
Evolution of method invocation and object instantiation
patterns in a PHP ecosystem

Panos Kyriakakis1, Alexander Chatzigeorgiou1, Apostolos Ampatzoglou2
and Stelios Xinogalos1

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
pkyriakakis@uom.edu.gr {achat, stelios}@uom.gr

2 Department of Mathematics and Computer Science, University of Groningen, Groningen, Netherlands
a.ampatzoglou@rug.nl

ABSTRACT
PHP is one of the most frequently used scripting languages for
server-side programming, since approximately 75% of successful
web applications have been developed with PHP. The main bene-
fits of PHP are its low learning curve and the rich variety of dy-
namic features that it offers. These benefits have contributed to-
wards the development of a large community of programmers
around PHP, which in turn created a vast ecosystem of applica-
tions and frameworks. In this study we have empirically investi-
gated ten famous PHP frameworks / applications and over 240
MLOC in order to explore their internal structure. More specifi-
cally, we present some demographics on method invocation and
object instantiation patterns, empowered by the dynamic nature of
the PHP language. To present the results we employ statistical
methods inspired by ecology. In particular, we explore the diversi-
ty and dominance of these patterns, by using the Shannon-Wiener
diversity index and a Dominance index that has been originally
developed for Plankton. The main conclusion of our study is that
the employment of the patterns, is related to developers, and
therefore we can observe normality and repetition with small di-
versions.

Categories and Subject Descriptors
Software and its engineering � Software creation and manage-
ment � Software post-development issues: Software reverse en-
gineering, software evolution, maintaining software

General Terms
Design, Languages, Experimentation

Keywords
PHP, scripting languages, software maintenance, method invoca-
tion, object creation

1. INTRODUCTION
Scripting languages constitute the backbone of web applications.
Maturing over the years these languages have offered developers
a variety of tools for building fast and solid applications of any
size. Among these languages, PHP is holding the lead in web
application development for over than a decade. New language
features have been introduced and excellent frameworks have
been developed, rendering PHP an appealing, enterprise scale
programming language. An important characteristic of PHP is the

provision of dynamic features along with the weakly typed varia-
bles, which allow developers to implement elegant solutions, at
the same time promoting modularity and extendibility.

In this study we focus on some of the aforementioned dynamic
features of PHP that can be used for method invocations and ob-
ject instantiations. In contrast to compiled languages, PHP offers
developers the ease of variable variables1, which allows the ob-
ject name or the method name in method invocations or the class
name in object instantiations to be a string variable. The primary
goal of this study is to investigate the landscape of different meth-
od invocation and object instantiation approaches, which we col-
lectively refer to as patterns. To this end, we analyzed a corpus of
large and well known PHP projects in order to depict the frequen-
cy of those patterns from the perspective of static analysis. By
understanding those patterns we attempt to shed light into the
developers’ habits with respect to the exploitation of the lan-
guage's dynamic features, and answer our main research question,
i.e., “Do developers employ a minimal set of patterns, narrowing
themselves to the most common ones, or do they try to harvest as
many features of the language as possible?”. To answer this ques-
tion we borrow data analysis techniques from ecology, by consid-
ering the set of analyzed PHP applications as an ecosystem, where
the examined patterns are treated as species.

The most frequently employed patterns can be used as a guide to
inexperienced developers or even assist educators to target the
most efficient ways for invoking methods and instantiating ob-
jects. We are currently conducting further research to investigate
the potential benefit from the use of such patterns, but initial evi-
dence suggests that dynamic features offer improved maintaina-
bility and extensibility.

The rest of the paper is organized as follows: in Section 2 we
present the ecosystem, while in Section 3 the data collection and
analysis processes in the study. In Section 4, we present and dis-
cuss the results of the study. In Section 5 we list threats to validity
and mitigation actions, whereas related work is presented in Sec-
tion 6. Finally, the paper is concluded in Section 7.

2. THE ECOSYSTEM
In this section we describe the ecosystem of our empirical study,
by first presenting the projects in the corpus of the ecosystem and
then the patterns that form its species. To select a project for in-
clusion in our study, the project should: (a) be open source; (b)
have its source code available in GitHub; (c) the majority of its
source code should be written in PHP; (d) be a full blown applica-
tion, and not a library; (e) have more than 20 releases available in
GitHub; (f) come from distinct (as much as possible) application

1 http://php.net/manual/en/language.variables.variable.php

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specif-
ic permission and/or a fee. Request permissions from Permissions@acm.org.
PCI '16, November 10-12, 2016, Patras, Greece
© 2016 ACM. ISBN 978-1-4503-4789-1/16/11…$15.00
DOI: http://dx.doi.org/10.1145/3003733.3003777

domain; (g) have a large community around it; and (h) have an
established reputation in its domain.

By applying the aforementioned criteria we have selected ten
open source projects. Although the matching list of projects was
larger, we had to limit our study to ten projects, due to the pro-
cessing time required for the analysis and the limited computa-
tional resources. The list of analyzed projects is presented in Ta-
ble 1. These projects are influencing the evolution not only of
PHP applications, but the entire web application development
industry. Cumulatively, we have analyzed more than 1,000 ver-
sions and over than 240 MLOC of PHP source code.

Table 1. Analyzed Projects

Project
Business
Domain

First
Version

Last
Version

Cumulative
of

Versions
kLOC

WordPress Blog 1.5 3.6.1 71 6,914
Drupal CMS 4.0.0 7.23 120 8,321
phpBB Forum 2.0.0 3.0.12 37 2,815
MantisBt Bug tracking 1.0.0 1.2.15 33 4,124
phpMyAdmin Admin tool 2.9.0 4.1.6 129 13,985
PrestaShop e-commerce 1.5.0.0 1.6.0.10 29 7,248
Typo3 CMS/CMF 3.6.1 6.2.6 189 56,802
Joomla CMS/CMF 1.7.3 3.3.6 59 17,705
Moodle e-learning 1.0.0 2.8.1 165 91,412
MediaWiki wiki 1.1.0 1.24.1 200 33,567

2.1 Method Invocation Patterns
In theory, methods are invoked using the object member access
operator, which might be the same for static member access and
object access (i.e. Java and Ruby) or in some languages two dis-
tinct operators. In the case of PHP there is a separate operator for
each case, namely the object operator (->) for method access and
the double colon (::) operator for static access. The operands are,
on the left side an object or a class (which we call the object part),
and on the right side the method (which we call the method part).
In Table 2 the typical invocation patterns are shown for each op-
erator.

Table 2. Trivial invocation patterns

Type Example Object Part Method Part
Object $myPerson->myMethod(); A variable

holding a
reference to
an object

Explicit name
of the method

Static Person::getTypes(); The name of
the class

A dynamic aspect in PHP is introduced by the variable variable
construct and the curly braces syntax2, offering to the developer
the possibility to refer to a variable using a string (literal or varia-
ble) containing its name. For example:

//assigns an Address object
$addressOfHome = new Address();
//assigns an Address object also
$theirWorkAddress = new Address();
//assigns an Address object too
$theAddressOfVacation = new Address();
//… code to assign values to object properties
// iterate address objects
$objNames = ['addressOfHome', 'theirWorkAddress',
'theAddressOfVacation'];

2 http://php.net/manual/en/language.types.string.php

foreach($objNames as $varname) {
 echo $$varname->getCity();
}

In this case, address objects could have been stored in a data
structure, as well. But there are cases where alternative approach-
es for accessing object methods can prove to be much more effi-
cient in terms of size and extensibility. In this example a simple
approach to iterate over the address objects and print the city
property of each address would be to store their names in an array,
iterate over their names and use the variable variable construct to
access the objects. The curly braces syntax can be used to con-
struct the string containing either the object or the method part.
The next code snippet is a variation of the previous one, where the
names of the variables holding the object reference are following
a motif, prefixed with ‘address’ and followed by the address type.
This allows iterating address types and constructing the variable
name using the curly braces syntax.

$addressHome = new Address();
$addressWork = new Address();
$addressVacation = new Address();
//… code to assign values to object properties
foreach(['Home', 'Work', 'Vacation'] as $type) {
 echo ${"address$type"}->getCity();
}

Figure 1. Breakdown of method invocation patterns

Additionally, as in many scripting languages, other approaches are
also available to the developer. PHP offers a set of function han-
dling functions3 that can be used to call functions or methods
using a callable4. A callable can be either a string containing the
function to be invoked or an array with two elements, where the
first contains the class name or an object and the second the name
of the method (string variable or literal). For example the follow-
ing line of code performs a static invocation of method
getBalance() to the class Client . Finally, as in many OO lan-

3 http://php.net/manual/en/ref.funchand.php
4 http://php.net/manual/en/language.types.callable.php

guages, a reflection library is also available and its employment
introduces alternative approaches for method invocation.

call_user_func(array('Client', 'getBalance'));

In Figure 1 the alternatives for method invocations are graphically
depicted. On the left side, we present the theoretically possible
patterns for designating the object, whereas the right side the pat-
terns for the designating the method part.

In the lower right the patterns arising from the use of curly braces
syntax are summarized. The number of possible combinations for
method invocations is over 700 patterns. This yields a vast eco-
system of ‘species’ that can be used to invoke methods.

2.2 Object instantiation patterns
The conventional approach for object instantiation is using the
new operator applied to a class in order to invoke its constructor,
as for example shown below:

$obj = new Product();

But in PHP this pattern can be enhanced by allowing the class
name to be a string (literal or variable). This opportunity allows
the use of the variable variable construct and the curly braces
syntax, expanding the diversity of patterns. Also beside the use of
the new operator, an object instantiation can be made with other
approaches as well. A variable of any type can be casted to an
object. The resulting object is always an instance of PHP's
stdClass5 which is commonly used as PSD6. Finally, objects can
be created using the unserialize 7 function, which takes as input
a serialized representation of an object and returns a new object.
Objects are serialized using the complementary serialize func-
tion. These functions can also be applied to arrays instantiating a
stdClass. However, object instantiation types by casting and
unserialization have not been further classified into species in this
study, as they do not constitute a typical way of object creation for
system classes.

Figure 2. Object instantiation patterns

3. CASE STUDY DESIGN
The primary goal of this study is to analyze open source PHP
projects, so as to identify the frequency of method invocation and
object instantiation patterns. In the following sections the data
collection approach and the methodology for the analysis of re-
sults will be presented.

3.1 Data collection
In this study each project (case) has been analyzed separately. For
each project we have obtained multiple units of analysis (ver-

5 http://php.net/manual/en/reserved.classes.php
6 https://en.wikipedia.org/wiki/Passive_data_structure
7 http://php.net/manual/en/function.unserialize.php

sions) and therefore our study can be characterized as an embed-
ded multiple case study. The cases of this study have already been
presented in Section 2 (Table 1).

For each project version available in GitHub the collected varia-
bles are: the number of occurrences of each method invocation
pattern and the number of occurrences of each object instantiation
pattern. These are used to calculate the diversity of species in each
version, along with the species richness (see Section 3.2) and the
dominant species (see Section 3.3)

Data collection has been performed through an evolution analysis
tool, created by the first author. The complete history of the
source code of each project is downloaded from GitHub and
measurements are performed by distributed analysis workers. The
tool has been implemented in PHP and employs an open source
PHP parser8, to build the AST representation of the code, which is
compressed and stored in a mongoDB gridFS. The measurements
are stored in a mySQL database. The implementation also in-
cludes an algorithm for the identification of invocations made
with the Reflection library, since variables types in PHP are not
declared. To address this challenge we employed a simple sym-
bol table to keep track of the references of Reflection library ob-
jects.

3.2 Data Analysis
3.2.1 Shannon-Wiener Diversity Index and species richness
In order to depict the evolution of the diversity of the used pat-
terns we employed the Shannon-Wiener Diversity Index. This
measure is a popular diversity index in ecology that takes into
account not only the number of species but also the population
that belongs to each species [1], [2], which is also known in In-
formation Theory as the Shannon Entropy. The objective is to
measure the amount of order or disorder (entropy) in a system and
the Shannon-Wiener diversity index is obtained as �� =

−∑ �� ln
���
�
�
� 	, where H' is the Index of species diversity, S is

the number of species and pi is the proportion of total sample be-
longing to i-th species.

In our case we have counted method invocations -the individuals-
in each system and we have categorized them to invocation pat-
terns -the species-. An increase in the index value over time im-
plies that the population is distributed across a larger number of
species. If a dominant species appears –with a large number of
individuals belonging to that species- the index will decrease. In
our case when new invocation patterns appear, the Shannon-
Wiener index will increase. On the other hand if an invocation
pattern becomes dominant -larger share of invocations are made
with the same pattern- the index will decrease.

In order to obtain an insight of the diversity evolution we have
plotted the species richness as well. Species richness is the sim-
plest figure to show and simply refers to the number of species
present in the sample. In Figure 3. Dropping diversity index and
constant richness is shown. In the marked area of the chart the
diversity index is decreasing (the trend is shown with the bold
line), a fact that could be misinterpreted as a phase where the
number of species is also decreasing. But in the same period the
richness plot is constant (the trend is shown with the bold line).
Taking into account both trends we are driven to right conclusion,
that some species' proportion of the population is growing and
they are getting dominant.

8 https://github.com/nikic/PHP-Parser

Since the Shannon-Wiener index does not have an upper limit like
e.g. the Gini index9 , we have plotted the results with the same y-
scale in all projects, so that the results would be comparable.
Along with the Shannon-Wiener index we plot the species rich-
ness (number of patterns) with its scale on the right axis as shown
in the example of Figure 3.

Figure 3. Dropping diversity index and constant richness

3.2.2 Dominance Index
Ιn order to identify the dominant patterns we employed a calcula-
tion method for the dominant species in an ecosystem. In the con-
text of ecology, to calculate species dominance in large surface
areas where more than one observation stations are used, the so-
called dominance index Y is used [3], [4]: � =

��

�
��, where ni is

the abundance of species i, fi is the occurrence frequency of spe-
cies i and N is the total abundance. Occurrence frequency fi refers
to the proportion of stations reporting the occurrence of a species
in the total number of stations [3]. Frequency scales population
proportion according to the number of stations in which a species
is observed. This way if a species has a large population propor-
tion in one station only; its effect to the global population is scaled
down. A threshold for defining dominant species [3] is usually set
(e.g. in studies of zooplankton).

Table 3. Example of dominance calculation
Spe-
cies

Stations ni ni/N Stations fi Y Is dominant?
1 ni 2 ni

Sp.1 13 0 13 0.0219 1 0.5 0.0109 No, Y<0.02
Sp.2 233 34 267 0.4517 2 1 0.4517 Yes, Y≥0.02
Sp.3 5 4 9 0.0152 2 1 0.0152 No, Y<0.02
Sp.4 0 302 302 0.5109 1 0.5 0.2554 Yes, Y≥0.02

 N= 591

In Table 3 an example of dominance calculations with two sta-
tions is shown. Four species have been found, three of them (Spe-
cies1, 2 and 3) observed from station 1 and three of them in Sta-
tion 2 (Species 2, 3 and 4). The abundance counted from each
station is in the columns Station 1 ni and Station 2 ni, accordingly.
The column ni holds the sum of the total abundance for each spe-
cies and ni/N is the proportion to the total population N. The col-
umn Stations holds the number of stations in which each species
has been observed and fi is the proportion of them to the total
number of stations. For example the first species was observed in
one of the two stations; hence the frequency fi is 0.5. Also for
species observed in all stations (i.e. Species2) Y is equal to their
population proportion (ni/N) since the frequency fi is 1. The dom-
inance index is in column Y.

In the examined ecosystem of PHP projects, taking into account
that they are open source and therefore knowledge can flow freely
among developers, we consider the individual systems as stations

9 https://en.wikipedia.org/wiki/Gini_coefficient

observing the occurrences of method invocation and object instan-
tiation patterns among them. We will calculate the dominance
index and apply the threshold in our context. We defined two
criteria for a pattern to be dominant: (a) be present in all systems
of the corpus (frequency fi=1), and (b) its proportion over the total
population (ni/N) to be over 2%.

4. RESULTS AND DISCUSION
4.1 Method invocations
To analyze the evolution of programmers’ habits while invoking
methods we have calculated the Shannon-Wiener index for each
version of the examined systems. Figure 4 shows the evolution of
the Shannon-Wiener index along with the species richness (num-
ber of patterns) with its scale on the right axis. The horizontal axis
represents the consecutive versions of each project.

Figure 4. Diversity of method invocation patterns

Based on Figure 4, we can observe that the evolution of different
projects varies, and three main groups can be formed. First,
WordPress, Moodle, MediaWiki and phpBB present an increasing
diversity and species richness, indicating that their new modules
employ new and different method invocation patterns. Second,
PrestaShop and Joomla exhibit an almost constant diversity and
species richness. Constant richness indicates that even if many
components of the project have been reengineered or new compo-
nents have been added, almost the same patterns for handling
dynamic invocations are used throughout the history of the pro-
ject. Constant diversity suggests that these dynamic patterns are
used with the same proportion among all method invocation pat-
terns, regardless of the project size. Finally, by observing the evo-
lution of Drupal and phpMyAdmin, we can suggest that their di-
versity and richness exhibit some peaks. Concerning Drupal, at

the point of the peak, Drupal 7 was released, introducing a turn to
the object-oriented paradigm, which was almost not applied in
previous versions. In the case of phpMyAdmin at the version
where diversity presents a peak, a third party library, namely
PHPExcel10. PHPExcel is a huge and complex OO library, em-
ploying patterns that were not used in the system before. A few
versions later (3.4.5), the library was removed, resulting in a di-
versity and richness drop to the normal levels of the system's core.

By aggregating the results of all projects, we can identify the most
frequently used method invocation patterns in the complete eco-
system. In Table 4, the results of the dominance index Y are
shown for each pattern. The values over the threshold of Y≥0.02
are grayed indicating the dominant species.

Table 4. Dominance index threshold validation

 Species
(Object part → Method Part)

Dominance
Index Y

1 Variable → Explicit method name
$object->method();

0.6271723

2 Class name → Explicit method name
Class::method();

0.1802146

3 Object property → Explicit method name
$obj->objref->method();

0.0875515

4 Array element → Explicit method name
$a[2]->method();

0.0329878

5 Method call → Explicit method name
$obj->getORef()->method();

0.0307420

6 Special key word → Explicit method name
self::method();

0.0304449

7 Static call method → Explicit method name
Class::getORef()->method();

0.0057142

8 Variable → Variable
$obj->$methodName();

0.0006488

9 Variable → literal inside curly braces
$obj->{"methodname"}();

0.0003247

*It should be noted that patterns in Table 4 are encountered in all projects
(f i = 1). As a result, the dominance index is equal to ni/N. Only top 9 rows
are shown due to space limitations, but some results refer to all of them.

As it is reasonable to expect, the most dominant method invoca-
tion pattern, accounting for 62.7% of the cases is the most con-
ventional one, i.e. $object->method() . The explicit designation
of the method part is encountered in all dominant patterns imply-
ing that PHP developers target the dynamic behavior on the object
part of method invocations. The second most popular method
invocation pattern refers to static method calls, which, although
they violate object-oriented principles, are employed in 18% of
the cases. Species 3, 4 and 5 employ an indirect way of retrieving
the object on which the method will be invoked (e.g., by indexing
an array of objects, by calling a getter function, etc.). Of these
patterns, the most frequently used one (8.7%) is the one that re-
trieves the object through the public attribute of another object,
which is also against proper design principles. As it can be ob-
served, irregular patterns, such as the ones relying on variable
variables and curly braces syntax are scarcely employed. Moreo-
ver, around 30% of method invocations in the examined systems
(aggregating the entire result set) do not follow object-oriented
guidelines as they essentially constitute a functional programming
approach.

4.2 Object instantiations
In the corpus of analyzed systems we have been able to identify
all approaches that can be used for object instantiation. As ex-

10 https://github.com/PHPOffice/PHPExcel

pected the new operator is by far the most popular one (i.e.,
96.39% of the total number of object instantiations). Casting is
used in 3.47% of the cases where an object is obtained. Finally,
unserialize is of limited use, since it is found only in 0.14% of
the total object instantiations, and half of the projects.

Figure 5. Diversity of object instantiation patterns

In order to analyze the evolution of programmers’ habits while
instantiating objects, we calculated the Shannon-Wiener index for
each version of the examined systems (Figure 5). Along with the
Shannon-Wiener index the species richness (number of patterns)
is also plotted with its scale on the right axis. The horizontal axis
represents the consecutive versions of each project. Similarly to
method invocations, the evolution of object instantiation patterns
varies between projects. Drupal and phpBB employed for a long
period just one pattern, as a natural consequence from the fact that
OO code was almost non-existent. MantisBt and PrestaShop have
almost a constant diversity index and species richness, indicating
stability in object instantiation mechanisms. Typo3 and Moodle
exhibit a reducing diversity index indicating that dominant pat-
terns appeared in the system, possibly implying that developers
agreed on a set of commonly used techniques, which they fol-
lowed for newly added code. MediaWiki on the other hand has
increasing diversity index and species richness, indicating that
new patterns are employed in the project.

5. RELATED WORK
The study of scripting languages is a subject trending the last few
years, but publications related to evolution of applications imple-
mented in scripting languages and especially in PHP are limited.
Dynamic features as those offered by scripting languages are not
offered by compiled languages and are rarely studied in literature.

Hills [5] studied the evolution of the usage of PHP's dynamic
features including variable variables, magic methods, eval func-
tion, function handling functions and casting. He presented the
aggregated trend of each group of dynamic features without fo-
cusing in detail on method invocations and object instantiations.
The dataset consisted of WordPress and MediaWiki. Hills [6]
studied also the exploitation of idiomatic usages of variable fea-
tures in a set of 20 open source PHP projects (including 7 projects
employed in our corpus). He developed a list of patterns to detect
such usages and classified them based on their structural applica-
tion. The three categories are, loop patterns, assignment patterns
and flow patterns. For each category he developed a lightweight
detection algorithm. Additionally he identified a set of "anti-
patterns" that consist of cases that cannot be resolved using static
analysis. The cases that can be resolved are those where the varia-
ble part of the variable variable is literally defined at function
level scope.

Eshkevari et al. [7] studied the runtime type changes of variables
in a corpus of PHP applications, consisting of phpBB, Drupal and
WordPress, in order to study the effort needed to make existing
PHP applications conform to HACK's type system requirements.
They employed a hybrid approach combining static and dynamic
analysis employing TXL[8] source transformation and Watir11
crawler for runtime instrumentation. Amanatidis and
Chatzigeorgiou [9] studied the evolution of PHP applications from
the perspective of Lehman laws detecting evolution of changes in
files and other software engineering metrics, like McCabee's
complexity on a set of 24 projects. Their results support with con-
fidence that open source PHP applications are maintainable and
sustainable, despite the fact that they are implemented with a
scripting language.

Wang et al. [10] studied dynamic features in Python. They chose
four groups of the most commonly used, classified as Introspec-
tion, Object Changes, Code Generation and Library loading. Their
functionality does not match the corresponding cases in PHP and
therefore, a direct comparison to their results is not possible.
Callaú et al. [11] performed an empirical study on the usage of
dynamic features in Smalltalk. They investigated three sets of
Smalltalk's dynamic features, classes as first-class objects, behav-
ioral reflection and structural reflection. Those are similar to dy-
namic features offered by PHP, i.e. structural reflection is imple-
mented in PHP with dynamic code includes. Their overall result is
that the methods in their corpus employing dynamic features were
1.29% over the total number of methods.

6. LIMITATIONS & VALIDITY THREATS
One limitation of this study can be identified in the algorithm for
the detection of the occurrences where the unserialize function
returns an object. If no method is invoked on the created object
within the same function or class then our algorithm cannot de-
termine if the result of the unserialize function was an object
or not. The same restriction applies to the algorithm that detects
method invocations with employment of the Reflection library.
However, we believe that this limitation is not threatening the
validity of the results, since according to our own experience on
various PHP projects, such cases are very rare in practice.

The presented empirical study suffers from threats to generaliza-
tion, in the sense that the examined systems, although relatively
large, constitute only a small portion of the available PHP code.
This means that our findings might not be valid for other applica-

11 http://watir.com

tions written in PHP. Nevertheless, we need to note that the pro-
jects that we have selected are among the most famous PHP web
applications, and therefore can be considered as representative
and influential to the community.

7. CONCLUSIONS
The dynamic features offered by PHP language to invoke methods
and instantiate objects constitute a rather diverse ecosystem, from
which developers can harvest the most suitable patterns that fit
their goals. The analysis of ten extremely popular web applica-
tions suggested that in the case of method invocations developers
use a very limited number of the theoretically possible patterns,
implying that even a dozen of them can cover a substantial part of
the knowledge required for building OSS PHP projects. This find-
ing can be justified by the comfort coming from repetition, which
can be stronger than the urge to explore exotic idioms of the lan-
guage. On the contrary, for object instantiations the number of
offered patterns is significantly smaller than for method invoca-
tions (limited to seven), forming a set of idioms which is easily
memorable, since six of them have been consistently found in our
corpus. The present work is in progress to investigate in more
depth the employment of those language features and their impact
on code stability in order to get an insight on whether there is a
long term benefit from their employment.

8. REFERENCES
[1] I. F. Spellerberg and P. J. Fedor, “A tribute to Claude Shannon

(1916–2001) and a plea for more rigorous use of species rich-
ness, species diversity and the ‘Shannon–Wiener’ Index,” Glob.
Ecol. Biogeogr., vol. 12, no. 3, pp. 177–179, 2003.

[2] C. J. Krebs, Ecological Methodology. New York: Harper Collins
Publishers, 1989.

[3] Z.-L. Xu and C. Li, “Horizontal distribution and dominant spe-
cies of heteropods in the East China Sea,” J. Plankton Res., vol.
27, no. 4, pp. 373–382, 2005.

[4] K. Li, J. Yin, L. Huang, and Z. Lin, “Seasonal variations in
diversity and abundance of surface ichthyoplankton in the
northern South China Sea,” Acta Oceanol. Sin., vol. 33, no. 12,
pp. 145–154, 2014.

[5] M. Hills, “Evolution of dynamic feature usage in PHP,” in 2015
IEEE 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), 2015, pp. 525–529.

[6] M. Hills, “Variable Feature Usage Patterns in PHP (T).,” in
ASE, 2015, pp. 563–573.

[7] L. Eshkevari, F. D. Santos, J. R. Cordy, and G. Antoniol, “Are
PHP applications ready for Hack?,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), 2015, pp. 63–72.

[8] J. R. Cordy, “The TXL Source Transformation Language,” Sci
Comput Program, vol. 61, no. 3, pp. 190–210, Aug. 2006.

[9] T. Amanatidis and A. Chatzigeorgiou, “Studying the Evolution
of PHP Web Applications,” Inf Softw Technol, vol. 72, no. C,
pp. 48–67, Apr. 2016.

[10] B. Wang, L. Chen, W. Ma, Z. Chen, and B. Xu, “An empirical
study on the impact of Python dynamic features on change-
proneness.,” in SEKE, 2015, pp. 134–139.

[11] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger, “How
Developers Use the Dynamic Features of Programming Lan-
guages: The Case of Smalltalk,” in Proceedings of the 8th Work-
ing Conference on Mining Software Repositories, New York,
NY, USA, 2011, pp. 23–32.

