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Abstract—One of the first steps towards the effective Tech-
nical Debt (TD) management is the quantification and continu-
ous monitoring of the TD principal. In the current state-of-
research and practice the most common ways to assess TD prin-
cipal are the use of: (a) structural proxies—i.e., most commonly
through quality metrics; and (b) monetized proxies—i.e., most
commonly through the use of the SQALE (Software Quality
Assessment based on Lifecycle Expectations) method. Although
both approaches have merit, they seem to rely on different view-
points of TD and their levels of agreement have not been evalu-
ated so far. Therefore, in this paper, we empirically explore this
relation by analyzing data obtained from 20 open source soft-
ware projects and build a regression model that establishes a
relationship between them. The results of the study suggest that
a model of seven structural metrics, quantifying different aspects
of quality (i.e., coupling, cohesion, complexity, size, and inher-
itance) can accurately estimate TD principal as appraised by
SonarQube. The results of this case study are useful to both aca-
demia and industry. In particular, academia can gain knowledge
on: (a) the reliability and agreement of TD principal assessment
methods and (b) the structural characteristics of software that
contribute to the accumulation of TD, whereas practitioners are
provided with an alternative evaluation model with reduced
number of parameters that can accurately assess TD, through
traditional software quality metrics and tools.
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I. INTRODUCTION

Technical Debt (TD) monitoring and identification are among
the most important activities of TD management [1]. To effec-
tively monitor and identify TD items, the two pillars of the TD
metaphor (i.e., principal and interest) need to be quantified, or
at least assessed. Although the quantification of interest is an
open research topic that is far from trivial [2], in the state-of-
the-art one can identify several approaches for quantifying or
assessing TD principal. Such approaches can be divided into
two main categories: (a) methods that monetize the amount of
TD principal (e.g., Software Quality Assessment based on
Lifecycle Expectations—SQALE [3]), and (b) methods that
provide proxies of TD principal through structural metrics
(e.g., [4]). On the one hand, the state-of-the-art approaches for
monetizing TD are usually based upon rule violations of dif-
ferent levels of granularity (i.e., ranging from architecture to
source code) and criticality (i.e., ranging from warnings to
critical violations), whereas at the same time omit some useful

structural indicators (e.g., lack of cohesion, change proneness,
etc.). On the other hand, assessments through structural quality
metrics are not facilitating the metaphor of TD in a holistic
manner (since its financial aspect is not considered) and are
useful mostly for comparison purposes. In particular, the met-
ric-based assessments cannot be used for classifying an artifact
as low-TD or high-TD, in the sense that in the state-of-
research and -practice there are no well-established thresholds
for these metric scores.

In this paper, we investigate the relationship between these
approaches. Specifically, we investigate if the monetized TD
principal assessments can be subsumed by metric scores. The
contribution of this work is two-fold: (a) it acts as a way to
assess the reliability of the existing assessment approaches, in
the sense that we check their agreement; and (b) it provides a
small set of metrics that are easier to be calculated than
SQALE and in practice they are usually calculated as part of
the quality assessment process of many industries. To achieve
this goal, we performed a case study on 20 open-source Java
projects and built a predictive model that quantifies TD princi-
pal based on a set of structural metrics scores. The rest of the
paper is organized as follows: in Section Il we present related
work, in Section Ill, we overview the case study design,
whereas in Section IV we present its results. The results are
interpreted and discussed in Section V, and threats to validity
are provided in Section VI.

Il. RELATED WORK

In this section, we discuss the related work on how the
technical debt principal is monetized. According to Alves et al.
[4], the principal of technical debt is related to the effort and
accompanying cost to eliminate the debt from a given system
or artifact. Current software analysis tools offer estimates of
TD principal based on counts of detectable violations. Curtis et
al. [5] note that three parameters are required for such esti-
mates, namely the number of should-fix violations in an appli-
cation, the hours to fix each violation, and the cost of labor. A
similar approach is adopted by the SQALE method proposed
by J. L. Letouzey [3], in which a remediation index is obtained
for requirements of an applicable Quality Model. For example,
for a requirement stating that all files should have at least 70%
code coverage, the corresponding remediation action is to
write additional tests. A remediation function maps effort to
each action, for example, 20 minutes per uncovered line of
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code. Finally, for each artifact, the remediation index relating
to all the characteristics of the Quality Model is obtained by
adding all remediation indices linked to all quality require-
ments. The resulting SQALE Quality Index is considered to
represent the principal of the TD for the assessed source code.

I1l. CASE STUDY DESIGN

The goal of our study is to investigate the relation between
metric-based and monetized TD assessments, and build a
model based on metrics that can predict the monetized assess-
ments. Our study is designed based on the guidelines of Rune-
son et al. [13].

Research Objectives and Research Questions. The main goal
of this study is to model the relation between TD principal and
a variety of quality metrics. Since a plethora of structural qual-
ity metrics is available, we want to accurately estimate TD by
using only a pivotal subset of them. Therefore, we focus this
study in two particular directions: (a) investigate the relation
of each metric with TD principal individually, and (b) investi-
gate the relation of metrics combination with TD principal. In
this respect, we have set the following research question: “Is
there a way to accurately relate TD principal to other quality
covariates via a specified link function?”

Case Selection and unit analysis. As subjects for our analysis
we used 20 OSS (Open Source Software) projects. The select-
ed OSS projects have already been used in a similar context
[14]. The selection criteria for these projects are discussed in
detail by Arvanitou et al. [14], accompanied by a justification
on how they guarantee the collection of a high-quality, well-
known and established set of cases. In a nutshell, the selected
projects are among the most popular projects in Source-
forge.net and are distinguished by the OSS community. Spe-
cifically: (a) all projects have more than 20 official releases on
their history background; (b) each case contains more than 300
classes, which is an index of complexity, and (c) due to a limi-
tation of the tool used to quantify the structural quality metrics
the selected projects had to be developed in Java.

Data Collection and Data-Preprocessing. In this paper we
have selected to explore the power of structural quality metrics
to assess TD principal. In this process we were interested in
selecting metrics that are maintainability predictors. Thus, two
metric suites proposed by Li and Henry [9] and Bansyia et al
[8] have been used (see Table I). To automatically extract the
scores for each metric we used the Percerons Client [14], [15],
[16]. Percerons Client calculates metric scores by parsing
source code structures, while some metrics could also be cal-
culated based on design artifacts (i.e. class diagrams). Howev-
er, to serve the needs of our study, we make the assumption
that design artifacts are produced as detailed as required in
order to proceed with the implementation phase and that the
source code implementation follows the expected design,
without any drift. Inferring that the previous assumptions hold,
metrics calculated at source code level will correspond to
those calculated at the detailed-design level. These assump-
tions induct threats to our study and are analyzed in Section
V1.

TABLE I. METRICS POTENTIALLY ASSOCIATED WITH TD PRINCAIPAL

. Quality
Suite Metric Description Attribute
Depth of Inheritence Tree: Inheritence .
oIt level number, 0 for the root class. Inheritance
Number of Children Classes: Number .
NOCC of direct sub-classes that the class has. Inheritance
Coupling Between Objects: Number of
CBO inwards and outwards dependencies of Coupling
a class
Number of Methods: Number of meth- .
. | NOM ods in the class. Size
(&)
g Message Passing Coupling: Number .
E | MPC of send statements defined in the class. Coupling
=
¥ Data Abstraction Coupling: Number .
3 DAC of abstract types defined in the class. Coupling
= Response For a Class: Number of
> local methods plus the number of .
s | RFC methods called by local methods in the Coupling
T class.
o3
i Lack of Cohesion of Methods: Number
of disjoint sets of methods (number of .
LCOM sets of methods that do not interact Cohesion
with each other), in the class.
Weighted Method per Class: Average
WMPC cyclomatic complexity of all methods Complexity
in the class.
Lines of Code: Number of semicolons .
SIZE1 in the class. Size
Number of Properties: Number of .
SIZE2 attributes and methods in the class Size
Number of Hierarchies: Number of .
NOH class hierarchies in the design. Inheritance
Average Number of Ancestors: Aver-
ANA age number of classes from which a Inheritance

class inherits information.

Data Access Metric: Ratio of the num-
DAM ber of private (protected) attributes to
the total number of attributes.

Encapsulation

Direct Class Coupling: Number of
other classes that the class is directly
related to (by attribute declarations and
message passing).

DCC Coupling

Cohesion Among Methods: Sum of the
intersection of a method parameters
with the maximum independent set of
all parameter types in the class.

CAM Cohesion

QMOOD [8]

Measure of Aggregation: Number of
MOA data declarations whose types are user
classes.

Coupling

Measure of Functional Abstraction:
Ratio of the number of methods inher-
ited by a class to the total number of
methods accessible by methods.

MFA Inheritance

Class Interface Size: Number of public

methods Size

CIS

Number of Polymorphic Methods:
NOP Number of methods that can exhibit
polymorphic behavior

Complexity




Regarding the quantification of TD, we used version 6.3 of
SonarQube'—also known as Sonar—without further configu-
ration and according to its default status. Sonar is an OSS plat-
form for the continuous inspection of code quality. The plat-
form supports a plethora of programming languages and it can
offer detailed reports regarding duplicated code, coding stand-
ards, unit tests etc. The completion of data collection resulted
in a dataset of 10,029 cases / units of analysis (i.e., classes)
and 22 variables, 21 representing the quality metrics and one
representing the monetized TD assessment (see Table 1).
While “cleaning-up” the dataset from extreme values and out-
liers (visually, using boxplots and statistically by checking
iteration after iteration the cases with residuals with three or
more standard deviations from the mean) approximately 1,100
cases were excluded. Descriptive statistics of the dataset are
presented in Table II.

TABLE Il. METRICS’ DESCRIPTIVES

Metric Mean s.dev. Metric Mean s.dev.
TD Principal 57.2 96.3 ANA 13 2.0
DIT 2.0 1.3 DAM 301.8 459.6
NOCC 0.7 4.2 DCC 55 7.2
MPC 394 71.6 CAM 77.3 382.4
DAC 0.3 0.8 MOA 0.6 14
RFC 35.6 41.8 MFA 0.015 0.1
LCOM 76.5 415.8 CIS 6.4 10.1
WMPC 8.4 115 NOP 13 5.99
SIZE1 50.1 64.8 NOM 8.4 115
SIZE2 11.8 15.8 CBO 114 19.6
NOH 0.1 0.3

Data Analysis. To answer our research question we performed
a two-step analysis process. Initially, we investigated the rela-
tionship between the monetized TD assessment and the struc-
tural quality metrics in order to reveal the quality metrics that
are mostly correlated to the TD principal. More specifically,
we intend to quantity the rank correlation (statistical depend-
ence between the ranking of these variables), and a well-
known measure to do this is the Spearman’s correlation coeffi-
cient, (r). We formally choose to report the non-parametric
test as our variables were not normally distributed. The
equivalent Pearson correlations though were also in line with
the Spearman ones and the size of our sample explains this
accordance [17]. Next, we employed multi[z)le linear regression
analysis. To this end we applied the IBM®* statistics’ stepwise
regression (SR) procedure. The stepwise method is useful
when it comes to selecting the optimal predictors (among a
large number of candidates) that can achieve the best estima-
tion ability of the model. In a nutshell, it is a technique of fit-
ting regression models in which the choice of predictive varia-
bles is performed in an automated way. This way, the regres-
sion model is constantly re-assessed as it is checked if any
predictors can be excluded. SR is a parametric procedure as-
suming that the data is normally distributed. This constraint

! https://docs.sonarqube.org/display/SONAR/Documentation
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though can be ignored as we deal with a sample consisting of
hundreds of observations [17].

IV. RESULTS

In this section, we present the results of our case study and the
discussion of these results takes place in Section 1V. As a first
step towards our analysis, we first explored the correlations
among the independent variables of our prediction model (i.e.,
the structural metrics). The interrelations of the structural qual-
ity metrics showed high and statistically significant correla-
tions (r) between specific metrics®. These relations can be
intuitively explained based on one or both of the following
interpretations: (a) relations of metrics of the same quality
attribute (e.g., RFC and MPC are both coupling), (b) relation
of all metrics to size (e.g., the largest the number of classes—
i.e., SIZE1—the largest the number of dependencies and local

methods—e.g., RFC).
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Regarding the interrelations of the structural metrics to the
monetized TD Principal, we highlight the following, based on
the Spearman’s correlation coefficient: MPC (rs=.72), RFC
(rs=.68), SIZE1 (r:=.67), SIZE2 (rs=.56), WMPC (r;=.504) and
NOM (r=.504). Therefore, we should expect some of these
predictors to be able to explain a significant amount of the
variance of TD principal. All correlation values were positive,
except for NOH, NOP, MFA, NOCC and DIT, which were

® MPC — RFC, RFC — (WMPC, SIZE1, SIZE2, NOM), WMPC — (CIS,
SIZE1, SIZE2), CIS — (WMPC, SIZE2, NOM), SIZE1 — (SIZE2, NOM),
NOM - (SIZE1, SIZE2, RFC), DIT — ANA
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negatively correlated to TD principal. The sign of these rela-
tions can be interpreted by the positive effect that polymor-
phism and inheritance have on software quality, in the sense
that they are expected to provide an effective way to handle
software complexity. At this point it is necessary to clarify that
TD principal is an inverse quality indicator, i.e., modules with
high TD principal are considered of low quality.

To visualize the relations between metrics and TD princi-
pal we provide a set of heat maps for the top-6 predictors (see
above Figures 1.a - 1.f). For all figures, the horizontal axis
represents the TD principal, whereas the vertical ones the val-
ues of the metric. The categorical versions of variables have
been obtained with using the quintiles of each variable. To
facilitate the readability of the figures, the scale in the horizon-
tal axis is the same in all heat maps, as follows: Very Low TD
[1 to 4 minutes to resolve], Low TD [5 to 10 minutes to re-
solve], Medium TD [11 to 33 minutes to resolve], High TD
[34 to 87 minutes to resolve], and Very High TD [88 to 1803
minutes to resolve]. We remind the reader that the needed re-
factoring time is calculated at class level. From Figure 1, we
can observe that the dark-shaded cells are the diagonal ones,
e.g., high TD classes are presenting high levels of the metric
scores.

The results of the regression (see Table I11) indicated that
the predictors can explain 74% of the dependent variable vari-
ance (R*= 0.74, R agjustes = 0.74, and p<<0.01). Multicollinear-
ity issues were evaluated either by examining the correlation
matrices or by checking the variance inflation factor (VIF).
VIF indicates weather a predictor has a strong linear relation-
ship with other predictors participating in the model [18].

TABLE Ill. REGRESSION MODEL COEFFICIENTS
Model Coefficients T p
(Constant)  15.054 14.032 <0.001
MPC 0.802 65.982 <0.001
SIZE1 0.627 31.643 <0.001
CIS -3.294 -28.359 <0.001
NOP 2.642 20.238 <0.001
MOA 5.584 13.127 <0.001
DIT -4.037 -10.188 <0.001
LCOM 0.017 8.815 <0.001

Based on the correlation matrices, we ascertain that our model
does not have predictors which are highly correlated to the
other ones (a threshold of 0.8 was adopted). The third column
of Table VII represents the t statistic, a measure whose magni-
tude shows the impact of a predictor to the model. Therefore,
(a) we built a model with 7 estimators that can predict the TD
principal with an accuracy of 74%; and (b) among these met-
rics the three most influential ones are: MPC, with the highest
impact in the model, followed by SIZE1 and CIS.

V. DISCUSSION

In this section, we discuss the results of this study, under two
perspectives: (a) we interpret the results and (b) we provide
some useful implications to researchers and practitioners.

Interpretation of Results. The results of our study validated
the intuition that TD principal can be sufficiently assessed
through a limited set structural metrics. In particular, we have
been able to build a seven metrics model that can capture 74%
of the variability of TD amount (expressed in effort—i.e.,
minutes of development). In particular, the model consists of:

e Two coupling metrics (MPC and MOA). As expected
both coupling metrics are positively related to TD princi-
pal, i.e., the higher the coupling the higher the amount of
TD that exists in a module. The fact that MPC (i.e., the
number of distinct method calls from one class to anoth-
er) is the most important predictor of TD principal can be
attributed to the fact that MPC captures: (i) the difficulty
to apply changes in a given module due to the amount of
dependencies, and (ii) the possibility of a class to change
due to ripple effects, in the sense that it is a proxy of the
strength of the dependency.

e Two size metrics (CIS and SIZE1). Based on the findings
of this study larger systems (with more lines of code, at-
tributes, and methods) are accumulating more TD. De-
spite the fact that this finding is a self-explanatory one,
the negative relationship of CIS to TD amount is an in-
teresting one. In particular, the direction of the relation-
ship suggests that modules with a large public interface
(i.e., methods) are less prone to accumulate TD. This fact
can be attributed to the modularity of responsibilities of-
fered by different methods, e.g., long methods have al-
ready been split into smaller more modular ones.

e One cohesion metric (LCOM). Lack of cohesion is as
expected positively related to TD principal. This is an
expected outcome in the sense that: (i) high cohesion is
one of the most important principles of object-
orientation, and (ii) lack of cohesion directly implies the
existence of the large class “bad smells”, which urges for
the application of well-known refactoring.

e One polymorphism metric (NOP) and one inheritance
metric (DIT). These metrics are the only with a negative
correlation to TD principal. This finding can be ex-
plained by the fact that the efficient of application of ob-
ject-oriented principles and patterns, requires the use of
inheritance trees (of limited depth), various levels of ab-
stractness, and the exploitation of polymorphism.

Additionally, the correlation analysis revealed some additional
metrics that are related to TD principal. For example, one
complexity metric (WMC), although significantly correlated to
TD has been removed from the model, due to multicollinearity
issues. The relation of complexity metrics to TD principal is
considered expected, in the sense that the existence of unnec-
essary complexity in the code of a class implies the need for
restructuring the code: the more complex a method, the more
TD principal it accumulates. Therefore, our analysis revealed
that TD principal is related to metrics that capture the most
important low-level quality attributes, namely: coupling, cohe-
sion, inheritance, size, and polymorphism.

Implications to Researchers and Practitioners. The results of
this study have provided some interesting implications to prac-
titioners, and future research directions. First, researchers and
practitioners can use the proposed model for quantifying the



TD in their projects (see results on RQ,). This prospect can be
interesting for software engineers who: (a) already calculate
metrics as part of their quality assurance activities, and (b)
want to avoid the installation and parameterization of more
complicated tools. In addition to that, based on the finding on
discriminative power, researchers and practitioners that are
only interested in ranking artifacts, with respect to their TD
principal can use an even smaller set of metrics (see results).
Regarding future research directions we intend to re-evaluate
this model by using an even larger dataset, including a pletho-
ra of other well-known open source projects (also smaller
ones), that covers more than one programming languages.
Additionally, we suggest researchers to further investigate the
important metrics (as suggested by our study) with respect to
the rest metrics validity criteria described in 1ISO 1061. Final-
ly, the use of other ways of synthesizing data, e.g., tree-based
classifications or Bayes network can be exploited.

VI. THREATS TO VALIDITY

As already mentioned in this paper, concerning the internal
validity of this study, the current assessment of the calculated
metrics was based on the source code instead on the design
artifacts. These were considered to be equivalent in this study
based on the following assumptions, which usually do not
stand in practice: (a) the design artifacts are absolutely de-
tailed, and (b) in the foundation of no design drift. Additional-
ly, some metrics that are used as structural proxies are consid-
ered in the monetized assessment as well. However, only a
small number of these metrics are qualified for our final for-
mula of TD principal prediction. Finally, relating to threats to
external validity, we point out two concerns. First, our results
depend on the size of the projects in terms of classes. We have
chosen large projects for our case study (with more than 300
classes each); therefore our model cannot be generalized to
smaller projects. Moreover, our dataset only includes Java
projects, which means that the results cannot be generalized to
projects developed using other programming languages.
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