.

Fig. 2. Generation of SQL queries.

Moreover, the tool provides the creation of classes based
on the query that will be needed to send (see Figure 3). So, the
user needs to add the data format that needs to be sent from
one service to the other, in the form of JSON. The tool will
create the C# classes that are needed in order to later create the
corresponding objects to fill and send from one service to the
other. We should note that the user can change and finetune
the generated classes.

Fig. 3. Generation of C# classes.

The fourth and final view of the tool is related to the map-
ping of the classes and generation of the project (see Figure
4). In order to do the mapping, the Hugging chat needs the
SQL query that was generated in the previous steps, along
with the class that it was generated from the provided JSON.
In the last step, the user should describe the mapping that is
needed. This description can be as extended as the user likes,
in order to specify details of the projects and idioms that might

4 https://github.com/ChristosKarathanasisac/hug-

ging_chat_api
5 https://github.com/ChristosKarathanasisac/vannaIntegra-

tionApi

https://github.com/ChristosKarathanasisac/integration_builder_project
https://github.com/ChristosKarathanasisac/integration_builder_project
https://github.com/ChristosKarathanasisac/hugging_chat_api
https://github.com/ChristosKarathanasisac/hugging_chat_api
https://github.com/ChristosKarathanasisac/vannaIntegrationApi
https://github.com/ChristosKarathanasisac/vannaIntegrationApi

exist specific to each use-case. However, form most cases a
simple prompt like the following should suffice.

“Create a method that uses an Integration Data object with
the data being located in the table.”

Fig. 4. Generation of mapping.

When the user is satisfied with the description and the in-
formation that was provided, the application allows down-
loading of the generated project. The generated project is in
the form of a Windows Service, written in C#. Figure 5 pro-
vides the code for the Integration Data, from the generated
project, which is used for the communication.

Fig. 5. Example of the generated class.

Figure 6 provides the functionality for the mapping of the
data received from the database to the Integration Data object.
Finally, Figure 7 lists the functionality for making the actual
call to the database, by utilizing the mapping functions (Map-
ping Fun).

Fig. 6. Example of generated function for mapping.

Fig. 7. Example of generated function for query.

V. VALIDATION

To evaluate the proposed methodology and tool, we have
performed an initial exploratory empirical study, that was
designed and reported based on the guidelines of Runeson et
al. [21].

A. Study Design

To study the proposed methodology and tool, with respect to
its acceptance in the industry, in terms of real-world systems,
we have formulated the following research questions:

RQ1: Does the methodology meet the expectations of the prac-
titioners?

RQ2: Does the developed tool meet the expectations of the
practitioners?

RQ1 will provide insights into the methodology and over-
all architecture, while RQ2 will provide feedback on the usa-
bility of the tool. The validation was conducted during a 1-day
workshop to one company in Greece, that specializes in ERP
and E-Commerce solutions. First, we conducted interviews
with members of the company (developers and managers) in
order to find out the status of the existing solutions with regard
to the interoperability between components that rely on differ-
ent databases. After that, the participants were presented with
our proposed solution and tool, with the use of a mock data-
base. Moreover, they were asked to use the tool, involving a
real-world database and an actual use-case of the company.
After spending some time for familiarizing themselves with
the developed tool, they were given a questionnaire to evalu-
ate it. Regarding the evaluation of the tool, the System Usabil-
ity Scale (SUS) instrument was used [22]. Finally, the work-
shop closed with interviews regarding the evaluation of the
methodology as a whole.

B. Results and Discussion

Navigating the outcomes of our study, we present the re-
sults of two crucial tests alongside the insights derived from
the System Usability Scale (SUS). These results offer a prag-
matic evaluation of our methodology and its associated tool,
providing useful user perspectives. Based on user feedback,
we explore the implications these results carry for practition-
ers in the field of software development.

1) Acceptance of Methodology (RQ1)
The exploration of the acceptance of the proposed methodol-
ogy in response to RQ1 offers insights shaped by participants
with respect to the AI practices. The prevailing popularity of

AI practices, currently considered "mainstream" in the tech-
nological landscape, underscores the relevance and timeliness
of the developed methodology. The adaptability of AI ap-
proaches to solving complex problems has been exemplified,
contributing to the tool's overall positive reception. Notably,
the widespread use of natural language queries, particularly
demonstrated through the effective application of ChatGPT,
signifies a notable advancement. This innovative aspect al-
lows users to seamlessly translate natural language queries
into code, whether it be SQL or services in this case, marking
a significant stride in technological sophistication. The tech-
nologies employed and their implementation reflect a level of
advancement and modernity, aligning with current trends in
AI. The combination of these cutting-edge elements ulti-
mately manifests in the result, showcasing the effectiveness of
the methodology in addressing contemporary challenges and
positioning it as a promising solution in the current landscape
of AI practices. With all of these in mind, the participants liked
the proposed approach to tackle the mismatch problem with
AI. Even though they were reserved in the beginning, they saw
the value of both AI models and the resulting connector ser-
vice in terms of reusability and cost.

2) Acceptance of Tool (RQ2)
Mock Database. During the mock database testing phase, de-
velopers and managers were presented with the proposed tool.
Feedback from this phase revealed that the performance of the
tool was very much aligned with their expectations. The par-
ticipants found the tool to be effective in simulated scenarios,
with its accuracy and responsiveness to be very satisfying.
Given that this testing was performed in a less complex mock
database, the performance although satisfactory, needed to be
proven in more complex and demanding tasks.

Real Database. The evaluation of the developed tool's real-
world applicability involved rigorous testing on one of the
company's actual ERP and E-Commerce databases. This com-
prehensive evaluation provided insightful and overall satisfac-
tory outcomes, shedding light on the tool's capacity to handle
the intricacies of real-world data. The tool not only demon-
strated its technical prowess but also showcased its effective-
ness in seamlessly integrating with and adapting to the dy-
namic nuances of a live business environment.

However, as with any complex technological solution,
challenges surfaced during the testing phase, particularly in
relation to the AI model's requirement for a notable amount of
training data to achieve optimal performance. This aspect of
the evaluation process, while resource-intensive, was antici-
pated, considering the inherent intricacies involved in working
with a sizable and complex dataset. The substantial effort in-
vested in training the AI model proved to be a strategic invest-
ment, as the model, once adequately trained, exhibited re-
markable efficiency in generating queries that reflected a nu-
anced understanding of the underlying database content.

Moreover, the evaluation unveiled an additional challenge
related to the natural language querying functionality of the
tool. This particular aspect required a certain level of user ex-
pertise to formulate queries effectively. Despite the initial hur-
dle, users with a foundational understanding of the system
were able to successfully leverage the tool. This underscores
the adaptability of the tool to users with varying levels of ex-
pertise, emphasizing its potential usability across a broad
spectrum of end-users.

In essence, the multifaceted evaluation not only high-
lighted the tool's technical prowess but also emphasized its
adaptability, efficiency, and potential for widespread use in
real-world scenarios, thus establishing it as a promising solu-
tion for businesses operating as Database Integration Provid-
ers.

System Usability Scale (SUS). The System Usability Scale
(SUS) instrument was utilized to quantitatively assess the us-
ability of the developed tool. Participants, when providing rat-
ings on the various aspects measured by SUS, demonstrated
an overall favorable perception in areas directly related to their
concerns. Conversely, in aspects less directly related to their
primary concerns, the SUS scores were more average. This
nuanced evaluation indicates that, specifically in the dimen-
sions of the tool most pertinent to the participants' priorities,
the ratings were notably positive. Overall, these findings sug-
gest an improvement in current practices, reinforcing a posi-
tive and favorable perception of the tool's usability among the
practitioners involved in the study.

In a more thorough examination users expressed satisfac-
tion with the tool's accessibility, emphasizing that specialized
knowledge was not a prerequisite for operation. Furthermore,
the seamless integration of the tool's functionalities contrib-
uted to a smooth user experience, garnering positive remarks
from participants. Most users found the tool easy to operate,
indicating a high degree of user-friendliness. Despite its user-
friendly nature, some participants suggested that additional
documentation or user assistance might be beneficial for first-
time users. The tool was generally perceived as non-cumber-
some, featuring a streamlined design that facilitated ease of
use. Once demonstrated, users reported that the tool became
very easy to use, indicating its potential for quick adoption and
proficiency. While the tool instilled a degree of confidence in
its output, participants emphasized that it cannot entirely re-
place human expertise. However, the tool was recognized as
non-complex and consistent in its operation, contributing to
its positive reception. Depending on individual use cases, par-
ticipants expressed a desire to use the tool more frequently,
underlining a favorable inclination towards its integration into
their workflows.

Fig. 8. Usability of Proposed Tool.

3) Practical Implications
The acceptance of the methodology (RQ1) and the positive
evaluation of the developed tool's usability (RQ2) carry sig-
nificant practical implications for both end-users and practi-
tioners in the field.

The user-friendly nature of the developed tool, as high-
lighted by participant feedback, implies that individuals with
varying levels of technical expertise can seamlessly incorpo-
rate the tool into their workflows. The absence of a steep learn-
ing curve and the tool's accessibility make it a valuable asset
for users across different domains. The suggestion for addi-
tional documentation or user assistance for first-time users
serves as a practical insight, emphasizing the importance of
providing supplementary resources to enhance the onboarding
process. Moreover, the tool's potential for quick adoption and
proficiency, suggests that organizations can efficiently inte-
grate it into their existing processes without significant train-
ing overhead. This rapid assimilation aligns with the current
demand for agile and adaptable tools in dynamic work envi-
ronments. The recognition that the tool cannot entirely replace
human expertise underscores the importance of maintaining a
balanced approach, combining the strengths of the tool with
human insights. This acknowledgment informs practitioners
about the tool's role as a supportive, non-complex, and con-
sistent resource, emphasizing collaboration rather than re-
placement. In terms of the methodology's acceptance, the
alignment with mainstream AI practices positions it as a rele-
vant and timely solution. The demonstrated ability to translate
natural language queries into code reflects a practical ad-
vancement, streamlining processes and enhancing the effi-
ciency of solving complex problems.

VI. CONCLUSIONS

During our research, we successfully identified key
challenges in the field of software integration, focusing on
architecture mismatch, heterogeneous data, and data
interoperability. The identification of the aforementioned
problems provides valuable insights into the intricacies of
software integration and highlights the necessity for a novel
and automated approach to address real-world challenges. In
response to the identified challenges, we formulated a
comprehensive methodology leveraging state-of-the-art AI
techniques. Additionally, to validate and demonstrate the
practical applicability of our approach, we implemented the
methodology through the development of a dedicated tool. In
order to access our work, we rigorously evaluated the
effectiveness of our tool by conducting tests in collaboration
with a company specializing in data integration solutions. The
testing process comprised two distinct phases. Initially, a
proof-of-concept test was executed using mock data to
demonstrate the feasibility of our solution. Subsequently, a
second test was performed using real-world data and
databases, aiming to validate the practical applicability of our
methodology in a real-world setting.

The results from the database testing phase demonstrated
the tool's noteworthy performance in both mock and real
simulated scenarios, showcasing its effectiveness, accuracy,
and responsiveness. The real database testing phase,
conducted on the company's live ERP and E-Commerce
databases, provided insightful outcomes, highlighting the
tool's capacity to handle real-world data intricacies. Despite
challenges related to the AI model's training requirements, the
investment in training proved strategic, resulting in impressive
efficiency in generating nuanced queries. The System

Usability Scale (SUS) results highlighted the tool's favorable
usability, positively impacting current practices and aligning
with user priorities. In conclusion, the study's findings
emphasize the adaptability, efficiency, and significant
potential for widespread use of the developed tool, positioning
it as a promising solution for businesses functioning as Data
Integration Providers in the contemporary technological
landscape.

ACKNOWLEDGMENT

This work has been partially funded by the European Union’s
Horizon Europe Framework Programme under grant agree-
ment No 101132663 (project SKILLAB), and partially by the
University of Macedonia Research Committee as part of the
“Principal Research 2023”.

REFERENCES

[1] Jordon, A. (2023). Data Governance: A Pillar of Modern Business
Intelligence.

[2] Parviainen, P., Tihinen, M., Kääriäinen, J., & Teppola, S. (2017).
Tackling the digitalization challenge: how to benefit from digitalization
in practice. International journal of information systems and project
management, 5(1), 63-77.

[3] Nilsson, J., & Sandin, F. (2018, July). Semantic interoperability in
industry 4.0: Survey of recent devel-opments and outlook. In 2018
IEEE 16th international conference on industrial informatics (INDIN)
(pp. 127-132). IEEE.

[4] S. Soares de Toledo, A. Martini, A. Przybyszewska and D. I. K.
Sjøberg, "Architectural Technical Debt in Microservices: A Case Study
in a Large Company," 2019 IEEE/ACM International Conference on
Technical Debt (TechDebt), Montreal, QC, Canada, 2019, pp. 78-87,
doi: 10.1109/TechDebt.2019.00026.

[5] S. S. De Toledo, A. Martini, P. H. Nguyen and D. I. K. Sjøberg,
"Accumulation and Prioritization of Architectural Debt in Three
Companies Migrating to Microservices," in IEEE Access, vol. 10, pp.
37422-37445, 2022, doi: 10.1109/ACCESS.2022.3158648

[6] de Toledo, S. S., Martini, A., & Sjøberg, D. I. (2021). Identifying
architectural technical debt, principal, and interest in mi-croservices: A
multiple-case study. Journal of Systems and Software, 177, 110968.

[7] Nacer, H., & Aissani, D. (2014). Semantic web services: Standards,
applications, challenges and solutions. Journal of Net-work and
Computer Applications, 44, 134-151.

[8] M. Nagarajan, K. Verma, A. P. Sheth, J. Miller and J. Lathem,
"Semantic Interoperability of Web Services - Challenges and
Experiences," 2006 IEEE International Conference on Web Services
(ICWS'06), Chicago, IL, USA, 2006, pp. 373-382, doi:
10.1109/ICWS.2006.116.

[9] Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., & Nieh, J. (2015,
April). Synapse: a microservices architecture for heter-ogeneous-
database web applications. In Proceedings of the tenth european
conference on computer systems (pp. 1-16).

[10] C. Marques-Lucena, J. Sarraipa, C. Agostinho and R. Jardim-
Goncalves, "Model-driven approach for the interoperability of
enterprises' services information exchange," 2016 4th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), Rome, Italy, 2016, pp. 789-799.

[11] Huf, A., & Siqueira, F. (2019). Composition of heterogeneous web
services: A systematic review. Journal of Network and Computer
Applications, 143, 89-110.

[12] Resende, L., 2007, June. Handling heterogeneous data sources in a
SOA environment with service data objects (SDO). In Proceedings of
the 2007 ACM SIGMOD international conference on Management of
data (pp. 895-897).

[13] R. Tan, R. Chirkova, V. Gadepally and T. G. Mattson, "Enabling query
processing across heterogeneous data models: A survey," 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, USA,
2017, pp. 3211-3220, doi: 10.1109/BigData.2017.8258302.

[14] S. K. Sowe, T. Kimata, M. Dong and K. Zettsu, "Managing
Heterogeneous Sensor Data on a Big Data Platform: IoT Services for
Data-Intensive Science," 2014 IEEE 38th International Computer

Software and Applications Conference Workshops, Vasteras, Sweden,
2014, pp. 295-300, doi: 10.1109/COMPSACW.2014.52.

[15] Kong, Z., Wang, D., & Zhang, J. (2008). A strategic framework for
enterprise information integration of ERP and e-commerce. In
Research and Practical Issues of Enterprise Information Systems II:
IFIP TC 8 WG 8.9 International Conference on Research and Practical
Issues of Enterprise Information Systems (CONFENIS 2007) October
14–16, 2007, Beijing, China (pp. 701-705). Springer US.

[16] Liu, Z. F., Lu, Z. Y., & Zhang, C. L. (2010, May). Application
Research on Manufacter E-commerce and ERP Integration. In 2010
International Conference on E-Business and E-Government (pp. 3204-
3207). IEEE.

[17] Li, G., Qian, X., & Ye, C. (2009, October). Integration model of
Cooperation E-commerce based on Web Services. In International
Technology and Innovation Conference 2009 (ITIC 2009) (pp. 1-4).
IET.

[18] Vaithilingam, Priyan, Tianyi Zhang, and Elena L. Glassman.
"Expectation vs. experience: Evaluating the usability of code
generation tools powered by large language models." In Chi

conference on human factors in computing systems extended abstracts,
pp. 1-7. 2022.

[19] Imai, Saki. "Is github copilot a substitute for human pair-
programming? an empirical study." In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion
Proceedings, pp. 319-321. 2022.

[20] Nguyen, Nhan, and Sarah Nadi. "An empirical evaluation of GitHub
copilot's code suggestions." In Proceedings of the 19th International
Conference on Mining Software Repositories, pp. 1-5. 2022.

[21] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley &
Sons, 2012

[22] Brooke, J.: Sus: a “quick and dirty’usability. Usability evaluation in
industry 189(3), 189–194 (1996)

