JCaliper: Search-Based Technical Debt Management

Panagiotis Kouros, Theodore Chaikalis, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou,
Apostolos Ampatzoglou, Theodoros Amanatidis

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

ABSTRACT

Technical Debt (TD) reflects problems in software maintainabil-
ity along evolution. TD principal is defined as the effort required
for refactoring an existing system to an ideal one (a.k.a. optimal)
that suffers from no maintainability problems. One of the open
problems in the TD community is that ideal versions of systems
do not exist, and there are no methods in the literature for ap-
proaching them, even theoretically. To alleviate this problem, in
this paper we propose an efficient TD management strategy, by
applying Search-Based Software Engineering techniques. In par-
ticular, we focus on one specific aspect of TD, namely inefficient
software modularity, by properly assigning behavior and state to
classes through search space exploration. At the same time, in the
context of TD, we: (a) investigate the use of local search algo-
rithms to obtain a near-optimum solution and propose TD repay-
ment actions (i.e., refactorings), and (b) calculate the distance of a
design to the corresponding optimal (i.e., a proxy of TD princi-
pal). The approach has been implemented in the JCaliper Eclipse
plugin enabling a case study, which validates the approach and
contrasts it to existing measure of software evolution.

CCS CONCEPTS

Software and its engineering — Software creation and man-
agement — {Software development techniques — Object-
oriented development, Software verification and validation —
Empirical software validation}

KEYWORDS

Object-oriented Design, Refactoring, Software Quality

ACM Reference format:

P. Kouros, T. Chaikalis, E. M. Arvanitou, A. Chatzigeorgiou, A. Am-
patzoglou, and T. Amanatidis, “JCaliper: Search-Based Technical Debt
Management”, In Proceedings of ACM SAC Conference, Limassol, Cy-
prus, April 8-12, 2019 (SAC’19), 10 pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SAC '19, April 8-12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04...$15.00
https://doi.org/10.1145/3297280.3297448

pkouros@uom.edu.gr, chaikalis@uom.gr, earvanitoy@gmail.com, achat@uom.gr, apostolos.ampatzoglou@gmail.com, tamanatidis@uom.edu.gr

1. INTRODUCTION

Software engineering textbooks consider evolution and mainte-
nance as a fundamental activity, caused by the need to consider
changing customer and market requirements [15]. Software evo-
lution and maintenance are hindered when the structural quality
of the system is compromised in favor of business benefits or run-
time qualities, collectively termed as Technical Debt (TD) [17].
The pillars of TD theory are two concepts borrowed from eco-
nomics: principal and interest. On the one hand, principal corre-
sponds to the effort that needs to be spent so as to refactor the
existing system to an optimal one with respect to structural quali-
ty and maintainability [3]. On the other hand, interest corresponds
to the additional costs that occur along maintenance, due to poor
software quality [2]. One of the main problems for calculating TD
principal is that identifying the optimal version of a system is a
task that is far from trivial, as it never exists in practice.

To approach this problem, from a theoretical perspective, in this
paper we model the quality properties that the development team
wants to improve in the form of a fitness function. The approach
then seeks to optimize the value of this function, as a typical
search space exploration problem, by applying software refactor-
ings®. To illustrate the approach we focus on one important type
of technical debt, namely architectural technical debt (ATD) [30].
One of the qualities that are compromised and cause ATD is
software modularity [20], [30]. According to van Vliet [32], mod-
ularity can be assessed by two basic properties, namely: coupling
and cohesion. Coupling and cohesion are closely related to the
proper allocation of behavior and state into system classes, in the
sense that an improper allocation would: (a) violate the single
responsibility principle—leading to low cohesion; and (b) in-
crease method invocations to access fields of other classes—
leading to high coupling. However, we need to note that the pro-
posed method is quality attribute and property agnostic, since it
could be easily applied to qualities other than modularity, and
properties other than coupling and cohesion.

Our approach aims at: (a) assessing TD principal (i.e., the dis-
tance between the current and optimal design), and (b) proposing
a TD repayment strategy (i.e., a sequence of refactorings) to reach
it. The distance quantifies the difference in the selected fitness
function and reflects the architectural quality of the examined
system. The distance also translates to a number of refactorings
required to convert the actual system to the corresponding opti-
mum one. This strategy is employed to assess the evolution of
entire projects by monitoring changes in the aforementioned dis-
tance for successive software versions. The proposed approach

1 The corresponding research field is collectively referred as Search-
Based Software Engineering (SBSE) [15].

mailto:Permissions@acm.org

has been implemented as an Eclipse plugin that is publicly availa-
ble. The plugin allows the selection of multiple versions of a pro-
ject and automatically applies the proposed analysis, for valida-
tion purposes.

The rest of the paper is organized as follows: In Section 2 we
discuss related work, and in Section 3 we present a motivating
example for justifying the need for proper allocation of behavior
and state into system classes. Section 4 presents the proposed
approach for extracting the optimum design, whereas Section 5
describes the accompanying tool. Section 6 outlines the case
study design, whose results are presented in Section 7, and dis-
cussed in Section 8. In Section 9 we present the threats to validity,
and we conclude the paper is Section 10.

2. RELATED WORK

In this section, we present works related to ours. In Section 2.1,
we present techniques that have been developed for managing
architectural technical debt, whereas in Section 2.2 we present
studies that focus on TD principal quantification. Finally, in Sec-
tion 2.3 we present the main contributions of this study.

2.1 Architectural TD Management

An approach for the identification and measurement of technical
debt in object-oriented systems has been proposed by Marinescu
[21]. The proposed method detects specific types of design flaws
through object-oriented metrics in four steps: (1) selection of
concerned design flaws, (2) definition of rules for detecting the
design flaws, (3) measurement of the negative impact of each
flaw instance, and, finally, (4) calculation of an overall score
based on all detected flaws, to indicate the design quality of a
system. The accuracy of the TD measurement in this approach
depends on the design flaw detection effectiveness.

An architecture-focused metric that quantifies Technical Debt has
been defined by Nord et al [24]. The value of this metric, calcu-
lated for each release, is the total cost of the implementation of
new architectural elements introduced in this release, and the
rework of pre-existing elements in previous releases.
Architectural rework is considered as the necessary adaptation
effort for the addition of new architectural elements to an existing
software system. The rework cost is calculated based on the anal-
ysis of the changing dependencies from existing adapted elements
to the new introduced elements. This metric can be used in the
calculation of the relative amount of ATD in different software
evolution paths, i.e., release plans. Given two release plans RP1
and RP2, that implement the same features and therefore they
generate the same amount of business value, the relative amount
of ATD is the difference between the values of metric calculated
on RP1 and RP2. The proposed metric can facilitate architecture
decision-making. However, a main limitation of this approach is
the accuracy of the estimation of implementing new features and
rework, especially the latter. Each software evolution path in-
volves several releases, which implies that the estimation of re-
work and new implementations of later releases are based on the
estimation of earlier releases. This may pose a threat to the accu-
racy of architectural technical debt estimation.

2.2 Assessment of TD Principal
The principal of technical debt is related to the effort and accom-
panying cost to eliminate the debt from a given system or artifact

according to Alves et al. [1]. Current software analysis tools offer
estimates of TD principal based on detectable violations. Accord-
ing to Curtis et al. [9], three parameters are required for such es-
timates, (1) the number of violations that should be fixed, (2) the
hours that each violation fix requires, and (3) the cost of labor.
The SQALE method proposed by Letouzey and Coq [19], intro-
duces the remediation index which is obtained from software
quality requirements. For a requirement stating that all files
should have at least 70% code coverage, the corresponding reme-
diation action is to write additional tests. A remediation function
maps effort to each action, for example, 20 minutes per uncovered
line of code. Finally, for each artifact, the remediation index relat-
ing to all the characteristics of the Quality Model is obtained by
adding all remediation indices linked to all quality requirements.
The resulting SQALE index is considered to represent the princi-
pal of the TD for the assessed source code.

2.3 Contributions

The main contributions of this work compared to the technical
debt state-of-research, are the following. First, this work is to the
best of our knowledge the first that discusses SBSE techniques
in the context of technical debt management. In addition to this,
the proposed search-based algorithms are performing substantial-
ly better compared to existing ones, providing the opportunity to
apply them in larger systems (our approach is converging for
systems of ~250 classes in ~20 minutes, whereas the best existing
approaches were able to optimize systems of ~40 classes in 12
hours [25]). Second, this is the first study that collectively pro-
vides an estimation of TD principal, based on structural charac-
teristics, and the repayment actions that need to be completed
before the optimal system is reached. Current techniques are
mostly based upon rule violations, and the proposed refactorings
are resolving these violations, not heavily relying on structural
aspects that hinder maintainability, such as coupling, cohesion,
and complexity [4].

3. MOTIVATING EXAMPLE

Software metrics have a long history in software engineering as a
means of assessing different aspects of software quality. Howev-
er, metrics are not reliable indicators of quality when comparing
different products or even different versions of the same system.
This can be better illustrated through an example, shown in Fig. 1,
depicting a sample design evolving over two versions. In the ini-
tial design of version-1, the company class contains a method
accessing address related information, whereas employee address
information is also contained in the Employee class. In the refac-
tored design of version-2 address information is placed on a
separate class with the accompanying functionality, while dele-
gate methods have been left in the initial classes to keep the pub-
lic interface of the original classes intact.

The conventional application of software metrics would lead to
the conclusion that the system suffers from software ageing as
both examined metrics, namely Coupling (CBO) and Cohesion
(LCOM) [8] exhibit worse values in the second version after ag-
gregation at the system level. However, the system in the second
version adheres to basic principles in object-oriented design as
related data and functions have been grouped together.

Version 1 Version 2
Address
- Street
- City
c Employee - Postal Code
ompan -
pany - firstName + addressToXML()
~name - lastName %
- Street - salary 5@’? e,
- City - Street_Home & oz,
- Postal Code - City_Home &
+ addressToXML() - PostalCode_Home
+ printEmployeelnfo() - oXML() Employee
+pr Data() Company ThreName

- name - lastName

+ addressToXML() - salary
+

- oXML(
+ printEmployeeData()

CBOsyeran: (1+0)/2 = 0.5
LCOMsysrey: (1+0)/2 = 0.5

CBOsysren: (2+1+0)/3=1
LCOMsysra: (1+1+0)/3 = 0.667
* addressToXML() accesses Street, City and PostalCode

printEmployeelnfo() accesses all Employees” data

HomeAddressToXML() accesses Street_Home, City_Home and PostalCode_Home

printEmployeeData() accesses all Employee’s data

Figure 1: Assessment of evolution by individual metrics

What is therefore required is a measure that assesses the quality
without being subject to this kind of problems. Metrics for which
quality cannot be directly deduced from their values but has to be
determined on the basis of subjective threshold values are not
ideal candidates. Quality can be objectively assessed by measures
that evaluate a design against the optimum design that could be
achieved for the particular context (i.e. functionality and data) or
in other words, against a design that would attain the optimum
value for selected metrics. In that way, one could decide whether
a particular metric value is ‘good’ or ‘bad’ based on the best val-
ue that this metric can attain for that particular system.

4. PROPOSED METHOD

In this section we describe the method that we propose for calcu-
lating the distance of a current OO design from an ideal one; and
the refactorings that need to be applied for reaching it. To de-
scribe the proposed approach in Section 4.1 we present the select-
ed way for representing the system, in Section 4.2 we present the
employed fitness function, whereas in Section 4.3 we present the
search-based algorithms that we have tried for optimization.

4.1 System Representation

The modular structure of any software system can be represented
as a set s composed of the constituent modules m1,M2, ..., Mn
[13]. In the case of OO systems, modules correspond to the clas-
ses of the design. A significant portion of the design effort is de-
voted to the identification of the semantics of modules, which is
the distribution of responsibilities (state and behavior) among
system classes [7]. This constitutes an essential, nontrivial and
highly subjective part of the entire design process since it depends
heavily on human expertise and experience. The allocation of
methods and attributes in an object-oriented system determines a
number of qualitative properties such as the comprehensibility,
maintainability and reusability of the system and influences di-
rectly quantifiable properties such as coupling and cohesion. For
example, inappropriate placement of methods and attributes might
lead to the violation of several key principles such as Modularity,
Separation of Concerns [7], Single Responsibility Principle (SRP)
[22] and various associated design heuristics such as the minimi-
zation of collaborators and sent messages and the need to keep
related data and behavior in one place [26].

The primary goal of the proposed approach can be illustrated by
the following simplified example. Let us assume that a given
system consists of three classes A, B and C and six entities (at-
tributes and methods). We assume the current allocation of enti-
ties as shown in Fig. 2(a). Arrows indicate the attributes assessed
by each method, while classes and entities are numbered for easi-
er reference. As it can be observed, the current design suffers
from extreme coupling and low cohesion since each method ac-
cesses an attribute located in another class and none from the
class where it resides. Methods and attributes can be allocated to
the existing system classes in various ways, which for the case of
a system with x classes and n entities lead to an exploration space
of x" possible allocations. Each of these alternative allocations
yields a different design having a different measure of quality.
The problem is further complicated, since in order to achieve an
optimal design (e.g. in terms of coupling and cohesion), new clas-
ses might be required and old classes might have to be removed.
For this particular example, the design that minimizes coupling
and maximizes cohesion is the one shown in Fig. 2(b) where each
method is placed in the same class with the attribute that it ac-
cesses. In other words, the first goal is to address a search space
exploration problem in order to identify a solution for the design
that optimizes a selected fitness function. Once the optimal design
is found, the difference in the value of the fitness function be-
tween the current and the optimal design is an indicator of its
design quality or TD principal. Moreover, it becomes possible to
determine the number of refactorings that have to be made to the
current design in order to convert it to the optimal one.

Class 0 Class 2 Class 0 Class 2
A C A C

0 |-xeo__ 4|-2 0|-X «———__| 4|-2 4———__

==t B »
1 [+m1Q \‘E/kth() 5|+m3) ———~ 3 [+m2) ———~

N Class ;/ Class 1

N

A B/ B

2y 2]y «-—__ L

// /\
3 [+m2() 1[+m1) ———~

(a) Current Design (b) Optimal Design

Figure 2: lllustrative Example

One intuitive approach that has been employed in the past [5] is to
represent the allocation of entities to classes by employing a
chromosome encoding. Such a chromosome has genes that corre-
spond to each entity and the value that each gene can take (al-
leles) specifies the class to which the corresponding entity is
placed. For example, the chromosomes corresponding to the cur-
rent and optimal solutions of Fig. 2 are shown in Fig. 3. Although
intuitive, the chromosome representation suffers from some limi-
tations which reduce the performance and quality of solutions.
The analysis of previous work reveals that the selection of the
representation model is of major importance [10], [26].

sases—[0[0[1]1]2]2] [o]1]1]2]2]0]
entties— 0 1 2 3 4 5 0 1 2 3 4 5

(a) current design (b) optimal design

Figure 3: Chromosome Encodings

The proposed approach adopts a different encoding scheme in
order to reduce the size of exploration space: the employed repre-
sentation model for the solutions in the search space does not
simply function as a symbolic notation for modeling the solutions
during the search. It determines indirectly the most suitable data
structures to be used during the implementation and as a conse-
quence it affects drastically the efficiency as well as the quality of
the final solutions. When entities are allocated to the system clas-
ses, a partition of the set of entities is performed. Thus, for the
representation the symbolic notation for set partitions can be em-
ployed [16] according to which:

The partition P of a set S with cardinality m is a collection of n
subsets Siof S (S; = S,i=1..n,1<n<m)suchas:
1. No subset is empty: S; =, Vie {1, 2,..., n}
2. The intersection of any two subsets is empty:
SiNS; =@, Vi#j,ijell2...n}

3. The union of all subsets is the set S: S; WS, U...US, =S

The use of multiple brackets in the notation can be avoided. For
example, the partitions of set {1, 2, 3} can be written as:

12]3 1213 13[2 1]23 123

If entities are represented in this manner, each class corresponds
to a unique subset; thus, every design has a unique representation
(partition). Moreover, classes are directly identifiable without the
need to spend additional programming effort in mapping them to
integer values. The latter is of major importance since it allows
the reuse of already calculated values of the fitness function.

4.2 Fitness Function

As already mentioned, methods and attributes are the free varia-
bles which the designer has to allocate to the individual classes.
Due to the countless alternatives, it is important to be able to rea-
son about the quality of each solution. The software engineering
community has established various design principles that should
be followed [22] or design heuristics that should not be violated
[26] when taking design decisions. Many of these principles and
heuristics build upon the key concepts of coupling and cohesion
signifying their importance in assessing the design quality of a
system. Harman and Clark state that any software metric can be
employed to guide the search for an optimal design (‘metrics are
fitness functions too’ [15]). Indeed a number of previous works in
Search Based Software Engineering employed widely used met-
rics as fitness functions [29]. Some of the proposed metrics at-
tempt to derive ‘wise' fitness functions which bring the optimum
design closer to the design perceived by designers as best [29].
Among common metrics, coupling is the most widely used one
that serves as a fitness function. However, coupling and cohesion
are strongly interrelated and there is often a tradeoff among them.
Thus, optimizing the one might deteriorate the other. If both con-
cepts could be quantified with the same terms and notation, it
would be possible to define a ratio of cohesion over coupling and
form a single function expressing both properties, which the de-
signer would seek to maximize. The rest of this section provides
an overview of the Entity Placement metric proposed in [31]
which serves perfectly the goal of single-objective optimization.

Measure of similarity among system entities. In an OO system,
methods can access other entities (attributes and methods) that
reside either in the class that they belong to (directly) or in other
system classes (through references). Conversely, attributes can be
accessed directly from methods of the class that they belong to
and also from methods of other classes that have reference to that
class. Each system entity e can be characterized by its entity set Se
which contains the attributes and methods that it accesses (in case
of a method) or the methods that it is accessed from (in case of an
attribute). For each class C it is possible to define its entity set
containing all attributes and methods that belong to class C.

The intuitive interpretation of grouping behavior with related data
implies that the similarity between an entity and a class should be
high when the number of common entities in their entity sets is
large. Thus, the similarity between any method or attribute and a
class can be obtained employing the Jaccard similarity coefficient
between the corresponding entity sets. For two sets A and B the
Jaccard similarity coefficient is defined as the cardinality of their
intersection divided by the cardinality of their union, while their
distance is complementary to the similarity and is obtained by
subtracting the Jaccard similarity from 1. In the context of our
problem, let e be an entity of the system, C a class of the system
and Sx the entity set of entity or class x. The distance between an
entity e and a class C can be defined as follows:

Definition 1a. If the entity e does not belong to the class C, the
distance is the Jaccard distance of their entity sets:

|Se mSC|

distance(e,C) =1-———,
|Se U S¢|

where S = | Jie

geC (1)
Definition 1b. If the entity e belongs to the class C, e is not in-
cluded in the construction of Sc:

S 0S¢l ,where S¢ = | Jie;}

distance(e,C) =1-————+
|Se ~ SC| geC g=e @)

Global measure of entity placement. In a system adhering to the
principle of grouping behavior with related data, the distances of
the entities belonging to a class (inner entities) from the class
itself should be as small as possible (high cohesion). At the same
time the distances of the entities not belonging to a class (outer
entities) from that class should be as large as possible (low cou-
pling). This aspect of quality can be quantified by considering for
each class the ratio of average inner to average outer entity dis-
tances. For each class, the closer this ratio to zero is, the safer it
can be concluded that inner entities have correctly been placed
inside the class and outer entities to other classes. A formula that
provides the above information for a class C is given by [31]:

> distance(g;, C)

e eC

EntityPlacement. = Dine__ jenities < C|
Y ¢ Doutg Y distancele;,C)
e;eC
|entities ¢ C|

@)
e denotes an entity of the system,
Dincis the inner distance of a class C representing the average distance of
the class from all its internal entities, and
Doutc is the outer distance of a class C representing the average distance
of the class from all external entities.

The lower the value of this metric is, the better the placement of
entities. In a way, the numerator expresses interclass coupling
(which should be minimized) and the denominator expresses in-
tra-class cohesion (which should be maximized). Therefore, Enti-
ty Placement can perfectly serve as a fitness function for behavior
and state allocation. A global measure of how well entities have
been placed in classes can be obtained as follows:

. entitiese C;
EntityPlacementsygiem = ZQ

EntityPlacement,.
3 lall entitieg Y e (4)

Entity Placement is an additively separable function since each
term depends only on one class. This feature facilitates its recal-
culation on system refactoring and makes it most appropriate to
be used as a fitness function.

4.3 Implemented Algorithms

Search-Based Software Engineering has exploited a large variety
of search algorithms with a particular preference on Genetic Al-
gorithms. Since we have used GAs in a previous work [5], we
now opted for the local search algorithms: (a) Hill Climbing [28],
(b) Simulated Annealing [28], and (c) Tabu Search [14], [28]. The
reason for opting for these rather old but very-well studied algo-
rithms is that they are sufficient for single-objective optimization,
whereas for multi-objective optimization newer algorithms such
as NSGA-11 and MOEA/D should be investigated.

Any search algorithm has a number of parameters that govern its
operation and have a large impact on its performance. As a result,
systematic parameter tuning is required to maximize the quality
of solutions [3]. Since it is not possible to test the performance of
the selected algorithms for all possible parameter combinations,
we employed the Response Surface Methodology (RSM) [23] to
find the best tuning. Response Surface Methodology is a collec-
tion of statistical and mathematical techniques used in the crea-
tion of a functional relationship between a dependent variable v,
and one or more independent (input or process) variables
(X1,X2,..., Xi). For every configuration we executed each algorithm
30 times and noted the average of the optimum solution [3]. After
the completion of data collection for all configurations we have
built second order interaction models by using the RSM package
of the R programming language. Table 2 presents the parameter
values that tune each algorithm to the optimum configuration, as
they result from the second order RSM model. We should notice
that Hill Climbing does not involve parameters that need configu-
ration and therefore has not been included in the RSM analysis.

Table 2: Parameter setup for the employed algorithms

Parameters and selected configuration

Algorithm Acc. Ratio | Cool. Rate | Term. Criterion
Simulated Annealing 20% 40% 3
Tabu Tenure Term. Criterion
5 * sgrt(size) 3,000
(1..5) * sqrt(size) 3,000

Tabu Search
Tabu Dynamic

5. PROPOSED TOOL

The proposed approach has been implemented as an Eclipse
plugin named JCaliper. The plugin is capable of analyzing an
existing Java project, extracting the corresponding TD principal

and suggesting a feasible TD repayment strategy (i.e. a list of
refactoring steps). The current version of the tool does not pro-
ceed with the application of the proposed refactorings. The tool
and the corresponding source code are publicly available?.

All search algorithms have been implemented from scratch and
each one is available in the form of an API. Currently, the tool
offers the possibility to use Hill Climbing (Steepest-Ascent and
First-Choice variants), Simulated Annealing and Tabu Search
(with static and dynamic tenure). The tool employs Factory, Pro-
totype, Singleton, Bridge, Composite, Flyweight and Strategy
GoF design patterns [12] to increase the extensibility of the ap-
proach. JCaliper also examines the feasibility of entity move-
ments among classes. In other words, before a move is consid-
ered, the tool investigates whether the corresponding prerequisites
are satisfied. There are two types of restrictions: prohibited entity
moves and prohibited destinations. Each entity contains an attrib-
ute ‘movable’ which dictates whether the entity can be moved at
all. Prohibited destinations are represented as a set of ‘Forbidden
Classmates’ for each entity. The restrictions which are considered
in JCaliper are shown in Table 3.

Beyond these restrictions, JCaliper also treats some of the entities
as a single unit. For example, accessor methods (getters and set-
ters) are conceptually integrated with a corresponding attribute.
Such methods should not be separated from the field that they
access. In the implementation of JCaliper, attributes and the asso-
ciated accessor methods are treated as a single entity which can
be moved around the classes. The implementation is based on the
Composite design pattern [12] which enables the handling of leaf
entities as well as of composite entities in a uniform manner.

Table 3: Restrictions in Entity Movements

Compilation related

Method to be moved contains super method invocations | immovable method

The target class for a entity move is an interface interfaces prohibited

Method to be moved is a constructor immovable method

Behavior related

Method to be moved is synchronized immovable method

The source class for a entity move is a superclass immovable entity

Method to be moved is abstract immovable method

Entity to be moved belongs to an abstract class immovable entity

The target class for an entity move is abstract classes prohibited

Quality related

The source class does not 1-to-1 relate to target class | classes prohibited

Although so far only Move Method and Move Attribute refactor-
ings have been discussed, JCaliper can suggest also other types of
refactorings. For example, if methods and attributes are suggested
to be moved to a new (non-existing) class, an Extract Class refac-
toring is proposed. Similarly, if the search algorithm extracts a
solution where entities from several classes are placed in the same
partition leaving the original classes empty, an Inline Class refac-
toring is suggested. With respect to Inheritance, the current im-
plementation prohibits moves along a hierarchy. If this restriction
is relaxed, Pull Up and Push Down (method/field) refactorings
can be suggested as well.

2 http://se.uom.gr/index.php/projects/jcaliper/

6. CASE STUDY DESIGN

In this section, we present a case study design with two goals: (a)
evaluate the validity of the proposed method, by examining if its
application can lead to meaningful refactoring (i.e., TD repay-
ment) opportunities, and (b) investigate if the distance between a
given system and its optimum one (i.e., TD principal) can be ef-
fectively applied to assess its evolution. We acknowledge the fact
that TD is a far more multifaceted phenomenon than just coupling
and cohesion; this study serves as an illustration of the method.
We note that the proposed approach can be performed with any
fitness function that captures TD aspects, or can drive TD man-
agement in a more holistic way.

Regarding goal-a, we apply the proposed process in 6 OSS sys-
tems and calculate the benefit in terms of fitness function, using
all algorithms that we have implemented. Regarding goal-b, the
change of this distance over successive versions provides a meas-
ure of how well the design adheres to established principles. The
advantage of this approach lays in the fact that software ageing or
improvement is not determined based on metric thresholds, which
wouldn’t be fair for the evaluation of different versions with dif-
ferent characteristics, but in an objective and reliable manner. In
other words, for each version it is estimated where the design
‘could have been’ in the best case and the effort to move the cur-
rent design to the optimal. The study has been designed and re-
ported according to the guidelines of Runeson et al. [27].

6.1 Research Objectives and Research Questions
Given the aforementioned goals, we have set two research ques-
tions. The first is related to the efficiency of the used algorithms,
and the second with the presence of any trends in the evolution of
quality from that particular perspective. As part of this investiga-
tion, we check whether these trends (if any) are related to the
growth rate of the examined system, since maintaining a quality
level might depend on the maintenance effort. The corresponding
research questions are formulated as follows:

RQi1: Which of the algorithms available in the proposed ap-
proach is more efficient for TD repayment?

RQg2: Is there any trend in the evolution of quality expressed by
TD principal; and is this trend related to system growth?

6.2 Case and Units of Analysis

As subjects of our study we have used 6 OSS projects. The se-
lected projects have been chosen based on the following criteria:
(a) source code should be publicly available; (b) source code
should be written in Java since the developed Eclipse plugin ana-
lyzes currently Java code; (c) at least 10 versions of the projects
should be available; and (d) projects should have been used in the
context of software evolution analysis in other studies as well.
Information on the selected projects is outlined in Table 4.

Table 4: Selected projects for Software Evolution Analysis

Project Description # Versions
JEdit Programmer's text editor 21
JFlex Lexical analyzer generator for Java 14
JFreeChart | Java chart library 31
JHotDraw | Java GUI framework for Graphics 16

JUnit Framework for repeatable tests. 19
JDeodorant | Code smell identification plugin 10

6.3 Data Collection

The analysis of successive versions employs two measures: (a)
the normalized Fitness Value Distance (D), and (b) the normal-
ized Number of Refactorings (NoR). The Fitness Value Distance
refers to the absolute difference between the values of fitness
function of version i and the corresponding optimum system:

Di :‘ fl - inpt (5)

where:

fi s the fitness function value for the system in version i

fiort is the fitness function value for the corresponding optimum
system in version i.

Since the values of this measure are not normalized, direct com-
parison among different versions would be misleading. Normali-
zation can be achieved as follows ensuring a range of [0..1]:

B =— ©)

fiopt

The Number of Refactorings (NoRi) is the number of required
Move Method and Move Field refactoring applications [11] to
transform the system in version i to the corresponding optimum
system. This measure, although abstract, since the application of
refactoring needs to consider various conceptual parameters, is a
relative indicator of the amount of effort that needs to be spent on
perfecting each version. If optimization in terms of fitness func-
tion was the only maintenance goal, it can be considered as an
estimate of the technical debt present at each version. Since the
number of required refactorings is dependent on the system size,
to provide a level of normalization we calculate the normalized
NoR as follows:

/__ NOR;

= 7
' Hentities)

6.4 Data Analysis

To study the aforementioned research questions, we performed
statistical analysis including Descriptive Statistics, Trend Test,
Slope Estimation and Correlation Analysis, as shown in Table 5.

Table 5: Data Analysis per Research Question

RQs Variables Analysis
RQ Distance Descriptive Statistics
Growtﬁ Rate Trend Test
RQ, D; Slope estimation
—
NoR Correlation Analysis

For answering RQ1, we are executing the method for each algo-
rithm, and capture the distance that each algorithm achieves (i.e.,
a proxy of TD principal). Given the fact that all algorithms start
from the same actual fitness function values, the distance is a
measure of the improvement that the application of the algorithm
has provided. For this analysis descriptive statistics are provided.

For answering RQz, the goal is to examine if there is a trend in the
evolution of the two metrics that express quality and if so, to
quantify this trend in comparable numbers. To determine if a
trend is present in the evolution of a metric we employed linear

regression and the Mann — Kendall trend test. Linear regression is
considered a robust modeling tool. However, to consider the re-
sults of a trend test based on linear regression as valid, a number
of preconditions have to be satisfied, such as that no significant
outliers exist, observations be independent, homoscedasticity and
normal distribution of residuals. In case the assumptions do not
hold, a nonparametric test which can provide reliable results is the
Mann — Kendall trend test. When according to the Mann — Ken-
dall test a trend is clearly evident, i.e. the null hypothesis can be
rejected, the Theil — Sen Estimator was used to calculate the slope
of the fitted trend-line. The slope obtained by the Theil — Sen
Estimator is the median slope among all lines through all pairs of
points in the dataset. To enable the comparison of slope steepness
among projects, slopes should be scale independent. To this end,
we performed the trend test analysis (either linear regression or
Mann — Kendall trend test) on a normalized version of the origi-
nal dataset. In particular, each value of an examined time series
was divided by the maximum value in the time series yielding a
normalized value in the range [0..1] exhibiting the same slope as
the original dataset. Additionally, as part of answering this re-
search question, we examine if there is a correlation between TD
principal (as captured by the distance between the actual and the
optimum design) and the growth rate. A high, positive and statis-
tically significant coefficient implies that the evolution of the
distance between the actual and the optimum design follows the
trend of the growth rate. In other words, when the system grows
in size the quality deteriorates.

7. RESULTS

Efficiency of algorithms (RQ:1). In RQ1 we explored which of the
offered algorithms is more efficient, both in terms of TD repay-
ment (i.e., the achieved quality of solutions as measured by the
decrease in the distance between the obtained solution and the
corresponding optimum one) as well as in terms of the required
execution time. The termination criteria for the algorithms are as
follow: (a) Hill Climbing—reach a local optimum; (b) Tabu
Search—no improvement last 3,000 iterations; and (c) Simulated
Annealing—no improvement after 3 levels.

Table 6: Quality of solutions for the employed algorithms

Project SA TS_DYN | TS HC_FC | HC_ST
JDeodorant 05 15.5% | 16.2% 15.6% | 11.8% 12.5%
JDeodorant 07 14.9% | 14.1% 14.2% | 11.6% 11.9%
JDeodorant 10 13.7% | 12.7% 12.6% | 9.5% 9.3%
JEdit 3.0 14.9% | 14.9% 14.2% | 10.4% 10.3%
JEdit 4.0 14.3% | 15.4% 13.4% | 9.8% 9.6%
JFlex 1.3 13.4% | 12.6% 13.3% | 9.6% 9.6%
JFlex 1.3.5 14.1% | 13.0% 16.1% | 9.6% 9.3%
JFlex 1.4.3 16.8% | 15.5% 16.0% | 12.6% 12.2%
JFreechart 0.8.0 8.5% 8.3% 6.7% 3.9% 3.9%
JFreechart 1.0.0 7.8% 7.9% 7.9% 4.7% 4.7%
JHotdraw 5.2 9.3% | 8.6% 8.8% 6.0% 6.0%
JUnit 3.4 17.7% | 17.0% 17.4% | 10.2% 10.3%
AVG Improvement | 14% 13% 13% 8% 9%

SA: Simulated Annealing, TS: Tabu Search, TS_DYN: Tabu Search - dynamic tenure,
HC_FC: Hill Climbing - First-Choice, HC_ST: Hill Climbing - Steepest-Ascent

Regarding efficient TD repayment, we examine the optimum
fitness function value for each of the algorithms. For the evalua-

tion of efficiency we have compared the improvement that each
algorithm offered to each problem. The results are shown in Table
6. The percentage of improvement is extracted from the values of
the fitness function. The cell corresponding to the algorithm offer-
ing the maximum improvement for each project is shaded. Over-
all results are shown in the bottom row of Table 6. We note that
since the results of this study are based on the optimization of
only coupling and cohesion, they only map to one viewpoint of
the total TD, i.e., the one related to modularity [30]. Nevertheless,
according to Skiada et al. [30], modularity metrics are an accurate
assessor of the total TD, as expressed by SonarQube.

In terms of quality of the solutions, it can be observed that Simu-
lated Annealing followed by Dynamic Tabu Search offer the best
results. Moreover, Hill Climbing variants are insufficient in terms
of the obtained quality of solutions. To perform a systematic
comparison we conducted a Wilcoxon signed-rank test. The mean
difference of the obtained improvement over the actual system
(initial state) is shown in Table 7 for each pair of algorithms. For
example, the top-left cell indicates that Simulated Annealing of-
fers on average 0.49% larger improvement than the Tabu Search,
which according to Wilcoxon signed-rank test is statistically sig-
nificant (Z = -2.062, p<0.05). Based on these results, Simulated
Annealing consistently achieves a better improvement than its
competitors. However, the benefit of using Simulated Annealing
over Tabu Search is rather limited considering the significantly
larger execution time as it will be shown next.

Table 7: Pairwise comparisons between algorithms

TS TS DYN HC HC ST
SA Mean Diff| 499 0.50% 5.49% 451%
z 2.062" | -2.132" | -3.18™ | -3.18"
s Mean Diff 0.01% 4.99% 4.01%
z 0078 | -318" | -318"
Mean Diff 4.98% 4.009
TS DYN %% 00%
— z -3.18 -3.18
Mean Diff N
He 0.98%
z -035

Z = Wilcoxon test Z-statistic, * p<0.05 ** p<0.01
To assess the performance of the proposed approach and enable a
comparison among the algorithms one could measure the required
execution time (in secs). However, given that the total execution
time depends heavily on the number of iterations, which in many
cases are performed without offering any further improvement,
execution times might be misleading. For example, Tabu Search
might reach an optimum solution at a particular time point t and
then iterate until it satisfies the set termination criteria at time
point t+%. The additional elapsed time k appears as time spent to
find a solution, whereas it is redundant in the sense that with a
different termination criterion the algorithm could have stopped
earlier. To avoid such pitfalls in the interpretation of execution
time we opted for the more appropriate convergence plots, which
show the achieved fitness value (Entity Placement) over succes-
sive iterations of each algorithm. These plots apart from indicat-
ing which algorithm finds the best solution, also highlight how
early algorithms reach their best solutions. The convergence plots
for one version of each examined project are shown in Fig. 4.

As it can be observed, in all projects the dynamic version of Tabu
Search achieves results that are almost as good as the results ob-

tained by Simulated Annealing (and in some cases even better),
but converges much more rapidly. It should be noted that the
termination criterion for Tabu Search is a number of iterations
which do not yield any improvement in the quality of solutions.
Therefore, they stop a specified number of iterations after the
time point at which they reach an optimum value. This is the rea-
son for which execution continues beyond a local optimum. On
the other hand, Hill Climbing terminates whenever it reaches a
local optimum or in other words, when it starts moving to states
of lower quality. As it becomes evident it is almost always stuck
in local optima. Simulated Annealing terminates when it does not
observe any improvement in a number of consecutive temperature
levels, leading to a very good exploration of the solutions land-
scape. The overshoot in the curves for Simulated Annealing (i.e.
the moves towards worse solutions) is related to the fact that the
initial state is not a random one, as it would be the case in other
problems, but the actual, existing design of the software system.
Aot 0,89
TN SN
{ N\

L 085
2

27 et \ SA g HOST
2 3 £0,83
£) HC FC
§%% Shere g Ysa
zos1 % < 081 Y
z 8 z
E 0,79 ';! N\ £07
\
077 % _TABUDN N 077
0,75 R4 ‘
o TABU
N A e A
Iterations
JDeodorant 10 JEdit 4.0
09 ,m*#"\
!
] 0,89
! W\‘uv\‘ ,/\-’\‘\\
€ i
g gHesT \ 087 A
g SHCFC SA § HC ST SA
z 08 § A P 9085 \HCFC >
z I \ 2
Z . TABU DYN iy z
0,75 Y \ -

| A RO, ',

TABU

“.‘\ SA
HC ST Wh #
% ¥ Here M'w‘\"\

Entity Placement

i
'\c TABU DYN ?
07 Ly i
$ Attt N

Iterations Iterat

JHotDraw 7.2 JUnit 4.10
Figure 4: Convergence of Examined Algorithms

The fact that the initial state for the search process is a design that
reflects, despite its potential inefficiencies, the experience of the
developers, is also the reason for which Simulated Annealing and
Tabu Search achieve comparable results. If the search process had
started from random allocations of entities to classes, Simulated
Annealing would probably exhibit superior performance. The
reason is that Simulated Annealing, in its early stages, operates as
a “random walk” and therefore might benefit to a very small ex-

tent from a favorable starting point. Simulated Annealing would
achieve similar results even if we had started from a different
initial design. On the contrary, Tabu Search, despite its ‘explora-
tive’ capabilities offered by a large tenure, is constrained to the
exploration of the area around the starting point. Thus, the results
achieved by Tabu Search depend heavily on the initial design.

It is worth mentioning that the dynamic version of Tabu, especial-
ly for small systems such as JFlex and JUnit, exhibits two pat-
terns: a) a number of ripples which can be attributed to the exist-
ence of a list of prohibited moves which often means that the
algorithm attempts to reach the same local optimum but from
different trajectories and b) a departure from a local optimum
towards worse solutions which can be attributed to the tenure.
That is, entities which have to be further relocated, are not al-
lowed to be moved and thus the algorithm moves well-placed
entities, leading to designs of inferior quality.

Considering that the Dynamic Tabu search: (a) yields solutions
which are nearly as good as the optimum solutions provided by
Simulated Annealing and (b) converges more rapidly than Simu-
lated Annealing; for the case study on software evolution analysis
we have selected as a rational choice the Dynamic Tabu Search.

Evolution Trends (RQ2). To investigate whether a trend exists in
the evolution of the selected variables we performed the nonpar-
ametric trend test (Mann-Kendall). For slope values we report the
Theil-Sen estimator and its significance in Table 8. Based on the
fact that a single trend is not expected across the whole project
evolution, it wouldn't make sense to attempt to extract a single
trend for the entire evolution. Thus, we list slopes for each dis-
tinct period along project evolution.

Table 8: Trend Test Results

Project Versions SJope _
From To Growth D; NoR
it 23-42 007** | 0005**| 0005
43-50 0.003** | 0.005** | 0.003**
5260 0.202 0.038 0.004
JHotDraw == 0.067* | 0.000 0.001
ont 34381 0.033** | 0.010 0.021
40-410 0.053** | 0,018 0.005
oot | 0560920 007+ | 0.002 0.007%
0021-1014 | 0021** | 003 * 0.000
lox |_L3-L4pres | 015~ | 0008 0.005°
14 pred—_143| 0007 011" 0.007
JDeodor- | 1(001)—5(232) | 0.5 | 0.055* 0.061
ant | 6(244)—10(343) | 007 0.03 0.011*

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level

From Table 8 it can be concluded that the growth rate exhibits
always a statistically significant trend. This is reasonable since the
growth rate reflects the constant evolution in alignment to the
sixth law of Lehman which stipulates that "the size of a system
continuously grows over time™" [18]. On the other hand, for TD
principal and the number of refactorings (i.e., discrete TD items
repayment), clear trends can be observed in particular periods of
evolution in some of the projects only. For 4 projects there is a
statistically significant trend for at least one of the two variables
and at least of the two periods. For the case where a trend is pre-
sent, it adheres to the previously-made observations.

Table 9: Correlation Analysis

Project \ersions Correlations
From To Growthvs D | Growth vs NOR
it 23-42 0.849% 0,656
43-50 0.836* 0.695
52-60 0975 0598
JHoDraw =578 0.199 0.467
oni 34381 0223 0.38
40-410 0.805% 0.712%
05.6-009.20 0.138 0.726%*
JFreeChart = o 1014 0.817%* 0.239
o 1314 pre3 0.089* 0.981%
14 prel43 0.641 0.932%%
Deodorant 001232 0.944% 0.991%
244343 0.949% 0.855

* Correlation is significant at the 0.05 level ~ ** Correlation is significant at the 0.01 level

To study whether the evolution of quality is correlated to the evo-
lution of the growth rate, we performed correlation analysis (see
Table 9). Table 9 validates the aforementioned remarks. In gen-
eral there is a statistically significant correlation between growth
rate and TD aspects (i.e., principal and number of TD item re-
payment) in 67% of the cases. For projects JEdit, JFreeChart and
JDeodorant the evolution of quality as expressed by both varia-
bles, deteriorates in the period of faster growth rate as expressed
by positive correlation coefficients. On the other hand, quality
improves in the period of weak or moderate growth rate. The
same observation holds for JFlex with the exception that in the
period of weak growth the distance measure does not have a
negative correlation to the growth rate, but a lower one compared
to the period of fast growth. For JHotDraw and JUnit this evolu-
tion pattern is not statistically verified, confirming the exceptional
development practices for these projects.

Considering the aforementioned results, we claim that TD
measures, i.e., TD principal and number of TD repayment ac-
tions, as obtained by JCaliper are correlated to the growth rate of
the system. Therefore, they obey to the corresponding law of soft-
ware evolution.

8. DISCUSSION

In this section we discuss the main findings of this paper. First, by
answering RQ1, we can claim that the proposed approach and tool
can lead to an efficient TD repayment strategy, in the sense that
they are able to propose a series of refactorings that reduced TD
principal. Although for this study as a proxy of TD, only software
modularity has been considered (this is an obvious threat to valid-
ity—see Section 9), we note that in many studies (e.g., [20] and
[30]) it has been observed that TD is highly correlated with
modularity metrics. Additionally, by answering RQz, we have
validated that TD aspects (i.e., principal and number of refactor-
ings) as quantified in this study are correlated to system growth
and therefore obey in software evolution laws. By focusing on a
project-by-project analysis, interesting discussions have arisen:

e For JEdit, JFreeChart, JFlex, and JDeodorant periods of
rapid development exhibit increased rates of software ageing.
For these projects, the period with the steepest increase in the
number of entities or classes exhibits a deterioration of quali-
ty (reflected in an increasing TD principal, as well as an in-

creasing number of required refactorings. Furthermore, the in-
itial period is the one in which a decreasing quality can be ob-
served: these systems appear to have a less mature and fast
changing initial phase, while after years of development it be-
comes possible to achieve a stabilization or even improve-
ment of quality. During one particular transition from one re-
lease to another one (which might last for several months or
years) the value of the fitness function is improved (actual de-
sign moves closer to the optimum one). Although further re-
search is required to investigate the cause of this improve-
ment, the abrupt change in the TD principal could be attribut-
ed to refactoring application or architectural re-design.

e A noteworthy exception is project JHotDraw which does not
exhibit ageing phenomena even when development is per-
formed at a fast rate. Given that JHotDraw is known for the
wide adoption of design patterns and application of design
principles this might be an indication that proper software en-
gineering can prevent software ageing.

e A second exception is project JUnit where the initial period of
development exhibits a faster rate of design quality degrada-
tion compared to the second period, despite the fact that in the
initial period the rate of system size increase is somehow
lower. This could be attributed to the initial turbulence in the
system architecture.

The findings presented in this study can be useful to both re-
searchers and practitioners. On the one hand, practitioners are
suggested to use the proposed tool: (a) as a refactoring-support
tool if they are interested in optimizing software modularity, and
(b) as a proxy of the TD introduced into their systems. We believe
that the nature of the tool (i.e., an Eclipse plug-in) can substantial-
ly boost its applicability in practice. On the other hand, research-
ers are provided with some interesting implications and future
work opportunities. First, they are provided with a tool for effi-
cient technical debt management, which they need to further vali-
date in an industrial setting. Second, since the study validates the
appropriateness of SBSE in technical debt management, we sug-
gest researchers to further explore this research direction. Finally,
we suggest the adoption of the high-level rationale of the pro-
posed approach with different fitness functions that cover TD
management in a more holistic manner.

9. THREATS TO VALIDITY - LIMITATIONS

The proposed approach can be employed to assess the evolution
of quality over successive software versions. However, it should
be stressed that the notion of quality is restricted to the particular
metric that is used as fitness function in the applied search algo-
rithms. For example, the Entity Placement metric that has been
used for the case study reflects only the decisions in the design
related to coupling and cohesion and unavoidably overlooks other
aspects of quality which might be of interest. Nevertheless, other
metrics can also be investigated either in the context of separate
analyses or by attempting a multi-objective optimization. In any
case, it should be borne in mind that metrics-based assessment of
design properties captures only specific aspects of quality and can
never entirely substitute expert judgment and experience. This has
been stressed by works that study the ability of automated refac-
toring suggestions (see Bavota et al. [6]).

With respect to the empirical application, the most obvious threat
is the one to the external validity of the conclusions. Unavoidably,
any observations which have been made regarding the relation of
the growth rate and the evolution of quality reflect the tendencies
in these particular projects. With respect to the application of
search algorithms to derive the optimum design, an internal threat
to validity stems from the fact that parameter settings for the con-
figuration of each algorithm affect its performance [33]. Howev-
er, as already pointed out, the main goal of the approach is not to
compare local search algorithms in terms of their efficiency.
Moreover, we have applied RSM to fine-tune algorithms.

Beyond these threats, restructuring an object-oriented system by
means of optimization should consider side effects. For example,
the proposed approach does not address changes that should be
carried out in the accompanying documentation (e.g. traceability
matrices) or unit tests. Obviously, changes in the public interfaces
of system classes might render design documents, code comments
and test cases invalid posing very interesting research challenges.
Finally, we should stress that such types of optimization tech-
niques are inherently limited since only design artifacts are con-
sidered as parameters of the optimization. Developers are aware
of the fact that software architectures reflect people’s choices,
styles and constraints and rearranging classes and methods might
break such conceptual assumptions. Therefore, we should bear in
mind that automated search-space optimization for software im-
provement can only yield suggestions to the development team.

10. CONCLUSIONS

The problem of optimizing an OO design can be efficiently treat-
ed as a search-space optimization task. In this paper we employed
SBSE as a means of assessing TD principal (i.e., the distance
between the actual design and an optimum as derived by search-
space optimization) and proposing a set of refactorings (i.e., a TD
repayment strategy) to reach it. To facilitate the analysis of large
systems several optimizations have been applied on top of well-
known search algorithms. The application on 6 OSS systems re-
vealed that there is a correlation between the growth rate and the
evolution of quality. In general, whenever the number of entities
and classes increases at a fast pace, quality degradation can be
observed. However, often design teams manage to add functional-
ity at a fast pace without exhibiting signs of software ageing.

ACKNOWLEDGMENTS

Work reported in this paper has received funding from the Euro-
pean Union Horizon 2020 research and innovation programme
under grant agreement No. 780572 (project: SDK4ED).

REFERENCES

[1] N. S. R. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, F. Shull,
and C. Seaman, “Identification and management of technical debt: A sys-
tematic mapping study,” Inf.Softw.Technol., vol.70, pp.100-121, Feb. 2016.

[2] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, P.
Abrahamsson, A. Martini, U. Zdun, and K. Systa, “The Perception of Tech-
nical Debt in the Embedded Systems Domain: An Industrial Case Study,”
in 2016 IEEE 8th International Workshop on Managing Technical Debt
(MTD), Raleigh, NC, USA, 2016, pp. 9-16.

[3] A. Arcuri and G. Fraser, “On Parameter Tuning in Search Based Software
Engineering,” in Search Based Software Engineering, M. B. Cohen and M.
0. Cinnéide, Eds. Springer Berlin Heidelberg, 2011, pp. 33-47.

[

[l

[6]

[]

(8l
[0
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]

[29]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, and P.
Avgeriou, “A mapping study on design-time quality attributes and metrics,”
J. Syst. Softw., vol. 127, pp. 52-77, May 2017.

M. Basdavanos and A. Chatzigeorgiou, “Placement of Entities in Object-
Oriented Systems by Means of a Single-Objective Genetic Algorithm,” in
2010 Fifth International Conference on Software Engineering Advances,
Nice, France, 2010, pp. 70-75.

G. Bavota, F. Carnevale, A. D. Lucia, M. D. Penta, and R. Oliveto, “Putting
the Developer in-the-Loop: An Interactive GA for Software Re-
modularization,” in Search Based Software Engineering, G. Fraser and J. T.
de Souza, Eds. Springer Berlin Heidelberg, 2012, pp. 75-89.

G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and
K. A. Houston, Object-Oriented Analysis and Design with Applications, 3
edition. Upper Saddle River, NJ: Addison-Wesley Professional, 2007.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476493, Jun. 1994.

B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an
application’s technical debt,” IEEE Softw., no. 6, pp. 34-42, 2012.

E. Falkenauer, Genetic Algorithms and Grouping Problems, 1 edition.
Chichester ; New York: Wiley, 1998.

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, and E. Gamma,
Refactoring: Improving the Design of Existing Code, 1 edition. Reading,
MA: Addison-Wesley Professional, 1999.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch, Design Pat-
terns: Elements of Reusable Object-Oriented Software, 1 edition. Reading,
Mass: Addison-Wesley Professional, 1994.

C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software engi-
neering. Upper Saddle River, N.J.: Prentice Hall, 2003.

F. Glover and M. Laguna, “Tabu Search,” in Handbook of Combinatorial
Optimization: Volumel-3, D.-Z. Du and P. M. Pardalos, Eds. Boston, MA:
Springer US, 1999, pp. 2093-2229.

M. Harman and J. Clark, “Metrics Are Fitness Functions Too,” in Proceed-
ings of the Software Metrics, 10th International Symposium, USA, 2004.

D. E. Knuth, The Art of Computer Programming, 1 edition. Amsterdam:
Addison-Wesley Professional, 2011.

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: from metaphor to
theory and practice,” leee Softw., no. 6, pp. 18-21, 2012.

M. M. Lehman, “Laws of software evolution revisited,” in Software Pro-
cess Technology, 1996, pp. 108-124.

J. Letouzey and T. Coq, “The SQALE Analysis Model: An Analysis Model
Compliant with the Representation Condition for Assessing the Quality of
Software Source Code,” in 2010 Second International Conference on Ad-
vances in System Testing and Validation Lifecycle, 2010, pp. 43-48.

Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An empirical
investigation of modularity metrics for indicating architectural technical
debt,” in Proceedings of the 10th international ACM Sigsoft conference on
Quality of software architectures, 2014, pp. 119-128.

R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM J. Res. Dev., vol. 56, no. 5, pp. 9-1, 2012.

R. C. Martin, Agile software development: principles, patterns, and prac-
tices. Upper Saddle River, N.J.: Prentice Hall, 2003.

R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization Using Designed
Experiments. John Wiley & Sons, 2009.

R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a
metric for managing architectural technical debt,” in Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on, 2012, pp. 91-100.

M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring: an empirical
study,” J. Softw.Maint.Evol.Res.Pract, vol.20, no.5, pp.345-364, Sep. 2008.
A. J. Riel, Object-Oriented Design Heuristics, 1 edition. Reading, Mass.:
Addison-Wesley Professional, 1996.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples, 1 edition. Wiley, 2012.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3
edition. Upper Saddle River: Pearson, 2009.

C. L. Simons and I. C. Parmee, “Elegant Object-Oriented Software Design
via Interactive, Evolutionary Computation,” IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev., vol. 42, no. 6, pp. 1797-1805, Nov. 2012.

P. Skiada, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, and I.
Stamelos, “Exploring the Relationship between Software Modularity and
Technical Debt,” in 4th Conference on Software Engineering and Advanced
Applications (SEAA) 2018.

N. Tsantalis and A. Chatzigeorgiou, “Identification of Move Method Refac-
toring Opportunities,” IEEE Trans Softw Eng, vol. 35, May 2009.

H. van Vliet, Software Engineering: Principles and Practice, 3 edition.
Chichester, England ; Hoboken, NJ: Wiley, 2008.

S. Wang, S. Ali, and A. Gotlieb, “Random-Weighted Search-Based Multi-
objective Optimization Revisited,” in Search-Based Software Engineering,
2014, pp. 199-214.

