
Implementing Game Mechanics with GoF Design Patterns

Xeni-Christina Kounoukla1, Apostolos Ampatzoglou2, Konstantinos Anagnostopoulos1

1 Department of Computer Science, Mediterranean College, Thessaloniki, Greece
2 Department of Mathematics and Computer Science, University of Groningen, Groningen, Netherlands

x.kounoukla@mc-class.gr, a.ampatzoglou@rug.nl, kanagnostopoulos@medcollege.edu.gr

ABSTRACT

Implementing game mechanics (i.e., game rules and logic) inher-

ently involves high volumes of required complexity, which in turn

leads to the introduction of accidental complexity (e.g., long meth-

ods, code repetition, etc.). Thus, usually games suffer from poor

quality, i.e., attributes such as maintainability and flexibility are

weakened. A possible solution for this shortcoming is the reuse of

well-known software engineering practices, such as GoF patterns.

GoF are not the only patterns that are applicable in game develop-

ment: game mechanics represent recurring problems in game de-

sign and accompanying solutions. However, these patterns are ra-

ther abstract and no guidance on their implementation is provided.

The aim of this study is to introduce basic instantiations of game

mechanics with GoF patterns, which can potentially increase their

usability in practice. To this end, nine mappings were identified and

a case study on OSS games was performed to explore the applica-

bility of the approach. Combining these two types of patterns is ex-

pected to provide various benefits: (a) the game mechanics will be

accompanied with sample implementations that can be reused, to

act as a starting point for source code development; (b) these im-

plementations will obey to good design principles—therefore their

maintainability will be safeguarded; and (c) the fact that game me-

chanics are recurring, guarantees the applicability of the proposed

implementations in various games.

Categories and Subject Descriptors

D.2.10 [Software Design]: Methodologies

D.2.11 [Software Engineering]: Software Architectures

Keywords

Game development; design patterns; game mechanics; reuse

1. INTRODUCTION
Developing games is substantially different from classical software

engineering (SE), in the sense that in most of the cases, games have

a limited lifecycle due to their shrunk product time to market. As

a result, many games suffer from poor design and weakened soft-

ware quality attributes (e.g., maintainability) [1]. Therefore, the

need for software engineering methodologies for game develop-

ment has been steadily growing over the last years and has evolved

into a field of great interest [1]. A software engineering technique

that has been validated as valuable in game development is design

patterns. In the literature, the term pattern is used to characterize

any recurring solution to a common problem. In the context of

game development, patterns appear in two major forms: (a) GoF

(Gang of Four) patterns, which are introduced at the detailed-de-

sign and implementation phase to solve common object-oriented

design issues [6], and (b) game design patterns (also known as

game mechanics), which correspond to reusable parts of game logic

[5]. Each one of these two types of patterns introduces different

benefits, and is useful in the game design and implementation. On

the one hand, GoF patterns are the most-known set of patterns. The

application of GoF patterns has proven to be beneficial concerning

design-time quality attributes [2]. On the other hand, game me-

chanics [5] constitute a collection of design choices available for a

variety of games. These choices can correspond to recurring parts

of gameplay, which is undoubtedly the most essential part of game

design. However, they are solutions described at a higher level;

thus, there is a lack of guidance on how to implement them.

2. METHODOLOGY
This study aims at combining the aforementioned types of patterns,

by introducing basic instantiations of game mechanics through

GoF patterns. The applicability of the approach is investigated

through a proof-of-concept approach that aims at identifying exist-

ing game mechanics instances that are implemented with GoF pat-

terns in OSS games. To investigate the opportunities of implement-

ing game mechanics with GoF patterns, we have performed an ex-

ploratory study on ten OSS games. The goal of this study is to an-

alyze GoF patterns instances for the purpose of characterization

with respect to the implementation of game mechanics in the con-

text of OSS games. To achieve this goal, we have set the following

sub-objectives: (a) define a list of game mechanics that are candi-

dates for implementation with GoF patterns, (b) explore various

GoF patterns so as to identify a list of candidate implementations

for each game design pattern, (c) provide exemplar mappings be-

tween game and GoF design patterns, and (d) perform an explora-

tory empirical study on OSS games as a proof-of-concept to iden-

tify real-world cases, when such mappings occur. To this end, two

RQs have been formulated:

RQ1: What are the possible mappings between game mechanics

and GoF design patterns?

To answer RQ1, we accomplished sub-objectives (a) to (c), by pro-

posing exemplar mappings between game and GoF patterns. For

that, we first defined a list of game mechanics that are candidates

for implementation with GoF patterns. Secondly, we explored GoF

patterns to identify a list of candidate implementations for each

game mechanic. Finally, we created exemplar class diagrams of the

identified mappings between GoF and game mechanics patterns.

The method that was used for answering this question was an in-

formal literature review on various sources—ranging from aca-

demic studies to grey literature (websites, blogs, etc.).

RQ2: Are these mappings occurring in practice?

To gather data for answering RQ2 we decided to use a software en-

gineering repository, named Percerons, which documents design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org.

PCI '16, November 10-12, 2016, Patras, Greece

© 2016 ACM. ISBN 978-1-4503-4789-1/16/11…$15.00
DOI: http://dx.doi.org/10.1145/3003733.3003779

pattern occurrences [4]. From the repository we selected ten ran-

dom games (in which we expected that the explored game mechan-

ics could be implemented—i.e., games with similar purposes with

those explained in Section 3), and catalogued all GoF pattern oc-

currences. These occurrences have been manually investigated to

explore if the GoF patterns are implementing a game mechanic. We

note that no formal case study processes have been set, since the

goal of this empirical study is purely exploratory.

3. RESULTS

3.1 Game Mechanics with GoF Patterns

Turn based Games with Template Method. The intent of the Tem-

plate Method pattern is to define the skeleton of an algorithm in a

method. Some steps are deferred to subclasses. The pattern lets sub-

classes redefine certain steps of an algorithm without affecting the

algorithm's structure [6]. Turn-based Games is a game mechanic

that is applicable to games in which the players take turns to make

their move [5]. The class diagram created for this mapping consists

of an abstract Game class whose member function gameloop plays

the role of the template method and defines the structure of the al-

gorithm that implements the game loop. In the example of Figure

1, Monopoly, GameOfLife, and Chess classes extend the abstract

class Game and reflect different turn-based games. Each one of

them carries different implementations for initializeGame,

nextMove, endOfGame, and changeTurn operations, according to

the different logic of each turn-based game. This pattern facilitates

the easy addition of new types of turn-based games (to the game

engine that creates them) that will reuse the existing infrastructure

for implementing their game loop.

Figure 1 - Template Method / Turn-based Games

Agents with Strategy. The intent of the Strategy pattern is to define

a family of algorithms and encapsulate each one of them, making

them interchangeable within the family. Strategy enables an algo-

rithm's behavior to be chosen at run-time [6]. Agents are game en-

tities that simulate players. In other words, Agents have the role of

players but their behavior is controlled by the game system. Most

of the times, artificial intelligence algorithms implement the behav-

ior of the Agents game mechanics pattern [5].

Figure 2 - Strategy / Agents

The class diagram of Figure 2 was created to reflect the mapping of

these two patterns. The example consists of the abstract class

Strategy that is responsible for the behavior of an AIChess-

Player of the chess game. Its concrete subclasses define different

implementations of the AI algorithm (subclasses: Algorithm1,

etc.), which decides the next move of the player depending on the

game level. The class that plays the Context role in the GoF pattern

is the AIChessPlayer class and it represents the AI player (agent).

Using this structure, if along maintenance a new algorithm has to

be integrated in the game, it can be incorporated without altering

the code (conform to the Open-Closed Principle).

Power-Ups with Visitor. The Visitor pattern represents an opera-

tion that is performed on the attributes of an object. The pattern

allows the definition of a new operation without the need to change

the classes of the elements on which it operates [6]. The Power-Ups

game mechanic concerns game elements that give an advantage to

the player, when they are picked-up by him/her [5]. The class dia-

gram created to illustrate this mapping is presented in Figure 3 and

contains: the abstract PowerUpVisitor class and its concrete clas-

ses PowerUpSpeed and PowerUpVisibility. The PowerUp-

Speed class defines the implementation of the alterBehavior

method which changes the speed attribute of the character, whereas

the PowerUpVisibility class defines the implementation of the

alterBehavior function that changes the visibility attribute of the

character. The classes that play the Element role in the Visitor pat-

tern are the abstract class Character and its concrete class

Player. The player attributes speed and visibility change accord-

ingly to the type of power-up visitor. The structure of the visitor

allows the extension of the game with new power-up functions,

conforming to the Open-Closed Principle.

Figure 3 - Visitor / Power-Ups

Game World with Composite. The Composite pattern provides

composition of objects into tree structures to represent part-whole

hierarchies. The group of objects is treated as if it was a single in-

stance of an object and thus, the pattern lets clients treat composi-

tion of objects and individual objects uniformly [6]. The game me-

chanic Game World refers to the environment in which a gameplay

or at least a part of it takes place. Usually, in Game World, the spa-

tial relationships of game elements are important [5]. The class di-

agram of this mapping (see Figure 4) represents an example of the

game board design of the actual game Monopoly. Tile class plays

the role of the Composite in the pattern structure, while Avatar,

House and Hotel are the Leafs. A Tile object contains its text con-

tent which is an object of a class that does not participate in the

pattern, and thus, it is not depicted on the class diagram. Besides

that, it contains the avatar of the player or any hotels and houses the

player owns. In this sample implementation of the mapping, the

game board of Monopoly is considered to be the client that handles

uniformly all the game components such as tiles (composite ob-

ject), avatars, houses and hotels (individual objects). Along mainte-

nance, the addition of new components on the board is provided

through the mechanism of the pattern.

Figure 4 - Composite / Game World

Levels with State. The intent of the State pattern is to allow an ob-

ject to change its behavior every time it’s internal state changes.

When implementing this pattern, the object will appear to alter its

class. The State pattern's structure closely resembles the one of

Strategy pattern [6]. The Levels game mechanic refers to parts of

the game in which players have the ability to act until a certain goal

has been reached. Usually, the differences between Levels concern

the content, aesthetics, or both [5]. In the related class diagram (Fig-

ure 5), the class Game plays the context role of the State pattern

occurrence, and its altering state is the attribute called state, which

is of type Level. The latter abstract class represents the state (i.e.

the level of the game), while the derived concrete classes, Level1,

Level2, and Level3 define the different implementations of

gameFunction method. A Game object changes its behavior

(through the gameFunction operation) according to its state. Sim-

ilarly to Strategy, State allows the addition of extra levels along

maintenance without altering the code.

Figure 5 - State / Levels

Progress Indicator with Observer. The intent of the Observer pat-

tern is to establish a one-to-many dependency between objects. As

a result, when one object (subject) alters its state, all the subject's

dependents that are called observers, are notified and updated auto-

matically [6]. Progress Indicator refers to a game element that

gives the player information about his current progress [5].

Figure 6 - Observer / Progress indicator

The sample implementation of this mapping refers to a simple game

map, which consists of several checkpoints. The class that repre-

sents checkpoints (MapPoint) is not included in the class diagram

since it does not explicitly participate in the pattern. Whenever the

player reaches a checkpoint the progress indicator is updated ac-

cordingly, indicating the progress of the player's navigation through

the map of the game. The class Map plays the role of the subject

while class ProgressIndicator is its dependent concrete ob-

server. The structure of the pattern allows the easy extension of the

game over two different axes: (a) the addition of map types (sub-

classes in the Map hierarchy), and (b) the addition of new concrete

observers (i.e., indicators that are based on the state of the map).

Units with Abstract Factory. The Abstract Factory pattern pro-

vides an interface that is responsible for creating families (abstract

factories) of either related or dependent objects (products), without

explicitly specifying their concrete classes. The client creates a con-

crete implementation of the abstract factory and by using the ab-

stract class of each factory; it creates concrete objects [6]. The game

mechanic Units refers to groups of game elements that may have

different actions and attributes associated with them. They are un-

der the player's control and enable the player to perform actions that

influence the Game World [5]. In the implementation of this map-

ping (see Figure 7), Units are considered as game elements which

represent different types of soldiers (Infantry, Horseman, Bow-

man) that are equipped with a Shield, Bow, or Sword. Soldier-

Factory and EquipmentFactory are the concrete classes derived

from the abstract AbstractFactory class. They define implemen-

tations of operations getSoldier and getEquipment. The for-

mer class is responsible for the creation of a soldier, whereas the

latter for creating its equipment.

Figure 7 - Abstract Factory / Units

Movement with Strategy. The game mechanics pattern Movement

refers to the action of moving game elements in the game world. In

general, Movement allows players to move game elements into de-

sired positions and control or explore the game world [5].

Figure 8 - Strategy / Movement

In Figure 8, we considered a game where the elements Snake,

Character and Bird have the ability to move but their type of

Movement is different for each one of them. For instance, the snake

slithers, the character runs and the bird flies, and thus, three differ-

ent implementations of an algorithm that animates the action of

moving, are needed. These implementations are defined in the con-

crete strategy classes, Snake, Character, and Bird within the move

operations. The role of the context in this instance is played by the

Movement class. The extension axis of this pattern is the addition

of new moveable elements with their own animations.

Varied Gameplay with State. Varied Gameplay reflects the variety

in gameplay either in a single game session, or between different

game sessions. For the games to be interesting, a certain level of

Varied Gameplay should always be provided [5]. Due to the fact

that Varied Gameplay constitutes in practice a very large game me-

chanic pattern, a simple example was considered (see Figure 9): a

human player is able to play the game either against a human op-

ponent or an AI opponent. As a result, the class diagram consists of

the abstract class VariedGamePlay (state) and its concrete sub-

classes HumanVsHuman and HumanVsAI (concrete states). The

class Game is the context. In this case, apart from the obvious ex-

tension axis (addition of new types of games), the pattern provides

the opportunity for developers to group similar functions (other

than gamePlay) into meaningful clusters.

Figure 9 - State / Varied Gameplay

3.2 Occurrences in OSS Java Games
In this sub-section we answer RQ2, by investigating if we are able

to identify the aforementioned mappings in real games. The results

of the proof-of-concept empirical study, i.e., which of the afore-

mentioned mappings have been identified in the explored games,

are outlined in Table I. As presented in Table I, according to the

conducted empirical study, the frequency of occurrences of map-

pings between game mechanics and GoF design patterns is satis-

factory. From the nine mappings that we presented in Section 3.1,

four were identified in real pattern occurrences (approximately

44%). However, no mapping has been identified in more than one

game. Nevertheless, we need to acknowledge that towards the

aforementioned results a significant role has been played by: (a) the

abstractness of game mechanics descriptions, and (b) the lack of

any guidance on their implementation. Thus, we expect that any

mapping that has been identified was unintentional, or based on the

personal expertize of the open source game developer.

Table I - Occurrences of Mappings in OSS Java Games

Mappings #Occurrences OSS Game

State / Levels 0

State / Varied Gameplay 1 Infothello

Strategy / Agents 1 Infothello

Observer / Progress Indicator 0

Visitor / Power-Ups 0

Strategy / Movement 1 Arcadiban

Composite / Game World 0

Abstract factory / Units 1 DragonChess

Template Method / Turn-based Games 0

Therefore, the findings of this pilot case study have proven that the

mapping proposed in Section 3.1 can be identified in practice and

that there is a potential in promoting the systematic use of GoF pat-

terns for implementing game mechanics. In this direction of work,

we plan to replicate this study in the opposite way, i.e., to catalogue

all expected game mechanics in one OSS game, identify their im-

plementations, and check if it involves any pattern. Using such a

research setting would provide us with evidence (i.e., precision and

recall) on the existence of such mappings. Nevertheless, such a val-

idation was out of the scope of this manuscript.

4. DISCUSSION / CONCLUSIONS
In this section we discuss implications to researchers and practi-

tioners. On the one hand, game researchers’ body of knowledge on

patterns has been expanded. Furthermore, software engineering

researchers could further investigate these mappings, since they

provide potential solutions to the game design field. Nevertheless,

having a greater number of specific implementations on how to in-

stantiate a game design patterns will increase their usability in prac-

tice. Additionally, researchers could further investigate the varying

effect of GoF patterns when they are employed in the implementa-

tion of game mechanics, so as to reach more concrete conclusions

and bring further empirical evidence.

On the other hand, practitioners have been provided with standard-

ized solutions for frequent game design problems. In particular,

the mappings between game and GoF patterns, which were intro-

duced in this study, could serve as a guide for game designers and

developers not only during the design phase, but also on the imple-

mentation. Based on the qualities that the game engineers are most

interested in; developers can select whether to apply GoF design

patterns in the instantiation of game mechanics or opt for a person-

alised solution. It is clear that it is necessary for a designer to con-

sider several factors, such as the most desired quality attributes, and

perform a multi-criteria decision analysis. As a parallel benefit, the

level of games’ maintainability is expected to increase. This side-

benefit can be provisioned by the introduction of GoF design pat-

tern instances in the source code of games (based on the literature

GoF patterns have a proven positive effect on maintainability [3]).

The applicability of GoF patterns in game will be safeguarded by

the fact that they implement mechanics, which are by definition ap-

plicable in many games. In other words, GoF patterns are expected

to provide documented extension axes for the most usual changes

along games’ maintenance, since they differentiate between ver-

sions w.r.t. changes of the same type (e.g., animation, terrains etc.).

REFERENCES
[1] Ampatzoglou A. and Stamelos I., “Software engineering research

for computer games: A systematic review”, Information and Soft-

ware Technology, Elsevier, 52 (9), pp. 888-901, 2010.

[2] Ampatzoglou A., Charalampidou S. and Stamelos I., “Research

state of the art on GoF design patterns: A mapping study”, Journal

of Systems and Software, Elsevier, 86 (7), 2013.

[3] Ampatzoglou A., Chatzigeorgiou A., Charalampidou S., and

Avgeriou P., “The Effect of GoF Design Patterns on Stability: A

Case Study”, Transactions on Software Engineering, IEEE, 41 (8),

pp. 781-802, 2015.

[4] Ampatzoglou A., Michou O., and Stamelos I., “Building and min-

ing a repository of design pattern instances: Practical and research

benefits”, Entertainment Computing, Elsevier, 4 (2), 2013.

[5] Bjork S. and Holopainen J., “Patterns in game design”, Charles

River Media, 2005.

[6] Gamma E., Helms R., Johnson R., and Vlissides J., “Design pat-

terns: Elements of reusable object-oriented software”, Addison-

Wesley, 1995.

