
 JCaliper: Search-Based Technical Debt Management

Panagiotis Kouros, Theodore Chaikalis, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou,

Apostolos Ampatzoglou, Theodoros Amanatidis

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

pkouros@uom.edu.gr, chaikalis@uom.gr, earvanitoy@gmail.com, achat@uom.gr, apostolos.ampatzoglou@gmail.com, tamanatidis@uom.edu.gr

ABSTRACT

Technical Debt (TD) reflects problems in software maintainabil-

ity along evolution. TD principal is defined as the effort required

for refactoring an existing system to an ideal one (a.k.a. optimal)

that suffers from no maintainability problems. One of the open

problems in the TD community is that ideal versions of systems

do not exist, and there are no methods in the literature for ap-

proaching them, even theoretically. To alleviate this problem, in

this paper we propose an efficient TD management strategy, by

applying Search-Based Software Engineering techniques. In par-

ticular, we focus on one specific aspect of TD, namely inefficient

software modularity, by properly assigning behavior and state to

classes through search space exploration. At the same time, in the

context of TD, we: (a) investigate the use of local search algo-

rithms to obtain a near-optimum solution and propose TD repay-

ment actions (i.e., refactorings), and (b) calculate the distance of a

design to the corresponding optimal (i.e., a proxy of TD princi-

pal). The approach has been implemented in the JCaliper Eclipse

plugin enabling a case study, which validates the approach and

contrasts it to existing measure of software evolution.

CCS CONCEPTS

Software and its engineering → Software creation and man-

agement → {Software development techniques → Object-

oriented development, Software verification and validation →

Empirical software validation}

KEYWORDS

Object-oriented Design, Refactoring, Software Quality

ACM Reference format:

P. Kouros, T. Chaikalis, E. M. Arvanitou, A. Chatzigeorgiou, A. Am-

patzoglou, and T. Amanatidis, “JCaliper: Search-Based Technical Debt

Management”, In Proceedings of ACM SAC Conference, Limassol, Cy-

prus, April 8-12, 2019 (SAC’19), 10 pages.

1. INTRODUCTION
Software engineering textbooks consider evolution and mainte-

nance as a fundamental activity, caused by the need to consider

changing customer and market requirements [15]. Software evo-

lution and maintenance are hindered when the structural quality

of the system is compromised in favor of business benefits or run-

time qualities, collectively termed as Technical Debt (TD) [17].

The pillars of TD theory are two concepts borrowed from eco-

nomics: principal and interest. On the one hand, principal corre-

sponds to the effort that needs to be spent so as to refactor the

existing system to an optimal one with respect to structural quali-

ty and maintainability [3]. On the other hand, interest corresponds

to the additional costs that occur along maintenance, due to poor

software quality [2]. One of the main problems for calculating TD

principal is that identifying the optimal version of a system is a

task that is far from trivial, as it never exists in practice.

To approach this problem, from a theoretical perspective, in this

paper we model the quality properties that the development team

wants to improve in the form of a fitness function. The approach

then seeks to optimize the value of this function, as a typical

search space exploration problem, by applying software refactor-

ings1. To illustrate the approach we focus on one important type

of technical debt, namely architectural technical debt (ATD) [30].

One of the qualities that are compromised and cause ATD is

software modularity [20], [30]. According to van Vliet [32], mod-

ularity can be assessed by two basic properties, namely: coupling

and cohesion. Coupling and cohesion are closely related to the

proper allocation of behavior and state into system classes, in the

sense that an improper allocation would: (a) violate the single

responsibility principle—leading to low cohesion; and (b) in-

crease method invocations to access fields of other classes—

leading to high coupling. However, we need to note that the pro-

posed method is quality attribute and property agnostic, since it

could be easily applied to qualities other than modularity, and

properties other than coupling and cohesion.

Our approach aims at: (a) assessing TD principal (i.e., the dis-

tance between the current and optimal design), and (b) proposing

a TD repayment strategy (i.e., a sequence of refactorings) to reach

it. The distance quantifies the difference in the selected fitness

function and reflects the architectural quality of the examined

system. The distance also translates to a number of refactorings

required to convert the actual system to the corresponding opti-

mum one. This strategy is employed to assess the evolution of

entire projects by monitoring changes in the aforementioned dis-

tance for successive software versions. The proposed approach

1 The corresponding research field is collectively referred as Search-

Based Software Engineering (SBSE) [15].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SAC '19, April 8–12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5933-7/19/04…$15.00

https://doi.org/10.1145/3297280.3297448

mailto:Permissions@acm.org

has been implemented as an Eclipse plugin that is publicly availa-

ble. The plugin allows the selection of multiple versions of a pro-

ject and automatically applies the proposed analysis, for valida-

tion purposes.

The rest of the paper is organized as follows: In Section 2 we

discuss related work, and in Section 3 we present a motivating

example for justifying the need for proper allocation of behavior

and state into system classes. Section 4 presents the proposed

approach for extracting the optimum design, whereas Section 5

describes the accompanying tool. Section 6 outlines the case

study design, whose results are presented in Section 7, and dis-

cussed in Section 8. In Section 9 we present the threats to validity,

and we conclude the paper is Section 10.

2. RELATED WORK

In this section, we present works related to ours. In Section 2.1,

we present techniques that have been developed for managing

architectural technical debt, whereas in Section 2.2 we present

studies that focus on TD principal quantification. Finally, in Sec-

tion 2.3 we present the main contributions of this study.

2.1 Architectural TD Management
An approach for the identification and measurement of technical

debt in object-oriented systems has been proposed by Marinescu

[21]. The proposed method detects specific types of design flaws

through object-oriented metrics in four steps: (1) selection of

concerned design flaws, (2) definition of rules for detecting the

design flaws, (3) measurement of the negative impact of each

flaw instance, and, finally, (4) calculation of an overall score

based on all detected flaws, to indicate the design quality of a

system. The accuracy of the TD measurement in this approach

depends on the design flaw detection effectiveness.

An architecture-focused metric that quantifies Technical Debt has

been defined by Nord et al [24]. The value of this metric, calcu-

lated for each release, is the total cost of the implementation of

new architectural elements introduced in this release, and the

rework of pre-existing elements in previous releases.

Architectural rework is considered as the necessary adaptation

effort for the addition of new architectural elements to an existing

software system. The rework cost is calculated based on the anal-

ysis of the changing dependencies from existing adapted elements

to the new introduced elements. This metric can be used in the

calculation of the relative amount of ATD in different software

evolution paths, i.e., release plans. Given two release plans RP1

and RP2, that implement the same features and therefore they

generate the same amount of business value, the relative amount

of ATD is the difference between the values of metric calculated

on RP1 and RP2. The proposed metric can facilitate architecture

decision-making. However, a main limitation of this approach is

the accuracy of the estimation of implementing new features and

rework, especially the latter. Each software evolution path in-

volves several releases, which implies that the estimation of re-

work and new implementations of later releases are based on the

estimation of earlier releases. This may pose a threat to the accu-

racy of architectural technical debt estimation.

2.2 Assessment of TD Principal
The principal of technical debt is related to the effort and accom-

panying cost to eliminate the debt from a given system or artifact

according to Alves et al. [1]. Current software analysis tools offer

estimates of TD principal based on detectable violations. Accord-

ing to Curtis et al. [9], three parameters are required for such es-

timates, (1) the number of violations that should be fixed, (2) the

hours that each violation fix requires, and (3) the cost of labor.

The SQALE method proposed by Letouzey and Coq [19], intro-

duces the remediation index which is obtained from software

quality requirements. For a requirement stating that all files

should have at least 70% code coverage, the corresponding reme-

diation action is to write additional tests. A remediation function

maps effort to each action, for example, 20 minutes per uncovered

line of code. Finally, for each artifact, the remediation index relat-

ing to all the characteristics of the Quality Model is obtained by

adding all remediation indices linked to all quality requirements.

The resulting SQALE index is considered to represent the princi-

pal of the TD for the assessed source code.

2.3 Contributions
The main contributions of this work compared to the technical

debt state-of-research, are the following. First, this work is to the

best of our knowledge the first that discusses SBSE techniques

in the context of technical debt management. In addition to this,

the proposed search-based algorithms are performing substantial-

ly better compared to existing ones, providing the opportunity to

apply them in larger systems (our approach is converging for

systems of ~250 classes in ~20 minutes, whereas the best existing

approaches were able to optimize systems of ~40 classes in 12

hours [25]). Second, this is the first study that collectively pro-

vides an estimation of TD principal, based on structural charac-

teristics, and the repayment actions that need to be completed

before the optimal system is reached. Current techniques are

mostly based upon rule violations, and the proposed refactorings

are resolving these violations, not heavily relying on structural

aspects that hinder maintainability, such as coupling, cohesion,

and complexity [4].

3. MOTIVATING EXAMPLE

Software metrics have a long history in software engineering as a

means of assessing different aspects of software quality. Howev-

er, metrics are not reliable indicators of quality when comparing

different products or even different versions of the same system.

This can be better illustrated through an example, shown in Fig. 1,

depicting a sample design evolving over two versions. In the ini-

tial design of version-1, the Company class contains a method

accessing address related information, whereas employee address

information is also contained in the Employee class. In the refac-

tored design of version-2 address information is placed on a

separate class with the accompanying functionality, while dele-

gate methods have been left in the initial classes to keep the pub-

lic interface of the original classes intact.

The conventional application of software metrics would lead to

the conclusion that the system suffers from software ageing as

both examined metrics, namely Coupling (CBO) and Cohesion

(LCOM) [8] exhibit worse values in the second version after ag-

gregation at the system level. However, the system in the second

version adheres to basic principles in object-oriented design as

related data and functions have been grouped together.

Company
- name

- Street

- City

- Postal Code

+ addressToXML()

+ printEmployeeInfo()

Employee
- firstName

- lastName

- salary

- Street_Home

- City_Home

- PostalCode_Home

+ HomeAddressToXML()

+ printEmployeeData()

CBOSYSTEM: (1+0)/2 = 0.5

LCOMSYSTEM: (1+0)/2 = 0.5

Company
- name

+ addressToXML()

+ printEmployeeInfo()

Employee

- firstName

- lastName

- salary

+ HomeAddressToXML()

+ printEmployeeData()

CBOSYSTEM: (2+1+0)/3 = 1

LCOMSYSTEM: (1+1+0)/3 = 0.667

Address

- Street

- City

- Postal Code

+ addressToXML()

Version 1 Version 2

* addressToXML() accesses Street, City and PostalCode

 printEmployeeInfo() accesses all Employees’ data

 HomeAddressToXML() accesses Street_Home, City_Home and PostalCode_Home

 printEmployeeData() accesses all Employee’s data

Figure 1: Assessment of evolution by individual metrics

What is therefore required is a measure that assesses the quality

without being subject to this kind of problems. Metrics for which

quality cannot be directly deduced from their values but has to be

determined on the basis of subjective threshold values are not

ideal candidates. Quality can be objectively assessed by measures

that evaluate a design against the optimum design that could be

achieved for the particular context (i.e. functionality and data) or

in other words, against a design that would attain the optimum

value for selected metrics. In that way, one could decide whether

a particular metric value is ‘good’ or ‘bad’ based on the best val-

ue that this metric can attain for that particular system.

4. PROPOSED METHOD

In this section we describe the method that we propose for calcu-

lating the distance of a current OO design from an ideal one; and

the refactorings that need to be applied for reaching it. To de-

scribe the proposed approach in Section 4.1 we present the select-

ed way for representing the system, in Section 4.2 we present the

employed fitness function, whereas in Section 4.3 we present the

search-based algorithms that we have tried for optimization.

4.1 System Representation
The modular structure of any software system can be represented

as a set S composed of the constituent modules Μ1,Μ2,..., Μn

[13]. In the case of OO systems, modules correspond to the clas-

ses of the design. A significant portion of the design effort is de-

voted to the identification of the semantics of modules, which is

the distribution of responsibilities (state and behavior) among

system classes [7]. This constitutes an essential, nontrivial and

highly subjective part of the entire design process since it depends

heavily on human expertise and experience. The allocation of

methods and attributes in an object-oriented system determines a

number of qualitative properties such as the comprehensibility,

maintainability and reusability of the system and influences di-

rectly quantifiable properties such as coupling and cohesion. For

example, inappropriate placement of methods and attributes might

lead to the violation of several key principles such as Modularity,

Separation of Concerns [7], Single Responsibility Principle (SRP)

[22] and various associated design heuristics such as the minimi-

zation of collaborators and sent messages and the need to keep

related data and behavior in one place [26].

The primary goal of the proposed approach can be illustrated by

the following simplified example. Let us assume that a given

system consists of three classes A, B and C and six entities (at-

tributes and methods). We assume the current allocation of enti-

ties as shown in Fig. 2(a). Arrows indicate the attributes assessed

by each method, while classes and entities are numbered for easi-

er reference. As it can be observed, the current design suffers

from extreme coupling and low cohesion since each method ac-

cesses an attribute located in another class and none from the

class where it resides. Methods and attributes can be allocated to

the existing system classes in various ways, which for the case of

a system with x classes and n entities lead to an exploration space

of xn possible allocations. Each of these alternative allocations

yields a different design having a different measure of quality.

The problem is further complicated, since in order to achieve an

optimal design (e.g. in terms of coupling and cohesion), new clas-

ses might be required and old classes might have to be removed.

For this particular example, the design that minimizes coupling

and maximizes cohesion is the one shown in Fig. 2(b) where each

method is placed in the same class with the attribute that it ac-

cesses. In other words, the first goal is to address a search space

exploration problem in order to identify a solution for the design

that optimizes a selected fitness function. Once the optimal design

is found, the difference in the value of the fitness function be-

tween the current and the optimal design is an indicator of its

design quality or TD principal. Moreover, it becomes possible to

determine the number of refactorings that have to be made to the

current design in order to convert it to the optimal one.

C

- z

+ m3()

Class 2

4

5

A

- x

+ m1()

Class 0

0

1

B

- y

+ m2()

Class 1

2

3

C

- z

+ m2()

Class 2

4

3

A

- x

+ m3()

Class 0

0

5

B

- y

+ m1()

Class 1

2

1

(a) Current Design (b) Optimal Design

Figure 2: Illustrative Example

One intuitive approach that has been employed in the past [5] is to

represent the allocation of entities to classes by employing a

chromosome encoding. Such a chromosome has genes that corre-

spond to each entity and the value that each gene can take (al-

leles) specifies the class to which the corresponding entity is

placed. For example, the chromosomes corresponding to the cur-

rent and optimal solutions of Fig. 2 are shown in Fig. 3. Although

intuitive, the chromosome representation suffers from some limi-

tations which reduce the performance and quality of solutions.

The analysis of previous work reveals that the selection of the

representation model is of major importance [10], [26].

0

0

0

1

1

2

1

3

2

4

2

5entities

classes

0

0

1

1

1

2

2

3

2

4

0

5

(a) current design (b) optimal design

Figure 3: Chromosome Encodings

The proposed approach adopts a different encoding scheme in

order to reduce the size of exploration space: the employed repre-

sentation model for the solutions in the search space does not

simply function as a symbolic notation for modeling the solutions

during the search. It determines indirectly the most suitable data

structures to be used during the implementation and as a conse-

quence it affects drastically the efficiency as well as the quality of

the final solutions. When entities are allocated to the system clas-

ses, a partition of the set of entities is performed. Thus, for the

representation the symbolic notation for set partitions can be em-

ployed [16] according to which:

The partition P of a set S with cardinality m is a collection of n

subsets Si of S (mnniSSi = 1,..1,) such as:

1. No subset is empty:  niSi ,,2,1, 

2. The intersection of any two subsets is empty:

 njijiSS ji ,,2,1,,, =

3. The union of all subsets is the set S: SSSS n = 21

The use of multiple brackets in the notation can be avoided. For

example, the partitions of set {1, 2, 3} can be written as:

321 321 231 321 321

If entities are represented in this manner, each class corresponds

to a unique subset; thus, every design has a unique representation

(partition). Moreover, classes are directly identifiable without the

need to spend additional programming effort in mapping them to

integer values. The latter is of major importance since it allows

the reuse of already calculated values of the fitness function.

4.2 Fitness Function
As already mentioned, methods and attributes are the free varia-

bles which the designer has to allocate to the individual classes.

Due to the countless alternatives, it is important to be able to rea-

son about the quality of each solution. The software engineering

community has established various design principles that should

be followed [22] or design heuristics that should not be violated

[26] when taking design decisions. Many of these principles and

heuristics build upon the key concepts of coupling and cohesion

signifying their importance in assessing the design quality of a

system. Harman and Clark state that any software metric can be

employed to guide the search for an optimal design (‘metrics are

fitness functions too’ [15]). Indeed a number of previous works in

Search Based Software Engineering employed widely used met-

rics as fitness functions [29]. Some of the proposed metrics at-

tempt to derive 'wise' fitness functions which bring the optimum

design closer to the design perceived by designers as best [29].

Among common metrics, coupling is the most widely used one

that serves as a fitness function. However, coupling and cohesion

are strongly interrelated and there is often a tradeoff among them.

Thus, optimizing the one might deteriorate the other. If both con-

cepts could be quantified with the same terms and notation, it

would be possible to define a ratio of cohesion over coupling and

form a single function expressing both properties, which the de-

signer would seek to maximize. The rest of this section provides

an overview of the Entity Placement metric proposed in [31]

which serves perfectly the goal of single-objective optimization.

Measure of similarity among system entities. In an OO system,

methods can access other entities (attributes and methods) that

reside either in the class that they belong to (directly) or in other

system classes (through references). Conversely, attributes can be

accessed directly from methods of the class that they belong to

and also from methods of other classes that have reference to that

class. Each system entity e can be characterized by its entity set Se

which contains the attributes and methods that it accesses (in case

of a method) or the methods that it is accessed from (in case of an

attribute). For each class C it is possible to define its entity set

containing all attributes and methods that belong to class C.

The intuitive interpretation of grouping behavior with related data

implies that the similarity between an entity and a class should be

high when the number of common entities in their entity sets is

large. Thus, the similarity between any method or attribute and a

class can be obtained employing the Jaccard similarity coefficient

between the corresponding entity sets. For two sets A and B the

Jaccard similarity coefficient is defined as the cardinality of their

intersection divided by the cardinality of their union, while their

distance is complementary to the similarity and is obtained by

subtracting the Jaccard similarity from 1. In the context of our

problem, let e be an entity of the system, C a class of the system

and Sx the entity set of entity or class x. The distance between an

entity e and a class C can be defined as follows:

Definition 1a. If the entity e does not belong to the class C, the

distance is the Jaccard distance of their entity sets:

 
Ce

iC
Ce

Ce

i

eSwhere
SS

SS
Cecetandis



=



−= ,1),(

 (1)

Definition 1b. If the entity e belongs to the class C, e is not in-

cluded in the construction of SC:

 
eeCe

iC
Ce

Ce

ii

eSwhere
SS

SS
Cecetandis



=



−=

,

,1),(

 (2)

Global measure of entity placement. In a system adhering to the

principle of grouping behavior with related data, the distances of

the entities belonging to a class (inner entities) from the class

itself should be as small as possible (high cohesion). At the same

time the distances of the entities not belonging to a class (outer

entities) from that class should be as large as possible (low cou-

pling). This aspect of quality can be quantified by considering for

each class the ratio of average inner to average outer entity dis-

tances. For each class, the closer this ratio to zero is, the safer it

can be concluded that inner entities have correctly been placed

inside the class and outer entities to other classes. A formula that

provides the above information for a class C is given by [31]:

()

()

Centities

Cecetandis

Centities

Cecetandis

Dout

Din
ementEntityPlac

Ce

j

Ce

i

C

C
C

j

i




==








,

,

 (3)

e denotes an entity of the system,

DinC is the inner distance of a class C representing the average distance of

the class from all its internal entities, and

DoutC is the outer distance of a class C representing the average distance

of the class from all external entities.

The lower the value of this metric is, the better the placement of

entities. In a way, the numerator expresses interclass coupling

(which should be minimized) and the denominator expresses in-

tra-class cohesion (which should be maximized). Therefore, Enti-

ty Placement can perfectly serve as a fitness function for behavior

and state allocation. A global measure of how well entities have

been placed in classes can be obtained as follows:




=

i

i

C

C
i

System ementEntityPlac
entitiesall

Centities
ementEntityPlac

(4)

Entity Placement is an additively separable function since each

term depends only on one class. This feature facilitates its recal-

culation on system refactoring and makes it most appropriate to

be used as a fitness function.

4.3 Implemented Algorithms
Search-Based Software Engineering has exploited a large variety

of search algorithms with a particular preference on Genetic Al-

gorithms. Since we have used GAs in a previous work [5], we

now opted for the local search algorithms: (a) Hill Climbing [28],

(b) Simulated Annealing [28], and (c) Tabu Search [14], [28]. The

reason for opting for these rather old but very-well studied algo-

rithms is that they are sufficient for single-objective optimization,

whereas for multi-objective optimization newer algorithms such

as NSGA-II and MOEA/D should be investigated.

Any search algorithm has a number of parameters that govern its

operation and have a large impact on its performance. As a result,

systematic parameter tuning is required to maximize the quality

of solutions [3]. Since it is not possible to test the performance of

the selected algorithms for all possible parameter combinations,

we employed the Response Surface Methodology (RSM) [23] to

find the best tuning. Response Surface Methodology is a collec-

tion of statistical and mathematical techniques used in the crea-

tion of a functional relationship between a dependent variable y,

and one or more independent (input or process) variables

(x1,x2,..., xi). For every configuration we executed each algorithm

30 times and noted the average of the optimum solution [3]. After

the completion of data collection for all configurations we have

built second order interaction models by using the RSM package

of the R programming language. Table 2 presents the parameter

values that tune each algorithm to the optimum configuration, as

they result from the second order RSM model. We should notice

that Hill Climbing does not involve parameters that need configu-

ration and therefore has not been included in the RSM analysis.

Table 2: Parameter setup for the employed algorithms

 Parameters and selected configuration

Algorithm Acc. Ratio Cool. Rate Term. Criterion

Simulated Annealing 20% 40% 3

 Tabu Tenure Term. Criterion

Tabu Search 5 * sqrt(size) 3,000

Tabu Dynamic (1..5) * sqrt(size) 3,000

5. PROPOSED TOOL

The proposed approach has been implemented as an Eclipse

plugin named JCaliper. The plugin is capable of analyzing an

existing Java project, extracting the corresponding TD principal

and suggesting a feasible TD repayment strategy (i.e. a list of

refactoring steps). The current version of the tool does not pro-

ceed with the application of the proposed refactorings. The tool

and the corresponding source code are publicly available2.

All search algorithms have been implemented from scratch and

each one is available in the form of an API. Currently, the tool

offers the possibility to use Hill Climbing (Steepest-Ascent and

First-Choice variants), Simulated Annealing and Tabu Search

(with static and dynamic tenure). The tool employs Factory, Pro-

totype, Singleton, Bridge, Composite, Flyweight and Strategy

GoF design patterns [12] to increase the extensibility of the ap-

proach. JCaliper also examines the feasibility of entity move-

ments among classes. In other words, before a move is consid-

ered, the tool investigates whether the corresponding prerequisites

are satisfied. There are two types of restrictions: prohibited entity

moves and prohibited destinations. Each entity contains an attrib-

ute ‘movable’ which dictates whether the entity can be moved at

all. Prohibited destinations are represented as a set of ‘Forbidden

Classmates’ for each entity. The restrictions which are considered

in JCaliper are shown in Table 3.

Beyond these restrictions, JCaliper also treats some of the entities

as a single unit. For example, accessor methods (getters and set-

ters) are conceptually integrated with a corresponding attribute.

Such methods should not be separated from the field that they

access. In the implementation of JCaliper, attributes and the asso-

ciated accessor methods are treated as a single entity which can

be moved around the classes. The implementation is based on the

Composite design pattern [12] which enables the handling of leaf

entities as well as of composite entities in a uniform manner.

Table 3: Restrictions in Entity Movements

Compilation related

Method to be moved contains super method invocations immovable method

The target class for a entity move is an interface interfaces prohibited

Method to be moved is a constructor immovable method

Behavior related

Method to be moved is synchronized immovable method

The source class for a entity move is a superclass immovable entity

Method to be moved is abstract immovable method

Entity to be moved belongs to an abstract class immovable entity

The target class for an entity move is abstract classes prohibited

Quality related

The source class does not 1-to-1 relate to target class classes prohibited

Although so far only Move Method and Move Attribute refactor-

ings have been discussed, JCaliper can suggest also other types of

refactorings. For example, if methods and attributes are suggested

to be moved to a new (non-existing) class, an Extract Class refac-

toring is proposed. Similarly, if the search algorithm extracts a

solution where entities from several classes are placed in the same

partition leaving the original classes empty, an Inline Class refac-

toring is suggested. With respect to Inheritance, the current im-

plementation prohibits moves along a hierarchy. If this restriction

is relaxed, Pull Up and Push Down (method/field) refactorings

can be suggested as well.

2 http://se.uom.gr/index.php/projects/jcaliper/

6. CASE STUDY DESIGN

In this section, we present a case study design with two goals: (a)

evaluate the validity of the proposed method, by examining if its

application can lead to meaningful refactoring (i.e., TD repay-

ment) opportunities, and (b) investigate if the distance between a

given system and its optimum one (i.e., TD principal) can be ef-

fectively applied to assess its evolution. We acknowledge the fact

that TD is a far more multifaceted phenomenon than just coupling

and cohesion; this study serves as an illustration of the method.

We note that the proposed approach can be performed with any

fitness function that captures TD aspects, or can drive TD man-

agement in a more holistic way.

Regarding goal-a, we apply the proposed process in 6 OSS sys-

tems and calculate the benefit in terms of fitness function, using

all algorithms that we have implemented. Regarding goal-b, the

change of this distance over successive versions provides a meas-

ure of how well the design adheres to established principles. The

advantage of this approach lays in the fact that software ageing or

improvement is not determined based on metric thresholds, which

wouldn’t be fair for the evaluation of different versions with dif-

ferent characteristics, but in an objective and reliable manner. In

other words, for each version it is estimated where the design

‘could have been’ in the best case and the effort to move the cur-

rent design to the optimal. The study has been designed and re-

ported according to the guidelines of Runeson et al. [27].

6.1 Research Objectives and Research Questions
Given the aforementioned goals, we have set two research ques-

tions. The first is related to the efficiency of the used algorithms,

and the second with the presence of any trends in the evolution of

quality from that particular perspective. As part of this investiga-

tion, we check whether these trends (if any) are related to the

growth rate of the examined system, since maintaining a quality

level might depend on the maintenance effort. The corresponding

research questions are formulated as follows:

RQ1: Which of the algorithms available in the proposed ap-

proach is more efficient for TD repayment?

RQ2: Is there any trend in the evolution of quality expressed by

TD principal; and is this trend related to system growth?

6.2 Case and Units of Analysis
As subjects of our study we have used 6 OSS projects. The se-

lected projects have been chosen based on the following criteria:

(a) source code should be publicly available; (b) source code

should be written in Java since the developed Eclipse plugin ana-

lyzes currently Java code; (c) at least 10 versions of the projects

should be available; and (d) projects should have been used in the

context of software evolution analysis in other studies as well.

Information on the selected projects is outlined in Table 4.

Table 4: Selected projects for Software Evolution Analysis

Project Description # Versions

JEdit Programmer's text editor 21

JFlex Lexical analyzer generator for Java 14

JFreeChart Java chart library 31

JHotDraw Java GUI framework for Graphics 16

JUnit Framework for repeatable tests. 19

JDeodorant Code smell identification plugin 10

6.3 Data Collection
The analysis of successive versions employs two measures: (a)

the normalized Fitness Value Distance (D), and (b) the normal-

ized Number of Refactorings (NoR). The Fitness Value Distance

refers to the absolute difference between the values of fitness

function of version i and the corresponding optimum system:

opt
iii ffD −= (5)

where:

fi is the fitness function value for the system in version i

fi
opt is the fitness function value for the corresponding optimum

system in version i.

Since the values of this measure are not normalized, direct com-

parison among different versions would be misleading. Normali-

zation can be achieved as follows ensuring a range of [0..1]:

opt

i

i
i

f

D
D =ˆ (6)

The Number of Refactorings (NoRi) is the number of required

Move Method and Move Field refactoring applications [11] to

transform the system in version i to the corresponding optimum

system. This measure, although abstract, since the application of

refactoring needs to consider various conceptual parameters, is a

relative indicator of the amount of effort that needs to be spent on

perfecting each version. If optimization in terms of fitness func-

tion was the only maintenance goal, it can be considered as an

estimate of the technical debt present at each version. Since the

number of required refactorings is dependent on the system size,

to provide a level of normalization we calculate the normalized

NoR as follows:

NoRi =
NoRi

#entities
_ _______ _ (7)

6.4 Data Analysis
To study the aforementioned research questions, we performed

statistical analysis including Descriptive Statistics, Trend Test,

Slope Estimation and Correlation Analysis, as shown in Table 5.

Table 5: Data Analysis per Research Question

RQs Variables Analysis

RQ1 Distance Descriptive Statistics

RQ2

Growth Rate

iD̂

NoR

Trend Test

Slope estimation

Correlation Analysis

For answering RQ1, we are executing the method for each algo-

rithm, and capture the distance that each algorithm achieves (i.e.,

a proxy of TD principal). Given the fact that all algorithms start

from the same actual fitness function values, the distance is a

measure of the improvement that the application of the algorithm

has provided. For this analysis descriptive statistics are provided.

For answering RQ2, the goal is to examine if there is a trend in the

evolution of the two metrics that express quality and if so, to

quantify this trend in comparable numbers. To determine if a

trend is present in the evolution of a metric we employed linear

regression and the Mann – Kendall trend test. Linear regression is

considered a robust modeling tool. However, to consider the re-

sults of a trend test based on linear regression as valid, a number

of preconditions have to be satisfied, such as that no significant

outliers exist, observations be independent, homoscedasticity and

normal distribution of residuals. In case the assumptions do not

hold, a nonparametric test which can provide reliable results is the

Mann – Kendall trend test. When according to the Mann – Ken-

dall test a trend is clearly evident, i.e. the null hypothesis can be

rejected, the Theil – Sen Estimator was used to calculate the slope

of the fitted trend-line. The slope obtained by the Theil – Sen

Estimator is the median slope among all lines through all pairs of

points in the dataset. To enable the comparison of slope steepness

among projects, slopes should be scale independent. To this end,

we performed the trend test analysis (either linear regression or

Mann – Kendall trend test) on a normalized version of the origi-

nal dataset. In particular, each value of an examined time series

was divided by the maximum value in the time series yielding a

normalized value in the range [0..1] exhibiting the same slope as

the original dataset. Additionally, as part of answering this re-

search question, we examine if there is a correlation between TD

principal (as captured by the distance between the actual and the

optimum design) and the growth rate. A high, positive and statis-

tically significant coefficient implies that the evolution of the

distance between the actual and the optimum design follows the

trend of the growth rate. In other words, when the system grows

in size the quality deteriorates.

7. RESULTS

Efficiency of algorithms (RQ1). In RQ1 we explored which of the

offered algorithms is more efficient, both in terms of TD repay-

ment (i.e., the achieved quality of solutions as measured by the

decrease in the distance between the obtained solution and the

corresponding optimum one) as well as in terms of the required

execution time. The termination criteria for the algorithms are as

follow: (a) Hill Climbing—reach a local optimum; (b) Tabu

Search—no improvement last 3,000 iterations; and (c) Simulated

Annealing—no improvement after 3 levels.

Table 6: Quality of solutions for the employed algorithms

Project SA TS_DYN TS HC_FC HC_ST

JDeodorant 05 15.5% 16.2% 15.6% 11.8% 12.5%

JDeodorant 07 14.9% 14.1% 14.2% 11.6% 11.9%

JDeodorant 10 13.7% 12.7% 12.6% 9.5% 9.3%

JEdit 3.0 14.9% 14.9% 14.2% 10.4% 10.3%

JEdit 4.0 14.3% 15.4% 13.4% 9.8% 9.6%

JFlex 1.3 13.4% 12.6% 13.3% 9.6% 9.6%

JFlex 1.3.5 14.1% 13.0% 16.1% 9.6% 9.3%

JFlex 1.4.3 16.8% 15.5% 16.0% 12.6% 12.2%

JFreechart 0.8.0 8.5% 8.3% 6.7% 3.9% 3.9%

JFreechart 1.0.0 7.8% 7.9% 7.9% 4.7% 4.7%

JHotdraw 5.2 9.3% 8.6% 8.8% 6.0% 6.0%

JUnit 3.4 17.7% 17.0% 17.4% 10.2% 10.3%

AVG Improvement 14% 13% 13% 8% 9%

SA: Simulated Annealing, TS: Tabu Search, TS_DYN: Tabu Search - dynamic tenure,

HC_FC: Hill Climbing - First-Choice, HC_ST: Hill Climbing - Steepest-Ascent

Regarding efficient TD repayment, we examine the optimum

fitness function value for each of the algorithms. For the evalua-

tion of efficiency we have compared the improvement that each

algorithm offered to each problem. The results are shown in Table

6. The percentage of improvement is extracted from the values of

the fitness function. The cell corresponding to the algorithm offer-

ing the maximum improvement for each project is shaded. Over-

all results are shown in the bottom row of Table 6. We note that

since the results of this study are based on the optimization of

only coupling and cohesion, they only map to one viewpoint of

the total TD, i.e., the one related to modularity [30]. Nevertheless,

according to Skiada et al. [30], modularity metrics are an accurate

assessor of the total TD, as expressed by SonarQube.

In terms of quality of the solutions, it can be observed that Simu-

lated Annealing followed by Dynamic Tabu Search offer the best

results. Moreover, Hill Climbing variants are insufficient in terms

of the obtained quality of solutions. To perform a systematic

comparison we conducted a Wilcoxon signed-rank test. The mean

difference of the obtained improvement over the actual system

(initial state) is shown in Table 7 for each pair of algorithms. For

example, the top-left cell indicates that Simulated Annealing of-

fers on average 0.49% larger improvement than the Tabu Search,

which according to Wilcoxon signed-rank test is statistically sig-

nificant (Z = -2.062, p<0.05). Based on these results, Simulated

Annealing consistently achieves a better improvement than its

competitors. However, the benefit of using Simulated Annealing

over Tabu Search is rather limited considering the significantly

larger execution time as it will be shown next.

Table 7: Pairwise comparisons between algorithms

 TS TS_DYN HC HC_ST

SA
Mean Diff 0.49%

-2.062*

0.50%

-2.132*

5.49%

-3.18**

4.51%

-3.18** Z

TS
Mean Diff

0.01%

-0.078

4.99%

-3.18**

4.01%

-3.18** Z

TS_DYN
Mean Diff

4.98%

-3.18**

4.00%

-3.18** Z

HC
Mean Diff

-0.98%

-.035 Z

 Z = Wilcoxon test Z-statistic, * p < 0.05 ** p < 0.01

To assess the performance of the proposed approach and enable a

comparison among the algorithms one could measure the required

execution time (in secs). However, given that the total execution

time depends heavily on the number of iterations, which in many

cases are performed without offering any further improvement,

execution times might be misleading. For example, Tabu Search

might reach an optimum solution at a particular time point t and

then iterate until it satisfies the set termination criteria at time

point t+k. The additional elapsed time k appears as time spent to

find a solution, whereas it is redundant in the sense that with a

different termination criterion the algorithm could have stopped

earlier. To avoid such pitfalls in the interpretation of execution

time we opted for the more appropriate convergence plots, which

show the achieved fitness value (Entity Placement) over succes-

sive iterations of each algorithm. These plots apart from indicat-

ing which algorithm finds the best solution, also highlight how

early algorithms reach their best solutions. The convergence plots

for one version of each examined project are shown in Fig. 4.

As it can be observed, in all projects the dynamic version of Tabu

Search achieves results that are almost as good as the results ob-

tained by Simulated Annealing (and in some cases even better),

but converges much more rapidly. It should be noted that the

termination criterion for Tabu Search is a number of iterations

which do not yield any improvement in the quality of solutions.

Therefore, they stop a specified number of iterations after the

time point at which they reach an optimum value. This is the rea-

son for which execution continues beyond a local optimum. On

the other hand, Hill Climbing terminates whenever it reaches a

local optimum or in other words, when it starts moving to states

of lower quality. As it becomes evident it is almost always stuck

in local optima. Simulated Annealing terminates when it does not

observe any improvement in a number of consecutive temperature

levels, leading to a very good exploration of the solutions land-

scape. The overshoot in the curves for Simulated Annealing (i.e.

the moves towards worse solutions) is related to the fact that the

initial state is not a random one, as it would be the case in other

problems, but the actual, existing design of the software system.

0,73

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

En
ti

ty
 P

la
ce

m
e

n
t

Iterations

SA

TABU

TABU DYN

HC ST
HC FC

0,73

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

En
ti

ty
 P

la
ce

m
e

n
t

Iterations

SA

HC ST
HC FC

TABU

TABU DYN

JDeodorant 10 JEdit 4.0

0,7

0,75

0,8

0,85

0,9

En
ti

ty
 P

la
ce

m
en

t

Iterations

HC ST
HC FC

TABU

TABU DYN

SA

0,79

0,81

0,83

0,85

0,87

0,89

En
ti

ty
 P

la
ce

m
en

t

Iterations

SA

TABU

TABU DYN

HC ST
HC FC

JFlex 1.4.3 JFreeChart 1.0.14

0,78

0,8

0,82

0,84

0,86

0,88

0,9

En
ti

ty
 P

la
ce

m
en

t

Iterations

HC ST
HC FC

SA

TABU DYN

TABU

0,7

0,72

0,74

0,76

0,78

0,8

0,82

0,84

En
ti

ty
 P

la
ce

m
en

t

Iterations

TABU

SA

HC ST
HC FC

TABU DYN

JHotDraw 7.2 JUnit 4.10

Figure 4: Convergence of Examined Algorithms

The fact that the initial state for the search process is a design that

reflects, despite its potential inefficiencies, the experience of the

developers, is also the reason for which Simulated Annealing and

Tabu Search achieve comparable results. If the search process had

started from random allocations of entities to classes, Simulated

Annealing would probably exhibit superior performance. The

reason is that Simulated Annealing, in its early stages, operates as

a “random walk” and therefore might benefit to a very small ex-

tent from a favorable starting point. Simulated Annealing would

achieve similar results even if we had started from a different

initial design. On the contrary, Tabu Search, despite its ‘explora-

tive’ capabilities offered by a large tenure, is constrained to the

exploration of the area around the starting point. Thus, the results

achieved by Tabu Search depend heavily on the initial design.

It is worth mentioning that the dynamic version of Tabu, especial-

ly for small systems such as JFlex and JUnit, exhibits two pat-

terns: a) a number of ripples which can be attributed to the exist-

ence of a list of prohibited moves which often means that the

algorithm attempts to reach the same local optimum but from

different trajectories and b) a departure from a local optimum

towards worse solutions which can be attributed to the tenure.

That is, entities which have to be further relocated, are not al-

lowed to be moved and thus the algorithm moves well-placed

entities, leading to designs of inferior quality.

Considering that the Dynamic Tabu search: (a) yields solutions

which are nearly as good as the optimum solutions provided by

Simulated Annealing and (b) converges more rapidly than Simu-

lated Annealing; for the case study on software evolution analysis

we have selected as a rational choice the Dynamic Tabu Search.

Evolution Trends (RQ2). To investigate whether a trend exists in

the evolution of the selected variables we performed the nonpar-

ametric trend test (Mann-Kendall). For slope values we report the

Theil-Sen estimator and its significance in Table 8. Based on the

fact that a single trend is not expected across the whole project

evolution, it wouldn't make sense to attempt to extract a single

trend for the entire evolution. Thus, we list slopes for each dis-

tinct period along project evolution.

Table 8: Trend Test Results

Project
Versions

From To

Slope

Growth iD̂
 NoR

JEdit
2.3 – 4.2 0.07** 0.005** 0.005

4.3 – 5.0 0.003** 0.005** 0.003**

JHotDraw
5.2 – 6.0 0.202 0.038 0.004

7.0.6 – 7.6 0.067** 0.000 0.001

JUnit
3.4 – 3.8.1 0.033** 0.010 0.021

4.0 – 4.10 0.053** 0.018 0.005

JFreeChart
0.5.6 – 0.9.20 0.07** 0.002 0.007**

0.9.21 – 1.0.14 0.021** 0.03** 0.000

JFlex
1.3 – 1.4_pre3 0.15** 0.008 0.005**

1.4_pre 4 – 1.4.3 0.007 0.11* 0.007

JDeodor-

ant

1(001) – 5(232) 0.15** 0.055* 0.061*

6(244) – 10(343) 0.07* 0.03 0.011*

* Correlation is significant at the 0.05 level

** Correlation is significant at the 0.01 level

From Table 8 it can be concluded that the growth rate exhibits

always a statistically significant trend. This is reasonable since the

growth rate reflects the constant evolution in alignment to the

sixth law of Lehman which stipulates that "the size of a system

continuously grows over time" [18]. On the other hand, for TD

principal and the number of refactorings (i.e., discrete TD items

repayment), clear trends can be observed in particular periods of

evolution in some of the projects only. For 4 projects there is a

statistically significant trend for at least one of the two variables

and at least of the two periods. For the case where a trend is pre-

sent, it adheres to the previously-made observations.

Table 9: Correlation Analysis

Project
Versions

From To

Correlations

Growth vs D Growth vs NOR

JEdit
2.3 – 4.2 0.849** 0.656*

4.3 – 5.0 0.836** 0.695*

JHotDraw
5.2 – 6.0 0.975* 0.598

7.0.6 – 7.6 0.199 0.467

JUnit
3.4 – 3.8.1 0.223 0.38

4.0 – 4.10 0.895** 0.712**

JFreeChart
0.5.6 – 0.9.20 0.138 0.726**

0.9.21 – 1.0.14 0.817** 0.239

JFlex
1.3 – 1.4_pre3 0.989** 0.981**

1.4_pre1.4.3 0.641 0.932**

JDeodorant
001232 0.944** 0.991**

244343 0.949** 0.855*
* Correlation is significant at the 0.05 level ** Correlation is significant at the 0.01 level

To study whether the evolution of quality is correlated to the evo-

lution of the growth rate, we performed correlation analysis (see

Table 9). Table 9 validates the aforementioned remarks. In gen-

eral there is a statistically significant correlation between growth

rate and TD aspects (i.e., principal and number of TD item re-

payment) in 67% of the cases. For projects JEdit, JFreeChart and

JDeodorant the evolution of quality as expressed by both varia-

bles, deteriorates in the period of faster growth rate as expressed

by positive correlation coefficients. On the other hand, quality

improves in the period of weak or moderate growth rate. The

same observation holds for JFlex with the exception that in the

period of weak growth the distance measure does not have a

negative correlation to the growth rate, but a lower one compared

to the period of fast growth. For JHotDraw and JUnit this evolu-

tion pattern is not statistically verified, confirming the exceptional

development practices for these projects.

Considering the aforementioned results, we claim that TD

measures, i.e., TD principal and number of TD repayment ac-

tions, as obtained by JCaliper are correlated to the growth rate of

the system. Therefore, they obey to the corresponding law of soft-

ware evolution.

8. DISCUSSION

In this section we discuss the main findings of this paper. First, by

answering RQ1, we can claim that the proposed approach and tool

can lead to an efficient TD repayment strategy, in the sense that

they are able to propose a series of refactorings that reduced TD

principal. Although for this study as a proxy of TD, only software

modularity has been considered (this is an obvious threat to valid-

ity—see Section 9), we note that in many studies (e.g., [20] and

[30]) it has been observed that TD is highly correlated with

modularity metrics. Additionally, by answering RQ2, we have

validated that TD aspects (i.e., principal and number of refactor-

ings) as quantified in this study are correlated to system growth

and therefore obey in software evolution laws. By focusing on a

project-by-project analysis, interesting discussions have arisen:

• For JEdit, JFreeChart, JFlex, and JDeodorant periods of

rapid development exhibit increased rates of software ageing.

For these projects, the period with the steepest increase in the

number of entities or classes exhibits a deterioration of quali-

ty (reflected in an increasing TD principal, as well as an in-

creasing number of required refactorings. Furthermore, the in-

itial period is the one in which a decreasing quality can be ob-

served: these systems appear to have a less mature and fast

changing initial phase, while after years of development it be-

comes possible to achieve a stabilization or even improve-

ment of quality. During one particular transition from one re-

lease to another one (which might last for several months or

years) the value of the fitness function is improved (actual de-

sign moves closer to the optimum one). Although further re-

search is required to investigate the cause of this improve-

ment, the abrupt change in the TD principal could be attribut-

ed to refactoring application or architectural re-design.

• A noteworthy exception is project JHotDraw which does not

exhibit ageing phenomena even when development is per-

formed at a fast rate. Given that JHotDraw is known for the

wide adoption of design patterns and application of design

principles this might be an indication that proper software en-

gineering can prevent software ageing.

• A second exception is project JUnit where the initial period of

development exhibits a faster rate of design quality degrada-

tion compared to the second period, despite the fact that in the

initial period the rate of system size increase is somehow

lower. This could be attributed to the initial turbulence in the

system architecture.

The findings presented in this study can be useful to both re-

searchers and practitioners. On the one hand, practitioners are

suggested to use the proposed tool: (a) as a refactoring-support

tool if they are interested in optimizing software modularity, and

(b) as a proxy of the TD introduced into their systems. We believe

that the nature of the tool (i.e., an Eclipse plug-in) can substantial-

ly boost its applicability in practice. On the other hand, research-

ers are provided with some interesting implications and future

work opportunities. First, they are provided with a tool for effi-

cient technical debt management, which they need to further vali-

date in an industrial setting. Second, since the study validates the

appropriateness of SBSE in technical debt management, we sug-

gest researchers to further explore this research direction. Finally,

we suggest the adoption of the high-level rationale of the pro-

posed approach with different fitness functions that cover TD

management in a more holistic manner.

9. THREATS TO VALIDITY - LIMITATIONS

The proposed approach can be employed to assess the evolution

of quality over successive software versions. However, it should

be stressed that the notion of quality is restricted to the particular

metric that is used as fitness function in the applied search algo-

rithms. For example, the Entity Placement metric that has been

used for the case study reflects only the decisions in the design

related to coupling and cohesion and unavoidably overlooks other

aspects of quality which might be of interest. Nevertheless, other

metrics can also be investigated either in the context of separate

analyses or by attempting a multi-objective optimization. In any

case, it should be borne in mind that metrics-based assessment of

design properties captures only specific aspects of quality and can

never entirely substitute expert judgment and experience. This has

been stressed by works that study the ability of automated refac-

toring suggestions (see Bavota et al. [6]).

With respect to the empirical application, the most obvious threat

is the one to the external validity of the conclusions. Unavoidably,

any observations which have been made regarding the relation of

the growth rate and the evolution of quality reflect the tendencies

in these particular projects. With respect to the application of

search algorithms to derive the optimum design, an internal threat

to validity stems from the fact that parameter settings for the con-

figuration of each algorithm affect its performance [33]. Howev-

er, as already pointed out, the main goal of the approach is not to

compare local search algorithms in terms of their efficiency.

Moreover, we have applied RSM to fine-tune algorithms.

Beyond these threats, restructuring an object-oriented system by

means of optimization should consider side effects. For example,

the proposed approach does not address changes that should be

carried out in the accompanying documentation (e.g. traceability

matrices) or unit tests. Obviously, changes in the public interfaces

of system classes might render design documents, code comments

and test cases invalid posing very interesting research challenges.

Finally, we should stress that such types of optimization tech-

niques are inherently limited since only design artifacts are con-

sidered as parameters of the optimization. Developers are aware

of the fact that software architectures reflect people’s choices,

styles and constraints and rearranging classes and methods might

break such conceptual assumptions. Therefore, we should bear in

mind that automated search-space optimization for software im-

provement can only yield suggestions to the development team.

10. CONCLUSIONS

The problem of optimizing an OO design can be efficiently treat-

ed as a search-space optimization task. In this paper we employed

SBSE as a means of assessing TD principal (i.e., the distance

between the actual design and an optimum as derived by search-

space optimization) and proposing a set of refactorings (i.e., a TD

repayment strategy) to reach it. To facilitate the analysis of large

systems several optimizations have been applied on top of well-

known search algorithms. The application on 6 OSS systems re-

vealed that there is a correlation between the growth rate and the

evolution of quality. In general, whenever the number of entities

and classes increases at a fast pace, quality degradation can be

observed. However, often design teams manage to add functional-

ity at a fast pace without exhibiting signs of software ageing.

ACKNOWLEDGMENTS

Work reported in this paper has received funding from the Euro-

pean Union Horizon 2020 research and innovation programme

under grant agreement No. 780572 (project: SDK4ED).

REFERENCES

[1] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull,

and C. Seaman, “Identification and management of technical debt: A sys-

tematic mapping study,” Inf.Softw.Technol., vol.70, pp.100–121, Feb. 2016.

[2] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P.

Abrahamsson, A. Martini, U. Zdun, and K. Systa, “The Perception of Tech-

nical Debt in the Embedded Systems Domain: An Industrial Case Study,”

in 2016 IEEE 8th International Workshop on Managing Technical Debt

(MTD), Raleigh, NC, USA, 2016, pp. 9–16.

[3] A. Arcuri and G. Fraser, “On Parameter Tuning in Search Based Software

Engineering,” in Search Based Software Engineering, M. B. Cohen and M.

Ó. Cinnéide, Eds. Springer Berlin Heidelberg, 2011, pp. 33–47.

[4] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, and P.

Avgeriou, “A mapping study on design-time quality attributes and metrics,”

J. Syst. Softw., vol. 127, pp. 52–77, May 2017.

[5] M. Basdavanos and A. Chatzigeorgiou, “Placement of Entities in Object-

Oriented Systems by Means of a Single-Objective Genetic Algorithm,” in

2010 Fifth International Conference on Software Engineering Advances,

Nice, France, 2010, pp. 70–75.

[6] G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto, “Putting

the Developer in-the-Loop: An Interactive GA for Software Re-

modularization,” in Search Based Software Engineering, G. Fraser and J. T.

de Souza, Eds. Springer Berlin Heidelberg, 2012, pp. 75–89.

[7] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and

K. A. Houston, Object-Oriented Analysis and Design with Applications, 3

edition. Upper Saddle River, NJ: Addison-Wesley Professional, 2007.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[9] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an

application’s technical debt,” IEEE Softw., no. 6, pp. 34–42, 2012.

[10] E. Falkenauer, Genetic Algorithms and Grouping Problems, 1 edition.

Chichester ; New York: Wiley, 1998.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, and E. Gamma,

Refactoring: Improving the Design of Existing Code, 1 edition. Reading,

MA: Addison-Wesley Professional, 1999.

[12] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design Pat-

terns: Elements of Reusable Object-Oriented Software, 1 edition. Reading,

Mass: Addison-Wesley Professional, 1994.

[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software engi-

neering. Upper Saddle River, N.J.: Prentice Hall, 2003.

[14] F. Glover and M. Laguna, “Tabu Search,” in Handbook of Combinatorial

Optimization: Volume1–3, D.-Z. Du and P. M. Pardalos, Eds. Boston, MA:

Springer US, 1999, pp. 2093–2229.

[15] M. Harman and J. Clark, “Metrics Are Fitness Functions Too,” in Proceed-

ings of the Software Metrics, 10th International Symposium, USA, 2004.

[16] D. E. Knuth, The Art of Computer Programming, 1 edition. Amsterdam:

Addison-Wesley Professional, 2011.

[17] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: from metaphor to

theory and practice,” Ieee Softw., no. 6, pp. 18–21, 2012.

[18] M. M. Lehman, “Laws of software evolution revisited,” in Software Pro-

cess Technology, 1996, pp. 108–124.

[19] J. Letouzey and T. Coq, “The SQALE Analysis Model: An Analysis Model

Compliant with the Representation Condition for Assessing the Quality of

Software Source Code,” in 2010 Second International Conference on Ad-

vances in System Testing and Validation Lifecycle, 2010, pp. 43–48.

[20] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An empirical

investigation of modularity metrics for indicating architectural technical

debt,” in Proceedings of the 10th international ACM Sigsoft conference on

Quality of software architectures, 2014, pp. 119–128.

[21] R. Marinescu, “Assessing technical debt by identifying design flaws in

software systems,” IBM J. Res. Dev., vol. 56, no. 5, pp. 9–1, 2012.

[22] R. C. Martin, Agile software development: principles, patterns, and prac-

tices. Upper Saddle River, N.J.: Prentice Hall, 2003.

[23] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response

Surface Methodology: Process and Product Optimization Using Designed

Experiments. John Wiley & Sons, 2009.

[24] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a

metric for managing architectural technical debt,” in Software Architecture

(WICSA) and European Conference on Software Architecture (ECSA), 2012

Joint Working IEEE/IFIP Conference on, 2012, pp. 91–100.

[25] M. O’Keeffe and M. Ó. Cinnéide, “Search-based refactoring: an empirical

study,” J. Softw.Maint.Evol.Res.Pract, vol.20, no.5, pp.345–364, Sep. 2008.

[26] A. J. Riel, Object-Oriented Design Heuristics, 1 edition. Reading, Mass.:

Addison-Wesley Professional, 1996.

[27] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in

Software Engineering: Guidelines and Examples, 1 edition. Wiley, 2012.

[28] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3

edition. Upper Saddle River: Pearson, 2009.

[29] C. L. Simons and I. C. Parmee, “Elegant Object-Oriented Software Design

via Interactive, Evolutionary Computation,” IEEE Trans. Syst. Man Cybern.

Part C Appl. Rev., vol. 42, no. 6, pp. 1797–1805, Nov. 2012.

[30] P. Skiada, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, and I.

Stamelos, “Exploring the Relationship between Software Modularity and

Technical Debt,” in 4th Conference on Software Engineering and Advanced

Applications (SEAA) 2018.

[31] N. Tsantalis and A. Chatzigeorgiou, “Identification of Move Method Refac-

toring Opportunities,” IEEE Trans Softw Eng, vol. 35, May 2009.

[32] H. van Vliet, Software Engineering: Principles and Practice, 3 edition.

Chichester, England ; Hoboken, NJ: Wiley, 2008.

[33] S. Wang, S. Ali, and A. Gotlieb, “Random-Weighted Search-Based Multi-

objective Optimization Revisited,” in Search-Based Software Engineering,

2014, pp. 199–214.

