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Abstract—One of the first steps towards the effective Tech-

nical Debt (TD) management is the quantification and continu-

ous monitoring of the TD principal. In the current state-of-

research and practice the most common ways to assess TD prin-

cipal are the use of: (a) structural proxies—i.e., most commonly 

through quality metrics; and (b) monetized proxies—i.e., most 

commonly through the use of the SQALE (Software Quality 

Assessment based on Lifecycle Expectations) method. Although 

both approaches have merit, they seem to rely on different view-

points of TD and their levels of agreement have not been evalu-

ated so far. Therefore, in this paper, we empirically explore this 

relation by analyzing data obtained from 20 open source soft-

ware projects and build a regression model that establishes a 

relationship between them. The results of the study suggest that 

a model of seven structural metrics, quantifying different aspects 

of quality (i.e., coupling, cohesion, complexity, size, and inher-

itance) can accurately estimate TD principal as appraised by 

SonarQube. The results of this case study are useful to both aca-

demia and industry. In particular, academia can gain knowledge 

on: (a) the reliability and agreement of TD principal assessment 

methods and (b) the structural characteristics of software that 

contribute to the accumulation of TD, whereas practitioners are 

provided with an alternative evaluation model with reduced 

number of parameters that can accurately assess TD, through 
traditional software quality metrics and tools. 
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I. INTRODUCTION 

Technical Debt (TD) monitoring and identification are among 
the most important activities of TD management [1]. To effec-
tively monitor and identify TD items, the two pillars of the TD 
metaphor (i.e., principal and interest) need to be quantified, or 
at least assessed. Although the quantification of interest is an 
open research topic that is far from trivial [2], in the state-of-
the-art one can identify several approaches for quantifying or 
assessing TD principal. Such approaches can be divided into 
two main categories: (a) methods that monetize the amount of 
TD principal (e.g., Software Quality Assessment based on 
Lifecycle Expectations—SQALE [3]), and (b) methods that 
provide proxies of TD principal through structural metrics 
(e.g., [4]). On the one hand, the state-of-the-art approaches for 
monetizing TD are usually based upon rule violations of dif-
ferent levels of granularity (i.e., ranging from architecture to 
source code) and criticality (i.e., ranging from warnings to 
critical violations), whereas at the same time omit some useful 

structural indicators (e.g., lack of cohesion, change proneness, 
etc.). On the other hand, assessments through structural quality 
metrics are not facilitating the metaphor of TD in a holistic 
manner (since its financial aspect is not considered) and are 
useful mostly for comparison purposes. In particular, the met-
ric-based assessments cannot be used for classifying an artifact 
as low-TD or high-TD, in the sense that in the state-of-
research and -practice there are no well-established thresholds 
for these metric scores.  

In this paper, we investigate the relationship between these 
approaches. Specifically, we investigate if the monetized TD 
principal assessments can be subsumed by metric scores. The 
contribution of this work is two-fold: (a) it acts as a way to 
assess the reliability of the existing assessment approaches, in 
the sense that we check their agreement; and (b) it provides a 
small set of metrics that are easier to be calculated than 
SQALE and in practice they are usually calculated as part of 
the quality assessment process of many industries. To achieve 
this goal, we performed a case study on 20 open-source Java 
projects and built a predictive model that quantifies TD princi-
pal based on a set of structural metrics scores. The rest of the 
paper is organized as follows: in Section II we present related 
work, in Section III, we overview the case study design, 
whereas in Section IV we present its results. The results are 
interpreted and discussed in Section V, and threats to validity 
are provided in Section VI. 

II. RELATED WORK 

In this section, we discuss the related work on how the 
technical debt principal is monetized. According to Alves et al. 
[4], the principal of technical debt is related to the effort and 
accompanying cost to eliminate the debt from a given system 
or artifact. Current software analysis tools offer estimates of 
TD principal based on counts of detectable violations. Curtis et 
al. [5] note that three parameters are required for such esti-
mates, namely the number of should-fix violations in an appli-
cation, the hours to fix each violation, and the cost of labor. A 
similar approach is adopted by the SQALE method proposed 
by J. L. Letouzey [3], in which a remediation index is obtained 
for requirements of an applicable Quality Model. For example, 
for a requirement stating that all files should have at least 70% 
code coverage, the corresponding remediation action is to 
write additional tests. A remediation function maps effort to 
each action, for example, 20 minutes per uncovered line of 
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code. Finally, for each artifact, the remediation index relating 
to all the characteristics of the Quality Model is obtained by 
adding all remediation indices linked to all quality require-
ments. The resulting SQALE Quality Index is considered to 
represent the principal of the TD for the assessed source code.  

III. CASE STUDY DESIGN 

The goal of our study is to investigate the relation between 
metric-based and monetized TD assessments, and build a 
model based on metrics that can predict the monetized assess-
ments. Our study is designed based on the guidelines of Rune-
son et al. [13]. 

Research Objectives and Research Questions. The main goal 
of this study is to model the relation between TD principal and 
a variety of quality metrics. Since a plethora of structural qual-
ity metrics is available, we want to accurately estimate TD by 
using only a pivotal subset of them. Therefore, we focus this 
study in two particular directions: (a) investigate the relation 
of each metric with TD principal individually, and (b) investi-
gate the relation of metrics combination with TD principal. In 
this respect, we have set the following research question: “Is 
there a way to accurately relate TD principal to other quality 
covariates via a specified link function?” 

Case Selection and unit analysis. As subjects for our analysis 
we used 20 OSS (Open Source Software) projects. The select-
ed OSS projects have already been used in a similar context 
[14]. The selection criteria for these projects are discussed in 
detail by Arvanitou et al. [14], accompanied by a justification 
on how they guarantee the collection of a high-quality, well- 
known and established set of cases. In a nutshell, the selected 
projects are among the most popular projects in Source-
forge.net and are distinguished by the OSS community. Spe-
cifically: (a) all projects have more than 20 official releases on 
their history background; (b) each case contains more than 300 
classes, which is an index of complexity, and (c) due to a limi-
tation of the tool used to quantify the structural quality metrics 
the selected projects had to be developed in Java.  

Data Collection and Data-Preprocessing. In this paper we 
have selected to explore the power of structural quality metrics 
to assess TD principal. In this process we were interested in 
selecting metrics that are maintainability predictors. Thus, two 
metric suites proposed by Li and Henry [9] and Bansyia et al 
[8] have been used (see Table I). To automatically extract the 
scores for each metric we used the Percerons Client [14], [15], 
[16]. Percerons Client calculates metric scores by parsing 
source code structures, while some metrics could also be cal-
culated based on design artifacts (i.e. class diagrams). Howev-
er, to serve the needs of our study, we make the assumption 
that design artifacts are produced as detailed as required in 
order to proceed with the implementation phase and that the 
source code implementation follows the expected design, 
without any drift. Inferring that the previous assumptions hold, 
metrics calculated at source code level will correspond to 
those calculated at the detailed-design level. These assump-
tions induct threats to our study and are analyzed in Section 
VI. 

 

TABLE I.  METRICS POTENTIALLY ASSOCIATED WITH TD  PRINCAIPAL 
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Metric Description 

Quality    

Attribute 

L
i 

&
 H

en
ry

 [
9

] 
&

 C
K

 [
7

] 
m

et
ri

cs
 

 

DIT 
Depth of Inheritence Tree: Inheritence 
level number, 0 for the root class. 

Inheritance 

NOCC 
Number of Children Classes: Number 
of direct sub-classes that the class has.  

Inheritance 

CBO 

Coupling Between Objects: Number of 
inwards and outwards dependencies of 
a class 

Coupling 

NOM 
Number of Methods: Number of meth-
ods in the class. 

Size 

MPC 
Message Passing Coupling: Number 
of send statements defined in the class.  

Coupling 

DAC 
Data Abstraction Coupling: Number 
of abstract types defined in the class. 

Coupling 

RFC 

Response For a Class: Number of 
local methods plus the number of 
methods called by local methods in the 
class.  

Coupling 

LCOM 

Lack of Cohesion of Methods: Number 
of disjoint sets of methods (number of 
sets of methods that do not  interact 
with each other), in the class. 

Cohesion 

WMPC 

Weighted Method per Class: Average 
cyclomatic complexity of all methods 
in the class. 

Complexity 

SIZE1 
Lines of Code: Number of semicolons 
in the class. 

Size 

SIZE2 
Number of Properties: Number of 
attributes and methods in the class 

Size 
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NOH 
Number of Hierarchies: Number of 
class hierarchies in the design.  

Inheritance 

ANA 

Average Number of Ancestors: Aver-
age number of classes from which a 
class inherits information.  

Inheritance 

DAM 

Data Access Metric: Ratio of the num-
ber of private (protected) attributes to 
the total number of attributes. 

Encapsulation 

DCC 

Direct Class Coupling: Number of 
other classes that the  class is directly 
related to (by attribute declarations and 
message passing).  

Coupling 

CAM 

Cohesion Among Methods: Sum of the 
intersection of a method parameters 
with the maximum independent set of 
all parameter types in the class. 

Cohesion 

MOA 

Measure of Aggregation: Number of 
data declarations whose types are user 
classes. 

Coupling 

MFA 

Measure of Functional Abstraction: 
Ratio of the number of methods inher-
ited by a class to the total number of 
methods accessible by methods. 

Inheritance 

CIS 
Class Interface Size: Number of public 
methods  

Size 

NOP 

Number of Polymorphic Methods: 
Number of methods that can exhibit 
polymorphic behavior 

Complexity 



Regarding the quantification of TD, we used version 6.3 of 
SonarQube1—also known as Sonar—without further configu-
ration and according to its default status. Sonar is an OSS plat-
form for the continuous inspection of code quality. The plat-
form supports a plethora of programming languages and it can 
offer detailed reports regarding duplicated code, coding stand-
ards, unit tests etc. The completion of data collection resulted 
in a dataset of 10,029 cases / units of analysis (i.e., classes) 
and 22 variables, 21 representing the quality metrics and one 
representing the monetized TD assessment (see Table I). 
While “cleaning-up” the dataset from extreme values and out-
liers (visually, using boxplots and statistically by checking 
iteration after iteration the cases with residuals with three or 
more standard deviations from the mean) approximately 1,100 
cases were excluded. Descriptive statistics of the dataset are 
presented in Table II. 

TABLE II.  METRICS’ DESCRIPTIVES 

Metric Mean s.dev. Metric Mean s.dev. 

TD Principal 57.2 96.3 ANA 1.3 2.0 

DIT 2.0 1.3 DAM 301.8 459.6 

NOCC 0.7 4.2 DCC 5.5 7.2 

MPC 39.4 71.6 CAM 77.3 382.4 

DAC 0.3 0.8 MOA 0.6 1.4 

RFC 35.6 41.8 MFA 0.015 0.1 

LCOM 76.5 415.8 CIS 6.4 10.1 

WMPC 8.4 11.5 NOP 1.3 5.99 

SIZE1 50.1 64.8 NOM 8.4 11.5 

SIZE2 11.8 15.8 CBO 11.4 19.6 

NOH 0.1 0.3  

Data Analysis. To answer our research question we performed 
a two-step analysis process. Initially, we investigated the rela-
tionship between the monetized TD assessment and the struc-
tural quality metrics in order to reveal the quality metrics that 
are mostly correlated to the TD principal. More specifically, 
we intend to quantity the rank correlation (statistical depend-
ence between the ranking of these variables), and a well-
known measure to do this is the Spearman’s correlation coeffi-
cient, (rs). We formally choose to report the non-parametric 
test as our variables were not normally distributed. The 
equivalent Pearson correlations though were also in line with 
the Spearman ones and the size of our sample explains this 
accordance [17]. Next, we employed multiple linear regression 
analysis. To this end we applied the IBM®2 statistics’ stepwise 
regression (SR) procedure. The stepwise method is useful 
when it comes to selecting the optimal predictors (among a 
large number of candidates) that can achieve the best estima-
tion ability of the model. In a nutshell, it is a technique of fit-
ting regression models in which the choice of predictive varia-
bles is performed in an automated way. This way, the regres-
sion model is constantly re-assessed as it is checked if any 
predictors can be excluded. SR is a parametric procedure as-
suming that the data is normally distributed. This constraint 

                                                        
1
 https://docs.sonarqube.org/display/SONAR/Documentation  

2
 http://www-01.ibm.com/support/docview.wss?uid=swg27043946  

though can be ignored as we deal with a sample consisting of 
hundreds of observations [17].  

IV. RESULTS 

In this section, we present the results of our case study and the 
discussion of these results takes place in Section IV. As a first 
step towards our analysis, we first explored the correlations 
among the independent variables of our prediction model (i.e., 
the structural metrics). The interrelations of the structural qual-
ity metrics showed high and statistically significant correla-
tions (rs) between specific metrics3 . These relations can be 
intuitively explained based on one or both of the following 
interpretations: (a) relations of metrics of the same quality 
attribute (e.g., RFC and MPC are both coupling), (b) relation 
of all metrics to size (e.g., the largest the number of classes—
i.e., SIZE1—the largest the number of dependencies and local 
methods—e.g., RFC). 

  
(a) MPC – TD Principal (b) RFC – TD Principal 

  
(c) SIZE1 – TD Principal (d) SIZE2 – TD Principal 

  
(e) WMPC – TD Principal (f) NOM – TD Principal 

Fig. 1. Correlation heatmaps of the most correlated to TD quality metrics  

Regarding the interrelations of the structural metrics to the 
monetized TD Principal, we highlight the following, based on 
the Spearman’s correlation coefficient: MPC (rs=.72), RFC 
(rs=.68), SIZE1 (rs=.67), SIZE2 (rs=.56), WMPC (rs=.504) and 
NOM (rs=.504). Therefore, we should expect some of these 
predictors to be able to explain a significant amount of the 
variance of TD principal. All correlation values were positive, 
except for NOH, NOP, MFA, NOCC and DIT, which were 
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  MPC – RFC, RFC – (WMPC, SIZE1, SIZE2, NOM), WMPC – (CIS, 

SIZE1, SIZE2), CIS – (WMPC, SIZE2, NOM), SIZE1 – (SIZE2, NOM), 

NOM – (SIZE1, SIZE2, RFC), DIT – ANA 
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negatively correlated to TD principal. The sign of these rela-
tions can be interpreted by the positive effect that polymor-
phism and inheritance have on software quality, in the sense 
that they are expected to provide an effective way to handle 
software complexity. At this point it is necessary to clarify that 
TD principal is an inverse quality indicator, i.e., modules with 
high TD principal are considered of low quality. 

 
To visualize the relations between metrics and TD princi-

pal we provide a set of heat maps for the top-6 predictors (see 
above Figures 1.a - 1.f). For all figures, the horizontal axis 
represents the TD principal, whereas the vertical ones the val-
ues of the metric. The categorical versions of variables have 
been obtained with using the quintiles of each variable. To 
facilitate the readability of the figures, the scale in the horizon-
tal axis is the same in all heat maps, as follows: Very Low TD 
[1 to 4 minutes to resolve], Low TD [5 to 10 minutes to re-
solve], Medium TD [11 to 33 minutes to resolve], High TD 
[34 to 87 minutes to resolve], and Very High TD [88 to 1803 
minutes to resolve]. We remind the reader that the needed re-
factoring time is calculated at class level. From Figure 1, we 
can observe that the dark-shaded cells are the diagonal ones, 
e.g., high TD classes are presenting high levels of the metric 
scores. 

The results of the regression (see Table III) indicated that 
the predictors can explain 74% of the dependent variable vari-
ance (R2 = 0.74, R2

Adjusted = 0.74, and p<<0.01). Multicollinear-
ity issues were evaluated either by examining the correlation 
matrices or by checking the variance inflation factor (VIF). 
VIF indicates weather a predictor has a strong linear relation-
ship with other predictors participating in the model [18]. 

TABLE III.  REGRESSION MODEL COEFFICIENTS 

Model Coefficients T p 

(Constant) 15.054 14.032 <0.001 

MPC 0.802 65.982 <0.001 

SIZE1 0.627 31.643 <0.001 

CIS -3.294 -28.359 <0.001 

NOP 2.642 20.238 <0.001 

MOA 5.584 13.127 <0.001 

DIT -4.037 -10.188 <0.001 

LCOM 0.017 8.815 <0.001 

 
Based on the correlation matrices, we ascertain that our model 
does not have predictors which are highly correlated to the 
other ones (a threshold of 0.8 was adopted). The third column 
of Table VII represents the t statistic, a measure whose magni-
tude shows the impact of a predictor to the model. Therefore, 
(a) we built a model with 7 estimators that can predict the TD 
principal with an accuracy of 74%; and (b) among these met-
rics the three most influential ones are: MPC, with the highest 
impact in the model, followed by SIZE1 and CIS. 

V. DISCUSSION 

In this section, we discuss the results of this study, under two 
perspectives: (a) we interpret the results and (b) we provide 
some useful implications to researchers and practitioners. 

Interpretation of Results. The results of our study validated 
the intuition that TD principal can be sufficiently assessed 
through a limited set structural metrics. In particular, we have 
been able to build a seven metrics model that can capture 74% 
of the variability of TD amount (expressed in effort—i.e., 
minutes of development). In particular, the model consists of:  

 Two coupling metrics (MPC and MOA). As expected 
both coupling metrics are positively related to TD princi-
pal, i.e., the higher the coupling the higher the amount of 
TD that exists in a module. The fact that MPC (i.e., the 
number of distinct method calls from one class to anoth-
er) is the most important predictor of TD principal can be 
attributed to the fact that MPC captures: (i) the difficulty 
to apply changes in a given module due to the amount of 
dependencies, and (ii) the possibility of a class to change 
due to ripple effects, in the sense that it is a proxy of the 
strength of the dependency.  

 Two size metrics (CIS and SIZE1). Based on the findings 
of this study larger systems (with more lines of code, at-
tributes, and methods) are accumulating more TD. De-
spite the fact that this finding is a self-explanatory one, 
the negative relationship of CIS to TD amount is an in-
teresting one. In particular, the direction of the relation-
ship suggests that modules with a large public interface 
(i.e., methods) are less prone to accumulate TD. This fact 
can be attributed to the modularity of responsibilities of-
fered by different methods, e.g., long methods have al-
ready been split into smaller more modular ones.  

 One cohesion metric (LCOM). Lack of cohesion is as 
expected positively related to TD principal. This is an 
expected outcome in the sense that: (i) high cohesion is 
one of the most important principles of object-
orientation, and (ii) lack of cohesion directly implies the 
existence of the large class “bad smells”, which urges for 
the application of well-known refactoring.  

 One polymorphism metric (NOP) and one inheritance 
metric (DIT). These metrics are the only with a negative 
correlation to TD principal. This finding can be ex-
plained by the fact that the efficient of application of ob-
ject-oriented principles and patterns, requires the use of 
inheritance trees (of limited depth), various levels of ab-
stractness, and the exploitation of polymorphism.  

Additionally, the correlation analysis revealed some additional 
metrics that are related to TD principal. For example, one 
complexity metric (WMC), although significantly correlated to 
TD has been removed from the model, due to multicollinearity 
issues. The relation of complexity metrics to TD principal is 
considered expected, in the sense that the existence of unnec-
essary complexity in the code of a class implies the need for 
restructuring the code: the more complex a method, the more 
TD principal it accumulates. Therefore, our analysis revealed 
that TD principal is related to metrics that capture the most 
important low-level quality attributes, namely: coupling, cohe-
sion, inheritance, size, and polymorphism. 

Implications to Researchers and Practitioners. The results of 
this study have provided some interesting implications to prac-
titioners, and future research directions. First, researchers and 
practitioners can use the proposed model for quantifying the 



TD in their projects (see results on RQ2). This prospect can be 
interesting for software engineers who: (a) already calculate 
metrics as part of their quality assurance activities, and (b) 
want to avoid the installation and parameterization of more 
complicated tools. In addition to that, based on the finding on 
discriminative power, researchers and practitioners that are 
only interested in ranking artifacts, with respect to their TD 
principal can use an even smaller set of metrics (see results). 
Regarding future research directions we intend to re-evaluate 
this model by using an even larger dataset, including a pletho-
ra of other well-known open source projects (also smaller 
ones), that covers more than one programming languages. 
Additionally, we suggest researchers to further investigate the 
important metrics (as suggested by our study) with respect to 
the rest metrics validity criteria described in ISO 1061. Final-
ly, the use of other ways of synthesizing data, e.g., tree-based 
classifications or Bayes network can be exploited. 

VI. THREATS TO VALIDITY 

As already mentioned in this paper, concerning the internal 
validity of this study, the current assessment of the calculated 
metrics was based on the source code instead on the design 
artifacts. These were considered to be equivalent in this study 
based on the following assumptions, which usually do not 
stand in practice: (a) the design artifacts are absolutely de-
tailed, and (b) in the foundation of no design drift. Additional-
ly, some metrics that are used as structural proxies are consid-
ered in the monetized assessment as well. However, only a 
small number of these metrics are qualified for our final for-
mula of TD principal prediction. Finally, relating to threats to 
external validity, we point out two concerns. First, our results 
depend on the size of the projects in terms of classes. We have 
chosen large projects for our case study (with more than 300 
classes each); therefore our model cannot be generalized to 
smaller projects. Moreover, our dataset only includes Java 
projects, which means that the results cannot be generalized to 
projects developed using other programming languages. 
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