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Abstract

Change Impact Analysis (CIA) is the process of exploring the tentative effects of a change in other
parts of a system. CIA is considered beneficial in practice, since it reduces cost of maintenance and the
risk of software development failures. In this paper, we present a systematic mapping study that covers
a plethora of CIA methods (by exploring 111 papers), putting special emphasis on how the CIA
phenomenon can be quantified: to be efficiently managed. The results of our study suggest that: (a) the
practical benefits of CIA cover any type of maintenance request (e.g., feature additions, bug fixing) and
can help in reducing relevant cost; (b) CIA quantification relies on four parameters (instability, amount
of change, change proneness, and changeability), whose assessment is supported by various metrics
and predictors; and (c) in this vast research field, there are still some viewpoints that remain unexplored
(e.g., the negative consequences of highly change prone artifacts), whereas others are over-researched
(e.g., quantification of instability based on metrics). Based on our results, we provide: (a) useful
information for practitioners—i.e., the expected benefits of CIA, and a list of CIA-related metrics,
emphasizing on the provision of a detailed interpretation of their relation to CIA; and (b) interesting
future research directions—i.e., over- and under-researched sub-fields of CIA.
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1. Introduction

Change Impact Analysis (CIA) is the process of investigating the undesired consequences of a change
in a software module (Bohner, 1996); and is considered of paramount importance, in the sense that it
aims to reduce the risk of software failure and the maintenance cost.

With respect to the aim of reducing the risk of software development failures, project managers can
invest on effective CIA to mitigate the negative consequences of a change (Aljohani and Qureshi,
2016). In traditional risk management, risks are assessed by estimating two parameters (Boehm, 1991):
the probability of a risk to occur; and the impact that the occurrence of a risk will have. Tailoring this
definition to fit software changes, by considering them as possible risks, the above parameters (namely:
change impact parameters) can be interpreted as follows: (&) the probability of a software artifact to
change; and (b) the effort required for undertaking the change. These parameters can be further
decomposed as follows—parameter a is decomposed to al and aZ2; whereas parameter b is
decomposed to b1 and b2, respectively:

(a1) change proneness, which is the probability of a software artifact to change—e.g., due to bug fixes,

changing requirements (Jaafar et al., 2014);
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(a2) instability, which is the probability of a software artifact to change due to changes in other artifacts
of the system (1SO-9126, 2001)

(b1) amount of change is the extent of changes that are made on a software artifact (Arisholm1999);

(b2) changeability is the ease of performing changes to a software artifact (1S0-9126, 2001).

Additionally, with respect to maintenance cost, CIA can be useful both before and after the application
of the change. Before the application of the change, CIA can be useful for effort estimation. For
example, knowing how many classes will need to be updated is an indicator of maintenance effort
(Haney, 1972)—related to change proneness, amount of change and changeability. After the
application of a change, CIA can be useful for test case prioritization. For instance, being aware of co-
changing requirements is an efficient way to prioritize test cases (Rovegard et al., 2008)—related to
instability. Thus, effective change impact analysis can be an important factor for reducing maintenance
cost, which is often substantial along the software lifecycle—i.e., the total maintenance cost is
estimated to comprise at least 50% of total lifecycle costs (van Vliet, 1993).

To visualize the context of CIA, in Figure 1, we present how the change impact parameters are used
upon a change request. The process starts by receiving a maintenance request, which can be classified
into four different categories: (a) code enhancements; (b) bug fixes; (c) feature requests; and (d)
refactoring suggestions (Palomba et al., 2018). Next, the software developer needs to perform CIA, and
get insights on which classes will need to change (change proneness), which other classes will need to
be co-maintained (instability), and how much effort he/she will need for resolving the corresponding
request (changeability and amount of change). Based on this information, the developer is expected to
apply the change more efficiently, in terms of time required, number of introduced bugs, etc.
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Figure 1: Change Impact Analysis Process

Given the importance of change impact analysis, in this study we aim to provide an overview of the

state-of-the-art on this domain, through conducting a Systematic Mapping Study. The mapping study

has been designed based on three goals, as described below:

(91) Practitioners’ Benefits from CIA: The exploration of how CIA facilitates the application of each
type of change can be potentially useful for practitioners, in the sense that our systematic mapping
study highlights the practical benefits resulted from performing CIA.



(92) CIA Parameters’ Quantification: Additionally, to achieve efficient change management;
practitioners should be equipped with established quantification approaches?. The change impact
parameters can be assessed either directly or indirectly. As direct assessment, we refer to software
metrics or methods that could calculate the aforementioned change impact parameters; whereas,
as indirect assessment, we refer to the use of existing metrics that can be used for proxying their
values. Therefore, through this mapping study, we aim at providing a detailed panorama on the
existing practices for quantifying change impact parameters.

(93) Research Goals: Finally, a common goal of secondary studies is the identification of the mostly
researched sub-areas of a field, and the identification of possible gaps. Thus, in this study, we aim
at providing an overview of the research goals of primary studies, to fulfil the aforementioned
expectation.

The main findings of this study are presented as a synthesized list of benefits for practitioners (by
applying CIA) for each type of maintenance request, a list of quality properties and metrics that can be
used for performing CIA, and a view of under- and over-studied themes in this research area. Based on
the aforementioned results, we are able to provide a detailed discussion on the implications of this
study for practitioners and a research roadmap for change impact analysis. The rest of the paper is
organized as follows: In Section 2, we discuss related work that is relevant to change impact analysis,
whereas, in Section 3, we present the adopted systematic mapping protocol. Next, in Section 4 we
present the results of our study, and in Section 5 we provide a research roadmap. Finally, in Section 6,
we present threats to validity, and in Section 7 we conclude the paper, focusing primarily on the
actionable outcomes of this study for practitioners.

2. Related Work

In this section, we present related work: i.e., secondary studies (i.e., Systematic Literature Review—
SLR, or Systematic Mapping Study—SMS) that are directly or indirectly comparable to ours. First, we
present the two directly related secondary studies, i.e., those that focus on change impact analysis, and
next, studies that focus on maintainability prediction, i.e., studies that are related to the change impact
parameters (indirect related work). We note that from this section, we have excluded studies that focus
on specific technologies or application domain (e.g., Alam et al. (2015), Brink et al. (2016) and Saraiva
et al. (2012), respectively) in the sense that results and research methods are not comparable. Finally, in
the end of this section, we provide an overview of the comparison between our and related work.

Change Impact Analysis. Malhotra and Bansal (2016) performed a literature review on change predic-
tion—i.e., if an artifact is going to change or not. In particular, the goal of this study was to identify: (a)
the goal of each study; (b) the types of dataset that are used for prediction; (c) the kind of metrics that
are used in the prediction of changes; (d) the usefulness of machine learning methods; and (e) the most
popular journal in the area. The search process is conducted between 1998 and 2011. The authors have
classified the papers into two categories based on the type of metrics used: papers which have used
class level metrics (9 studies) and papers which have not used class level metrics (12 studies). The
results suggest that object-oriented measures have a strong predictive power on the phenomenon. In a
follow-up study, Malhotra and Khanna (2019) performed a systematic literature review to compare the
capabilities of existing software change prediction (SCP) models and evaluate their effectiveness. The
study focused on identifying: (a) the predictors that are useful for developing SCP models; and (b) the

1 One of the most well-known quotes in software engineering, the one by De Marco (1986), suggests that “you can’t control
what you can’t measure”. In other words, you cannot assess improvement in one aspect, if there is no way to quantify it



experimental settings, the categories of data analysis algorithms, the statistical tests and the threats with
respect to SCP studies. The search process was conducted between 2000 and 2019 in five DLs (namely
Scopus, ACM, Wiley, IEEE, and SpringerLink), identifying 38 primary studies. The results suggested
that structural metrics, and in particular CK metrics, have been widely used in SCP models. However,
the validation of process metrics and their combination with product metrics is limited in this domain.
The main difference of both works compared to ours is that our study is more comprehensive in the
sense that it focuses on all change impact parameters and not only the change proneness, i.e., it also
explored instability, change amount and changeability.

Li et al. (2013) conducted a literature review of code-based change impact analysis techniques. More
specifically, the study focused on identifying: (a) the techniques for performing CIA, (b) the properties
that could characterize code-based CIA; (c) the key application areas; and (d) future work. The search
process is performed in four digital libraries (hamely ACM, IEEE, ScienceDirect, and SpringerLink)
from 1997 to 2010. After applying the selection criteria, 30 studies were identified. The results of their
study revealed 23 different CIA techniques. Additionally, the authors provide a framework that the
practitioners could identify and compare different CIA techniques, based on the specific needs of the
practitioner, whereas researchers could use the suggested framework to develop new techniques. Alam
et al. (2015) performed a systematic literature review to explore the impact analysis and change propa-
gation in Business Process Management (BPM) and Service-Oriented Architectures (SOA). In particu-
lar, the study focused on: (a) identifying changes and dependencies across different abstractions layers;
and (b) classifying propagation techniques and change analysis in two domains. The search process
was applied on six DLs (namely: ACM, IEEE, ScienceDirect, SpringerLink, Wiley, and Emerald) from
2007 to 2014. At the end of the selection process 60 primary studies were retained for further analysis.
The results of the study suggested that dependency analysis is the most frequently adopted technique
followed by traceability. Additionally, further categorization of dependency analysis indicates that
graph-based techniques are extensively used, followed by formal dependency modeling. The majority
of change propagation solutions are top-down and semi-automated. Moreover, there are no mature
tools and techniques to provide end-to-end change analysis and propagation support. The difference
compared to our work is that Li et al. (2013) and Alam et al. (2015) do not deal with quality metrics or
change impact parameters. Additionally, Li et al. (2013) focus only in techniques that are based on
source-code and Alam et al. (2015) focus only in two specific domains, whereas in our work we focus
on studies, which can be applied to any type of software artefact and generic domain. On top of that
Alam et al. (2015) considered any kind of dependency analysis as change impact analysis, which if
generalized outside BPM and SOA, would lead to a tremendous amount of studies that focus on the
coupling between classes.

Maintainability Metrics. Arvanitou et al. (2017a) conducted a mapping study to investigate design-
time quality attributes and metrics. In particular, the authors explored: (a) the most important quality
attributes for each application domain and development phase, and (b) the use of quality metrics for
assessing each quality attribute. For the quality metrics, the authors identified if the quality metrics use
a formula for quantifying quality metrics, the empirical evidence of each metric and if there is tool
support for automatically calculating them. The search strategy identified papers until 2016 and was
conducted on 12 specific venues. At the end of the selection process, 154 primary studies were select-
ed. The results of the study suggest that maintainability is the most commonly studied quality attribute,
regardless of the application domain or the development phase. Additionally, quality properties (e.g.,
cohesion, coupling, etc.) are more frequently studied than quality attributes (e.g., maintainability, reus-



ability, etc.) and quality attributes is performed by a single metric rather than a function of multiple
metrics, and quality metrics are mostly validated in an empirical setting.

Riaz et al. (2009) presented a systematic review of software maintainability prediction and metrics.
More specifically, the study focused on identifying forecasting methods / techniques for maintainability
prediction and the level of evidence in these methods. The search process was conducted in 9 digital
libraries (namely Scopus, IEEE, Current Contents and Computer Database, ScienceDirect, Spring-
erLink, Inspec, ACM, and ProQuest Computing) from 1985 to November 2008. After applying the
selection criteria, 14 studies were selected. The results of this study suggest that the most important
predictors were those based on size, complexity and coupling at source code level. Another outcome of
this study is that the level of evidence was found limited for validating maintainability prediction tech-
niques compared to the models of van Koten and Gray (2006), and Zhou and Xu (2008). Additionally,
Jabangwe et al. (2015) performed a literature review to (a) identify object-oriented measures at the
source code level, which they have been empirically evaluated, and linked to external quality attributes,
and (b) evaluate the consistency of the link between them across studies. The search strategy was con-
ducted in five digital libraries (ACM, IEEE, Scopus, Compendendex and Inspec) until 2012. After the
selection criteria, the authors were selected 99 studies. Then, Jabangwe et al. focused on four specific
quality attributes: reliability, maintainability, efficiency and functionality. The results suggest that the
most commonly studied quality attribute is maintainability, which in most of the cases is quantified
through the Chidamber and Kemerer (CK) metric suite (1994). The studies of Riaz et al. (2009), and
Jabangwe et al. (2014) are related to ours; however, they both focus on maintainability rather than
change impact analysis, i.e., they are broader in scope. Finally, Saraiva et al. (2012) performed a map-
ping study to investigate which metrics can be used to measure the maintainability of software devel-
oped with Aspect-Oriented Programming (AOP). The search strategy identified papers until June 2011
and was conducted on four DLs (IEEE, ACM, Compendex and ScienceDirect). At the end of the study
identification process, 138 primary studies were selected. The results proposed a catalogue that can
guide researchers in selecting metrics that are suitable for their studies. The differences of this work
compared to our study is that Saraiva et al. (2012) focus on a specific programming paradigm (i.e.,
AOP) and a specific quality attribute (i.e., maintainability).

Malhotra and Chug (2016) conducted a systematic literature review in the field of software maintaina-
bility to identify important aspects which could affect maintenance effort. More specifically, the study
focused on identifying techniques, metrics, and tools that are related with maintainability. The search
strategy was conducted in nine DLs (namely Google Scholar, Scopus, ScienceDirect, Springer, ACM,
IEEE, Wiley, Web of Science and Compendex) from 1991 to 2015: retaining 96 primary studies. The
results suggested that design metrics are still the most favored option for capturing the characteristics
of any given software, and in particular the metrics suites proposed by Chidamber and Kamerer (1994)
and Li and Henry (1993). Finally, Benestad et al. (2009) performed a literature review on change-based
studies (i.e., analyze data that describe the individual changes that are made to software). More specifi-
cally, the goal of this study was to identify change attributes and change measures that drive and pre-
dict costs and risks during maintenance and evolution. The search strategy was applied on two DLs
(namely: Google Scholar and IEEE) from 1993 to 2007. As an outcome, 34 primary studies were se-
lected. Benestad et al. (2009) proposed a conceptual model for change-based studies that enables them
to classify the attributes. The main differences of our study compared to Benestad et al. (2009) is that
our study does not aim at providing a classification of changes and their characteristics, but on quanti-
fying the important parameters while applying these changes.



Comparison to Related Work. Next, we present the comparison between the related studies and our
work, in terms of: amount of studies, covered period, and research contributions. For each study we
list the research method that they have used, the direct or indirect relation to CIA (as indirect we con-
sider broader studies, e.g., on maintainability, that cover some change properties), the number of in-
cluded papers, the period covered, and the overlap with our goals (see Table 1).

Table 1: Related Work Overview

Research |Relation Practice Parameters Research

Reference Method | to CIA | #papers Period (goal-1) (goal-2) (goal-3)
Malhotra and Bansal SLR Direct 21 1998 - 2011 change proneness X

(2016)
Malhotra and .

Khanna (2019) SLR Direct 38 2000 - 2019 change proneness X
Li et al. (2012) SLR Direct 30 1997 - 2010 X X
Alam et al. (2015) SLR Direct 60 2007 - 2014 X

change proneness

Anvanitouetal. -\ gy | ingirect| 154 | until 2016 instability

2017 L
(20173) changeability
Saraiva et al. (2012) SMS | Indirect 138 until 2011 change amount
Riaz et al. (2009) SLR Indirect 14 1985 - 2008 amount of change

change proneness
SLR Indirect 99 until 2012 changeability
amount of change

Jabangwe et al.
(2015)

MalhoraandChug | o o | ngirect| 96  |1991- 2015

(2016)
Benestad et al. . changeability
(2009) SLR Indirect 34 amount of change
change proneness
. . i ili
Our Study SMS Direct 111 until 2019 X I '.tY X
changeability

change amount

On the one hand, given Table 1, we can observe that our study is a valuable extension of the research-
state-of-the-art, by considering the amount of studies and the covered period. In particular, among
directly comparable studies: two have finished the data collection around 2010 (from 2010 and on, 80%
of the primary studies of our dataset were published after 2010), one study around 2015 (from 2015 and
on, 45% of the primary studies of our dataset were published after 2010), and one study with data col-
lection ending on 2019 (consisting this study up-to-date). Nevertheless, the scope of the review of Mal-
hotra and Khanna (2019) was substantially narrower in scope, since it aimed only at change proneness.
Thus, the amount of studies that we considered is almost doubled up. On the other hand, regarding
research contributions, based on Table 1 and the previously presented annotated bibliography, our
study is the only up-to-date secondary that discusses the practical benefits of change impact analysis,
constituting the study as highly relevant for practitioners. We note that the study of Li et al. (2012) had
a similar goal, but captured only a small fraction of primary studies, published until 2010. Additionally,
our study is the only one that discusses simultaneously all change impact parameters (i.e., change
proneness, instability, amount of change, and changeability), enabling a fair comparison in terms of the
research load for each parameter, and the identification of future research directions.




3. Study Design

This section presents the protocol of the systematic mapping study. A protocol constitutes a pre-
determined plan that specifies the research questions and how the mapping study has been conducted.
Our protocol is presented according to the guidelines suggested by Petersen et al. (2008).

3.1 Objectives and Research Questions

The primary goal of this study, stated using the Goal-Question-Metrics (GQM) format (Basili et al.,
1994) is to: analyze existing change impact analysis methods for the purpose of characterization with
respect to the change impact parameters (namely: change proneness, instability, amount of change, and
changeability) from the point of view of researchers and practitioners in the context of software
maintenance. Based on the aforementioned GQM formulation and the goals stated in Section 1, we
have set the following research questions:
RQ:1: What are the benefits for performing Change Impact Analysis for practitioners?
RQ; is related to the usefulness of CIA methods to practitioners. In particular, we explore the
motivation of primary studies and identify the reasons for which practitioners deem CIA as
important. Answering this research question will shed light on the types of changes that can be
supported by CIA methods.

RQ2: How can change impact parameters be assessed?
RQ. aims at exploring change impact parameters quantification. In particular, we aim at
highlighting: (a) the most studied change impact parameters for each development phase, (b) the
most used software artifacts for the quantification of each CIA parameter; (c) the most important
metrics for quantifying each CIA parameter directly; and (d) the most important metrics for
indirectly quantifying each CIA parameter.

RQs: What is the goal of researchers when setting up their primary studies?
RQs is related to the research goals of studies related to CIA. In particular, we focus on
researchers and investigate the goals of the primary studies so as to extract: (a) the most studied
research sub-areas; and (b) possible research gaps that deserve future investigation.

3.2 Search Process

Publication Venue Selection. We defined our search strategy by considering the goal and research
questions of the study. In particular, we opted for performing an automated search, through digital
libraries (DL) portals, on specific publication venues. The reasoning behind this decision is our
intention to retrieve only primary studies that are of guaranteed top-quality—such a choice is well
acknowledged as a best practice in software engineering secondary research (Kitchenham et al., 2009).
Despite the fact that the assessment / controlling of the quality of the primary studies is not a
prerequisite for mapping studies, we have preferred to focus on top quality venues for two reasons:

e Studying a Broad Research Area. According to the recent guidelines on how to identify and report
threats to validity for secondary studies (Ampatzoglou et al., 2019): “In case the research team is
investigating a very broad topic, or is interested in including only top-quality venues, venue
selection processes are described in (Cai and Card, 2008) (Galster et al., 2014) and (Kitchenham
et al., 2019)”. Therefore, our decision is reasonable, since our study covers a very broad topic,
which would be unmanageable if we targeted complete databases.

e Mitigation of Data Validity Threat: Additionally, even for SMS, the quality of the primary studies
is an important factor for the quality of the secondary study. As explained in the guidelines on
managing threats to validity for secondary studies (Ampatzoglou et al., 2019), the selection of top-



quality venues is the top mitigation action for the threat to validity: “Quality of Primary Studies”
categorized under “Data Validity”.

The venues have been selected based on the study of Karanatsiou et al. (2019), which is the latest
article of the well-known series of bibliometric papers for top-scholars and institutes in software
engineering. The venue selection process is based on four criteria; we selected venues that: (a) are
classified as “Computer Software” by the Australian Research Council with an evaluation higher than
or equal to level “B” for both journals and conferences; (b) are strictly relevant to the software
engineering domain; (c) on average have more than 1 citation per month, per published article; and (d)
are general-scope journals, not restricted to phases or activitiess—with the only exception to
maintenance venues, which are of special interest to this study (e.g., CSMR/WCRE, ICSME, SANER,
JSME). In Table 2 we present the selected venues.

Table 2: Selected Venues

Publication Venue DL

Transactions on Software Engineering (TSE)

International Conference on Software Engineering (ICSE)

Symposium on Empirical Software Engineering and Measurement (ESEM)

International Conference on Automated Software Engineering (ASE)

. IEEE
International Conference on Software Processes (ICSP)

International Conference on Software Analysis, Evolution and Reengineering (SANER) /
previously CSMR and WCRE

International Conference on Software Maintenance and Evolution (ICSME)

IEEE Software (SW)

Transactions on Software Engineering and Methodology (TOSEM)

ACM
International Symposium on the Foundations of Software Engineering (FSE)

Empirical Software Engineering (ESE) Springer

Software: Practice and Experience (SPE)

Wiley
Journal of Software: Evolution and Process (JSEP) / previously JSSME

Information and Software Technology (IST)

ScienceDirect
Journal of Systems and Software (JSS)

Search String Construction—Study Identification. Next, we applied our search string (see box below)
on the full-text of candidate primary studies, published in the aforementioned venues. The goal of this
step was to return studies that are relevant to change impact analysis. To construct the search string, we
have followed a systematic process. First, based on the goals of this study, we have split our search
string into two components: the first one is related to change impact analysis and its parameters (see
Section 1), whereas the second has been added due to RQ., which restricts our goal to studies that
propose, use, or evaluate a metric or a method for CIA. An alternative on the first part, would be the
use of the term “software change”, but applying this term on the full text would return many irrelevant
results, not being able to contribute to answering the set research questions. We note that we have
piloted this decision on the first 5 pages on Google Scholar, verifying our belief that broadening the
search string would needlessly increase the amount of retrieved studies (in the sense that the majority
of these studies would be excluded in later stages). Regarding the second part, we used two alternatives
for measurement and the term “method” to retrieve studies that assess CIA, but not through metrics. By




considering that the search was conducted in the full text of the publication, we strongly believe that
these terms would appear at least ones in a relevant manuscript. To validate the final version of the
search string, we have performed a piloting before applying it to all venues. In particular, we have
checked that all primary studies of a broader secondary study (i.e., Arvanitou et al., (2018)) published
in three venues (namely TSE, IST, and JSS) have been retrieved from applying our search string.

(("change impact analysis" OR "change proneness" OR "changeability" OR "instability" OR “change
amount”) AND ("metric" OR "method" OR "measurement"))

Although no publication indexing sites (e.g., Scopus, Google Scholar, etc.) have been used, we have
performed this step, since some conferences publish their papers in more than one digital library, e.g.,
ESEM conference is hosted in ACM and IEEE DLs.

Studies Filtering Phase. The next step of the process was to identify all the primary studies that are
relevant to this mapping study. To this end, we have set several inclusion and exclusion criteria,
applying a systematic process. The definition of the inclusion criteria has been based on the goal of the
study: first, it was mandatory to assess the paper as relevant to CIA. Second, there was a need for the
discussion around the metric / measure process to be central in each candidate primary study. The
definition of exclusion criteria followed the most classic ones from the literature. Studies to be included
in the final dataset had to satisfy the first Inclusion Criterion (IC) and one or more of the rest ICs,
whereas at the same time, they were not satisfying any Exclusion Criteria (EC):

IC1 AND (ICZ ORIC3) AND NOT (EC1 OR EC2)

The inclusion criteria of our systematic mapping study are:

e IC1: The study is related to change impact analysis;

e |C2: The study defines one or more change impact parameters;
e IC3: The study defines one or more quality metrics;

The exclusion criteria in our mapping study are:
e ECIL: The study is written in a language other than English;
e EC2: The study is an editorial, invited/position/opinion paper, keynote, tutorial, poster or panel.

The article filtering phase has been handled by the first three authors of this study, using the voting
method, as described by Farhoodi et al. (2013). The first three authors inspected the publication’s full
text and assigned a vote on a 4-point scale (4: strong inclusion, 1: string exclusion)—Ileading to a
maximum score of 12 points. Following the threshold used by Farhoodi et al. (2013), we retained
studies with a score higher to 8 points. Studies that were marked with exactly 8 points (12 in total),
were reviewed and discussed with the four and fifth authors of the study. To ensure that the researchers
involved in the data collection shared a common understanding of the inclusion criteria, first a thorough
discussion among authors was performed. Next, we piloted the first 30 papers, which have been
assessed in pairs by the four authors so as to have an open discussion on the voting scores. All authors
explained their scores, until a consensus was reached. The high degree of a common understanding on
the criteria is supported by the low disagreement rate in the inclusion exclusion phase (i.e., 1.7%). We
note that the exclusion criteria (language and type of paper) are straightforward and no validation or
piloting was required.

Search Process Overview. In Figure 2, we present an overview of the search and filtering process along
with the number of studies at each phase. At the end, we have retained 99 primary studies to be
included in this mapping study, and proceed with data collection—see Appendix A.
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Figure 2: Overview of Search and Filtering Process

3.3 Data Collection

As part of data extraction, for all included studies, we have defined a set of variables that describe each
primary study. Thus, for every study, we have recorded the values of the following variables:

[V1] Publication Title

[V2] Author: List of authors

[V3] Year: Publication year

[V4] Type of Paper: Conference or journal

[V5] Publication Venue: Name of the conference or journal

[V6] Benefit from performing CIA (e.g., reduce debugging time, reduce time to add feature, etc.)
[V7] Research Goal set in the primary study (e.g., propose or validate a novel CIA metric, etc.)

[V8] Development Phase: Investigated development phase (e.g., requirements, architecture, design)
[V9] Type of Software Artifact: Explored software artifacts (e.g., class diagram, use case, etc.)
[V10] Change Impact Parameters: Change Proneness, Instability, Changeability, Amount of Change
[V11] Quality Metrics or Method: Novel metrics or methods for directly quantifying CIA parameters
[V12] Predictors of CIA parameters: Existing metrics for indirectly assessing the CIA parameters

To strengthen the validity of data extraction, we used the following systematic process. The first two
authors independently extracted data. If there were inconsistencies in the extracted information, the
involved authors discussed the inconsistencies between them. If they were not able to resolve the dis-
crepancies, the third author joined the discussion to resolve the disagreement. During the process 15
inconsistencies have been resolved. The dataset is available online?.

3.4 Data Analysis

Variables [V1] — [\V5] have been used for documentation purposes. The rest of the variables have been
used for answering the research questions and describing the context of the study. For reporting
purposes, we used common visualization methods (e.g., bar charts, pie charts, etc.), frequency tables,
and cross-tabulation of variables. Also, for consolidating the values of variables retrieved from
different studies, we have employed the Open Card Sorting methodology (Spencer et al., 2009). An

2 https://users.uom.gr/~a.ampatzoglou/aux_material/JSS2020_dataset.xIs
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overview of the data analysis overview, presenting the mapping between collected variables, research
questions, and data analysis methods, is provided in Table 3.

Table 3: Data Analysis Overview

Research
Question Used Variables Analysis Method
Open Card Sorting
RQ: [Ve] Frequency Tables
RQ [v8], [V9], [V10], [V11], Frequency Tables
2 and [V12] Cross Tabulation
Open Card Sorting
RQs [V7] and [V10] Frequency Tables
Cross Tabulation

During data analysis, as far as variables [V6] and [V7] are concerned, we have noticed that the
terminology used in the various identified primary studies was quite diverse. In particular, we have
applied the Open Card Sorting methodology (Spencer et al., 2009): (a) recorded themes from the
research goals as identified in the primary studies (without any processing); (b) reviewed the themes to
find candidates for merging; and (c) defined the names of the final themes. The first and the second
author performed the process of identifying the themes, and the third, four, and fifth authors validated
the results. During the consolidation process on the themes’ extraction and their naming (i.e., [V6]),
there were some disagreements (approximately 6%), which have been resolved by a discussion among
the authors. On the other hand, regarding since the naming of the themes and the distinction was very
clear from early in the data extraction process, the amount of conflicts was very limited (<2%). Finally,
since [V12] was expected to lead to a vast number of existing metrics, as part of meta-analysis, we
recorded the quality property (e.g., coupling, cohesion, complexity, inheritance, etc.) that the metric
assesses.

4. Results

In this section we present the results of our study organized by RQ. In Section 4.1, we discuss our find-
ings related to the benefits of CIA for the practitioners. In Section 4.2, we provide the most studied
change impact parameters and the proposed methods for assessing them (directly or indirectly). Finally,
in Section 4.3, we present researchers-related results, i.e. most studied (and understudied) sub-areas.

Table 4: Publication Venues

a5 Publication Venue #Studies

20 ESE 34
5 IST 19
20 JSS 14
- JSEP /JSME 7
SANER / CSMR / WCRE 7

20
TSE 6

15
ICSME 6
10 ICSE 5
s ESEM 6
0 SPE 3

1998-2003 2004-2008 2009-2014 2015-2019

ASE 2
Figure 3: Publications Years’ Frequency FSE !
SW 1
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Initially, we provide some descriptive statistics (using frequencies) for the dataset of primary studies.
Based on the selection process, we have retrieved 111 primary studies. Figure 3 illustrates the number
of studies published per 5-year periods: we can observe that after 2009 the number of studies has in-
creased substantially. Thus, in the last decade, researchers try to explore methods for performing CIA.
Additionally, in Table 4 we present the frequency of study per publication venue. We observe that from
the 111 primary studies, 83 studies are published in journals, whereas 27 in conferences. Out of the 111
publications, 20 have been published in maintainability-related venues (i.e., SANER, ICSME, and
JSEP), suggesting that the topic is not restricted to a dedicated community, but is deemed as important
to the whole software engineering community. We note that since the number of studies is 111, there is
no need to represent data as percentages: the absolute number and the percentage are very close.

4.1 Practitioners’ Benefits from Performing Change Impact Analysis (RQx)

In this section, we present the results of our mapping study related to the usefulness of performing CIA
from the point of view of practitioners. Out of this process, we have identified that 89 studies (80%)
report an industrial motivation or implications for practice, implying a high industrial relevance for
these studies (Ivarsson, 2010). Table 5 lists the most reported benefits of CIA in the primary studies,
organized into five (5) themes, based on the outcome of the Open Card Sorting synthesis process, de-
scribed in Section 3.4 (Spencer, 2009). The vast majority of the studies were classified by using four
themes having identical names with the four software maintenance types proposed by van Vliet (1993):
Adaptive®, Corrective®, Preventive®, and Perfective® Maintenance, while there were only 4 primary
studies which have been classified to a fifth theme that was relevant to Reuse.

Table 5: Frequency of the Benefits Obtained by Performing CIA

Benefits Themes #Studies
Improvement of software maintenance tasks Adaptive Maintenance 50
Reduction of effort to refactor or Improve quality Perfective Maintenance 13
Identification of fault-prone artefacts Preventive Maintenance 7
Reduction of debugging time Corrective Maintenance 6
Identification artefacts that are difficult to maintain Perfective Maintenance 6
Improvement of reuse opportunities Reuse 4
Provision of assistance along test-case selection Corrective Maintenance 3
Reduction in the number of introduced bugs Corrective Maintenance 2
Improvement of the accuracy of effort estimation Adaptive Maintenance 1
Identification crosscutting concerns Adaptive Maintenance 1

Based on Table 5, we can observe that the dominant theme of the reported benefits is Adaptive Mainte-
nance (47%), followed by Perfective Maintenance (17%) and Corrective Maintenance (9%). Preven-
tive Maintenance benefits are discussed in 6% of the studies, whereas Reuse potential in 3%. The inter-
pretation of how CIA leads to these benefits and the rationale for the classification are justified below:

e Adaptive Maintenance. The main benefit in this category is the “Improvement of software mainte-
nance tasks”. This benefit is obtained in terms of maintenance efficiency, since every time that a

3 Tasks related to the addition of new features, the migration to a new runtime environment, etc.
4 Tasks related to the fixing of bugs identified by the end-users/customers.

5 Tasks related to the identification of bugs, before the end-user.

6 Tasks related to the improvement of the system quality.
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new request arrives in the software development company, the developer is aware of co-changing
artifacts; i.e., there is no need to identify which parts of the system need update. In the relevant lit-
erature, the decrease of this mental process is reported to be more time-consuming, compared to the
application of the change per se (Kosti et al., 2018). Additionally, CIA can aid developers in the
“Improvement of the accuracy of effort estimation”: by applying CIA, developers are not aware on-
ly of local changes in the artifact to be updated, but also on the possible ripple effects, which may
increase maintenance costs up to 75% (Gallorath et al., 2008; Chen and Huang, 2009). Finally, the
“Identification of cross-cutting concerns”, which can be achieved by identifying frequently co-
changing artifacts (or system-wide changes) is also useful, in the sense that architectural changes
(i.e., large-scale changes that are applied system-wide) are usually costlier compared to local ones
(Brown et al., 2011); therefore, being aware of such changes can lead to their efficient management.

Perfective Maintenance. The benefit obtained by CIA in terms of perfective maintenance, is two-
fold: related to the identification of design hotspots (i.e., parts of the system that urge for quality
improvement) and to the ease of applying the quality optimization per se. On the one hand, the “Re-
duction of Effort to Refactor or Improve Quality” is the most studied benefit, which among others,
is achieved by the fact that developers are aware of the test that need to be executed upon refactor-
ing—that could be violated due to ripple effects (Kabaili et al, 2005). On the other hand, the “Iden-
tification Artefacts that are Difficult to Maintain™ is assisted by CIA, and in particular by the effort-
related parameters: changeability and amount of change. Being aware of the artifacts that are diffi-
cult to maintain, can lead to a refactoring prioritization aiming at improving aspects of quality (e.g.,
coupling, cohesion, complexity, etc.) that are related to maintainability—a notion that is heavily ex-
ploited in the technical debt community, through the concept of interest probability (Arvanitou et
al., 2017b).

Corrective Maintenance. In terms of corrective maintenance, the instability CIA parameter can aid
in the “Reduction of Debugging Time”, since by performing CIA, the developer can be aware of the
classes that need to change along a set of bug fixing activities (due to possible ripple effects). At
minimum (even if a change does not need to be applied to other artefacts), the developer gets in-
formed on a limited number of tests that need to be executed through the “Provision of assistance
along test-case selection”. Being aware of the tests that need to be executed (e.g., in a regression
testing phase) is discussed by Kabaili et al. (2005), along with the relation of this task with the ex-
istence of ripple effects / instability. A consequence of the aforementioned benefits is the “Reduc-
tion in the Number of Introduced Bugs”, due to the accurate execution of all required tests, guaran-
tees (to some extent) the correct application of the software.

Preventive Maintenance. With respect to preventive maintenance, we have been able to identify
one related benefit, namely “ldentification of Fault-Prone Artefacts”; which however, is referred in
seven (7) identified studies. CIA can help in identifying fault-prone artefacts by exploiting the
change proneness of artefacts, i.e., more change prone classes are usually more error-prone as well
(Khomh et al., 2012). Being aware of the fault-prone artifacts may indicate the necessity of intro-
ducing preventive / internal testing procedures to those that have the higher probability to produce
errors.

Reuse. Finally, CIA can aid software engineers through the “Improvement of Reuse Opportunities”.
More specifically, ad/hoc reuse practices, aim at the identification of reusable sets of artefacts,
based on dependency analysis (Ampatzoglou et al., 2012). Being aware of which artifacts need to
be reused along with the targeted artefact (to minimize the adaptation time), can be guided by insta-
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bility and ripple effect analysis, in the sense that they are both relying on artefact dependencies (Ar-
vanitou et al., 2015).

4.2 Quantification of Change Impact Parameters (RQz)

In this section, we focus on the quantification of change impact parameters; thus, we focus only to
studies that involve either metrics/methods [V11] or predictors [V12] of a CIA parameter. Initially as a
demographic analysis, in Figure 4, we present the number of studies in which each change impact pa-
rameter has been assessed’. Based on Figure 4, the most studied change impact parameter is instability,
followed by amount of change and change proneness. An interesting observation from Figure 4, is that
the change impact parameters that are related to the risk probability (i.e., the probability of an artifact to
change) are over-studied (~63%), whereas only 37% focuses on the impact of the risk (i.e., how large
chunks of code are going to be changed). This finding can be attributed to the fact that the uncertainty
of an event to occur is higher compared to the uncertainty of the extent of the phenomenon. Next, we
discuss: (a) the ways of quantifying the change impact parameters: and (b) the study of CIA parameters
quantification in various development phases / artifacts.

m Instability = Change Proneness ® Amount of Change = Changeability

Figure 4: Frequency of Change Impact Parameters

Change Impact Parameters Quantification. As mentioned in Section 1, change impact parameters can
be quantified directly or indirectly. On the one hand, regarding the direct quantification of change
impact parameters, the analysis process has led to various and numerous metrics, whose detailed
presentation was not possible in the manuscript. Nevertheless, since we acknowledge that this is a vital
information for this study, in Appendix B, we present a glossary including: (a) the proposed metric; (b)
its acronym; (c) its calculation method; and (d) a link to the original study. The glossary is organized
into subsections, based on the change impact parameter that they quantify. Below, we discuss the main
ways, based on which each CIA parameter can be quantified. We note that while discussing each CIA
parameter, we present only one representative reference, since the full list can be found in Appendix B.

o Instability is assessed by 21 distinct metrics that can be organized into three categories. The first
and dominant category, captures instability as the percentage of the system that is affected by a giv-
en change—e.g., SDI (System Design Instability) (Alshayeb and Li, 2005). The second category is
not calculated at the system level, but on the artefact pair level, denoting the probability of one arte-
fact to change due to ripple effects—e.g., IF (Impact Factor) (Sun et al., 2014). The final category is
again a measure at system level, denoting the scattering of changes inside files, classes, etc.—e.g.,
CD (Change Dispersion) (Misirli et al., 2016).

7 We note that some studies might refer to more than one CIA parameter
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e Change Proneness is assessed in the literature by 20 distinct metrics, which can be organized into
four main categories. The first category, captures change proneness as a frequency of com-
mits/revisions in which an artifact (file, class, method, etc.) has changed—e.g., NPC (Number of
Prior Changes) (Misirli et al., 2016). The second category relies on time as unit and calculates the
period of time in which an artifact remains unchanged—e.g. AA (Average Age) (Moser et al.,
2004). The third category unifies metrics from the first two categories. In particular, it normalizes
the frequency of commit changes as a percentage over the commit history, trying to provide a fair
assessment between codebases with historical data at a different level of magnitude—e.g. LIKELI-
HOOD (Mondal et al., 2018). The fourth category, aims at exploiting the metric of the first category,
S0 as to project them to future commits, acting as predictors of artefact evolution—e.g. Frequencies
of Future Changes (Khombh et al., 2009).

e Amount of Change is the CIA parameter with the most metrics in the literature (i.e., 25 distinct
metrics). Despite their variety most of these metrics are quite similar, and to some extent simplistic
(in the sense that they are calculated as simple counts). The metrics are classified according to two
factors: (a) the type of change—i.e., add, delete, modify, or both add and delete (churn); and (b) the
level of granularity (i.e., components, files, classes, methods, lines of code, etc.). Therefore, com-
bining the values of the above factors, one can identify metrics such as: Number of Added / Deleted
/ Modified Modules / Operations / Members / Classes / Files (Tizzei et al., 2011; D’Amorim and
Borba, 2012;Misirli et al., 2016; Stevanetic, and Zdun, 2018), Number of Added / Deleted Lines of
Code (Arisholm, 2006; Hindle, 2015), or Number of Modified Lines / Total Churn (Woo et al.,
2009). A different line of thinking for quantifying amount of change is the assessment of actual sys-
tem size (e.g., Class / File / Line Growth (Alshayeb and Li, 2005; Hindle, 2015; Misirli et al.,
2016), supposing that a change in these values denotes the extent of changes among different ver-
sions of the software.

e Changeability has been associated with two distinct metrics: namely, Effort of Change in Minutes
(Arishlom et al.,2001; Balogh et al., 2015) and Changeability Index (Decan et al., 2019). We note that
the low number of metrics or methods for directly capturing changeability does not imply that this
parameter is not important, but that its direct quantification is very straightforward in an after-the-
fact (application of maintenance) analysis, i.e., to record how much time or effort a specific change
has taken. However, the prediction of changeability is a very interesting and challenging topic,
which has been investigated thoroughly in other secondary studies (Riaz et al., 2009; Jabagwane et
al., 2004).

On the other hand, regarding indirect quantification, through existing metrics, we have followed a two-
step analysis. First, similarly to before, in Appendix C, we present the full mapping among existing
metrics, CIA parameters, and all identified primary studies. Second, we performed a meta-analysis to
explore the relation of CIA parameters and the quality properties that the metrics are related to. In par-
ticular, Figure 5 presents the frequencies of the quality properties that are linked (indirectly) to change
impact parameters. For instance, at least one coupling metric is used in 26 studies out of the 40 that use
indirect CIA parameters assessment (65%). The results suggest that the most studied quality property
for quantifying change impact parameters is coupling, followed by size, complexity, inheritance, and
cohesion. This outcome is somehow expected in the sense that these properties are the most closely
related to software maintainability. This finding is also supported by literature: according to Riaz et al.
(2009), the most notable maintainability models are using metrics from these quality properties to
quantify software maintainability (Koten and Gray, 2006; Zhou and Leung, 2007). Apart from these
dominant properties, other secondary ones have been studied: encapsulation (e.g., number of pri-
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vate/protected methods/attributes); history (e.g., number of commits); business (e.g., number of stake-
holders involved in maintenance); comments (e.g., comment density); polymorphism (e.g., number of
polymorphic methods); and fault-tolerance/reliability (e.g., number of bugs). We note that “Other”
includes results obtained from a limited number of papers, e.g. (Power and Malloy, 2004) studying the
instability and the complexity of grammar-based software applications, such as compilers, editors,
program comprehension tools etc.
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Figure 5: Frequency of the Quality Properties

To proceed to a more fine-grained analysis, in Table 6, we present the results of cross-tabulating CIA
parameters and quality properties. In particular, in Table 6, for each pair of CIA parameter and quality
property, we provide two values: (a) the number of distinct metrics in the cross-tabulation; and (b) the
percentage of studies in which at least one metric of this category has appeared—sorted by (b). For
example, given the first row, we can observe that 30 coupling metrics have been reported as relevant to
instability, and these metrics span in 71% of studies that use metrics for assessing instability. We note
that both views are useful: The first view denotes the availability of metrics (a large number can be
perceived both positively and negatively, in the sense that the selection might end up to be confusing),

whereas the second view denotes the importance of the property in assessing the specific change im-

pact parameter. The results of Table 5, can be discussed as follows:

e The relation between coupling and instability (coupling is ranked as first both in terms of frequency
and absolute number of metrics), is expected, in the sense that software dependencies are the means
for transferring changes from one artefact to another (e.g., through aggregation between two clas-
ses) (Arvanitou et al., 2015). The following properties are complexity and size. The relation between
complexity and instability can be ascertained by the fact that a highly complex system might lead to
bugs, which are the “cause” of ripple effects (Yau et al., 1978). Furthermore, the relation to size can
also be attributed to the indirect relation of coupling (i.e., the more classes exist in the system the
highest the average coupling (Harrison et al., 1998)) and reasons for change (i.e., the more lines of
code a class has the more reasons to change (Lippert and Rock, 2006)). Regarding specific metrics
(from Appendix C), we can observe that the most used metrics for assessing instability are two
complexity (WMC and CC) and two size metrics (LOC and NOC). This is an interesting observa-
tion, since coupling metrics are ranked lower than the aforementioned ones. This finding can be ex-
plained by the vast amount of distinct coupling metrics, which probably leads to lower frequencies:
7 complexity metrics are studied in 43% of the studies, whereas 29 different coupling metrics are
examined in 71% of the studies.
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Regarding amount of change, the dominant properties are size, inheritance, cohesion and complexi-
ty. Since the causal link between the size of an artifact and the amount of change is straightforward
(i.e., the larger the size of the artifact the more room there is for artifact modifications), we focus
more on the rest three quality properties. First, the extensive use of inheritance often results in larg-
er changes, due to the overlap, overriding, and reuse of source code structures (such as methods, at-
tributes, etc.) (Shaheen and Bousquet, 2009). Second, the relation to cohesion can be explained by
the fact that artefacts that are related to more than one functionality (i.e., having lower cohesion),
are more prone to change collectively (or at least in larger parts) by a single maintenance ticket, that
relied upon multiple axes of change (Martin, 2003). Finally, more complex artifacts (e.g., methods
with many control statements) are expected to change in more parts of their implementation. For in-
stance, a method that includes 4 if-else 1if statements are expected to change collectively in
all 4 parts of the condition, if a change on the guard variable is being made. Regarding specific met-
rics, it is interesting to highlight the very high dispersion of metrics, since only one metric (LCOM)
is found in two studies: all the rest are used only ones.

Regarding change proneness, we have observed that the most frequently used property is coupling.
This assertion can be considered reasonable, because coupling is the prevalent quality property for
capturing instability: instability can be viewed as a consequence of change proneness (Arvanitou et
al., 2017b). Second ranks the property size, which can be considered intuitive, in the sense that larg-
er artifacts (e.g., classes) are by nature more probable to change in a next version of the system,
since they are probably related to more requirements and are probably receiving more ripple effects
from other classes (Lu et al., 2012). Similarly to before, in the top-5 metrics for assessing change
proneness, we have not identified any metric related to coupling (LoC, CC, DIT, LCOM, and
NOC): highlighting again the high number of distinct coupling metric that hinders them from being
well-established in the literature.

Finally, with respect to changeability, we have identified coupling, inheritance, and complexity as
the most prevalent quality properties. On the one hand, coupling is inversely related to changeabil-
ity, since artifact with high coupling are more rigid and less flexible into changes. On the other
hand, the use of inheritance is positively linked to changeability, in the sense that inheritance ena-
bles the application of various good practices for extendibility, e.g., design patterns (Gamma et al.,
1995), Open-Closed Principle (Martin, 2003), etc. Finally, the existence of complex methods (usu-
ally long methods with various selection statements) is an indicator of a difficult to change part of
the software.

Table 6: List of Most frequently Properties for each CIA parameter

CIA parameters Quality Property Number of Metrics | Pct. of studies
Coupling 29 71%
Complexity 7 43%
Size 10 38%
Inheritance 2 28%
Instability Cohesion 4 21%
Fault-Reliability 4 7%
Business 2 7%
Encapsulation 1 7%
History 1 7%
Testability 1 7%
Coupling 72 86%
Change Proneness Size 33 1%
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CIA parameters Quality Property Number of Metrics | Pct. of studies
Cohesion 14 43%
Inheritance 12 43%
Complexity 9 43%
Encapsulation 5 28%
Polymorphism 7 14%
History 7 14%
Comments 3 14%
Other 2 14%
Business 2 7%
Size 21 60%
Inheritance 15 60%
Cohesion 7 60%
Amount of Change Complexity 3 60%
Coupling 14 40%
Other 2 40%
Encapsulation 4 20%
Coupling 5 66%
Inheritance 2 33%
- Size 4 33%
Changeability Complexity 9 33%
Business 1 33%
History 1 33%

Based on the above we can draw the following conclusions: (a) indirect metrics for CIA parameters
assessment are substantially more, compared to direct assessors; (b) the plethora of indirect assessors
seems to hinder the establishment of common metrics for the quantification of CIA parameters, leading
to confusion among researchers; and (c) despite the aforementioned facts, the relations of metrics and
CIA parameters are straightforward and intuitive, suggesting that they are all in the right direction and

have merit in practice.

Exploration of CIA at Various Development Phases. Next, in Figure 6, we present the count of studies
that investigate CIA parameters quantification at specific development phase. The results suggest that
the most frequently studied development phase is implementation (62%), followed by design (22%),
architecture (14%), and requirements (2%). Following a similar route of investigation regarding the
studied software artefacts, the results show that source code is the most frequently studied artefact.

This outcome is expected, since it follows the distribution of studies to development phases.

Implementation Design Architecture Requirements

Figure 6: Frequency of the Development Phases
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Finally, Table 7 presents the results of cross-tabulating development phases and change impact parame-
ters. In particular, for each development phase, we record the corresponding change impact parameter
and the number of studies in which they have been explored. Based on Table 7, instability is examined
in all development phases with a very high score. This finding can be explained by the fact that the
assessment of an uncertain phenomenon (i.e., which artifacts are going to be affected by a change in
another part of the system) is more wicked, and challenging for research purposes. Additionally,
change proneness is well studied during implementation and design phase. This can be attributed to the
fact that for source code and design artefacts (e.g., number of classes) the frequency of their change can
be often directly measured from source code repositories. However, other development phases (e.g.,
requirements) could not use repositories, in the sense that the evolution of the artefacts (e.g., use cases)
do not record from the companies or open source software.

Table 7: List of Most frequently CIA parameters for each Development Phase

Development Phase CIA Parameters Freq.

Change Proneness 20

Amount of Change 17

Implementation

iy
[8;]

Instability

Changeability

Instability

Amount of Change

Architecture
Changeability

Change Proneness

Change Proneness

Instability

Design
Amount of Change

Changeability

Instability

Requirements

R lRr|dlw|lao|lN|kRr|lRr|w|lo|s

Changeability

A similar analysis, i.e., cross-tabulating CIA parameters and software artifacts (see Appendix D) has
revealed that source code is the most studied software artefact in all CIA parameters. This is an ex-
pected outcome in the sense that source code is available for all software projects, and the majority of
the quality assessment concern the source code (Arvanitou et al., 2017a). Furthermore, we have noticed
that the order of appearance of the architectural and design artefacts it is not the same in all quality
attributes. This could be explained based on the aforementioned rationale (regarding the availability of
artefacts for CIA), as well as the fact that the dividing line between architecture and detail-design is
often subtle, and could thus, could probably be a misunderstanding between researchers about the
boundaries of these two phases.

Based on the aforementioned results, we can claim that CIA parameters exploration by development
phase and artifact have led to similar results, which are primarily driven by: (a) the availability of arti-
facts in each development phase; and (b) curiosity / research challenge, i.e., targeting at the CIA pa-
rameter that is the most uncertain one, i.e., instability.
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4.3 Research Direction in Change Impact Analysis (RQ3)

In this section, we present the research goals of papers that focus on change impact analysis. Based on

the Open-Sorting process (see Section 3.4), we have identified four main themes that were repeating

for all change impact parameters (in total 16 themes). The themes concerning instability are outlined

below (the rest are omitted, since they are repetitive):

e quantify instability based on other metrics: The authors of primary studies quantify instability
using quality metrics (directly or indirectly);

e assess the effect of a phenomenon on instability: The authors of primary studies explore the level
of the impact of one specific phenomenon (e.g., code clones) on instability;

e assess the effect of instability to other phenomena: The authors of primary studies investigate if
there is an effect of instability to another phenomenon (e.g., on fault proneness);

e propose a novel instability metric: The authors of the primary studies propose an instability metric.

The frequency of themes’ occurrence (per change impact parameter) is presented in Table 8, whereas
the full results (as well as examples of each theme) can be found in Appendix E.

Table 8: Cross-tabulation of research goal themes and CIA parameters

Change |Amount of
Instability |Proneness| Change [Changeability
Quantification of a CIA parameter based on other metrics 10 14 5 3
Assess the effect of a phenomenon on CIA parameters 9 15 8 6
Assess the effect CIA parameter to other phenomena 14 3 7 0
Propose a novel CIA parameter metric or method 15 6 3 2

In a cumulative perspective (by examining each row of Table 8), the most studied theme is the assess-
ment of the effect of a phenomenon on CIA parameters (31%); followed by the quantification of a CIA
parameter based on other metrics (24%) and the proposal of a novel CIA parameter metrics or methods
(24%). Finally, the assessment of the effect of CIA parameter values on other phenomena is studied on
21% of the studies. Based on the findings of Table 8 and Appendix E, the following observations can
be stated:

¢ Relation of CIA to other phenomena. Despite the fact that quite some papers explore the relation
between CIA parameters and other phenomena (and vice-versa), we believe that there is still room
for future work in these directions, since only a limited number of pairs between CIA parameters
and software engineering phenomena have been studied more than two times (see Appendix E).
Therefore, replication studies that would increase the level of evidence on such relations are re-
quired. By focusing on the direction of such explorations, we can observe that potential of future re-
search concerning the instability and amount of change themes present a good balance, whereas for
change proneness and changeability there is a lack of many primary research studies focusing on
their effect on other phenomena.

e Assessment based on Other Metrics. Based on the aforementioned distribution of studies we can
claim that a plethora of ways to assess CIA parameters based on other metrics exist in practice (as it
is demonstrated by the information shown in Appendix C). The over-researching on the identifica-
tion of more and more metrics correlated to one phenomenon is a common belief among software
engineering researchers and practitioners (e.g., for coupling there are more than 30 (Briand et al.,
1999)). Therefore, in general, although we acknowledge the need for further research towards fine-
tuning of existing approaches aimed to predicting the values of some parameters, we highly encour-
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age researchers to focus their efforts on the improvement of the industrial relevance of their results,
rather than attempting to link more metrics to the CIA parameters.

e Quantification by Methods vs. Metrics. On the other hand, the proposal of novel metrics for direct-
ly quantifying the CIA parameters lag compared to the aforementioned correlation studies. Based on
Appendix E, there are nine (9) novel metrics targeting to instability calculation, whereas for change
proneness and changeability there is only one (1) metric. Regarding the amount of change, we have
not identified any method; its direct quantification is achieved only through metrics. Therefore, we
believe that future research is required in this direction.

5. Research Roadmap

In this section we present the implications of our study for researchers. We split the discussion on re-
search implications on two parts: First, we present over-studied areas of CIA and explain possible rea-
sons on this. Second, we present a tentative research roadmap, in terms of research areas that deserve
further investigation.

Along our analysis, we have identified two over-studied areas. The correlation of existing metrics and
CIA parameters; especially focusing on instability and change proneness. This fact can be explained in
two ways: first, it seems like a convenience choice in the sense that there is a plethora of available
source code metrics, which can be explored in various studies as predictors of CIA parameters. Second,
it seems that the over-study of change proneness also seems as an easy target for researchers in the
sense that change proneness (change frequency) can be very easily captured by exploiting source code
repositories. On the other hand, the over-study of instability seems as a novel target in the sense that it
covers an interesting research direction, this of the ripple effects. Studying ripple effects is interesting
for researchers, since it is a non-trivial task, which if successfully completed yields substantial im-
provements for maintenance costs. Nevertheless, despite the interest of this research direction, we be-
lieve that the approximation of the phenomenon is saturated, and the problem should be approached
differently in future work endeavors.

On the other hand, based on our findings, some areas need additional exploration: (a) proposal of novel
metrics and methods for direct quantification of CIA parameters; (b) proposal of a novel metric for
change proneness and changeability quantification; (c) provision of empirical evidence on the effect of
CIA parameters on other phenomena, and vice-versa for replication purposes; and (d) empirical as-
sessment of the effect of changeability and change proneness on other phenomena. First, given the
over-studying of proxying CIA parameters and the lack of specialized metrics, we believe that a re-
search roadmap must suggest researchers to avoid empirically exploring the relation of existing met-
rics to CIA parameters, but encourage them to propose novel, direct, and more accurate indicators.
The lack of such indicators is more evident for changeability and change proneness. Second, we sug-
gest that although there is a general belief that CIA is important and shall be performed, there is a lack
of evidence on which phenomena are affected by CIA, and which aspects of software development are
affected by efficient CIA. Therefore, we encourage researchers to seek for rigorous and industrially
relevant evidence on the way that CIA is applied and how it is related to other phenomena. As an
example, we believe that a study that monetize the benefits obtained by CIA would be very interesting
for practitioners and would strengthen the understanding of managerial stakeholders on the benefits
from performing CIA. Such an understanding, would enable the increase of investment in CIA and
elevate it as a standard practice in industry; leading to a cultural change that would enable the upfront
design for changeability, in a focused way; improving the quality of design hotspots.
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6. Threats to Validity

In this section we present the threats to validity of the current study based on guidelines for identifying,
reporting, and mitigating threats to validity, specialized for secondary research studies in software
engineering, as they are suggested by Ampatzoglou et al. (2019).

Study Selection Process. Study selection validity concerns the early phases of the research, i.e., the
search process and the filtering of studies. To guarantee that our search process adequately identified
all relevant studies (from the studied top-quality venues) we used a well-defined process, based on
strict guidelines (Kitchenham and Charters, 2007). To guarantee the relevance to software engineering,
the identification process consisted of an automated search of thirteen well-known venues that publish
only SE studies. The search string was extensive and constructed in a systematic way (see Section 3.2),
in the sense that we have used only the name of the change impact parameters, so to return candidate
primary studies that are related to change impact analysis. However, it could be possible to exclude
studies that have used different terminology from the more established ones. The benefit of focusing
studies that are using standard terminology is that the use of subjective criteria to characterize the
change impact parameters has been avoided. To mitigate the threat to miss relevant studies, a quasi-
gold standard has been used. More specifically, we have checked that all primary studies of a broader
secondary study (i.e., Arvanitou et al., (2018)) published in three venues (namely TSE, IST, and JSS)
have been retrieved from applying our search string. Furthermore, in the inclusion / exclusion phase, it
could be possible to exclude relevant articles. To mitigate this threat, we used three authors in the se-
lection process, discussing any potential conflicts and a systematic voting procedure. After this process,
a four and the fifth authors have randomly screened a subset (15%) of the studies chosen for inclusion
to verify the choice, without identifying any problems. Also, the inclusion / exclusion criteria have
been extensively discussed by the authors to ensure their clarity and to avoid misinterpretations. Fur-
thermore, from our searching process we have excluded grey literature, since the goal of the study
focuses on the use of metrics and methods, which are almost never published in grey literature. Our
study is not suffering from missing non-English papers and the papers published in a limited number of
journals and conferences, since our search process was aiming at a large number of publication venues
all publishing papers only in English. Finally, we were able to access all publications because our insti-
tutions provide access to DLs.

Data Validity. In terms of data validity, the main threat is related to data extraction bias and the selec-
tion of specific venues. Concerning the first, all relevant data were extracted and recorded manually by
the second and the third author. Due to the potential for subjectivity in this process (e.g., regarding the
mapping of artefacts in specific development phases), two authors reviewed and further refined the
collected data, re-validating them. After this process, the results were discussed among all authors and
they resolved any conflicts. Regarding the decision to limit our search space to specific venues (to
ensure the high quality of the studied research corpus), we acknowledge the fact that some data points
have been missed. Nevertheless, this decision guarantees (to some extent) the quality of primary stud-
ies, and therefore the results of the secondary study. Additionally, there is no publication bias in the
selected studies, in the sense that the primary studies have been retrieved by various venues. Thus, the
aforementioned studies are not affected by a closed and small circle of researchers. Our mapping study
is not affected from the following threats: (a) small sample size, as it became possible to recover 99
articles; (b) lack of relationships, the study did not aim to identify relationships between data, but only
to classify and compose; and (c) the selection of variables to be extracted, as the research questions of
this study did not create disagreements in the discussions between authors based on the variables to be
extracted. Moreover, we did not identify issues with the use of statistical analysis, in the sense that the
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nature of our research questions did not require hypothesis testing, but only basic statistical analysis
(descriptive statistics). Finally, to mitigate the researchers’ bias in data interpretation and analysis, the
authors discussed the data clustering based on the goals of the primary studies, the change impact pa-
rameters, and the research goals that have been used. We note that some explanations express the
viewpoints and personal opinion of the authors, based on the understanding of the results.

Research Validity. In terms of research validity, threats are related with research method bias and re-
peatability. Regarding the first one, the majority of the authors are very familiar with the process of
conducting secondary studies, as they have participated in a large number of secondary studies as co-
authors and reviewers. On the other hand, it could be argued that the following evaluation process en-
sures the reliability and replication of this study. Therefore, all important decisions for the review pro-
cess have been thoroughly documented in this manuscript and can be easily reproduced by other re-
searchers. Second, the fact that the export of data is based on the opinion of three authors can to some
extent guarantee the reduction of potential bias. Finally, all extracted data have been made public so
that the results can be compared and validated?. Additionally, through discussion among the authors,
we have defined three main research questions in which they accurately map to the study goal. This is
clearly illustrated by the mapping of each research question to the research objectives / goals. Further-
more, in the literature we have been able to identify a substantial amount of related works that can be
used for comparison to our results. In particular, for this reason we used related studies for performing
change impact analysis and maintainability predictors. Finally, the selection of the research method is
adequate for the goal of this study and no deviations from the guidelines have been performed.

7. Conclusions—Implications for Practitioners

In this paper we presented the outcomes of a systematic mapping study on Change Impact Analysis
targeting at three distinct goals: (a) explore the practical benefits of change impact analysis; (b) provide
an overview of CIA parameters (instability, change proneness, amount of change, and changeability)
quantification metrics and methods; and (c) characterize the research landscape as over- or under-
researched. To achieve these goals, we explored more than 500 articles, out of which we proceeded at
data extraction on 99. Regarding the first goal, we have provided evidence that all maintenance activi-
ties (i.e., addition of new features, bug fixing, performance of quality improvements) can benefit from
change impact analysis. This finding confirms the industrial relevance of CIA, since clear benefits to
practitioners are demonstrated, and the link between academia and practice is highlighted. With respect
to quantification of change impact parameters, our results suggest that the research community has
already validated the relation between change impact parameters and a vast amount of metrics. Howev-
er, the enormous number of metrics can to some extent cause confusion, since there is not enough evi-
dence for specific metrics and the practitioners have to deal with a complicated metric selection pro-
cess. On the other hand, the direct quantification of the change impact parameters with specialized
metrics appears to lag: in the cases of change proneness, we have identified zero papers that propose
novel metrics for its quantification. Nevertheless, the majority of proposed metrics appear to have an
intuitive relation to CIA parameters, providing a hint for their validity. Finally, with respect to research
directions, we believe that most of future work emphasis should be placed on understanding the effect
of CIA on phenomena, and vice-versa.

Concluding, we encourage practitioners to perform change impact analysis (regardless of the type of
change), so as to reduce the maintenance effort and the number of introduced bugs while applying the
change. To support effective CIA, practitioners should first identify change prone artifacts and artifacts
that usually attract high volumes of change amounts. For these artifacts, the practitioners must take
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specific measures to improve their changeability. Such a precautionary action is expected to reduce
maintenance costs, in the design hotspots, i.e., parts of the system that change regularly and largely.
Next, upon the application of the change, the practitioners should assess the instability of artifacts (due
to the ripple effect)—based on class dependencies. For the highly instable artifacts, additional testing
must be performed. Based on our findings, the aforementioned assessments can be performed with
sophisticated metrics or methods, which produce accurate CIA, but also with proxies such as coupling
and size metrics. Therefore, based on the level of investment of a company on CIA (probably a func-
tion of the maintenance costs), the company can either use specialized tools, or rely on more generic
metric calculation tools.
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