Automated Summarization of Service Workflows to facilitate

Keywords:

Abstract:

Discovery and Composition

Panagiotis Kotsikoris, Theodore Chaikalis™?, Apostolos Ampatzoglou®™? and

Alexander Chatzigeorgiou™?3
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
{mai20030, chaikalis, a.ampatzoglou, achat}@uom.edu.gr

BPMN, Business Processes, Service Discovery, Workflow Composition, Cloud Software Development

The last decade marked undeniably the leading role of web services and the establishment of service-
oriented architectures. Indeed, it is nowadays hard to find a contemporary software application that does not
use at least one third-party web service. The main driver for this paradigm shift, lies in the benefits that
decoupled, cloud-based services bring to software development, operation and maintenance as well as at the
seamless deployment, integration and scalability features those modern public clouds provide. Furthermore,
the widespread adoption of services has led to the consequent demand for a structured and accessible
method for automatic service categorization, documentation, and identification, so that all available web
services can be easily identified and used from possible clients. In the realm of web services, service
compositions known as workflows provide a natural way to automate existing business processes and bridge
the gap between technical and non-technical stakeholders. This work proposes an automatic documentation
generator for business processes which facilitates service discovery, based on automatic summarization of

business processes created through

1. INTRODUCTION

Rendering software functionality available on the
Internet through standardized messaging protocols
has become the primary method for developing
enterprise software systems. Web services are
defined as self-contained, modular and distributed
applications that can be deployed and invoked over
the network. More specifically, RESTful web
services are scalable and light-weight and are
commonly used to create APIs for web-based
applications (Richardson & Ruby, 2007). In the
REST architectural style, both data and functionality
are considered resources and are accessed
using Uniform Resource Identifiers (URIs). Services
can be composed to form workflows abstracting
existing business processes.

Business Process Model and Notation (BPMN) is
a widely established industry standard, capable of
graphically modelling business flows, whose
execution provides value to business stakeholders.
Through well-defined and intuitive semantics,
BPMN provides powerful capabilities that cover
numerous different business scenarios. Each process

1 https://orcid.org/0000-0003-0501-3671
https://orcid.org/0000-0002-5764-7302
302 https://orcid.org/0000-0002-5381-8418

Business

Process Model and Notation (BPMN)

is divided in multiple atomic and strictly defined
steps which occur between start and end nodes. For
the visual representation, BPMN uses nodes for
modelling actions and edges for connecting actions
and thus denoting the direction of the data and
control flow. The resulting process graph reflects
also the chronological order of execution.
BPMN has been initially released on 2007 and the
current official release is version 2.0.2 that has been
published in January 2014 (Geiger et al., 2016;
OMG, 2007). The officially stated goal of the
standard is to provide a method for visualizing in a
strict and formal, yet intuitive and approachable way
business processes so that they can be developed
from both technical and non-technical stakeholders.
While BPMN offers inherently a visual
representation of the modeled business process, it is
often convenient to have a brief, textual summary of
the underlying workflow. Apart from labeling
purposes, such summaries can be highly valuable for
identifying existing workflows in registries (through
keyword search). Furthermore, for platforms aiming
to assist web service developers in reusing similar
service compositions, textual summaries can be used
to enable service searching, identification and reuse.

In the SmartCLIDE H2020 project* we aim at
developing a smart cloud-native development
environment that will support creators of cloud
services in the discovery, creation, composition,
testing, and deployment of full-stack data-centered
services and applications in the cloud. Among other
features, SmartCLIDE facilitates workflow
development by recommending nodes, after seeking
similar workflows to the one that is being developed.
Workflow similarity is assessed based on the
similarity ~ of their corresponding textual
descriptions. To this end, we have leveraged the
power of Natural Language Processing (NLP)
techniques to automatically extract a concise textual
summary of an existing workflow expressed in
BPMN.

The rest of the paper is organized as follows.
Section 2 discusses related work on service
composition and NLP. In Section 3 we elaborate on
the adopted methodological approach and in Section
4 we present details about the implemented tool.
Section 5 discussed results from the evaluation of
the tool in an industrial context. Finally, we
conclude in Section 6.

2. RELATED WORK

As described above, numerous technologies have
been combined (web applications, BPMN, NLP
etc.), to achieve the greater goal of workflow
summarization. Each one of these technologies
forms an entire field of research and practice in the
science of information technology and has evolved
largely over time.

Discovering appropriate services and
components on the network (intranet or internet), in
order to enhance and extend an application under
development, is one of the holy grails in today’s
software development. Leveraging the power of
existing services can help us escape from the
hardcoded model used in monolithic application
development which leads to dysfunctional and hard
to maintain collections of software modules.
Messina et al. (2016) describe a dynamic and
flexible model to keep track of all the components
using a service registry focusing on consistency
during the discovery process while having each part
isolated from the outside world.

Assuming there is an existing set of available
components, the next step is to combine them in a

! https://smartclide.eu/

way to achieve the desired functionality. The
composition of those parts is a concept where
instead of dealing with the infrastructure and the
location of the components, we focus on bringing
the pieces together to achieve a greater goal. Wu et
al. (2015) describe two basic ways to create
compositions of services. The first one is a manual
process where user decides which components will
be combined and in which way, leading to more
meaningful outcomes at the cost of significant effort
and time, taking into consideration the existence of
thousands of available options. The second way is an
automated process where a list of components is
evaluated using artificial intelligence approaches.
Next, heuristic functions decide the best option to
use. The latter approach vyields less accurate
compositions but offers substantially higher
performance. Both options have their drawbacks, for
example, for a user to evaluate a set of services, he
first needs to execute them in a controlled
environment, requiring a set of resources and tools.
On the other side, the automated process also
requires resources regarding the collection and the
evaluation of the services in a parallel or even
distributed way.

In order to generate an accurate definition of a
flow, we first need to deconstruct its individual parts
and classify them. In this process Natural Language
Processing (NLP) comes in hand. Alan Turing back
in 1950 was the first to conceive the idea that
determining or not whether a computer is truly
intelligent involves the generation of natural
language as criterion of intelligence. Since then,
multiple efforts were made to create chatbots or
other conversational agents that can interact with the
content in the same way that a person does. Lo et al.
(2017) performed an analysis on various
implementations to clarify how far we have come
today and the potentials that lie ahead. Most of those
implementations are naturally based on the English
language. Fahad el al. (2018) discuss the techniques
used today using neural networks as a pillar for
multi document summarization, spell checking,
speech recognition etc.

The generation of natural language, which
follows initial text processing, is the process in
which an artefact or model is presented in text form
as output. McBurney et al. (2016) suggest a five-step
procedure in order to create a final text that can
describe accurately a block of code and compare the
results with the respective human generated
descriptions. At first, the content that will be used is
selected, which is a very crucial step that defines the
quality of the result. After the content filtering

comes the structuring, in which the sequence of the
content is defined. The third step is the
lexicalization, where more suitable words are
selected when necessary. After that comes
aggregation of similar phrases and sentences in order
to remove any duplicate content. The final step is the
realization, where the content to be exported is
created taking into consideration the respective
grammar rules. Since this is a standalone approach
working automatically, it is effective to any input
given in any language.

For the BPMN 2.0 specification, Geiger et al
(2016) performed an analysis of the evolution of the
standard, while Falcone et al. (2017) focus on the
potential of the model that originates from its
appealing graphical presentation and attempt to
integrate it with other modelling and simulation
systems.

3. BACKGROUND

3.1 BPMN

An example of a simplified business process is
depicted in Figure 1 where a subset of the BPMN
elements are demonstrated. The diagram models a
process that gets triggered by a message which
denotes that a working group is active. Next a
scheduled activity triggers a repeating set of tasks
every Friday at 6 PM: First a system task checks the
status of the working group. Then a decision node
determines the execution path depending on the
result of whether the working group is active or not.
It ‘active=true’, the execution continues to the task
that sends a current issue list and then it goes back to
waiting mode until the next Friday @ 6 PM.
Otherwise the process terminates.

Check status
of working group

[Send)
Send current
issue list

4

Issue list

moge Source: http://en.wikipedia.org/wiki/Business_Process_Model_and_Notation

Figure 1 Example BPMN process

Both system tasks in this process (i.e. checking
the working group’s status and sending the current
issue list) could be easily carried out by two
respective Web Services that can be triggered

through special configuration during the creation of
the tasks.

3.2 Text Summarization

Text summarization refers to any automated process
during which a program parses a set of sentences
and generates a meaningful summary. The main goal
of every summarization approach is to produce a
precise and concise summary that reflects the basic
context of the initial document and does not lack
vital information, neither includes unnecessary or
irrelevant details (Figure 2). Such approaches have
been extensively used in automatic text
classification, news article summarization and
automatic title production.

As a technical problem, automatic summarization
forms a challenging endeavour because unlike
humans who can scan through an article and quickly
grasp the context and the basic parts of the topic,
machine algorithms must overcome several non-
trivial problems for capturing the essence of a
document.

Document
—

Summary

Yy
I
I

—_—— S

I

Figure 2 Text Summarization

Three approaches are mainly used for automatic text

summarization (Widyassari et al., 2020).

e Extraction Based summarization, where content
only from the original document is being used. An
initial evaluation pass determines the parts that
should be kept and afterwards these parts are
merged for the final summary.

o Abstraction Based summarization, which attempts
to mimic the human approach. Initially, Natural
Language Understanding techniques are being
used for identifying the meaning of the document
and afterwards the final summary is produced by
rephrasing versions of the basic parts.

e Aided summarization is a semi-automatic
approach which demands intervention by a human
who will pick the text parts that will form the final
summary, as well as the method that this should
be performed. This approach is used in occasions
where high accuracy is needed.

The first one, extraction-based approach is the one
that initially gained high popularity due to its
simplicity and the abundance of available
information. However, with the improvements in Al
and computing power a huge part of the
implementations has been move to the abstraction-
based approach (Widyassari et al., 2020), which can
lead to more meaningful summaries.

4. TOOL IMPLEMENTATION

The proposed tool forms part of a broader toolset
which aims at semi-automatic service discovery and
composition by using service descriptions that assist
users in selecting the service that suits their needs in
the most effective way. To this end, descriptions of
available service flows should automatically be
extracted by parsing BPMN diagrams. The
summative descriptions can be used as short textual
service documentation about the purpose and the
mechanics of each service composition. This process
produces a documented registry containing all
services/workflows that can be identified and reused.

The selection process takes place in two steps.
Initially users defined a set of keyword-based
criteria for a desired service (service composition)
and the system responds to this search by returning a
list of compositions that are the best possible fit the
given criteria. In the second step users read through
returned results and select the one that is the most
suitable to their demands.

The description of each service composition is
obtained by analysing the internal structure, the
underlying flow with all possible execution paths
and the naming of all BPMN elements (nodes). The
documentation is created by parsing the BPMN
representation files (XML structure) and yields a
textual description output using Natural Language
Processing and Natural Language Generation
techniques.

4.1 System Architecture

In this chapter a detailed analysis of all system
components is presented along with a description of
the steps that produce the service documentation.

The tool accepts one or more BPMN files as
input, processes them and outputs the produced
documentation in the form of text files in English
language (Figure 3). It becomes evident that for the
tool to operate correctly, the system should process
only BPMN processes described in English.

N —n—%

Process Person
Figure 3 General analysis concept

We opted for the Web as our deployment
platform to provide a multi-channel API that can be
invoked both by human users as well as from third-
party web services as shown in Figure 4. The
proposed tool is available both through a headless
API and in the form of a human reachable Website.

API | .. API
[0]0]@)] QOO
Website Website API
Person Person

Figure 4 Application is available through both as a
headless APl and as human reachable Website.

The backend has been developed using the Java
Spring Boot framework (Spring Boot, 2021) and the
public interface is exposed through a REST API.

’——{NLP Library

NLG Library

REST Calls ,
Controller~ Service BPMX —-{ Model
— Parser |

API
Figure 5 Internal application Architecture

The internal structure of the backend module is
depicted in Figure 5. The Controller module acts as
the gateway of the system as it handles external
requests, performs an initial input validation, and
returns responses to clients.

The Service component is responsible for
carrying out the actual business logic for the request.
It contains the source code that analyses a business
process and produces its documentation. Internally it
invokes the BPMN parser, which goes through all
XML nodes in the underlying XML file, models
each node as a Java Object, invokes the Natural
Language Processing Subsystem to semantically
analyse the retrieved information and finally
generates output with the Natural Language
Generator. More details about the core functionality

of extracting a textual summary are provided in the
next subsection.

4.2 Analysis Engine

In this section a more in-depth analysis about the
automatic business process documentation engine is
presented. The overall flow which comprises three
sequential phases is depicted in Figure 6. Initially
the process is being parsed for the determination of
all nodes in the workflow. Then each node is visited
and documented, starting from the first node of the
process, the Start Event. Finally, all results are
collected and formatted to formulate the final
description.

Parse XML

Parse Discover |

Clear L . :
Definitions Connections|

Start from start event

Generate Documentation I
¥

Check If Visited

1
Generate

Documentation

1
Check Node
Type
i

Got Outgoing

them. These descriptions are the parts that will
comprise the final documentation. The core
algorithm contains a recursive procedure which
visits all elements in specific order beginning from
the Start Event of the process.

Phase C — Response Preparation: After visiting all
nodes, all parts are aggregated to give the final
result. In the occurrence of back cycles in the flow,
special anchors in the form of markers are inserted
to avoid redundant text duplication. A second
optimization that is applied in this step is the
removal of duplicated phrases or sentences. Finally,
the complete process documentation is returned.

4.2.1 Documentation Process

The description of a process is created from the
concatenation of sentences produced from individual
parts. Apart from specific descriptions for each part
of the process, a general introductory sentence
offering a general overview of the process context, is
inserted at the begging of the documentation.

For the general description of the process
structure, the analysis engine searches for a set of
specific characteristics which map to adjectives that
are composed to form the desired phrase. Table 1
presents the characteristics along with a short
description.

Visit NextNode| Elements Table 1 Process characteristics
Prepare Response Adjective DESCFiptiOI’]

Scheduled Process that contains a
Process timer event that controls
Repeated Parts the firing time and date

' Automatic No human interaction

Add anchors involved
T Single approval One step of approval only
return response 2-level approval Two approval steps
Collect Results ——— 3-level approval Three approval steps

Figure 6 Detailed analysis of processing flow

Phase A - BPMN parsing: This phase starts from
the cleaning task which removes redundant or
unnecessary parts of the process that would
introduce noise to the NLP algorithms later. The
basic part of this phase is the modelling of BPMN
nodes into Java Objects and the identification of
connections among them. This task ensures the
validity of the given process and facilitates the
understanding of the process flow.

Phase B — Documentation Generation: This phase
accepts the previously created objects with their
connections and creates a description for each one of

Multiple-level approval

More than three approval
steps

Short (single-task)

Process contains only one
task

Short (2-tasks)

Process contains 2 tasks

Short (3-tasks)

Process contains 3 tasks

Flat (no branching)

Process does not contain a
decision gateway

Multi branched

Contains one or more
decision gateways.

Alternative ending

Contains multiple ending
nodes

Repetitive

A cyclic flow exists

The general description contains also a phrase
describing the process type which is deducted from

the analysis of the Start Node and the BPMN file
itself. Initially the algorithm attempts the retrieval of
the description of the Start Node, however if
description does not exist or is not usable (no noun),
the algorithm utilizes the name of the BPMN file
that contains the process. The reason for selecting
these 2 elements is because BPMN process
developers describe them in a way that differentiates
one process from the others.

5. USE CASES AND
EVALUATION

This section presents several use cases with
results of the application of the proposed approach
on synthetic examples. Next the results from the
empirical evaluation of the results are presented. To
validate the quality of the extracted summaries we
resorted to industry professionals having experience
in creating/understanding process workflows as part
of their job.

5.1 Use cases

Figure 7 depicts a simple book reservation process
with one human task and one system/notification
task.

g = ‘
}— Book selection —— Notify user
‘ End

Book
2 Event
reservation

Figure 7 Simple book reservation use case

The automatic documentation of the process is as
follows:

This is a single approval, short (2-task),
flat process about book reservation.

A user decides about the book selection. A
send task is used to notify user.

Then the process ends.

Bold highlighted text in italics designates the
general description of the process from which we
can deduct that a user task exists (this enables the
characterization of the process as one with “approval
step”), that is a flat process (without alternative
paths) and that it contains two individual tasks and is
about a book reservation. Next, the process steps are
described in chronological order described in clear
text with zero formatting as it is deduced from the

order of nodes on the directed graph. Underlined
phrases indicate the description about the process

terminating node.
(] » |
W Notify user r——*o
Successfull
1 booking

) ——»1 Book selection N O

Unavailable

Book Reserved Termination

reservation
Figure 8 Example Business Process with decision
branching

An example of a business process which
contains a decision node, which leads to two
branches is depicted in Figure 8. After book
selection, an availability check takes place and if the
book is available, the process notifies the user,
otherwise it immediately terminates.

The produced description follows. Note that the
general description here lacks the characterization
“flat” due to the branch existence.

This is a single approval, short (2-task)
process about book reservation.
A user decides about the book selection. A
decision is taken depending if reserved.

If available: A send task is used to
notify user. Then the process ends.

If unavailable: Then the process ends.

We proceed with a few more complicated
examples to highlight the strengths and weakness of
the proposed approach.

Successfull
booking

) Successfull

2 booking via
branch
library

: fiais
available
in branch

Tenmiation

Figure 9 Process example with two decision branches

Figure 9 presents a business process with two
decision gateways, which create three decision
branches. The produced description is as follows:

This is a single approval, short (3-task),

alternate ending (3-ways) process about

book reservation.

A user decides about the book selection. A

decision is taken depending if reserved.
If available: A send task is used to

notify user. Then the process ends.

If unavailable: A decision is taken
depending if reserved in branch library.

If available in branch library: A send
task is used to notify user. Then the
process ends.

If unavailable in branch library: Then
the process ends.

The process in Figure 10 contains an
intermediate throw signal event which means that
when this nodes is executed, a special signal is
emitted to notify other interested (subscribed)
processes.

; 5 ; ™ Update book |

(}—— Setbook status A— —,O
= = position |

Book —

i Terminate
Signal
7 Process
availability

return

Figure 10 Process with an intermediate Catch Event

The automatic description for the process with
intermediate signal throw as shown in Figure 10 is
as follows:

This is a automatic (not 1involving any
human taskR), short (2-task), flat process
about book return.

A method is called to set book status. The
process broadcasts a signal. A manual task
is used to update book position.

Then the process ends.

The process in Figure 11 introduces the concept
of End Message. This is a signal with a message
payload that is emitted at the end of the process to
notify any other interested processes (Message Start
events or intermediate message-catch events). The
same approach is being followed for all signal types
(Message, Error, Cancel, Link etc).

The automatically generated description
follows.
(" }— Set book status ‘—» ~pdate boak }—-—{:)
2 position
BL‘U}\ .t
Terminate

return
Figure 11 Example Process with End Message Event

This is a automatic (not 1involving any
human task), short (2-task), flat process
about book return.

A method is called to set book status. A
manual task is used to update book
position.

The process concludes messaging a

participant.

Next, in Figure 12 a special process with a timer
controlled segment is depicted. A timer event is a
special type of node on which the execution flow
blocks until the timer expression that is declared
during node creation is fulfilled. The automatically
generated description follows.

Book 1

statuses &

True X False
Bobks
exiist
Daily
Tither Terminate

Get all books

——

Set statuses

Figure 12 Example process with Timer Event

This 1is a scheduled, automatic (not
involving any human tasR), short (2-task),
repetitive process about book statuses.
[1] A decision is taken depending if books
exist.

If true: A daily timer is used to
repeat the following process. A method is
called to get books. A method is called to
set statuses. The same flow is repeated
[1].

If false: Then the process ends.

As it is readily observed, special anchors have
been used for the correct description of the flow
circle in order to avoid redundant phrase repetitions.

Figure 13 depicts a process with multiple levels
of approval and multiple endings. The corresponding
automatic documentation follows.

- o
C 1 Check book 1—-— 3>
Book ————— Exksts Found in

existence branch 1

Yes

No

“heck k //’\‘
‘ Check book }T’x T’O
0

———— Exdsts Found in
branch 2

D
Check book o (X

Exjsts

Yes

Found in Terminate
branch3 process

Figure 13 Example process with multiple approval levels
and multiple endings

This 1is an automatic (not 1involving any

human tasR), short (3-task), alternate
ending (4-ways) process about book
existence.

A method is called to check book.
A decision is taken depending if exists.

If yes: Then the process ends.

If no: A method is called to check
book.
A decision is taken depending if exists.

If yes: Then the process ends.

If no: A method is called to check
book.
A decision is taken depending if exists.

If yes: Then the process ends.

If no: Then the process ends.

5.2 Evaluation

To evaluate the effectiveness of the proposed
methodology in capturing the essence of the actual
business process through the extracted summary, an
online questionnaire-based study was conducted.
The participants were nine industry professionals, all
of them highly skilled on BPMN process creation
and understanding.

Each participant was presented with 6 processes
along with the corresponding automatically
generated documentation and was asked to evaluate
the extent to which the documentation captured the
actual process and is meaningful. The responses
were provided in Likert scale (Joshi et al., 2015) as
depicted in Figure 14.

[

-——{ Book selection
tion

This is a single approval, short (2-task) process about book reservation.A
user decides about the book selection.A decision is taken depending if
reserved.

If available: A send task is used to notify user.Then the process ends.

If unavailable: Then the process ends.

Reserved

1 2 3 4 5

Totally Disagree O O O O O
Figure 14 Indicative evaluation question

Totally Agree

The responses indicate a generally positive
opinion about the extracted summaries. A pie chart
with an overview of the evaluation results is
presented in Figure 15. It should be noted that none
of the participants voted with a value equal to 1. The
majority of evaluations correspond to values 4 and 5
(reaching a total 80%), highlighting the
expressiveness of the approach, at least for the used
case studies.

7.1%

4
42.9%

Figure 15 Distribution of evaluation responses

The next section presents separate results for
each case along with the distribution of the
evaluations received, depicted as a bar chart. It is
reasonable to expect variations in the user
acceptance of the summaries, as some processes are
more complex than others. The results confirm this
hypothesis, since some of the most complex
scenarios, such as case 6 (Fig. 21) and case 4 (Fig.
19) received fewer ‘5’ scores.

& | = i
()—— Book selection _—r Notify user ~——O
End

Book
reservation

8
6
4
2
00% 00%)
1 2
Figure 16 Evaluation case 1
-
Bo;k B — Riservod Unavailable
6
4
2
0(00%)
1
(:)—J"’;’auox lect

6
4
2

0,
0 0(9 %)

2 3 4
Figure 18 Evaluation case 3

g
Book

statuses

(True
@)
Ddily
Tither

{ Get all books

¥

‘ Set statuses

False l

Terminate

|

0(0%) 1(10%) 0(0%)
1 2 3
Figure 19 Evaluation case 4

A N k)
Q_T Book usage H Book evaluation HBook destmctioum
Book

Terminate
removal

00%) 0(0%) 0(0%)

1 2 3
Figure 20 Evaluation case 5

The evaluation results from this pilot evaluation
on the 6 presented cases are positive and
demonstrate the potential of the approach. Extracting
a meaningful summary becomes more challenging
for processes having multiple paths and more nodes.
A possible explanation of this phenomenon might be
the fact that longer processes produce longer
documentation segments which inevitably are less
cohesive and more difficult to express in natural
language (even if a human attempts to extract a
summary for a highly complex workflow the
resulting text would seem less ‘natural’). Through
the free text responses that were allowed, the
participants identified syntactic errors that should be
avoided.

We remind that the goal of extracting a summary
for a given workflow is not only the ‘labeling’ of a
process with text but to enable the searching for
similar workflows through similarity of their
corresponding description. While this experiment is

planned as future work we believe that the extracted
summaries capture both key aspects of the process
(such as decision nodes and timed events) and all
necessary terms that characterize nodes. Thus, we
are optimistic that performing similarity checks
between the textual summary of BPMN process will
allow the efficient identification of ‘similar’
workflows.

Figure 21 Evaluation case 6

6. LIMITATIONS AND
THREATS TO VALIDITY

The proposed approach and accompanying tool
suffers from specific limitations which can be
addressed by more advanced NLP techniques. First
of all, the tool cannot parse workflows containing
descriptions in languages other than English, but if
such a need exists, the approach can be adapted
accordingly. The tool will also yield inaccurate
summaries in case of missing verbs in BMPN
elements or for structures which exhibit substantial
complexity (e.g. in the case of tens of paths between
the start and end node). While there is no trivial way
to address such issues, human intervention to
abstract entire blocks of BPMN elements by tagging
them with an appropriate high-level description,
might be promising in this direction.

The performed study to evaluate the
effectiveness of the approach and tool is also subject
to validity threats. The number of employed
evaluation cases in limited, both in number and in
terms of the underlying domain. As a result, any

claims about the potential of the approach are
subject to external validity threats and the results
cannot be generalized to other domains.
Furthermore, we acknowledge that using a simple
rating to capture the correctness, meaningfulness and
attractiveness of the extracted summary might be
insufficient to assess the pros and cons of the
approach. The relevant construct validity threat can
be addressed by more systematic and larger-scale
validations in the future. The low number of
participants did not allow any systematic statistical
analysis (e.g. to investigate inter-rater agreement) of
the findings. We plan to advance the statistical
conclusion validity during the case study on the
ability of using summaries to identify similar
processes.

7. CONCLUSIONS

Service-based software systems have become
mainstream in various domains as the benefits of
using and composing individual services towards
reduced development time, better scalability and
easier maintainability are well acknowledged and
documented. Modeling real business processes as
BPMN workflows where individual nodes
correspond to invoked services has great potential to
lower the entry barriers to system development.
However, findings workflows which are similar to
the targeted one, so as to reuse previous services is
challenging.

To address this problem, as part of the
SmartCLIDE H2020 project, we have developed an
approach and accompanying tool that automatically
extracts summaries from a BPMN process. By
providing as input the process file a textual summary
is extracting leveraging NLP techniques. A pilot
evaluation with 9 industry professionals revealed a
positive reception of the generated summaries. As a
next step, we plan to evaluate the efficacy of textual
summaries as a means for finding similar
workflows.

ACKNOWLEDGEMENTS

Work reported in this paper has received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871177 (project:
SmartCLIDE).

REFERENCES

Fahad, S. A., & Yahya, A. E. (2018). Inflectional
Review of Deep Learning on Natural Language
Processing. 2018 International Conference on Smart
Computing and Electronic Enterprise (ICSCEE).
https://doi.org/10.1109/ICSCEE.2018.8538416

Falcone, A., Garro, A., D’Ambrogio, A., &
Giglio, A. (2017). Engineering systems by
combining BPMN and HLA-based distributed
simulation. 2017 IEEE International Systems
Engineering Symposium (ISSE), 1-6.
https://doi.org/10.1109/SysEng.2017.8088302

Geiger, M., Harrer, S., Lenhard, J., & Wirtz, G.
(2016). On the Evolution of BPMN 2.0 Support and
Implementation. 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), 101-110.
https://doi.org/10.1109/SOSE.2016.39

Joshi, A., Kale, S., Chandel, S., & Pal, D. K.
(2015). Likert scale: Explored and explained. British
Journal of Applied Science & Technology, 7(4), 396.

McBurney, P. W., & McMillan, C. (2016).
Automatic Source Code Summarization of Context
for Java Methods. IEEE Transactions on Software
Engineering, 42(2), 103-119.
https://doi.org/10.1109/TSE.2015.2465386

Messina, A., Rizzo, R., Storniolo, P., & Urso, A.
(2016, June 26). A Simplified Database Pattern for
the Microservice Architecture.
https://doi.org/10.13140/RG.2.1.3529.3681

OMG. (2007). BPMN Specification—Business
Process Model and Notation.
https://www.bpmn.org/

Richardson, L., & Ruby, S. (2007). RESTful Web
Services (1st ed.). O’Reilly Media.

Spring Boot. (2021).
https://spring.io/projects/spring-boot

Widyassari, A. P., Rustad, S., Shidik, G. F.,
Noersasongko, E., Syukur, A., Affandy, A., &
Setiadi, D. (2020). Review of automatic text
summarization techniques & methods.
https://doi.org/10.1016/j.jksuci.2020.05.006

Wu, Z., Deng, S., & Wu, J. (2015). Chapter 7—
Service Composition. In Z. Wu, S. Deng, & J. Wu
(Eds.), Service Computing (pp. 177-227). Academic
Press. https://doi.org/10.1016/B978-0-12-802330-
3.00007-2

