Evolution of method invocation and object instantiation

patterns in a PHP ecosystem

Panos Kyriakakis®, Alexander Chatzigeorgiou®, Apostolos Ampatzoglou?
and Stelios Xinogalos®
! Department of Applied Informatics, University of bdonia, Thessaloniki, Greece
pkyriakakis@uom.edu.gr {achat, stelios}@uom.gr
2Department of Mathematics and Computer Scienceyeisity of Groningen, Groningen, Netherlands
a.ampatzoglou@rug.nl

ABSTRACT

PHP is one of the most frequently used scriptinigleges for
server-side programming, since approximately 75%uafcessful
web applications have been developed with PHP.m&ia bene-
fits of PHP are its low learning curve and the nehiety of dy-
namic features that it offers. These benefits hawgributed to-
wards the development of a large community of pogners
around PHP, which in turn created a vast ecosysteapplica-
tions and frameworks. In this study we have emailycinvesti-
gated ten famous PHP frameworks / applications aret 240
MLOC in order to explore their internal structuhdore specifi-
cally, we present some demographics on method atigwt and
object instantiation patterns, empowered by theadyin nature of
the PHP language. To present the results we engiktistical
methods inspired by ecology. In particular, we erplthe diversi-
ty and dominance of these patterns, by using tlze®n-Wiener
diversity index and a Dominance index that has bargginally
developed for Plankton. The main conclusion of study is that
the employment of the patterns, is related to dgpes, and
therefore we can observe normality and repetitigh wmall di-
versions.

Categoriesand Subject Descriptors

Software and its engineering Software creation and manage-

ment-> Software post-development issues: Software revemse
gineering, software evolution, maintaining software

General Terms
Design, Languages, Experimentation

Keywords
PHP, scripting languages, software maintenaneethod invoca-
tion, object creation

1. INTRODUCTION

Scripting languages constitute the backbone of amgtlications.
Maturing over the years these languages have dffgegelopers
a variety of tools for building fast and solid apptions of any
size. Among these languages, PHP is holding thé iraweb
application development for over than a decade. Newuage
features have been introduced and excellent framieswbave
been developed, rendering PHP an appealing, eistergcale
programming language. An important characteristiPlaP is the
Permission to make digital or hard copies of alpart of this work for personal or
classroom use is granted without fee provided tbates are not made or distrib-
uted for profit or commercial advantage and thaties bear this notice and the full
citation on the first page. Copyrights for compaseof this work owned by others
than ACM must be honored. Abstracting with credipermitted. To copy other-
wise, or republish, to post on servers or to reifiste to lists, requires prior specif-
ic permission and/or a fee. Request permissioms ffermissions@acm.org.
PCI '16, November 10-12, 2016, Patras, Greece
© 2016 ACM. ISBN 978-1-4503-4789-1/16/11...$15.00
DOI: http://dx.doi.org/10.1145/3003733.3003777

provision of dynamic features along with the weatkged varia-
bles, which allow developers to implement elegasititfons, at
the same time promoting modularity and extendipilit

In this study we focus on some of the aforementiodgnamic
features of PHP that can be used for method ini@tagnd ob-
ject instantiations. In contrast to compiled larges PHP offers
developers the ease wariable variables!, which allows the ob-
ject name or the method name in method invocatiorthe class
name in object instantiations to be a string vaeiabhe primary
goal of this study is to investigate the landsaafpdifferent meth-
od invocation and object instantiation approackdsch we col-
lectively refer to apatterns. To this end, we analyzed a corpus of
large and well known PHP projects in order to dethie frequen-
cy of those patterns from the perspective of statialysis. By
understanding those patterns we attempt to shéd iigo the
developers’ habits with respect to the exploitatmithe lan-
guage's dynamic features, and answer our mainrosgaestion,
i.e., “Do developers employ a minimal set of patterns, narrowing
themselves to the most common ones, or do they try to harvest as
many features of the language as possible?”. To answer this ques-
tion we borrow data analysis techniques from ecglby consid-
ering the set of analyzed PHP applications as agystem, where
the examined patterns are treated as species.

The most frequently employed patterns can be used guide to
inexperienced developers or even assist educatotarget the
most efficient ways for invoking methods and insi&ting ob-
jects. We are currently conducting further resedocimvestigate
the potential benefit from the use of such pattelns initial evi-
dence suggests that dynamic features offer improwahtaina-
bility and extensibility.

The rest of the paper is organized as follows: écti®n 2 we
present the ecosystem, while in Section 3 the daitaction and
analysis processes in the study. In Section 4, nesept and dis-
cuss the results of the study. In Section 5 wehistats to validity
and mitigation actions, whereas related work is@nted in Sec-
tion 6. Finally, the paper is concluded in Secfion

2. THEECOSYSTEM

In this section we describe the ecosystem of oupirgeal study,
by first presenting the projects in the corpushef écosystem and
then the patterns that form its species. To sequtoject for in-
clusion in our study, the project should: (a) berogource; (b)
have its source code available in GitHub; (c) thegamity of its
source code should be written in PHP; (d) be alfialivn applica-
tion, and not a library; (e) have more than 20a®és available in
GitHub; (f) come from distinct (as much as possilapplication

! http://php.net/manual/en/language.variables.veagighb




domain; (g) have a large community around i
established reputation in its domain.

By applying the aforementioned criteria we
open source projects. Although the matching |

t; dndh@ave an

haveesteld ten
ispafjects was

larger, we had to limit our study to ten projectse to the pro-
cessing time required for the analysis and thetdichicomputa-
tional resources. The list of analyzed projectprissented in Ta-
ble 1. These projects are influencing the evolutiat only of
PHP applications, but the entire web applicatiowvetspment
industry. Cumulatively, we have analyzed more thai00 ver-

sions and over than 240 MLOC of PHP source
Table 1. Analyzed Projects

code.

Projec Business | Frst || Las |t
Domain Version | Version . kLOC
Versions
WordPress Blog 15 3.6.1 71 6,914
Drupal CMS 4.0.0 7.23 120 8,321
phpBB Forum 2.0.0 3.0.12 37 2,815
MantisBt Bug tracking| 1.0.0 1.2.15 33 4,124
phpMyAdmin | Admin tool 2.9.0 4.1.6 129 13,985
PrestaShop e-commerge 1.5.0.0 1.6.0{10 20 1,24
Typo3 CMS/CMF 3.6.1 6.2.6 189 56,802
Joomla CMS/CMF 1.7.3 3.3.6 59 17,705
Moodle e-learning 1.0.0 2.8.1 165 91,412
MediaWiki wiki 1.1.0 1.24.1 200 33,567

2.1 Method Invocation Patterns

In theory, methods are invoked using the object b@naccess
operator, which might be the same for static menaloeess and
object access (i.e. Java and Ruby) or in some &gegutwo dis-
tinct operators. In the case of PHP there is aragpaperator for

each case, namely the object operate) for met

the double colon:( ) operator for static access. The operands are,

hod access and

on the left side an object or a class (which wétbal object part),

and on the right side the method (which we ca

lirttethod part).

In Table 2 the typical invocation patterns are shhdor each op-

erator.
Table 2. Trivial invocation patterns
Type Example Object Part Method Part
Object |$myPerson->myMethod(); A variable
holding a
reference to | Explicit name
an object of the method
Static |Person::getTypes(); The name of
the class

A dynamic aspect in PHP is introduced by tlaeiable variable
construct and theurly braces syntax?, offering to the developer
the possibility to refer to a variable using argir{literal or varia-

ble) containing its name. For example:

/lassigns an Address object

$addressOfHome = new Address();

/lassigns an Address object also

$theirworkAddress = new Address();

/lassigns an Address object too
$theAddressOfVacation = new Address();

/l... code to assign values to object properties

/l iterate address objects

$objNames = [‘addressOfHome', 'theirWorkAddress
'theAddressOfVacation'];

2 http:/php.net/manual/en/language.types.string.php

foreach($objNames as $varname) {
echo $$varname->getCity();

}

In this case, address objects could have beendsfare data
structure, as well. But there are cases wherenaliiee approach-
es for accessing object methods can prove to bd mare effi-
cient in terms of size and extensibility. In thiample a simple
approach to iterate over the address objects amd fhre city
property of each address would be to store theirasan an array,
iterate over their names and use ¥agable variable construct to
access the objects. Tlarly braces syntax can be used to con-
struct the string containing either the object loe tmnethod part.
The next code snippet is a variation of the previone, where the
names of the variables holding the object refereareefollowing
a motif, prefixed with ‘address’ and followed byethddress type.
This allows iterating address types and constrgctiire variable
name using the curly braces syntax.

$addressHome = new Address();

$addressWork = new Address();

$addressVacation = new Address();

/I... code to assign values to object properties

foreach(['Home', ‘Work', ‘Vacation'] as $type) {
echo ${"address$type"}->getCity();

}

{ Method
\_ TInvocation |

-—

" i
( Objec

J" { Method )

» avariable ) [ directname |
R e " _
{———{ an array element | —»  avariable |
———{ a method call ) Cvariable with curly
— . braces syntax
i~ an abject’s property | e e
P / avariable Y
—{ a static method call | variable
[ —— B
—| a class’ property i /& variable variable "

»  with curly braces —
syntax

——{ afunction call |

——{ anew instance |

»{ self, parent, static | =
R static method

call

e class name

tatic property

[ function call fetch

1k c:
| property fetch
|7 <
Il array fetch
e

—m{ a variable variable |

ternary

/ a variable variable " expression

L—w{ with curly braces -~

b a constant

“any curly

L !
EXpression

Figure 1. Breakdown of method invocation patterns

Additionally, as in many scripting languages, othpproaches are
also available to the developer. PHP offers a sétration han-
dling functions that can be used to call functions or methods
using acallable®. A callable can be either a string containing the
function to be invoked or an array with two elensenthere the
first contains the class name or an object andéeend the name
of the method (string variable or literal). For exyge the follow-
ing line of code performs a static invocation of thos
getBalance()  to the clas<lient . Finally, as in many OO lan-

3 http://php.net/manual/en/ref.funchand.php
4 http://php.net/manual/en/language.types.callabje.ph




guages, a reflection library is also available #sdemployment
introduces alternative approaches for method invata

call_user_func(array(‘Client', 'getBalance)); |

In Figure 1the alternatives for method invocations are graglyic
depicted. On the left side, we present the themaiyi possible
patterns for designating the object, whereas tjig Side the pat-
terns for the designating the method part.

In the lower right the patterns arising from the v$ curly braces
syntax are summarized. The number of possible auatibins for
method invocations is over 700 patterns. This gieddvast eco-
system of ‘species’ that can be used to invoke aukth

2.2 Object instantiation patterns

The conventional approach for object instantiatierusing the
new operator applied to a class in order to invitk&onstructor,
as for example shown below:

$obj = new Product(); |

But in PHP this pattern can be enhanced by allowirg class
name to be a string (literal or variable). This ogipnity allows
the use of thevariable variable construct and theurly braces
syntax, expanding the diversity of patterns. Also beshieuse of
the new operator, an object instantiation can be made wiitier
approaches as well. A variable of any type can dsted to an
object. The resulting object is always an instanéePHP's
stdClas& which is commonly used as PSFinally, objects can
be created using thaserialize 7 function, which takes as input
a serialized representation of an object and retarmew object.
Objects are serialized using the complemengariglize  func-
tion. These functions can also be applied to armagtntiating a
stdClass. However, object instantiation types bgting and
unserialization have not been further classifigd Bpecies in this
study, as they do not constitute a typical wayljéct creation for
system classes.

' Object instantiation )I

—»{ direct name usage |

P object property |

a variable

- > class property
> avariable variable |

» special keyword

(self) )

L an array fetch

Figure 2. Object instantiation patterns

3. CASE STUDY DESIGN

The primary goal of this study is to analyze openrse PHP
projects, so as to identify the frequency of methmacation and
object instantiation patterns. In the following ts@es the data
collection approach and the methodology for thelyaie of re-
sults will be presented.

3.1 Data collection
In this study each project (case) has been analyegarately. For
each project we have obtained multiple units oflysis (ver-

® http:/php.net/manual/en/reserved.classes.php
6 https://en.wikipedia.org/wiki/Passive data_struetur
7 http://php.net/manual/en/function.unserialize.php

sions) and therefore our study can be characteageah embed-
ded multiple case study. The cases of this stustg hlready been
presented in Section 2 (Table 1).

For each project version available in GitHub th#éeoted varia-
bles are: the number of occurrences of each meitinaztation
pattern and the number of occurrences of each pinigantiation
pattern. These are used to calculate the diversispecies in each
version, along with the species richness (see @e&2) and the
dominant species (see Section 3.3)

Data collection has been performed through an &eolanalysis
tool, created by the first author. The completetanis of the
source code of each project is downloaded from @ittand
measurements are performed by distributed analywikers. The
tool has been implemented in PHP and employs an eperce
PHP parsér to build the AST representation of the code, Whg
compressed and stored in a mongoDB gridFS. Theursagnts
are stored in a mySQL database. The implementatisa in-
cludes an algorithm for the identification of inabions made
with the Reflection library, since variables typesPHP are not
declared. To addresshis challenge we employed a simple sym-
bol table to keep track of the references of Ré&feclibrary ob-
jects.

3.2 DataAnalysis

3.2.1 Shannon-Wiener Diversity Index and species richness

In order to depict the evolution of the diversitiytbe used pat-
terns we employed the Shannon-Wiener Diversity jxndghis
measure is a popular diversity index in ecologyt tiakes into
account not only the number of species but alsoptifgulation
that belongs to each species [1], [2], which i® &sown in In-
formation Theory as the Shannon Entropy. The ohljeds to
measure the amount of order or disorder (entrapg) system and
the Shannon-Wiener diversity index is obtained HS=
—¥5_.piIn(p;) , whereH' is the Index of species diversitg,is
the number of species apdis the proportion of total sample be-
longing toi-th species.

In our case we have counted method invocationsiattigiduals-

in each system and we have categorized them tacatiom pat-

terns -the species-. An increase in the index valter time im-

plies that the population is distributed acrossrgdr number of
species. If a dominant species appears —with & latgnber of
individuals belonging to that species- the indeX dicrease. In
our case when new invocation patterns appear, trenrén-
Wiener index will increase. On the other hand ifianocation

pattern becomes dominant -larger share of invocatare made
with the same pattern- the index will decrease.

In order to obtain an insight of the diversity aewan we have
plotted the species richness as well. Species eghis the sim-
plest figure to show and simply refers to the numiifespecies
present in the sample. In Figure 3. Dropping ditgrieidex and
constant richness is shown. In the marked aredefchart the
diversity index is decreasing (the trend is showith whe bold
line), a fact that could be misinterpreted as asphahere the
number of species is also decreasing. But in theesperiod the
richness plot is constant (the trend is shown with bold line).
Taking into account both trends we are driven gbtrconclusion,
that some species' proportion of the populatiogrisving and
they are getting dominant.

8 https://github.com/nikic/PHP-Parser




Since the Shannon-Wiener index does not have aer lipmt like

e.g. the Gini indek, we have plotted the results with the same y-

scale in all projects, so that the results wouldcbenparable.
Along with the Shannon-Wiener index we plot thecse® rich-

ness (number of patterns) with its scale on thet ragtis as shown
in the example of Figure 3.

0.8 T T T T

0.7 | )
H &
0.8 ,[: =
0.5 L i Richness is
04 L Constant
02 }- A\L | 3 Diversity
0.2 ._.’r — “\; is decreasing
0.1 E e ) 2

gl y—

9 20 40 &0 B0 P00 120 140 160 180

Civersity Index
Number of patterns

Figure 3. Dropping diversity index and constant richness

3.2.2 DominanceIndex

In order to identify the dominant patterns we emetbg calcula-
tion method for the dominant species in an ecoryske the con-
text of ecology, to calculate species dominancéaige surface
areas where more than one observation stationssad the so-
calleddominance index Y is used [3], [4]:Y = %fl wheren; is
the abundance of specied; is the occurrence frequency of spe-
ciesi andN is the total abundance. Occurrence frequénsfers
to the proportion of stations reporting the occuceeof a species
in the total number of stations [3]. Frequency ssgbopulation
proportion according to the number of stations ich a species
is observed. This way if a species has a large lptpn propor-
tion in one station only; its effect to the glolpalpulation is scaled
down. A threshold for defining dominant speciesiflisually set
(e.g. in studies of zooplankton).

Table 3. Example of dominance calculation

Spe- |Stations n; ni/N Stations |f; Y Isdominant?
ces |1n; |2
Sp.1 13 0 13| 0.0219 1 0.5 0.0109No, Y<0.02
Sp.2 233 34| 267| 0.4517 2 1 0.4517Yes, ¥=0.02
Sp.3 [ 4 9| 0.0152 2 1 0.0152No, Y<0.02
Sp.4 Q 302/ 302 0.5109 1| 0.5 0.2554Yes, ¥>0.02
N= 591

In Table 3 an example of dominance calculation$ wito sta-
tions is shown. Four species have been found, thfrdeem (Spe-
ciesl, 2 and 3) observed from station 1 and thfekem in Sta-
tion 2 (Species 2, 3 and 4). The abundance counted each
station is in the columns Statiomland Station 2, accordingly.

observing the occurrences of method invocationalject instan-
tiation patterns among them. We will calculate ttmminance
index and apply the threshold in our context. Wéned two
criteria for a pattern to be dominant: (a) be pnese all systems
of the corpus (frequendy=1), and (b) its proportion over the total
population (i/N) to be over 2%.

4. RESULTSAND DISCUSION
4.1 Method invocations

To analyze the evolution of programmers’ habitsla/mivoking

methods we have calculated the Shannon-Wiener ifategach
version of the examined systems. Figure 4 showgvb&ition of

the Shannon-Wiener index along with the specidmess (num-
ber of patterns) with its scale on the right aXise horizontal axis
represents the consecutive versions of each project

T T T 35

| | | T
Drupal WordPress

F - T T
12 - - =0
10 - - - ==
o8 - — = z0
0e |- — _,-J[ - 15
[ — - -1 10
0.z rrjll L'_,_,_r} -1 s
0.0 | N | I T I | o
a4 FToT T T T T =T T T T T 11 35
1o b MantisBt -1 phpEB 30
1.0 - - 25
0.8 -—\_j_—’_—— z0

2

=

T
.

2
o

==
[ = ]
CT T T TT

I
w
u

wisdmin

|

T
php

I Y |
-
1]

I s
MediaWilki — =0

FT T T T T T T T [T
14 Moodle -

Diversity Index

Number of patterns

Figure 4. Diversity of method invocation patterns

The columnn; holds the sum of the total abundance for each spe- Based on Figure 4, we can observe that the evalatidifferent

cies andni/N is the proportion to the total populatidbh The col-
umn Stations holds the number of stations in witabh species
has been observed afdis the proportion of them to the total
number of stations. For example the first specias @bserved in
one of the two stations; hence the frequefiagg 0.5. Also for
species observed in all stations (i.e. Speci&s) equal to their
population proportiorfni/N) since the frequendyis 1. The dom-
inance index is in columM.

In the examined ecosystem of PHP projects, takimg account
that they are open source and therefore knowledadlaw freely
among developers, we consider the individual systasstations

® https://en.wikipedia.org/wiki/Gini_coefficient

projects varies, and three main groups can be fdrniérst,
WordPress, Moodle, MediaWiki andphpBB present an increasing
diversity and species richness, indicating thair thew modules
employ new and different method invocation patter®scond,
Prestashop and Joomla exhibit an almost constant diversity and
species richness. Constant richness indicatesetret if many
components of the project have been reengineeradwicompo-
nents have been added, almost the same patterrsafmiing
dynamic invocations are used throughout the histdrthe pro-
ject. Constant diversity suggests that these dymaratterns are
used with the same proportion among all method dation pat-
terns, regardless of the project size. Finallypbgerving the evo-
lution of Drupal and phpMyAdmin, we can suggest that their di-
versity and richness exhibit some peaks. Concerbingal, at



the point of the peak, Drupal 7 was released, thicing a turn to
the object-oriented paradigm, which was almost aygplied in
previous versions. In the case of phpMyAdmin at teesion
where diversity presents a peak, a third partyafijar namely

PHPExcel®. PHPExcel is a huge and complex OO library, em-

ploying patterns that were not used in the systeforb. A few
versions later (3.4.5), the library was removedultng in a di-
versity and richness drop to the normal levelefdystem's core.

By aggregating the results of all projects, we ickmtify the most
frequently used method invocation patterns in themlete eco-
system. In Table 4, the results of the dominanad=jinY are
shown for each pattern. The values over the thidstfoY>0.02
are grayed indicating the dominant species.

Table 4. Dominance index threshold validation

Species Dominance
(Object part—> Method Part) Index Y

1 | Variable— Explicit method name 0.6271723
$object->method();

2 | Class name~ Explicit method name 0.1802146
Class::method();

3 | Object property— Explicit method name 0.0875515
$obj->objref->method();

4 | Array element— Explicit method name 0.0329878
$a[2]->method();

5 | Method call— Explicit method name 0.0307420
$obj->getORef()->method();

6 | Special key word- Explicit method name 0.0304449
self::method();

7 | Static call method> Explicit method name 0.0057142
Class::getORef()->method();

8 | Variable— Variable 0.0006488
$obj->$methodName();

9 | Variable— literal inside curly braces 0.0003247
$obj->{"methodname"}();

*It should be noted that patterns in Table 4 areoantered in all projects
(fi = 1). As a result, the dominance index is equal/t¢. Only top 9 rows
are shown due to space limitations, but some esefier to all of them.

As it is reasonable to expect, the most dominarthatkinvoca-
tion pattern, accounting for 62.7% of the casethésmost con-
ventional one, i.ebobject->method() . The explicit designation
of the method part is encountered in all dominaaitgons imply-
ing that PHP developers target the dynamic behavidhe object
part of method invocations. The second most popuoiathod
invocation pattern refers to static method callkjch, although
they violate object-oriented principles, are emplbyn 18% of
the cases. Species 3, 4 and 5 employ an indirecofveetrieving
the object on which the method will be invoked (eby indexing
an array of objects, by calling a getter functietg.). Of these
patterns, the most frequently used one (8.7%)a@sothe that re-
trieves the object through the public attributeaobther object,
which is also against proper design principles.itAsan be ob-
served, irregular patterns, such as the ones telgmvariable
variables andcurly braces syntax are scarcely employed. Moreo-
ver, around 30% of method invocations in the exadhiaystems
(aggregating the entire result set) do not follobjeot-oriented
guidelines as they essentially constitute a funetigprogramming
approach.

4.2 Object instantiations

In the corpus of analyzed systems we have beentabtentify
all approaches that can be used for object instigoni. As ex-

10 https://github.com/PHPOffice/PHPEXxcel

pected thenew operator is by far the most popular one (i.e.,

96.39% of the total number of object instantiatjorGasting is

used in 3.47% of the cases where an object isradataiFinally,

unserialize is of limited use, since it is found only in 0.14%o

the total object instantiations, and half of thejects.
0.7

T _ T T 1 T T T T T 1 g
06 [~ Drupal T WordPress =17
05 [ T - &
04 T =B
0z [ [ l' -
0.z - E -
g:é O v I L1 1d
07 T 1T 1T T 1 T T T T 11 &
06 [~ MantisEt T phpEBB - 7
05 |- T+ -1 &
04 - + = 3
0.2 | e .
0.z | o o
01 " == = 1
0.0 1 1 1 1 1 1 N I N R Y | 2
0.7 T T T T 1 T 1 1 g
06 [~ phpMyAdmin T PrestaShop - 7
05 |- -+ 1 e
0s - T 12
0.3 = T~ A ;
0.z - s
el T 13
0.0 1 1 1 1 1 | 1 1 | 1 2
0.7 T T T T T T T 11 T 1 1 8
0.6 Typo3 T- Joomla 17
0.5 5 -1 &
0 - T T 3
SO T ¥ R E i S i S
0.z | - B =,
01 -+ 41
0.0 T I I N R a
07 FT T T T T T 11 rT 1T 11T 11718
06 [ Moodle -1 Mediawiki = 7
0.5 T =16
0.4 + B
= 4
0.2 i\j\. i i
0.2 L"‘—\_\_,_\_‘—_ -z
0.1 - =~ 1
0.0 I N O A I T I a

Diversity Index

Number of patterns

Figure5. Diversity of object instantiation patterns

In order to analyze the evolution of programmerabits while
instantiating objects, we calculated the Shannoaréfi index for
each version of the examined systems (Figure ®nd\with the
Shannon-Wiener index the species richness (nunfbpatterns)
is also plotted with its scale on the right axiseThorizontal axis
represents the consecutive versions of each prdgactilarly to
method invocations, the evolution of object inst&idn patterns
varies between projectBrupal andphpBB employed for a long
period just one pattern, as a natural consequeanethe fact that
OO code was almost non-existeMiantisBt and PrestaShop have
almost a constant diversity index and species gsbnindicating
stability in object instantiation mechanisn&po3 and Moodle
exhibit a reducing diversity index indicating thd@minant pat-
terns appeared in the system, possibly implying tievelopers
agreed on a set of commonly used techniques, wthiep fol-
lowed for newly added codédediawiki on the other hand has
increasing diversity index and species richnesdicating that
new patterns are employed in the project.

5. RELATED WORK

The study of scripting languages is a subject irenthe last few
years, but publications related to evolution of leggpions imple-
mented in scripting languages and especially in RHPlimited.
Dynamic features as those offered by scripting laggs are not
offered by compiled languages and are rarely stlididiterature.



Hills [5] studied the evolution of the usage of P&Eynamic
features including variable variables, magic methedal func-
tion, function handling functions and casting. Hesented the
aggregated trend of each group of dynamic featwitheout fo-
cusing in detail on method invocations and objestantiations.
The dataset consisted of WordPress and MediaWilis 6]
studied also the exploitation of idiomatic usagévariable fea-
tures in a set of 20 open source PHP projectsu@ing 7 projects
employed in our corpus). He developed a list ofquas to detect
such usages and classified them based on thedatwtali applica-
tion. The three categories are, loop patternsgas®nt patterns
and flow patterns. For each category he developkghaweight
detection algorithm. Additionally he identified atsof "anti-
patterns" that consist of cases that cannot bévesbaising static
analysis. The cases that can be resolved are Wiose the varia-
ble part of the variable variable is literally defd at function
level scope.

Eshkevari et al. [7] studied the runtime type cteangf variables
in a corpus of PHP applications, consisting of pBpBrupal and
WordPress, in order to study the effort needed &kamexisting
PHP applications conform to HACK's type system negoents.
They employed a hybrid approach combining statit dynamic
analysis employing TXL[8] source transformation awhtir
crawler for runtime instrumentation. Amanatidis and
Chatzigeorgiou [9] studied the evolution of PHP lagaions from
the perspective of Lehman laws detecting evolutibohanges in
files and other software engineering metrics, lideCabee's
complexity on a set of 24 projects. Their resulsport with con-
fidence that open source PHP applications are aiaatle and
sustainable, despite the fact that they are imphéedewith a
scripting language.

Wang et al. [10] studied dynamic features in Pythidmey chose
four groups of the most commonly used, classifiedrarospec-
tion, Object Changes, Code Generation and Libi@agdihg. Their

functionality does not match the corresponding sasePHP and
therefore, a direct comparison to their resultsndd possible.
Callau et al. [11] performed an empirical studytbe usage of
dynamic features in Smalltalk. They investigatede¢hsets of
Smalltalk's dynamic features, classes as firstsatdgects, behav-
ioral reflection and structural reflection. Thoge aimilar to dy-

namic features offered by PHP, i.e. structuralexfbn is imple-

mented in PHP with dynamic code includes. Theiralieesult is

that the methods in their corpus employing dyndieatures were
1.29% over the total number of methods.

6. LIMITATIONS& VALIDITY THREATS

One limitation of this study can be identified hretalgorithm for
the detection of the occurrences whereuteerialize function
returns an object. If no method is invoked on theated object
within the same function or class then our algonitbannot de-
termine if the result of thenserialize function was an object
or not. The same restriction applies to the albarithat detects
method invocations with employment of the Reflettidorary.
However, we believe that this limitation is not gatening the
validity of the results, since according to our owiperience on
various PHP projects, such cases are very raraatipe.

The presented empirical study suffers from thréatgeneraliza-
tion, in the sense that the examined systems, wthoelatively
large, constitute only a small portion of the aablié PHP code.
This means that our findings might not be valid dtner applica-

1 http://watir.com

tions written in PHP. Nevertheless, we need to todé the pro-
jects that we have selected are among the mostusiRblP web
applications, and therefore can be considered pesentative
and influential to the community.

7. CONCLUSIONS

The dynamic features offered by PHP language tokevnethods
and instantiate objects constitute a rather divecssystem, from
which developers can harvest the most suitableepattthat fit
their goals. The analysis of ten extremely popwab applica-
tions suggested that in the case of method invatsitiievelopers
use a very limited number of the theoretically [lusspatterns,
implying that even a dozen of them can cover atsalial part of
the knowledge required for building OSS PHP prajethis find-

ing can be justified by the comfort coming from e&pion, which

can be stronger than the urge to explore exotamdiof the lan-
guage. On the contrary, for object instantiatioms bumber of
offered patterns is significantly smaller than foethod invoca-
tions (limited to seven), forming a set of idiom&ieh is easily
memorable, since six of them have been consistémilyd in our

corpus. The present work is in progress to invastign more
depth the employment of those language featureshaidimpact
on code stability in order to get an insight on thiee there is a
long term benefit from their employment.

8. REFERENCES

[1] I. F. Spellerberg and P. J. Fedor, “A tribute tae Shannon
(1916-2001) and a plea for more rigorous use of speaib-
ness, species diversity and the ‘Shannon-Wienerxihdalob.
Ecol. Biogeogr., vol. 12, no. 3, pp. 177-179, 2003.

C. J. KrebsEcological Methodology. New York: Harper Collins
Publishers, 1989.

Z.-L. Xu and C. Li, “Horizontal distribution andominant spe-
cies of heteropods in the East China SdaPlankton Res., vol.
27, no. 4, pp. 373-382, 2005.

K. Li, J. Yin, L. Huang, and Z. Lin, “Seasongériations in
diversity and abundance of surface ichthyoplanktontha
northern South China Seaj\tta Oceanol. Sn., vol. 33, no. 12,
pp. 145-154, 2014.

M. Hills, “Evolution of dynamic feature usage RHP,” in2015
|EEE 22nd Inter national Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), 2015, pp. 525-529.

M. Hills, “Variable Feature Usage Patterns in PKIB.,” in
ASE, 2015, pp. 563-573.

L. Eshkevari, F. D. Santos, J. R. Cordy, andABtoniol, “Are
PHP applications ready for Hack?,”2015 |EEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), 2015, pp. 63-72.

J. R. Cordy, “The TXL Source Transformation Laaga,” Sci
Comput Program, vol. 61, no. 3, pp. 190-210, Aug. 2006.

T. Amanatidis and A. Chatzigeorgiou, “StudyirtgetEvolution
of PHP Web Applications,Inf Softw Technol, vol. 72, no. C,
pp. 48-67, Apr. 2016.

B. Wang, L. Chen, W. Ma, Z. Chen, and B. XAn“empirical
study on the impact of Python dynamic features oangk-
proneness.,” iSEKE, 2015, pp. 134-139.

O. Callal, R. Robbes, E. Tanter, and D. Réltidrger, “How
Developers Use the Dynamic Features of Programming La
guages: The Case of Smalltalk,”Rnoceedings of the 8th Work-
ing Conference on Mining Software Repositories, New York,
NY, USA, 2011, pp. 23-32.

(2]
(3]

[4]

(5]

(6]

(7]

(8]

[0

[10]

[11]



