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ABSTRACT

A GitHub profile is becoming an essential part of a developer’s re-
sume enabling HR departments to extract someone’s expertise,
through automated analysis of his/her contribution to open-source
projects. At the same time, having clear insights on the technologies
used in a project can be very beneficial for resource allocation and
project maintainability planning. In the literature, one can identify
various approaches for identifying expertise on programming lan-
guages, based on the projects that developer contributed to. In this
paper, we move one step further and introduce an approach (ac-
companied by a tool) to identify low-level expertise on particular
software frameworks and technologies apart, relying solely on
GitHub data, using the GitHub API and Natural Language Pro-
cessing (NLP)—using the Microsoft Language Understanding Intelli-
gent Service (LUIS). In particular, we developed an NLP model in
LUIS for named-entity recognition for three (3) NET technologies
and two (2) front-end frameworks. Our analysis is based upon spe-
cific commit contents, in terms of the exact code chunks, which the
committer added or changed. We evaluate the precision, recall and
f-measure for the derived technologies/frameworks, by conducting a
batch test in LUIS and report the results. The proposed approach is
demonstrated through a fully functional web application named
RepoSkillMiner.

Tool Links:
Video, Code Repo, Application, Validation Dataset
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1. INTRODUCTION

Contemporary software development demands breadth and in-
depth knowledge for a tremendously large set of technologies, tools
and practices [1][2]. The challenge of retaining a competitive devel-
opment team becomes even more pronounced considering the rapid
evolution of software technologies and the continuous emergence of
novel programming languages, frameworks and libraries. Consider-
ing that developers’ skills also evolve over time, project managers
face the challenging task of tracking the kind and extent of
knowledge that exists within the development team, to effi-
ciently map people to tasks. Quite often, a particular technology
has been introduced into a project following rising trends, only to
find out a few years later that few people in the team (or even none)
still hold the corresponding knowledge to maintain the correspond-
ing parts of the codebase. At the same time identifying develop-
ers’ expertise and skills is a topic of high importance among
recruiters and human resource departments of software com-
panies. With the plethora of frameworks and technologies involved
in software engineering (e.g., front-end technologies) a stated set of
known skills is not sufficient to perform efficient hiring. Social plat-
forms such as LinkedIn are gaining ground and constitute a major
field for IT recruiters to find ideal candidates, but the information
posted on such platforms may be inaccurate, out of date and subjec-
tive. To this end, identifying expertise from artifacts can be a useful
alternative for organizations, not only for hiring purposes, but also
for managing their existing resources, maintaining and de-
veloping their skillset and monitoring any potential skill
shortage.

Artifact-based expertise identification offers a promising alternative
to address such challenges. Software repositories such as GitHub or
BitBucket can provide objective insights for an experienced tech-
nical eye. However, parsing through repositories to track individual
contributions and then analyzing commits to derive the particular
technologies that a developer is familiar with, is a tedious process
urging for automation. At the same time, similar approaches are
needed to automatically analyze the technologies used over time
within a particular project and the diffusion of each technology
within code. Related literature on identifying expertise from soft-
ware development platforms, focuses on the programming lan-
guages used in each project [3][4][8]. However, considering only
the dominant language of a project as an identifier can often lead to
inaccurate results for today’s multi-language projects. Thus, infor-
mation about the multiple frameworks and technologies used in the
context of a language is slipping under the radar.

In this paper we propose an approach (and tool) to advance the
state-of-the-art on mining skill-related information from coding
platforms with a hybrid approach aided by NLP. In particular, first
we obtain an insight based on the files contained in each commit;
and next we apply NLP on the actual code chunks included in the
commits to identify the use of specific frameworks and technolo-
gies. The outcome of this approach is a report containing all the


mailto:ekourtzanidis@uom.edu.gr
mailto:achat@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
https://youtu.be/E_IeLprGlCc
https://github.com/melkor54248/RepoSkillMiner/
https://repominer.se.uom.gr/
https://1drv.ms/u/s!Ak-X7Vy5IBQ3i_kM4CLWuUg6_UzTsw?e=3lqg5c
https://doi.org/

ASE’20, September 2020, Melbourne, Australia

programming languages, technologies and frameworks per contrib-
utor. To showcase the approach, we developed a web application,
which performs the analysis and visualizes the results. In contrast to
many existing approaches we use live data from GitHub, rather
than relying on pre-existing curated datasets (e.g., GHTorrent)—
increasing the applicability of the approach. The described tool
constitutes our initial effort to develop a comprehensive dashboard
that will provide to project managers an overview of actual technol-
ogies employed in a project as well as detailed reporting on the
skills held by active developers, including the evolution of both over
time. The envisioned platform will enable the early identification of
gaps between people's skills and deployed technologies.

2. RELATED WORK

Relevant studies span across 3 different areas, namely mining soft-
ware repositories, extracting software developer’s expertise, and
Natural Language Processing. Several studies introduce approaches
and methods of extracting expertise from software repositories.
Gousios et al. [3] propose a way to quantify developer’s contribu-
tion by identifying specific developers’ contribution types: e.g., add-
ing code of good / bad quality, commits of new source files or direc-
tories, commits of code that generates / closes bugs and assign dif-
ferent weights to them. Constantinou et al. [4] examined the com-
mit activity from the curated dataset GHTorrent [5] and proposed a
way to extract developers’ expertise in programming languages by
considering the quantity and the continuity of contributions. The
programming language in this case is the project’s dominant lan-
guage as identified by GitHub. In a different approach [6] the same
authors proposed a way to identify contributors’ expertise and roles,
considering their contribution history across projects and technolo-
gies. The technologies are identified by the contents of the READ-
ME file, assuming that this file typically contains description of the
technologies used. Likewise, Greene et al. [7] combined commit
details and readme files to extract similar information. A different
path is followed by Montandon et al. [8], who focus on 3 JavaScript
libraries to evaluate the performance of machine learning classifiers
to predict expertise and to propose a method on clustering feature
data from GitHub. Using NLP techniques on source code is a topic
related mostly with static code analysis [9]. To the best of our
knowledge there is no study about using NLP for expertise identifi-
cation in source code.

3. BACKGROUND INFORMATION

The proposed approach relies on three main pillars: parsing (min-
ing) of software repositories to seek code artifacts for analysis, NLP
that treats code through statistical analysis; and Language Under-
standing to pull out of code the relevant information on the in-
volved technologies.

Mining Software Repositories (MSR) has become an established
field in empirical software engineering, focusing on extracting and
analyzing data drawn from software repositories to reveal useful
relations and information around software products, processes and
people [10]. GitHub is by far the most popular social coding plat-
form and most of the similar research efforts rely on GitHub, as
reference source of data [11]. For the purpose of facilitating mining
and increasing performance, curated datasets such as GHTorrent [5]
and Boa are being maintained by research teams. The availability of
a comprehensive API was one of the key reasons that render
GitHub an appealing source for many software engineering re-
search efforts [14]. However, there are several research studies
pointing out the pitfalls of this process [15].

Natural language processing (NLP) leverages the power of ma-
chine learning and computational linguistics and is concerned with
making computer systems learn the syntax and meaning of human
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language, process and understand the intent of it to perform mean-
ingful tasks [16]. Applying NLP techniques on source code may
sound unnatural, but there is scientific evidence supporting the
validity of the approach. Hindle et al. [17] suggest that program-
ming languages, in theory, are complex, flexible and powerful, but,
“natural” programs that real people actually write, are mostly sim-
ple and rather repetitive; thus they have predictable statistical prop-
erties that can be captured in language models and leveraged for
software engineering tasks. This approach has inspired us to use
NLP on source code for expertise identification instead of crafting
rules so that the proposed approach is scalable, benefit from the
abundance of available data in software repositories to train the
corresponding models and better cope with new situations.
Microsoft’s Language Understanding Intelligent Service
(LUIS) is based on work by Microsoft Research on interactive learn-
ing, and rapid development of language understanding models [18].
According to its creators it aims at enabling software developers to
create cloud-based machine-learning language understanding mod-
els specific to their application domain, without ML expertise [19].
The model creator needs to provide a small set of utterances for
each intent and the LUIS model is trained based on these and after
it’s published it is ready for use. Successful industry applications of
LUIS include information chatbots, commerce chatbots and conver-
sational IoT interfaces [20].

4. PROPOSED APPROACH

The proposed approach can be briefly outlined in the following
steps:

Step 1. Data Collection. We used GitHub’s REST API ver. 3 [21] to
retrieve up-to-date data from GitHub repositories. Given a GitHub
organization or repository we retrieve all commits as well as the
authors of each commit. For every commit we retrieve the files in-
cluded and the actual code chunks for these files. We preferred API
ver. 3, over its successor ver. 4, because although the latest uses
GraphQL, up to now there is no way to retrieve file contents using
this version of the APL

Step 2. Identification of commits’ programming language. For
each retrieved commit we check the files included in the commit
and in particular the file extensions to identify the employed pro-
gramming languages. To do so, we use a slightly modified (removed
duplicates and added a few more file extensions) version of the clas-
sification provided by GitHub Linguist [22], which is the library that
GitHub uses for providing the language distribution information for
the repositories. Both original and the modified classification file are
available onlinel2.

Step 3. Identification of commit technologies with LUIS. We
built a model in LUIS to identify three (3) technologies in the NET
framework domain, namely: (a) Language-Integrated Queries (LINQ)
which are first-class language constructs that allow writing of que-
ries against strongly typed collections of objects; (b) Asynchronous
Programming that allows code in the form of sequential statements
which however executes based on external resource allocation and
according to the order of tasks; and (c) Entity Framework which is
an object-database mapper. Moreover, LUIS is trained to identify
two (2) front-end frameworks, namely: (d) Angular and (e) React.
LUIS needs input utterances (i.e., inputs from the user that the mod-
el needs to interpret) to be provided for each target intent (technol-
ogy/framework) in the training step. We note that an intent corre-
sponds to a purpose or goal expressed in a user's utterance. To train

1 https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
2 hitps://1drv.ms/u/s! Ak-X7Vy5IBQ3i_kwlqLNwVZS9 DO_A?e=Tn00qx
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LUIS to extract intents and entities it is important to capture a varie-
ty of example utterances. Active learning, or the process of continu-
ing to train on new utterances, is essential to machine-learned intel-
ligence that LUIS provides. We have created 98 example utterances
for the 5 intents using existing or slightly altered (mainly altered
variable names) existing samples from the official Microsoft, Angu-
lar and React documentation. An example response from LUIS for
the utterance "var filteredResult = studentList.Where (s
=> s.Age > 12)"is shown in Figure 1.

JSON response from LUIS

"query": "var filteredresult=students.Where(s=>s.Age>12)",
"topScoringlntent": {
intent": "Ling",
"score": ©.6374816

This score signifies the certainity by which the
corresponding intent has been identified.

For example, for the given input, it is highly probable
to imply knowledge of Ling.

Figure 1: Example JSON response

Table 1 displays model statistics for the five (5) target intents (Linq,
Entity Framework, Async Programming, Angular, React), whereas
the scatterplot in Figure 2 shows the distribution of the test results
for Ling. To perform the evaluation, we created a batch test in LUIS
testing platform with 88 code snippets, which are available online3.
Additionally, we note that the model has been exported and is avail-
able online®.

Table 1: Model Statistics

Intent Precision | Recall | F-Measure
Ling 1.00 0.82 0.90
Asynchronous Programming 0.94 0.94 0.94
Entity Framework 1.00 1.00 1.00
Angular 0.92 1.00 0.96
React 1.00 0.83 0.91

True Positive False Positive

False Negative True Negative

Figure 2: Model statistics for entity Linq

3 https://1drv.ms/u/s! Ak-X7Vy5IBO3i kM4CLWuUg6 UzTsw?e=3lqg5¢c
4 https://1drv.ms/u/s! Ak-X7Vy5IBQ3i kLc8sc8wdPU6kLaA?e=NIXM5t
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5. TOOL ARCHITECTURE

Figure 3 presents the architecture of the tool, namely RepoS-
killMiner, consisting of a Blazor WebAssembly application, which
consumes two services: GitHub API and LUIS. The user enters the
search criteria (organization, repositories) to the Blazor WebAssem-
bly app. The Blazor App makes the necessary calls to Github Rest
API to gather the commit data (including authors and code chunks),
processes them and extracts the employed technologies for each
author. Then, it makes the calls to the LUIS services using the data

collected during the previous step.

GitHub
Rest API V3
. -~ . —
User
Blazor App
O
— > On A Y
LuIs

Figure 3: RepoSkillMiner Architecture

6. USAGE SCENARIO

A video demonstrating the functionality of RepoSkillMiner is avail-
able online®. The demonstration begins with the user entering the
name of the GitHub organization to be analyzed in the search field
shown in Figure 4. Next, he/she selects from the dropdown list the
repository he/she wants to include for scanning and specifies that
he/she wants to apply LUIS scanning and clicks the scan button. A
table is populated containing the contributors of the organization
and the technologies they used as shown in Figure 5. By clicking on
the name of any of the contributors two graphs are populated show-
ing the technologies distribution based on the number of commits
for each technology and a detailed list of the technologies as shown
in Figures 6-7.

7. CONCLUSIONS AND FUTURE WORK

RepoSkillMiner is a scalable and easy-to-use web application that
can determine the knowledge (in terms of low-level skills—e.g., the
command of specific programming techniques or frameworks), held
by individual developers in an open-source software project. Since
the tool is still in a prototype phase, the application has some limita-
tions including browser support (Firefox is the only fully supported
one) and API limitations (GitHub API sets a limit to 5000 requests
per hour). We plan to include more detailed visualizations and in-
depth insights from the collected data including the evolution of
project technologies within an organization over time, the designa-
tion of technologies which are “at risk” because of lack of resources,
the cross-tabulation of technologies and people’s skills, etc. Devel-
opers’ experience in terms of commits or years can also be derived
by analyzing a projects’ history. Once the tool is enhanced with the
ability to detect more low-level technologies, we plan to evaluate its

5 https://youtu.be/E IeLprGlCc
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accuracy against the actual skills held by developers in a selected Technologies Distribution
company, using a questionnaire-based study.
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