
1 https://orcid.org/0000-0003-0501-3671
2 https://orcid.org/0000-0002-5764-7302
3 https://orcid.org/0000-0002-5381-8418

Automated Summarization of Service Workflows to facilitate

Discovery and Composition

Panagiotis Kotsikoris, Theodore Chaikalis 1, Apostolos Ampatzoglou 2 and

Alexander Chatzigeorgiou 3
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

{mai20030, chaikalis, a.ampatzoglou, achat}@uom.edu.gr

Keywords: BPMN, Business Processes, Service Discovery, Workflow Composition, Cloud Software Development

Abstract: The last decade marked undeniably the leading role of web services and the establishment of service-

oriented architectures. Indeed, it is nowadays hard to find a contemporary software application that does not

use at least one third-party web service. The main driver for this paradigm shift, lies in the benefits that

decoupled, cloud-based services bring to software development, operation and maintenance as well as at the

seamless deployment, integration and scalability features those modern public clouds provide. Furthermore,

the widespread adoption of services has led to the consequent demand for a structured and accessible

method for automatic service categorization, documentation, and identification, so that all available web

services can be easily identified and used from possible clients. In the realm of web services, service

compositions known as workflows provide a natural way to automate existing business processes and bridge

the gap between technical and non-technical stakeholders. This work proposes an automatic documentation

generator for business processes which facilitates service discovery, based on automatic summarization of

business processes created through Business Process Model and Notation (BPMN)

1. INTRODUCTION

Rendering software functionality available on the

Internet through standardized messaging protocols

has become the primary method for developing

enterprise software systems. Web services are

defined as self-contained, modular and distributed

applications that can be deployed and invoked over

the network. More specifically, RESTful web

services are scalable and light-weight and are

commonly used to create APIs for web-based

applications (Richardson & Ruby, 2007). In the

REST architectural style, both data and functionality

are considered resources and are accessed

using Uniform Resource Identifiers (URIs). Services

can be composed to form workflows abstracting

existing business processes.

Business Process Model and Notation (BPMN) is

a widely established industry standard, capable of

graphically modelling business flows, whose

execution provides value to business stakeholders.

Through well-defined and intuitive semantics,

BPMN provides powerful capabilities that cover

numerous different business scenarios. Each process

is divided in multiple atomic and strictly defined

steps which occur between start and end nodes. For

the visual representation, BPMN uses nodes for

modelling actions and edges for connecting actions

and thus denoting the direction of the data and

control flow. The resulting process graph reflects

also the chronological order of execution.

BPMN has been initially released on 2007 and the

current official release is version 2.0.2 that has been

published in January 2014 (Geiger et al., 2016;

OMG, 2007). The officially stated goal of the

standard is to provide a method for visualizing in a

strict and formal, yet intuitive and approachable way

business processes so that they can be developed

from both technical and non-technical stakeholders.

While BPMN offers inherently a visual

representation of the modeled business process, it is

often convenient to have a brief, textual summary of

the underlying workflow. Apart from labeling

purposes, such summaries can be highly valuable for

identifying existing workflows in registries (through

keyword search). Furthermore, for platforms aiming

to assist web service developers in reusing similar

service compositions, textual summaries can be used

to enable service searching, identification and reuse.

In the SmartCLIDE H2020 project 1 we aim at

developing a smart cloud-native development

environment that will support creators of cloud

services in the discovery, creation, composition,

testing, and deployment of full-stack data-centered

services and applications in the cloud. Among other

features, SmartCLIDE facilitates workflow

development by recommending nodes, after seeking

similar workflows to the one that is being developed.

Workflow similarity is assessed based on the

similarity of their corresponding textual

descriptions. To this end, we have leveraged the

power of Natural Language Processing (NLP)

techniques to automatically extract a concise textual

summary of an existing workflow expressed in

BPMN.

The rest of the paper is organized as follows.

Section 2 discusses related work on service

composition and NLP. In Section 3 we elaborate on

the adopted methodological approach and in Section

4 we present details about the implemented tool.

Section 5 discussed results from the evaluation of

the tool in an industrial context. Finally, we

conclude in Section 6.

2. RELATED WORK

As described above, numerous technologies have

been combined (web applications, BPMN, NLP

etc.), to achieve the greater goal of workflow

summarization. Each one of these technologies

forms an entire field of research and practice in the

science of information technology and has evolved

largely over time.

Discovering appropriate services and

components on the network (intranet or internet), in

order to enhance and extend an application under

development, is one of the holy grails in today’s

software development. Leveraging the power of

existing services can help us escape from the

hardcoded model used in monolithic application

development which leads to dysfunctional and hard

to maintain collections of software modules.

Messina et al. (2016) describe a dynamic and

flexible model to keep track of all the components

using a service registry focusing on consistency

during the discovery process while having each part

isolated from the outside world.

Assuming there is an existing set of available

components, the next step is to combine them in a

1 https://smartclide.eu/

way to achieve the desired functionality. The

composition of those parts is a concept where

instead of dealing with the infrastructure and the

location of the components, we focus on bringing

the pieces together to achieve a greater goal. Wu et

al. (2015) describe two basic ways to create

compositions of services. The first one is a manual

process where user decides which components will

be combined and in which way, leading to more

meaningful outcomes at the cost of significant effort

and time, taking into consideration the existence of

thousands of available options. The second way is an

automated process where a list of components is

evaluated using artificial intelligence approaches.

Next, heuristic functions decide the best option to

use. The latter approach yields less accurate

compositions but offers substantially higher

performance. Both options have their drawbacks, for

example, for a user to evaluate a set of services, he

first needs to execute them in a controlled

environment, requiring a set of resources and tools.

On the other side, the automated process also

requires resources regarding the collection and the

evaluation of the services in a parallel or even

distributed way.

In order to generate an accurate definition of a

flow, we first need to deconstruct its individual parts

and classify them. In this process Natural Language

Processing (NLP) comes in hand. Alan Turing back

in 1950 was the first to conceive the idea that

determining or not whether a computer is truly

intelligent involves the generation of natural

language as criterion of intelligence. Since then,

multiple efforts were made to create chatbots or

other conversational agents that can interact with the

content in the same way that a person does. Lo et al.

(2017) performed an analysis on various

implementations to clarify how far we have come

today and the potentials that lie ahead. Most of those

implementations are naturally based on the English

language. Fahad el al. (2018) discuss the techniques

used today using neural networks as a pillar for

multi document summarization, spell checking,

speech recognition etc.

The generation of natural language, which

follows initial text processing, is the process in

which an artefact or model is presented in text form

as output. McBurney et al. (2016) suggest a five-step

procedure in order to create a final text that can

describe accurately a block of code and compare the

results with the respective human generated

descriptions. At first, the content that will be used is

selected, which is a very crucial step that defines the

quality of the result. After the content filtering

comes the structuring, in which the sequence of the

content is defined. The third step is the

lexicalization, where more suitable words are

selected when necessary. After that comes

aggregation of similar phrases and sentences in order

to remove any duplicate content. The final step is the

realization, where the content to be exported is

created taking into consideration the respective

grammar rules. Since this is a standalone approach

working automatically, it is effective to any input

given in any language.

For the BPMN 2.0 specification, Geiger et al

(2016) performed an analysis of the evolution of the

standard, while Falcone et al. (2017) focus on the

potential of the model that originates from its

appealing graphical presentation and attempt to

integrate it with other modelling and simulation

systems.

3. BACKGROUND

3.1 BPMN

An example of a simplified business process is

depicted in Figure 1 where a subset of the BPMN

elements are demonstrated. The diagram models a

process that gets triggered by a message which

denotes that a working group is active. Next a

scheduled activity triggers a repeating set of tasks

every Friday at 6 PM: First a system task checks the

status of the working group. Then a decision node

determines the execution path depending on the

result of whether the working group is active or not.

It ‘active=true’, the execution continues to the task

that sends a current issue list and then it goes back to

waiting mode until the next Friday @ 6 PM.

Otherwise the process terminates.

Figure 1 Example BPMN process

Both system tasks in this process (i.e. checking

the working group’s status and sending the current

issue list) could be easily carried out by two

respective Web Services that can be triggered

through special configuration during the creation of

the tasks.

3.2 Text Summarization
Text summarization refers to any automated process

during which a program parses a set of sentences

and generates a meaningful summary. The main goal

of every summarization approach is to produce a

precise and concise summary that reflects the basic

context of the initial document and does not lack

vital information, neither includes unnecessary or

irrelevant details (Figure 2). Such approaches have

been extensively used in automatic text

classification, news article summarization and

automatic title production.

As a technical problem, automatic summarization

forms a challenging endeavour because unlike

humans who can scan through an article and quickly

grasp the context and the basic parts of the topic,

machine algorithms must overcome several non-

trivial problems for capturing the essence of a

document.

Figure 2 Text Summarization

Three approaches are mainly used for automatic text

summarization (Widyassari et al., 2020).

• Extraction Based summarization, where content

only from the original document is being used. An

initial evaluation pass determines the parts that

should be kept and afterwards these parts are

merged for the final summary.

• Abstraction Based summarization, which attempts

to mimic the human approach. Initially, Natural

Language Understanding techniques are being

used for identifying the meaning of the document

and afterwards the final summary is produced by

rephrasing versions of the basic parts.

• Aided summarization is a semi-automatic

approach which demands intervention by a human

who will pick the text parts that will form the final

summary, as well as the method that this should

be performed. This approach is used in occasions

where high accuracy is needed.

The first one, extraction-based approach is the one

that initially gained high popularity due to its

simplicity and the abundance of available

information. However, with the improvements in AI

and computing power a huge part of the

implementations has been move to the abstraction-

based approach (Widyassari et al., 2020), which can

lead to more meaningful summaries.

4. TOOL IMPLEMENTATION

The proposed tool forms part of a broader toolset

which aims at semi-automatic service discovery and

composition by using service descriptions that assist

users in selecting the service that suits their needs in

the most effective way. To this end, descriptions of

available service flows should automatically be

extracted by parsing BPMN diagrams. The

summative descriptions can be used as short textual

service documentation about the purpose and the

mechanics of each service composition. This process

produces a documented registry containing all

services/workflows that can be identified and reused.

The selection process takes place in two steps.

Initially users defined a set of keyword-based

criteria for a desired service (service composition)

and the system responds to this search by returning a

list of compositions that are the best possible fit the

given criteria. In the second step users read through

returned results and select the one that is the most

suitable to their demands.

The description of each service composition is

obtained by analysing the internal structure, the

underlying flow with all possible execution paths

and the naming of all BPMN elements (nodes). The

documentation is created by parsing the BPMN

representation files (XML structure) and yields a

textual description output using Natural Language

Processing and Natural Language Generation

techniques.

4.1 System Architecture

In this chapter a detailed analysis of all system

components is presented along with a description of

the steps that produce the service documentation.

The tool accepts one or more BPMN files as

input, processes them and outputs the produced

documentation in the form of text files in English

language (Figure 3). It becomes evident that for the

tool to operate correctly, the system should process

only BPMN processes described in English.

Figure 3 General analysis concept

We opted for the Web as our deployment

platform to provide a multi-channel API that can be

invoked both by human users as well as from third-

party web services as shown in Figure 4. The

proposed tool is available both through a headless

API and in the form of a human reachable Website.

Figure 4 Application is available through both as a

headless API and as human reachable Website.

The backend has been developed using the Java

Spring Boot framework (Spring Boot, 2021) and the

public interface is exposed through a REST API.

Figure 5 Internal application Architecture

The internal structure of the backend module is

depicted in Figure 5. The Controller module acts as

the gateway of the system as it handles external

requests, performs an initial input validation, and

returns responses to clients.

The Service component is responsible for

carrying out the actual business logic for the request.

It contains the source code that analyses a business

process and produces its documentation. Internally it

invokes the BPMN parser, which goes through all

XML nodes in the underlying XML file, models

each node as a Java Object, invokes the Natural

Language Processing Subsystem to semantically

analyse the retrieved information and finally

generates output with the Natural Language

Generator. More details about the core functionality

of extracting a textual summary are provided in the

next subsection.

4.2 Analysis Engine

In this section a more in-depth analysis about the

automatic business process documentation engine is

presented. The overall flow which comprises three

sequential phases is depicted in Figure 6. Initially

the process is being parsed for the determination of

all nodes in the workflow. Then each node is visited

and documented, starting from the first node of the

process, the Start Event. Finally, all results are

collected and formatted to formulate the final

description.

Figure 6 Detailed analysis of processing flow

Phase A - BPMN parsing: This phase starts from

the cleaning task which removes redundant or

unnecessary parts of the process that would

introduce noise to the NLP algorithms later. The

basic part of this phase is the modelling of BPMN

nodes into Java Objects and the identification of

connections among them. This task ensures the

validity of the given process and facilitates the

understanding of the process flow.

Phase B – Documentation Generation: This phase

accepts the previously created objects with their

connections and creates a description for each one of

them. These descriptions are the parts that will

comprise the final documentation. The core

algorithm contains a recursive procedure which

visits all elements in specific order beginning from

the Start Event of the process.

Phase C – Response Preparation: After visiting all

nodes, all parts are aggregated to give the final

result. In the occurrence of back cycles in the flow,

special anchors in the form of markers are inserted

to avoid redundant text duplication. A second

optimization that is applied in this step is the

removal of duplicated phrases or sentences. Finally,

the complete process documentation is returned.

4.2.1 Documentation Process

The description of a process is created from the

concatenation of sentences produced from individual

parts. Apart from specific descriptions for each part

of the process, a general introductory sentence

offering a general overview of the process context, is

inserted at the begging of the documentation.

For the general description of the process

structure, the analysis engine searches for a set of

specific characteristics which map to adjectives that

are composed to form the desired phrase. Table 1

presents the characteristics along with a short

description.

Table 1 Process characteristics

Adjective Description

Scheduled Process that contains a

timer event that controls

the firing time and date

Automatic No human interaction

involved

Single approval One step of approval only

2-level approval Two approval steps

3-level approval Three approval steps

Multiple-level approval More than three approval

steps

Short (single-task) Process contains only one

task

Short (2-tasks) Process contains 2 tasks

Short (3-tasks) Process contains 3 tasks

Flat (no branching) Process does not contain a

decision gateway

Multi branched Contains one or more

decision gateways.

Alternative ending Contains multiple ending

nodes

Repetitive A cyclic flow exists

The general description contains also a phrase

describing the process type which is deducted from

the analysis of the Start Node and the BPMN file

itself. Initially the algorithm attempts the retrieval of

the description of the Start Node, however if

description does not exist or is not usable (no noun),

the algorithm utilizes the name of the BPMN file

that contains the process. The reason for selecting

these 2 elements is because BPMN process

developers describe them in a way that differentiates

one process from the others.

5. USE CASES AND

EVALUATION

This section presents several use cases with

results of the application of the proposed approach

on synthetic examples. Next the results from the

empirical evaluation of the results are presented. To

validate the quality of the extracted summaries we

resorted to industry professionals having experience

in creating/understanding process workflows as part

of their job.

5.1 Use cases

Figure 7 depicts a simple book reservation process

with one human task and one system/notification

task.

Figure 7 Simple book reservation use case

The automatic documentation of the process is as

follows:

This is a single approval, short (2-task),
flat process about book reservation.
A user decides about the book selection. A
send task is used to notify user.
Then the process ends.

Bold highlighted text in italics designates the

general description of the process from which we

can deduct that a user task exists (this enables the

characterization of the process as one with “approval

step”), that is a flat process (without alternative

paths) and that it contains two individual tasks and is

about a book reservation. Next, the process steps are

described in chronological order described in clear

text with zero formatting as it is deduced from the

order of nodes on the directed graph. Underlined

phrases indicate the description about the process

terminating node.

Figure 8 Example Business Process with decision

branching

An example of a business process which

contains a decision node, which leads to two

branches is depicted in Figure 8. After book

selection, an availability check takes place and if the

book is available, the process notifies the user,

otherwise it immediately terminates.

The produced description follows. Note that the

general description here lacks the characterization

“flat” due to the branch existence.

This is a single approval, short (2-task)
process about book reservation.
A user decides about the book selection. A
decision is taken depending if reserved.

If available: A send task is used to
notify user. Then the process ends.

If unavailable: Then the process ends.

We proceed with a few more complicated

examples to highlight the strengths and weakness of
the proposed approach.

Figure 9 Process example with two decision branches

Figure 9 presents a business process with two

decision gateways, which create three decision

branches. The produced description is as follows:

This is a single approval, short (3-task),
alternate ending (3-ways) process about
book reservation.
A user decides about the book selection. A
decision is taken depending if reserved.

If available: A send task is used to
notify user. Then the process ends.

If unavailable: A decision is taken
depending if reserved in branch library.

If available in branch library: A send
task is used to notify user. Then the
process ends.

If unavailable in branch library: Then
the process ends.

The process in Figure 10 contains an

intermediate throw signal event which means that

when this nodes is executed, a special signal is

emitted to notify other interested (subscribed)

processes.

Figure 10 Process with an intermediate Catch Event

The automatic description for the process with

intermediate signal throw as shown in Figure 10 is

as follows:
This is a automatic (not involving any

human task), short (2-task), flat process
about book return.
A method is called to set book status. The
process broadcasts a signal. A manual task
is used to update book position.
Then the process ends.

The process in Figure 11 introduces the concept

of End Message. This is a signal with a message

payload that is emitted at the end of the process to

notify any other interested processes (Message Start

events or intermediate message-catch events). The

same approach is being followed for all signal types

(Message, Error, Cancel, Link etc).

 The automatically generated description

follows.

Figure 11 Example Process with End Message Event

This is a automatic (not involving any

human task), short (2-task), flat process
about book return.
A method is called to set book status. A
manual task is used to update book
position.

The process concludes messaging a
participant.

Next, in Figure 12 a special process with a timer

controlled segment is depicted. A timer event is a

special type of node on which the execution flow

blocks until the timer expression that is declared

during node creation is fulfilled. The automatically

generated description follows.

Figure 12 Example process with Timer Event

This is a scheduled, automatic (not
involving any human task), short (2-task),
repetitive process about book statuses.
[1] A decision is taken depending if books
exist.

If true: A daily timer is used to
repeat the following process. A method is
called to get books. A method is called to
set statuses. The same flow is repeated
[1].

If false: Then the process ends.

As it is readily observed, special anchors have

been used for the correct description of the flow

circle in order to avoid redundant phrase repetitions.

Figure 13 depicts a process with multiple levels

of approval and multiple endings. The corresponding

automatic documentation follows.

Figure 13 Example process with multiple approval levels

and multiple endings

This is an automatic (not involving any
human task), short (3-task), alternate
ending (4-ways) process about book
existence.
A method is called to check book.
A decision is taken depending if exists.

If yes: Then the process ends.
If no: A method is called to check

book.
A decision is taken depending if exists.

If yes: Then the process ends.
If no: A method is called to check

book.
A decision is taken depending if exists.

If yes: Then the process ends.
If no: Then the process ends.

5.2 Evaluation

To evaluate the effectiveness of the proposed

methodology in capturing the essence of the actual

business process through the extracted summary, an

online questionnaire-based study was conducted.

The participants were nine industry professionals, all

of them highly skilled on BPMN process creation

and understanding.

Each participant was presented with 6 processes

along with the corresponding automatically

generated documentation and was asked to evaluate

the extent to which the documentation captured the

actual process and is meaningful. The responses

were provided in Likert scale (Joshi et al., 2015) as

depicted in Figure 14.

Figure 14 Indicative evaluation question

The responses indicate a generally positive

opinion about the extracted summaries. A pie chart

with an overview of the evaluation results is

presented in Figure 15. It should be noted that none

of the participants voted with a value equal to 1. The

majority of evaluations correspond to values 4 and 5

(reaching a total 80%), highlighting the

expressiveness of the approach, at least for the used

case studies.

Figure 15 Distribution of evaluation responses

The next section presents separate results for

each case along with the distribution of the

evaluations received, depicted as a bar chart. It is

reasonable to expect variations in the user

acceptance of the summaries, as some processes are

more complex than others. The results confirm this

hypothesis, since some of the most complex

scenarios, such as case 6 (Fig. 21) and case 4 (Fig.

19) received fewer ‘5’ scores.

Figure 16 Evaluation case 1

Figure 17 Evaluation case 2

Figure 18 Evaluation case 3

Figure 19 Evaluation case 4

Figure 20 Evaluation case 5

The evaluation results from this pilot evaluation

on the 6 presented cases are positive and

demonstrate the potential of the approach. Extracting

a meaningful summary becomes more challenging

for processes having multiple paths and more nodes.

A possible explanation of this phenomenon might be

the fact that longer processes produce longer

documentation segments which inevitably are less

cohesive and more difficult to express in natural

language (even if a human attempts to extract a

summary for a highly complex workflow the

resulting text would seem less ‘natural’). Through

the free text responses that were allowed, the

participants identified syntactic errors that should be

avoided.

We remind that the goal of extracting a summary

for a given workflow is not only the ‘labeling’ of a

process with text but to enable the searching for

similar workflows through similarity of their

corresponding description. While this experiment is

planned as future work we believe that the extracted

summaries capture both key aspects of the process

(such as decision nodes and timed events) and all

necessary terms that characterize nodes. Thus, we

are optimistic that performing similarity checks

between the textual summary of BPMN process will

allow the efficient identification of ‘similar’

workflows.

Figure 21 Evaluation case 6

6. LIMITATIONS AND

THREATS TO VALIDITY

The proposed approach and accompanying tool
suffers from specific limitations which can be
addressed by more advanced NLP techniques. First
of all, the tool cannot parse workflows containing
descriptions in languages other than English, but if
such a need exists, the approach can be adapted
accordingly. The tool will also yield inaccurate
summaries in case of missing verbs in BMPN
elements or for structures which exhibit substantial
complexity (e.g. in the case of tens of paths between
the start and end node). While there is no trivial way
to address such issues, human intervention to
abstract entire blocks of BPMN elements by tagging
them with an appropriate high-level description,
might be promising in this direction.

The performed study to evaluate the
effectiveness of the approach and tool is also subject
to validity threats. The number of employed
evaluation cases in limited, both in number and in
terms of the underlying domain. As a result, any

claims about the potential of the approach are
subject to external validity threats and the results
cannot be generalized to other domains.
Furthermore, we acknowledge that using a simple
rating to capture the correctness, meaningfulness and
attractiveness of the extracted summary might be
insufficient to assess the pros and cons of the
approach. The relevant construct validity threat can
be addressed by more systematic and larger-scale
validations in the future. The low number of
participants did not allow any systematic statistical
analysis (e.g. to investigate inter-rater agreement) of
the findings. We plan to advance the statistical
conclusion validity during the case study on the
ability of using summaries to identify similar
processes.

7. CONCLUSIONS

Service-based software systems have become

mainstream in various domains as the benefits of

using and composing individual services towards

reduced development time, better scalability and

easier maintainability are well acknowledged and

documented. Modeling real business processes as

BPMN workflows where individual nodes

correspond to invoked services has great potential to

lower the entry barriers to system development.

However, findings workflows which are similar to

the targeted one, so as to reuse previous services is

challenging.

To address this problem, as part of the

SmartCLIDE H2020 project, we have developed an

approach and accompanying tool that automatically

extracts summaries from a BPMN process. By

providing as input the process file a textual summary

is extracting leveraging NLP techniques. A pilot

evaluation with 9 industry professionals revealed a

positive reception of the generated summaries. As a

next step, we plan to evaluate the efficacy of textual

summaries as a means for finding similar

workflows.

ACKNOWLEDGEMENTS

Work reported in this paper has received funding from the

European Union’s Horizon 2020 research and innovation

programme under grant agreement No 871177 (project:

SmartCLIDE).

REFERENCES

Fahad, S. A., & Yahya, A. E. (2018). Inflectional
Review of Deep Learning on Natural Language
Processing. 2018 International Conference on Smart
Computing and Electronic Enterprise (ICSCEE).
https://doi.org/10.1109/ICSCEE.2018.8538416

Falcone, A., Garro, A., D’Ambrogio, A., &
Giglio, A. (2017). Engineering systems by
combining BPMN and HLA-based distributed
simulation. 2017 IEEE International Systems
Engineering Symposium (ISSE), 1–6.
https://doi.org/10.1109/SysEng.2017.8088302

Geiger, M., Harrer, S., Lenhard, J., & Wirtz, G.
(2016). On the Evolution of BPMN 2.0 Support and
Implementation. 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), 101–110.
https://doi.org/10.1109/SOSE.2016.39

Joshi, A., Kale, S., Chandel, S., & Pal, D. K.
(2015). Likert scale: Explored and explained. British
Journal of Applied Science & Technology, 7(4), 396.

McBurney, P. W., & McMillan, C. (2016).
Automatic Source Code Summarization of Context
for Java Methods. IEEE Transactions on Software
Engineering, 42(2), 103–119.
https://doi.org/10.1109/TSE.2015.2465386

Messina, A., Rizzo, R., Storniolo, P., & Urso, A.
(2016, June 26). A Simplified Database Pattern for
the Microservice Architecture.
https://doi.org/10.13140/RG.2.1.3529.3681

OMG. (2007). BPMN Specification—Business
Process Model and Notation.
https://www.bpmn.org/

Richardson, L., & Ruby, S. (2007). RESTful Web
Services (1st ed.). O’Reilly Media.

Spring Boot. (2021).
https://spring.io/projects/spring-boot

Widyassari, A. P., Rustad, S., Shidik, G. F.,
Noersasongko, E., Syukur, A., Affandy, A., &
Setiadi, D. (2020). Review of automatic text
summarization techniques & methods.
https://doi.org/10.1016/j.jksuci.2020.05.006

Wu, Z., Deng, S., & Wu, J. (2015). Chapter 7—
Service Composition. In Z. Wu, S. Deng, & J. Wu
(Eds.), Service Computing (pp. 177–227). Academic
Press. https://doi.org/10.1016/B978-0-12-802330-
3.00007-2

