Translating Quality-Driven Code Change Selection to an Instance of
Multiple-Criteria Decision Making

Christos P. Lamprakos®*, Charalampos Marantos®, Miltiadis Siavvas®, Lazaros Papadopoulos?,
Angeliki-Agathi Tsintzira®, Apostolos Ampatzoglou®, Alexander Chatzigeorgiou®, Dionysios KehagiasP®,
Dimitrios Soudris®

@School of Electrical and Computer Engineering, National Technical University of Athens, Greece
bCentre for Research and Technology Hellas, Thessaloniki, Greece
¢Department of Applied Informatics, University of Macedonia, Greece

Abstract

[Context] The definition and assessment of software quality have not converged to a single specification.
Each team may formulate its own notion of quality and tools and methodologies for measuring it. Software
quality can be improved via code changes, most often as part of a software maintenance loop. [Objective]
This manuscript contributes towards providing decision support for code change selection given a) a set of
preferences on a software product’s qualities and b) a pool of heterogeneous code changes to select from.
[Method] We formulate the problem as an instance of Multiple-Criteria Decision Making, for which we
provide both an abstract flavor and a prototype implementation. Our prototype targets energy efficiency,
technical debt and dependability. [Results] This prototype achieved inconsistent results, in the sense of not
always recommending changes reflecting the decision maker’s preferences. Encouraged from some positive
cases and cognizant of our prototype’s shortcomings, we propose directions for future research. [Conclusion]
This paper should thus be viewed as an imperfect first step towards quality-driven, code change-centered
decision support and, simultaneously, as a curious yet pragmatic enough gaze on the road ahead.

Keywords: Decision Support, Software Quality, Multiple-Criteria Decision Making

1. Introduction

Software engineering projects involve a diverse array of strategic decision making [8]. Opportunities
appear all across the application development lifecycle. Particularly during the software maintenance stage,
teams are often obliged to improve their product’s quality.

“Software quality” refers to a software product’s inherent characteristics. Several standards have been
proposed, the most popular of which is ISO/TEC 25010:2011|H But quality definition does not equal quality
measurement. Many approaches exist for selecting metrics relevant to each project’s final formulation of
product quality [I], also known as non-functional requirements (NFRs) [4]. In this paper we hold the
assumption that the step following quality assessment is a set of code changes. If it is a fact that some code
changes do harm NFRs like performance [3], then the converse should also be true; it is possible to improve
software quality via code changes.

*Corresponding author
Email addresses: cplamprakos@microlab.ntua.gr (Christos P. Lamprakos), hmarantos@microlab.ntua.gr (Charalampos
Marantos), siavvasm@iti.gr (Miltiadis Siavvas), lpapadop@microlab.ntua.gr (Lazaros Papadopoulos),
angeliki.agathi.tsintzira@gmail.com (Angeliki-Agathi Tsintzira), ampatzoglou@uom.edu.gr (Apostolos Ampatzoglou),
achat@Quom.edu.gr (Alexander Chatzigeorgiou), diok@iti.gr (Dionysios Kehagias), dsoudris@microlab.ntua.gr (Dimitrios
Soudris)
Thttps://www.iso.org/standard/35733.html

Preprint submitted to Information and Software Technology January 13, 2022

https://www.iso.org/standard/35733.html

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

We treat the problem of deciding upon a pool of heterogeneous code changes (i.e. not all of them
improving the same quality). Similar stances have been taken in recent work [7]. These approaches treat
fully-automated, search-based software engineering while many teams prefer manual actions [6]. We propose
formulating the task of quality-driven code change selection as an instance of Multiple-Criteria Decision
Making [10]. We describe an abstract form of our methodology and then demonstrate a first prototype
implementation addressing energy efficiency, technical debt and dependability. This prototype achieves
inconsistent results; we qualitatively identify this behavior’s root cause, and propose future work towards
more reliable implementations.

Our main contributions are: (i) quality-driven code change selection is defined as a Multi-Criteria De-
cision Making (MCDM) problem and an abstract, extensible methodology built around the MCDM core is
presented, (b) a prototype focusing on energy efficiency, technical debt and dependability, is described and
evaluated, (c) related future work is proposed through a qualitative critique of the prototype’s shortcomings.

2. Main Approach
The abstract form of our methodology is depicted in Figure [I} The following elemets are required:
e aset of NFR{

a set of code changtﬂ recommender processes, each targeting a separate non-functional requirememﬂ

e a uniform set of impact models for quantifying the degree to which a code change could affect a quality
attribute

e a set of functions that map candidate code changes to expected impacts on all quality attributes
e an MCDM algorithm

Each distinct quality attribute-centered recommender process generates a list of code change suggestions.
Each candidate code change is given as input to all of the change impact functions, and thus estimates of
how this change would affect each quality attribute are computedﬂ Thus we get a design space on which the
trade-offs between each candidate change are imprinted. A more concrete example can be seen in Table
created in the context of the prototype that we present in Section

This design space and the decision maker’s (DM’s) preferences are the inputs to the MCDM algorithm
comprising our methodology’s decision-making coreﬂ The final output is a ranking of the code changes,
based on each change’s fitness to the DM’s preferences, captured by the “Decision Value” field.

2.1. Decision-Making Core

We define two discrete spaces X and ¥, comprising quality attributes and code changes respectively. We
also define the set of real numbers R as the range of the change impact models. Each model is expressed by
a function frex : ¥ — R. We denote each set of code change recommendations with ¥;, i € (1,2,...,N).
There could exist empty sets or sets with overlapping elements but in any case, we are concerned with the

N
union of all suggestion sets, which will be a subset of ¥: ¥, .= (J ¥,.
i=1

One can now visualize a table of |¥,| rows and N + 1 columns like Table [Eﬂ This can be viewed as the
Design Space block shown in Figure

2From this point, we will use the term “non-functional requirements” for both the quality attributes’ definition and the
means for their assessment (metrics, thresholds, combination of metrics, etc).

3We define a code change as a single, contiguous edit in the source code. Thus, removing two unused variables from two
non-neighboring spots of a program equals to two different code changes.

4Keeping a generic point of view, we do not impose any limitations on what these processes could look like. Maybe they
are part of a static analysis tool, or an expert’s opinion. The only invariant should be that each process generates a set of code

2

Software Project

[
v v v

Quality Attribute #1 Quality Attribute #2 - Quality Attribute #N
Recommender Process Recommender Process Recommender Process
Quality Attribute #1 Quality Attribute #2 Quality Attribute #N
Changes Changes Changes

Code Change

1 Code Change 1 1 Code Change M1+1 1 M1+M2+1
. Code Change

2 Code Change 2 2 Code Change M1+2 2 MA+M2+2
Code Change
M1 Code Change M1 M2 [Code Change M1+M2 MN M1+M2+MN

Change Impact Functions

Quality Attribute #1 Function

Quality Attribute #2 Function

Quality Attribute #N Function

Design Space

l

MCDM

Preferences

Decision
Maker

Final Code Changes Ranking

Code Change no. | Quality Attribute #1 | Quality Attribute #2 Quality Attribute #N | Decision Value

Figure 1: Functional diagram of the proposed method.

change suggestions.
5An alternative wording is the notion of “trade-off analysis”.
6MCDM is related to whatever scenario requires decision support given a list of available options, and multiple criteria

based on which the options are evaluated.
7This table was developed for our prototype instance. Things left abstract in Section [2] are here specified. For example, we

treat refactoring operations instead of generic code changes. We pick fuzzy sets as the range of the change impact functions.

Further details are provided in Section l

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Table 1: A sample from the design space generated by this paper’s prototype. Impacts on qualities were based on empirical
measurements.

Code Change Energy Technical Debt Dependability
Fix input/output is- No Impact Tmprove Improve

sues

Eliminate dead code No Tmpact Hinder Improve

segments

The value of each suggested change (that is, its fitness to the DM’s preferences) can be expressed as:
Vi =wi - f1(j) + w2 f2(§) + . +wn - v ()
N
=Y w; - fi(j) (1)
i=1
jev, ieX

For Eq. to be evaluated, the key component missing is the N-dimensional weight vector W. This corre-
sponds to a quantitative representation of the DM’s preferencesﬂ To compute ﬁ, most MCDM algorithms
require from the user to provide a form of her preferences with respect to the criteria under discussion. In
our case, these criteria are the chosen quality attributes.

3. Prototype

This section describes an elementary implementation (prototype) of the abstract methodology presented
above. Our prototype was developed in the context of the Horizon H2020 project SDK4ED—see Section [7]
The specific software qualities chosen are energy efficiency (E), technical debt (TD) and dependability (D).
It is not possible to elaborate on the details of our prototype’s setup (metrics and derivation of each quality,
change recommender processes, etc.). We do however provide a compact list of design decisions belowﬂ

e NFRs: Energy consumption (milliJoules), principal technical debt (U.S. dollars), dependability (cus-
tom index). These were selected in the context of SDK4ED, the pilot use cases of which were either
embedded, IoT or safety-critical applications. Technical debt aside (which could be considered univer-
sally important), the needs for high energy efficiency and optimal dependability are evident for such
applications.

e Code change format: Refactoring. Architectural changes do not belong in this paper’s scopﬂ

e Change recommender process: Automatic identification of refactoring opportunities via static
(technical debt, dependability) and dynamic (energy efficiency) analysis tools.

e Impact models: Lexicographical categories mapped to fuzzy sets following a similar approach to
Shatnawi and Li [9]. As already mentioned, a sample of the design space may be seen in Table

e Derivation of impact functions: Static empirical analysis via iterative application of refactoring
operations on several open-source code segments, and subsequent quality assessment on the SDK4ED

platforrrﬂ

8Strange as it may sound, a central problem addressed by MCDM is precisely this quantification of preferences, which
according to the literature is non-trivial if consistency and reliability are sought after.

9For further information, please feel welcome to consult the project’s publicly available deliverable 6.4 at https://sdké4ed.
eu/documents/\

YThat said, we see no particular reason why the abstract version of our methodology could not be applied to architecture-
oriented changes.

11See Footnote @

https://sdk4ed.eu/documents/
https://sdk4ed.eu/documents/

72

73

74

75

76

e

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

99

100

101

102

For the MCDM component, we implemented the Fuzzy Best-Worst Method (FBWM) algorithm by
Guo and Zhao [5]. Like other MCDM algorithms, its inputs are an encoding of the DM’s preferences and
the impact-annotated design space of available options (in our case, refactoring opportunities). FBWM is
flexible enough to support a wide spectrum of preference scenarios, ranging from single objective optimization
(improve only one non-functional requirement) to joint, three-way optimization (improve all NFRs).

For the impact models’ range, we defined three triangular membership functions in [—1, 1] with equal
overlaps of 0.5 units (Hinder, No Impact, Improve). For more details on FBWM (preference encoding,
mathematical description), the reader may consult [5].

4. Results

We devised 3 ’preference scenarios’, each with a different ordering of importance on the qualities. The
software project used for evaluation was Rodinia [2], a widely-used benchmark suite for heterogeneous
computing. It comprises both CPU and GPU implementations of a wide array of computational kernels,
from backpropagation to video editing. The data depicted below are average improvements measured after
applying, for each benchmark, the proposed top-ranked refactorinﬁ

Figure [2displays the results retrieved from applying the top-ranked refactoring operations in three usage
scenarios. Usage Scenario is a tuple showing the hierarchy of quality attribute importance as provided by
the DM. From left to right, the elements denote a best-worst-remaining sequence. A result is positive if
it respects the hierarchy posed by the DM, in the sense of improving the best NFR most and the remaining
NFR less. As regards the worst NFR (in which the DM is the least interested), it is irrelevant whether it
gets improved or not by the made decision. A result is negative if it does not respect the imposed preference
hierarchy in any way.

According to Figure [2] our results are inconsistent. We provide brief comments for each scenario in a
left-to-right fashion.

e (TD,E,D): negative. The best criterion (TD) is indeed improved, but as regards the other two
qualities, the hierarchy is reversed (worst gets improved, remaining gets hindered). The respective
percentages also do not follow the hierarchy (TD should see the biggest improvement).

e (E,D,TD): mostly negative, in a similar vein with the above. A hopeful detail is that percentages are
more fitting here, since the best criterion (E) does indeed see the biggest improvement.

e (D,TD,E): mostly positive. Best criterion (D) gets improved, worst criterion (TD) gets hindered.
Of course, E should have seen smaller improvement than D. But having both of the top qualities
improved, just in inverse proportions, is in our opinion the least painful of all possible headaches.

75 45 2
® 5 & 30 &
€25 . £ 15 1
£ - |
g 9 g O g
©-25 © -15 © 0 —
E S £-30 E
-7.5 -45 -1

Usage Scenario: (TD,E,D) Usage Scenario: (E,D,TD) Usage Scenario: (D,TD,E)
B Technical Debt ® Energy m Dependability

Figure 2: Experimental results: Average improvement (i.e. across all Rodinia benchmarks) of qualities after implementing the
prototype’s top-ranked suggestions.

12The SDK4ED platform provides analysis infrastructure for direct measurement of the stated software qualities. We
performed measurements both before and after applying the MCDM-proposed code change.

5

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

5. Discussion and Future Work

Refactoring is known as a controversial means of quality improvement. We selected this code change
paradigm due to our funding project’s specifications. Future research could focus on alternative methods.

Moreover, a decision process is only as good as its inputs. We consider the main culprit behind our
results’ inconsistency the fact that our prototype uses a static, empirical model for the expected impact of
refactoring on software quality. In this way it ignores the interdependencies in a specific project, which as
a result distorts the design space (values in Table .

Change Impact Analysis (CIA) can be used for locating which parts of code would be affected by a
candidate refactoring. The next step is to develop fine-grained local impact models. A far greater amount of
information would then enrich the design space. This direction is orthogonal to the choice of the particular
MCDM algorithm.

Last but not least, no comparison of our proposal with relevant works in the literature is presented.
Acknowledging the issues discussed above does not leave any room for sparring with the state-of-the-art,
even if similar tools exist (inconsistent results appear for the simplest of baselines).

6. Conclusion

This work concerns quality-driven decision making in the source code level during the maintenance
and evolution stages of an application’s development lifecycle. We presented an abstract methodology for
integrating arbitrary software quality definitions in a workflow producing a ranked list of quality-enhancing
code changes. The central component of our proposal is the multiple-criteria decision making theory and
family of algorithms.

We also presented a prototype of our methodology targeting security, technical debt and energy efficiency.
Even though our experimental results proved to be inconsistent, we believe our main idea to be worthy of
further exploration.

7. Acknowledgements

This research was partially funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 780572 SDK4ED (www.sdk4ed.eu).

References

[1] Basili, V. R. (1992). Software modeling and measurement: the goal/question/metric paradigm. Technical report.

[2] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K. (2009). Rodinia: A benchmark suite
for heterogeneous computing. In 2009 IEEE international symposium on workload characterization (IISWC), pages 44-54.
Teee.

[3] Chen, J. and Shang, W. (2017). An exploratory study of performance regression introducing code changes. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages 341-352. IEEE.

[4] Chung, L. and do Prado Leite, J. C. S. (2009). On non-functional requirements in software engineering. In Conceptual
modeling: Foundations and applications, pages 363—379. Springer.

[5] Guo, S. and Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based
Systems, 121:23-31.

[6] Murphy-Hill, E., Parnin, C., and Black, A. P. (2011). How we refactor, and how we know it. IEEE Transactions on
Software Engineering, 38(1):5-18.

[7] Ouni, A., Kessentini, M., O Cinnéide, M., Sahraoui, H., Deb, K., and Inoue, K. (2017). More: A multi-objective refactoring
recommendation approach to introducing design patterns and fixing code smells. Journal of Software: Evolution and Process,
29(5):e1843.

[8] Ruhe, G. (2003). Software engineering decision support — a new paradigm for learning software organizations. In Henninger,
S. and Maurer, F., editors, Advances in Learning Software Organizations, pages 104-113, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[9] Shatnawi, R. and Li, W. (2011). An empirical assessment of refactoring impact on software quality using a hierarchical
quality model. International Journal of Software Engineering and Its Applications, 5(4):127-149.

[10] Triantaphyllou, E. (2000). Multi-criteria decision making methods. In Multi-criteria decision making methods: A com-
parative study, pages 5—21. Springer.

www.sdk4ed.eu

	Introduction
	Main Approach
	Decision-Making Core

	Prototype
	Results
	Discussion and Future Work
	Conclusion
	Acknowledgements

