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ABSTRACT 
Architectural technical debt (ATD) is incurred by design decisions 
that consciously or unconsciously compromise system-wide 
quality attributes, particularly maintainability and evolvability. 
ATD needs to be identified and measured, so that it can be 
monitored and eventually repaid, when appropriate. In practice, 
ATD is difficult to identify and measure, since ATD does not 
yield observable behaviors to end users. One indicator of ATD, is 
the average number of modified components per commit 
(ANMCC): a higher ANMCC indicates more ATD in a software 
system. However, it is difficult and sometimes impossible to 
calculate ANMCC, because the data (i.e., the log of commits) are 
not always available. In this work, we propose to use software 
modularity metrics, which can be directly calculated based on 
source code, as a substitute of ANMCC to indicate ATD. We 
validate the correlation between ANMCC and modularity metrics 
through a holistic multiple case study on thirteen open source 
software projects. The results of this study suggest that two 
modularity metrics, namely Index of Package Changing Impact 
(IPCI) and Index of Package Goal Focus (IPGF), have significant 
correlation with ANMCC, and therefore can be used as alternative 
ATD indicators. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics- Product metrics; D.2.11 
[Software Engineering]: Software Architectures - languages 

General Terms 
Measurement, Experimentation 

Keywords 
Architectural technical debt; modularity metric; commit; software 
architecture  

1. INTRODUCTION 
Technical debt has been increasingly gaining attention from 
researchers in the software engineering domain and from 
practitioners in the software industry in the past years [3; 9; 16]. 
The concept of technical debt was coined by Ward Cunningham 
to describe immature work in coding that can yield short-term 
benefit (e.g., fast delivery), but will lead to high maintenance and 
evolution cost in the long term [4]. Technical debt can span all 
phases of the software development lifecycle, including 
requirements analysis, architecture design, detailed design, testing 
etc. [8]. More generally, technical debt refers to immature work in 
a software system that takes compromises in one dimension to 
meet urgent needs in some other dimension [3]. In this work, we 
focus on the technical debt at architecture level [11], i.e., 
architectural technical debt (ATD). 

ATD is caused by design decisions that consciously or 
unconsciously compromise system-wide quality attributes (QAs), 
especially maintainability and evolvability [8; 10]. Typical ATD 
includes violations of best architecture practices and breakages of 
the consistency and integrity of software architectures. An 
example of ATD is the creation of architecture dependencies that 
violate the strict layered architectural pattern, i.e., a higher layer 
having direct dependencies to layers other than the one directly 
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below it. ATD may also include the adoption of immature 
architecture techniques. Another ATD example is the use of an 
immature web application framework, which might require 
significant modifications, and therefore extra effort, to adapt in 
the developed web application. 

By taking into account the negative impact on the long-term 
health of a software system, ATD needs to be effectively managed 
to keep its amount under a reasonable level. Management of ATD 
entails identifying and measuring it, so that it can be monitored 
and eventually repaid [10]. However, in practice ATD is difficult 
to identify and measure, since ATD does not yield observable 
behaviors to end users [3; 10; 16]. One solution is to define ATD 
indicators that denote the presence and relative amount of ATD. 
One such indicator is the average number of modified components 
per commit (further referred as ANMCC). A commit, also called a 
revision, is a unit of modification to the source code of a software 
system. ANMCC indicates the presence of ATD as follows: 

- ANMCC reflects the complexity and difficulty of making 
changes to a software system. A high ANMCC means that 
in a specific revision, and in order to perform a 
maintenance task (e.g., debugging or implementing a new 
feature) many components had to be modified. This fact 
indicates a difficulty in performing maintenance activities, 
due to high coupling between components, and intensive 
ripple effects. 

- The increase of the complexity and difficulty of making 
changes to a software system is the consequence of 
accumulated ATD. If not repaid, ATD will continuously 
accumulate interest, which makes the system more 
complex and difficult to implement changes later on [3; 4].   

- A higher ANMCC entails an increase in the complexity 
and difficulty to change, thus implying potential increase 
in ATD. 

However, it is hard and sometimes even impossible to calculate 
ANMCC, because the commit records (i.e., history data of source 
code changes) are not always available. For instance, a legacy 
system may not have commit history data; or a system that is built 
based on reused components from different projects has no 
complete commit history data. To address this issue, we try to find 
a substitute for ANMCC indicator that can be calculated based on 
source code; such a substitute should be accurate (ground truth 
representation of the system) and available.  

In order to identify such a substitute we look into modularity 
metrics. According to ISO/IEC 25010 standard [7], modularity is 
one of the sub-characteristics of  maintainability, which is one of 
the QAs compromised by ATD. Modularity is defined as the 
“degree to which a system or computer program is composed of 
discrete components such that a change to one component has 
minimal impact on other components [7]”. A snapshot of the 
source code of a project is the result of previous changes 
(commits). The modularity metrics of a snapshot of the project 
source code can, to a certain extent, reflect the development 
difficulty of changes to this project in the near future [19]. 
Specifically, as the modularity of a software system increases, the 
ANMCC of this software system is expected to decrease. 
Consequently, system modularity, to a certain degree, can also 
substitute ANMCC in terms of indicating ATD.  

In this work, we empirically investigate the ability of existing 
modularity metrics to substitute ANMCC as ATD indicators, 
through a holistic multiple case study on thirteen open source 
projects. The main contribution of this work is the empirical 
evidence supporting that two of the investigated modularity 

metrics, i.e., Index of Package Changing Impact (IPCI) and Index 
of Package Goal Focus (IPGF), have significant negative 
correlations with ANMCC – the ATD indicator. Thus, the two 
software modularity metrics (IPCI and IPGF) can be used as 
indicators of ATD of a system. The merit of using IPCI and IPGF 
as ATD indicators is that they can be automatically calculated 
using a single version of source code, while the calculation of 
ANMCC requires commit history information of a project which 
is not always available. 

The remainder of this paper is organized as follows: we discuss 
related work on technical debt measurement, especially ATD 
measurement in Section 2. The case study design is illustrated in 
Section 3. Section 4 describes the results of the case study and 
Section 5 discusses the study results and their implications. The 
threats to the validity of the case study are identified in Section 6. 
We conclude this work with future work directions in Section 7. 

2. RELATED WORK 
Technical debt measurement is considered as an important step in 
the technical debt management process [18]. Although technical 
debt is not easy to measure [3], there have already been some 
attempts trying to estimate it at various levels (e.g., code level, 
architecture level) and from different perspectives.  

In [3], Brown et al. proposed to aggregate individual technical 
measures of technical debt in three aspects similarly to financial 
debt: principal, interest probability, and interest amount. The total 
technical debt is the sum of the principal, and the product of 
interest probability and interest amount. Seaman and Guo 
measured these three aspects of a technical debt item by assigning 
them values of high, medium, or low [18]. They suggested that 
these coarse-grained estimates should be sufficient for tracking 
technical debt items and making preliminary decisions on 
technical debt management. When more required information 
(e.g., historical effort data) is available, fine-grained estimations 
can be made upon that information for refined management 
decision-making. 

Curtis et al. estimated technical debt by calculating the cost of 
fixing different types of violations (e.g., code smells) that were 
identified through automatic static analysis of source code against 
rules of good architecture and coding practice [5]. They analyzed 
millions of lines of source code of business applications collected 
from various companies in different application domains. These 
collected applications were written in 28 programming languages. 
The principal of technical debt can be calculated through the 
following formula [5]: 

Principal =  
((Σ high-severity violations) × (percentage to be fixed) × 
(average hours needed to fix) × ($ per hour)) +  
((Σ medium-severity violations) × (percentage to be fixed) × 
(average hours needed to fix) × ($ per hour)) +  
((Σ low-severity violations) × (percentage to be fixed)  
× (average hours needed to fix) × ($ per hour)). 

When the percentages of high-, medium-, and low-severity 
violations to be fixed are 50%, 25%, and 10%, respectively, fixing 
each violation takes one hour and the labor cost is 75 US dollar 
per hour, the average estimated technical debt principal is 3.61 US 
dollar per line of code in the aforementioned collected source 
code. The technical debt principal per line of source code differs 
among programming languages. However, there are some issues 
with estimating the technical debt of a concrete software system 
with fixed value (i.e., 3.61 US dollar per line of code). Usually, 
architectural violations are much more difficult to fix compared 



with the design-level and code-level violations. In addition, the 
cost of fixing the same type of violations differs largely in 
different contexts of various software projects. 

Marinescu proposed an approach to identify and measure 
technical debt of object-oriented software systems by detecting 
and assessing specific types of design flaws through object-
oriented metrics [12]. The approach is composed of four steps: (1) 
choose a set of concerned design flaws, (2) define rules for 
detecting the selected design flaws, (3) measure the negative 
impact of each instance of the design flaws, and, finally, (4) 
calculate an overall score based on all detected design flaws to 
indicate the design quality of a system. The accuracy of the 
technical debt measurement in this approach depends on the 
ability of the design flaws detection. This approach can only 
identify and measure technical debt at detailed design level, while 
our investigation focuses on technical debt at architecture level.  

Nord et al. defined a metric for managing ATD [15]. The value of 
this metric, calculated for each release, is the total cost of the 
implementation of new architectural elements introduced in this 
release, and the rework of pre-existing elements in previous 
releases. They considered architectural rework as the necessary 
adaption work for adding new architectural elements to the 
existing architecture of a software system. The rework cost is 
calculated based on the analysis of the changing dependencies 
from existing adapted architectural elements to the new 
introduced elements. This metric can be used to calculate the 
relative amount of ATD incurred in different software evolution 
paths, i.e., release plans. Suppose that there are two release plans 
RP1 and RP2, in which the same features are implemented, i.e., 
they generate the same amount of business value. The relative 
amount of ATD is the difference between the values of metric 
calculated on RP1 and RP2. Thus, this metric can facilitate 
architecture decision-making in ATD management. The main 
limitation of this approach is the accuracy of the estimation of 
implementing new features and rework, especially the latter. Each 
software evolution path involves several releases, which implies 
that the estimation of rework and new implementations of later 
releases is based on the estimation of the earlier releases. This 
may pose a significant threat to the accuracy of ATD estimation.  

In our work, we consider that the estimation of ATD should be 
calculated on real data (i.e., source code), and the estimation 
makes more sense within a relative short term, e.g., between two 
releases. That is, the estimation of the next release is based on the 
real data of this implemented release. 

3. CASE STUDY DESIGN 
In order to investigate the ability of modularity metrics to 
substitute the average number of modified components per 
commit (ANMCC), and thus act as alternative indicators of 
system’s ATD, we performed a holistic multiple case study on 
thirteen C# open source software (OSS) projects provided by 
GitHub1. The main reason for conducting a case study is that, 
through using OSS projects, and more specifically their source 
code and commit information, we examine the phenomenon in its 
real-life context, since both factors, i.e., modularity and ANMCC, 
cannot be monitored in isolation, and their environment cannot be 
controlled. In this section we describe the case study, which was 
designed and reported according to the guidelines proposed by 
Runeson and Host [17]. 

                                                                 
1 https://github.com/ 

3.1 Objective and Research Questions  
The goal of this study, described using the Goal-Question-Metric 
(GQM) approach [2], is: to analyze modularity metrics for the 
purpose of evaluation with respect to their ability to act as 
substitutes of ANMCC, for indicating ATD, from the point of view 
of software architects in the context of OSS evolution. 

Based on the abovementioned goal, we have extracted two 
research questions (RQs): 

RQ1: Are there modularity metrics that correlate with ANMCC? 

RQ2: Which modularity metrics have the most accurate 
correlation with ANMCC? 

3.2 Case and Unit Analysis 
According to [17], case studies can be characterized based on the 
way they define their cases and units of analysis. This study is a 
holistic multiple case study, in the sense that we investigate 
multiple OSS projects, i.e., cases, and from each case we extract a 
single unit of analysis. In this study, as unit of analysis we use the 
pair of two selected releases of an OSS project. 

3.3 Case Selection 
In this study, we only investigate C# OSS projects, since we make 
use of the functionalities provided by Microsoft Visual Studio 
2012 (MS VS2012). Specifically, the functionality of code map 
generation can create detailed and complete reports on the 
structure of a software system, and the reports on the software 
structure can be used to calculate modularity metrics. 

For selecting cases (OSS projects) included in our study, we apply 
the following criteria: 

1. Each selected project should have at least 6 releases, so 
that we can choose two neighboring releases that meet 
the release selection rules that are defined in the later 
part of this section. If a project has only two releases, it 
may still be in very early development stages, leading to 
tremendous changes between two neighboring releases. 
Thus, any estimation for the second release based on the 
first release is not likely to be reliable. 

2. Each release of a selected project should have at least 5 
components. With this criterion, the modularity concept 
for a software system makes sense, in the sense that a 
system with less than five components is either not 
modular, or small in terms of size. 

3. The full list of commit records of the selected project 
can be automatically extracted using the TortoiseSVN2 
client. The TortoiseSVN client is a user-friendly tool 
that can automatically export the complete commit 
records of a project from most SVN servers.   

The source code of the selected project should be successfully 
compiled, which is the prerequisite of generating code maps using 
MS VS2012. The code maps generated by VS2012 are used as 
input for the modularity metrics calculation. 

Since a unit of analysis is the pair of two selected releases of the 
OSS, we need to set rules to ensure that the selected releases are 
reasonable. The rules are defined as follows: 

1. The difference between the numbers of components of 
the two selected releases is relatively small (<=2). 

                                                                 
2 http://tortoisesvn.tigris.org 



2. The difference between the numbers of types (e.g., 
classes, interfaces) of the two selected releases should 
not be too small (>=10);  

3. The number of commits between the two selected 
releases should not be too small (>=15).  

The first two rules ensure that the OSS project did not 
dramatically change, but still changed significantly, and the third 
rule helps to reduce the unevenness of changes over commits. 

3.4 Data Collection 
3.4.1 Dataset 
For each unit of analysis, we have recorded seven variables, six 
modularity metrics (V1-V6) and the ANMCC value, i.e., the ATD 
indicator (V7), as follows: 

V1. Index of Inter-Package Usage (IIPU) is the ratio of the 
number of Use dependencies between classes within a local 
package against the total number of Use dependencies 
between classes of the whole software system [1].  

V2. Index of Inter-Package Extending (IIPE) is the ratio of the 
number of Extend dependencies between classes within a 
local package against the total number of Extend 
dependencies between classes of the whole software system. 
The Extend dependency here can be the inheritance 
relationship between two classes or the implementation 
relationship between a class and an interface [1].  

V3. Index of Package Changing Impact (IPCI) is the 
percentage of the number of the non-dependency package 
pairs against the total number of all possible package pairs. 
This metric measures the strength of the independency of 
packages [1].  

V4. Index of Inter-Package Usage Diversion (IIPUD) is the 
average extent of how diverse the classes used by a specific 
package distribute in different packages [1].  

V5. Index of Inter-Package Extending Diversion (IIPED) is the 
average extent of how diverse the classes extended by a 
specific package distribute in different packages [1]. 

V6. Index of Package Goal Focus (IPGF) is the average extent 
of the overlap between the different service sets provided by 
the same component to other different components in a 
software system [1]. IPGF indicates the average extent that 
the services of a specific package serve for the same goal.  

V7. Average Number of Modified Components per Commit 
(ANMCC) is the average number of components that are 
modified during each commit (i.e., revision) in the studied 
period. 

The value of each modularity metrics falls in the range [0, 1]. A 
greater value of a modularity metric indicates that the software 
system is better modularized. Finally, in order to mitigate the 
influence of project size on the ANMCC value, for data analysis, 
we have used the normalized value of ANMCC. We normalize the 
ANMCC value by dividing ANMCC with the number of the 
components (as a representation of project size) of the early 
release in the two selected releases. All the modularity metrics are 
calculated by the ModularityCalculator tool, while the ANMCC 
is calculated by the CommitAnalyer tool. Both tools are developed 
by the authors and publicly available3.  

                                                                 
3 http://www.cs.rug.nl/search/uploads/Resources/ATDAnalysis 
Tools.zip 

Note that in this study we define a component as an assembly4 in 
C# software projects. 

3.4.2 Data collection method 
Figure 1 shows the data collection method of this case study. 
More specifically, for each selected C# OSS project, we need to 
collect its full list of commit records and the source code of a set 
of releases. The former is used to calculate the ANMCC, and the 
latter is used to calculate the modularity metrics of releases. A 
commit record is the log information of changes to the source 
code repository during this commit. 

 

Figure 1. The method to collect the data for calculating 
ANMCC and modularity metric M. 

 

Suppose that there are n OSS projects. For project i, the two 
selected releases are releases i1 and i2, ki is the total number of 
commits of the first i1 releases, and release i2 has hi commit 
records. In Figure 1, NMC(ki+j) denotes the number of modified 
components in commit ki+j of project i, and ANMCCi denotes the 
value of ANMCC during release i2 (i.e., between releases i1 and i2) 
of project i. Thus, we use formula (1) to calculate ANMCCi: 

௜ܥܥܯܰܣ ൌ ሺ∑ ሺ݇௜ܥܯܰ ൅ ݆ሻ௛೔
௝ୀଵ ሻ/݄௜                        (1) 

Mi denotes the value of the modularity metric M of release i1 of 
project i. Mi is calculated based on the source code of release i, 
i.e., the commit ki. 

                                                                 
4  In C# (or generally in .NET) “an assembly is a collection of 

types and resources that forms a logical unit of functionality 
[13].” 



3.4.3 Data collection procedure for modularity 
metrics 
The task of data collection for modularity metrics calculation is 
performed in four steps that are described below:  

(1) Source code download. The source code of each release of a 
selected OSS project can be downloaded and stored locally using 
the TortoiseSVN client for further analysis. 
(2) Code map generation. The goal of this step is to get the 
structure data of the selected OSS projects. The code map of a 
version of the source code of a C# OSS project is an XML file 
that contains the structure data of all the software elements (e.g., 
assembly, class, and method) and links between them. We 
generate the code maps for all releases of the selected C# OSS 
projects using VS2012. For an OSS project, there are two types of 
code that should be filtered out when generating the code maps: 1) 
test code (e.g., unit tests, integration tests) and 2) code of 
examples that show how to use the functions and APIs provided 
by the functional part. The reasons for excluding these two types 
of code are that: test code will not be delivered to users, and code 
of examples is not related to the internal quality of the OSS. But 
both types of code are tightly coupled with the functional code 
and can seriously reduce the modularity of software systems, and 
consequently should be removed from modularity metrics 
calculation. 
(3) Code map parsing. Since the code maps generated by 
VS2012 are too complicated to understand and use, we use our 
tool CodeMapParser to parse the generated code map into a 
simplified and clean format that is easier to handle than the 
original format. This CodeMapParser tool is available together 
with the other two tools used in this work5. 
(4) Modularity metrics calculation. We use the tool 
ModularityCalculator to calculate the modularity metrics (V1-V6) 
presented in Section 3.4.1 based on the simplified form of the 
code map data generated in the previous step. For each selected 
OSS project, this tool can generate a report in Microsoft Excel 
format, which contains the modularity metrics of all releases of 
the project. 
3.4.4 Data collection procedure for ANMCC 
The goal of this task is to calculate the average number of the 
components that are modified in each commit (i.e., ANMCC, the 
ATD indicator) in the selected projects. For each project, we need 
to extract all the commit records and to identify the component 
that each modified source code file belongs to in every commit. 
The detailed steps of the data collection procedure for ANMCC 
are described as follows: 

(1) Commit records download. The commit records of the 
selected OSS projects can be downloaded using the TortoiseSVN 
client, which can automatically extract a complete list of commit 
records of a project. With the TortoiseSVN client, we can extract 
commit records from standard SVN servers and any code 
repositories supporting Subversion, such as GitHub. 

(2) Commit records parsing. We need to parse the commit 
records to extract needed data items for ANMCC calculation. This 
step can be performed using our developed tool CommitAnalyzer. 
The extracted data items include the start and end commit 
numbers of each release and the list of files modified in each 
commit. 

                                                                 
5http://www.cs.rug.nl/search/uploads/Resources/ATDAnalysis 
Tools.zip 

(3) Commit records filtering. Some data in commit records are 
invalid for the ANMCC calculation and therefore need to be 
filtered out. First, the data on the test code files should be 
removed, and second, the data on the code files of examples 
should also be removed for the same reasons we presented in 
Section 3.4.3. The tool CommitAnalyzer can semi-automate the 
commit records filtering with human intervention to confirm 
which source code directories contain the invalid data. 

(4) ANMCC calculation. In order to calculate the ANMCC, we 
need to identify the component that a modified source code file 
belongs to in every commit, and the release that each commit 
record belongs to. The tool CommitAnalyzer also provides the 
functionality for calculating ANMCC. 

3.5 Data Analysis 
In order to explore the research questions, set in section 3.1, we 
will investigate the correlations between the modularity metrics 
and ANMCC. Intuitively, we expect that there are negative 
correlations between modularity metrics and ANMCC. There are 
two candidate correlation tests, i.e., the Pearson correlation 
coefficient and Spearman’s rho [6]. Pearson correlation 
coefficient is a parametric test, used to measure the strength of a 
linear association between two variables. Spearman’s rho is a non-
parametric test used to measure the strength of monotonic 
association between two variables. The values of both Pearson 
correlation coefficient and Spearman’s rho range in [-1, 1], where 
the value 1 means a perfect positive correlation, and the value -1 
means a perfect negative correlation. Using the Pearson 
correlation coefficient requires that two variables for the 
correlation calculation follow normal distributions, while using 
the Spearman’ rho does not have such a requirement. To select the 
appropriate correlation calculation method, we need to check the 
normality of the variables (i.e.,V1-V7), through a Shapiro-Wilk’s 
test [6].  

Concerning RQ1, we choose the appropriate correlation test 
according to the results of the Shapiro-Wilk’s tests. We use the 
correlation coefficient value of the selected correlation test and 
the level of statistical significance, for each correlation. Next, 
concerning RQ2, we use the Hoteling-Williams test [6], in order 
to test possible differences among the predictive ability of 
different modularity metrics, which appear to be significantly 
correlated to ANMCC, in RQ1. 

All statistical tests will be performed with Matlab by one author, 
and will be validated with SPSS by another author. 

4. CASE STUDY RESULTS 
We analyzed thirteen OSS projects by following the case study 
design presented in Section 3. The list of the selected OSS 
projects along with demographic information is shown in Table 1, 
where: “#Release” is the number of all the releases of the project, 
“#Component” is the number of the components of the latest 
release of the project, “#Type” is the number of the types of the 
latest release of the project, and “#Commit” is the number of all 
the commits of the project. The data of the aforementioned four 
columns describe the sizes and change frequency of the selected 
OSS projects. 

The rest of this section presents the collected dataset and the 
results of the correlation tests between the modularity metrics and 
ANMCC. 

4.1 Collected Dataset 
The selected releases and their demographic information of the 
thirteen selected OSS projects are shown in Table 2, where: the 



column “Release 1” is the early release of the corresponding 
project; the column “Release 2” is the later release; the columns 
“#Component” and “#Type” are the number of components and 
the number of Types of Release 1, respectively; the column 
“#Commit” is the number of commits during the period between 
Release 1 and Release 2; and the “∆(#Component)” and 
“∆(#Type)” are the difference of the numbers of components and 
types between Release 1 and Release 2, respectively. 

As shown in Table 3, the dataset has thirteen data rows, and each 
data row is collected from a different C# OSS project. A data row 
in Table 3 includes two parts: the modularity metrics and 
(normalized) ANMCC. The former is calculated based on the 
source code of an early release (i.e., release 1 in Table 2), and the 
latter is calculated based on the commit records that occurred 
during the period between the early release and later one (i.e., 
release 2 in Table 2). 

 

Table 1. Selected OSS projects in the case study 

# Name #Release #Component #Type a #Commit Duration URL 

1 Cassette 8 13 398 2022 1.5 years github.com/andrewdavey/cassette 

2 CastleCore 12 6 569 6744 9.0 years github.com/castleproject/Core 

3 CCNET 28 14 1093 6359 10.5 years github.com/ccnet/CruiseControl.NET 

4 ILSpy 7 14 2641 1706 6.0 years github.com/icsharpcode/ILSpy 

5 MassTransit 20 17 960 4165 6.0 years github.com/phatboyg/MassTransit 

6 Nancy 25 20 493 3471 4.5 years github.com/NancyFx/Nancy 

7 NSpec 38 5 162 644 2.5 years github.com/mattflo/NSpec 

8 NUnit 20 20 861 3723 10.0 years github.com/nunit/nunitv2 

9 Rebus 87 18 304 1257 2.0 years github.com/rebus-org/Rebus 

10 Scriptcs 9 5 120 842 0.5 year github.com/scriptcs/scriptcs 

11 SignalR 23 18 598 18978 2.5 years github.com/SignalR/SignalR 

12 SimpleData 21 9 307 774 3.0 years github.com/markrendle/Simple.Data 

13 SolrNet 11 9 301 1782 6.0 years github.com/mausch/SolrNet 
                                                                                                                                                                                                              a A Type in C# can be a Class, Interface, Enum, Delegate, or Struct 

Table 2. Selected releases and their demographic information 

# Project Release 1 #Component #Type #Commit Release 2 ∆(#Component) ∆(#Type) 

1 Cassette v2.0.0 12 327 134 v2.1.0 1 71 

2 CastleCore v3.0.0 6 558 44 v3.1.0 0 10 

3 CCNET v1.3.0 8 547 239 v1.4.1 0 52 

4 ILSpy v1.0.0-M3 8 1772 179 v1.0.0-Beta 1 68 

5 MassTransit v1.x.eol 18 564 107 v2.0b1 -1 70 

6 Nancy v0.7.1 12 241 155 v0.8.1 0 32 

7 NSpec v0.9.61 5 150 76 v0.9.64 0 10 

8 NUnit v2.5.9 22 767 194 v2.6.0 0 28 

9 Rebus v0.27.0 16 232 20 v0.28.0 0 36 

10 Scriptcs v0.7.0 5 109 55 v0.8.0 0 10 

11 SignalR v1.0.0a2 17 377 423 v1.1.0beta 2 25 

12 SimpleData V1.0.0-beta3 9 285 68 v0.18.1 0 22 

13 SolrNet v0.2.3 6 166 191 v0.3.0b1 1 62 

 

Table 3. Dataset of modularity metrics and ANMCC. 

# Project IIPU IIPE IPCI IIPUD IIPED IPGF ANMCC 
Normalized 
ANMCC 

1 Cassette 0.7444 0.7128 0.8939 0.8676 0.9444 0.9379 1.8284 0.1524 

2 CastleCore 0.9837 0.9612 0.8667 0.9063 1.0000 0.9343 1.6136 0.2689 



3 CCNET 0.8032 0.9419 0.8214 0.763 0.9028 0.8473 1.1297 0.1412 

4 ILSpy 0.9017 0.9733 0.7500 0.7334 0.8311 0.7516 2.6983 0.3373 

5 MassTransit 0.7930 0.8991 0.9118 0.8333 0.9259 0.9527 3.7757 0.2098 

6 Nancy 0.7367 0.7755 0.9167 1.0000 1.0000 0.9355 1.6387 0.1366 

7 NSpec 0.4937 0.5923 0.8500 1.0000 1.0000 0.8952 1.4737 0.2947 

8 NUnit 0.5143 0.7593 0.9113 0.6640 0.8526 0.8563 2.6804 0.1218 

9 Rebus 0.7943 0.7213 0.9333 0.9346 1.0000 0.9501 1.7500 0.1094 

10 Scriptcs 0.3936 0.5882 0.6000 0.6493 0.8933 0.7804 2.1636 0.4327 

11 SignalR 0.8702 0.8015 0.9265 0.7658 0.8822 0.9093 2.0047 0.1179 

12 SimpleData 0.8043 0.7368 0.8333 0.7382 0.9306 0.8494 2.3529 0.2614 

13 SolrNet 0.7691 1.0000 0.8333 1.0000 1.0000 0.8927 1.8063 0.3011 

 

Table 4. Results of Shapiro-Wilk Test 

 IIPU IIPE IPCI IIPUD IIPED IPGF Normalized ANMCC 

W 0.899 0.925 0.803 0.917 0.880 0.891 0.903 

p-value 0.096 0.296 0.007 0.231 0.072 0.101 0.145 

 

4.2 Correlation Coefficient Results 
As described in Section 3.5, we performed Shapiro-Wilk’s tests 
on the modularity metrics and the normalized ANMCC to check 
their normality. The results of the Shapiro-Wilk’s tests are shown 
in Table 4, where only the IPCI does not follow a normal 
distribution, with p-value <0.05 (the corresponding column is 
marked with gray background); the normalized ANMCC and 
other modularity metrics (i.e., IIPU, IIPE, IIPUD, IIPUE, and 
IPGF) follow normal distributions. Thus, we cannot use Pearson 
correlation test to calculate the correlation between the IPCI and 
normalized ANMCC. However, since we need to run the 
Hotelling-Williams’ test on the correlation coefficients between 
the modularity metrics and normalized ANMCC, the correlation 
coefficients should be calculated by the same test. In order to use 
a uniform test for all correlations, we selected to use the 
Spearman’s correlation test. As presented in the Introduction 
section, an increase of modularity indicates a decrease of 
ANMCC. This is a directional hypothesis for the correlation tests 
between the modularity metrics and normalized ANMCC, thus we 
use one-tailed test. In this Section, we answer the research 
questions stated in Section 3.1. 

RQ1: Are there modularity metrics that correlate with ANMCC? 

The results of Spearman’s correlation tests between the six 
modularity metrics and the normalized ANMCC are shown in 
Table 5. The second and third columns present the resulting 
correlation coefficient using Spearman’s rho test (shortly, rho) 
and its p-value, respectively. 

Table 5. Correlation coefficients between modularity metrics 
and normalized ANMCC. 

 rho p-value 

IIPU -0.099 0.3741 
IIPE -0.104 0.3671 
IPCI -0.828 0.0001 
IIPUD -0.138 0.3261 
IIPED -0.028 0.4631 
IPGF -0.522 0.0341 

 

As shown in Table 5, concerning IPCI the Spearman’s rho is -
0.828 with p-value 0.0001 < α=0.05, which means the IPCI has a 
significant negative correlation with the normalized ANMCC. In 
addition, the IPGF also has a significant negative correlation with 
the normalized ANMCC, because the Spearman’s rho is -0.522, 
and its p-value is 0.0341 (less than 0.05). 

The modularity metrics IIPU, IIPE, IIPUD, and IIPED, do not 
significantly correlate with the normalized ANMCC, since the 
value of the Spearman’s rho of each modularity metric is close to 
zero and the p-value is way bigger than 0.05. 

RQ2: Which modularity metrics have the most accurate 
correlation with ANMCC? 

We used the Hotelling-Williams test to explore the possible 
difference in the predictive ability of IPCI and IPGF. The test 
result shows that IPCI and ANMCC are more highly correlated 
than IPGF and ANMCC. To obtain this result, we first calculated 
the rho between IPCI and IPGF and the resulting rho is 0.831 with 
p-value=0.0001 < α=0.05. Then, with the three rhos (i.e., the rho 
between IPCI and IPGF, rho between IPCI and ANMCC, and rho 
between IPGF and ANMCC), we conducted the Hotelling-
Williams test, which is used to investigate if there is significant 
difference between two dependent correlations. We got t = -
3.4838, p-value = 0.0059, i.e., |t| > 1.771 (α=0.05) => p-value < 
0.05. Thus, we can reject the null hypothesis, i.e., equality 
between two dependent correlations, which means that there is 
significant difference between the rho values of IPCI and IPGF. In 
addition, the rho value of IPCI is greater than the rho value of 
IPGF, therefore, IPCI has a significantly stronger correlation with 
ANMCC than IPGF. That means IPCI is more accurate than IPGF 
as an alternative indicator of ANMCC. 

5. DISCUSSION 
In this section, we interpret the case study results and discuss their 
implications for researchers and practitioners in this section. 



5.1 Explanation of Obtained Results 
The results of the correlations between modularity metrics and 
ANMCC show that the modularity metrics IPCI and IPGF have a 
significant negative correlation with the normalized ANMCC, 
while the other modularity metrics (i.e., IIPU, IIPE, IIPUD, and 
IIPED) do not. Although the main objective of this work is not to 
investigate the casual relationship between modularity metrics and 
ANMCC, we still try to explore the potential reasons for the 
aforementioned correlation results. 

To understand the potential reasons for the significant negative 
correlation between IPCI, IPGF and ANMCC, we examined the 
definitions of IPCI and IPGF. First, according to [1], ICPI is 
defined as the percentage of the number of non-dependency 
component pairs against the number of all possible component 
pairs. This metric measures to what extent other components will 
not be impacted by changes to a specific component. Intuitively, a 
higher ICPI indicates a smaller change propagation influence. In 
other words, a higher ICPI indicates that a smaller number of 
components will be modified in each commit (which directly links 
to ANMCC). Second, IPGF is defined as the extent of the overlap 
between the different service sets provided by the same 
component to other different components in the software system. 
IPGF indicates to what extent the services of a specific component 
serve the same goal. A larger value of IPGF of a software system 
indicates that services of components focus more on the logical 
goals provided by the components. Thus, to a certain degree, each 
component is more stable and provides services to relatively 
fewer client components. Therefore, the components will undergo 
relatively fewer modifications, and the value of ANMCC of the 
software system will decrease. 

The results of the correlation analysis have also shown that the 
other four modularity metrics (i.e., IIPU, IIPE, IIPUD, and IIPED) 
do not have significant correlations with the ANMCC value. The 
potential reason for these insignificant correlations is that the 
calculation of the four modularity metrics does not take into 
account both Use and Extend dependencies at the same time. Thus, 
some of the dependencies are ignored in the calculation of these 
four modularity metrics. In these four modularity metrics, IIPU 
and IIPUD are defined based on the Use dependencies among 
classes, while IIPE and IIPED are defined based on the Extend 
dependencies (i.e., implementing an interface or inheriting from a 
class) among classes. In contrast, both Use and Extend 
dependencies are used in the calculation of the modularity metrics 
IPCI and IPGF which are in significant negative correlations with 
ANMCC. The ANMCC value of a software system is calculated 
based on all the commits occurring during the later release in the 
two selected releases, i.e., all the changes made during this release, 
and these changes can involve any one of the Use and Extend 
dependencies between classes. In this sense, the exclusion of 
either the Use or Extend dependencies in the calculation of a 
modularity metric can lead to a weak and insignificant correlation 
between this metric and ANMCC.  

The result of the Hotelling-Williams test has shown that the 
modularity metric IPCI has a stronger correlation with the 
normalized ANMCC than the modularity metric IPGF. The 
potential reason leading to this fact is: the calculation of the ICPI 
metric takes into consideration the influence of all the types (e.g., 
interfaces) acting as services to the client components, while the 
calculation of the IPGF metric does not. A change to any service 
of a specific component may lead to the change(s) of its client 
component(s). When calculating the ICPI metric of a software 
system, the influence of all the services (e.g., interfaces) in every 

component on its client components has been taken into account. 
The IPGF metric calculates the average percentage of the overlap 
between the service (e.g., interface) sets that each component 
provides to its client components. Thus, the IPGF metric 
emphasizes the influence of part of the services in a component 
out of all services provided to its client components, i.e., the 
intersection of the service sets that the component provides to its 
client components. However, the changes of the rest services can 
also lead to the modifications of their client components, which is 
not taken into consideration in the calculation of the IPGF metric. 
Thus, the IPGF metric may lose some ability of correlating to the 
ANMCC, compared to the IPCI metric, i.e., the IPGF metric is 
less accurate than the IPCI metric in terms of substituting the 
ANMCC. 

5.2 Implications for Researchers 
The results of this work imply that the modularity metrics defined 
purely based either on the Use dependencies or on the Extend 
dependencies among classes may not effectively reflect the 
complexity and difficulty of making changes to a software system 
(and thus potentially ATD). We should take into account both the 
Use and Extend dependencies (i.e., all kinds of dependencies in a 
software system) when considering modularity metrics in relation 
to ATD. 

The architecture of a software system is in a higher level and more 
abstract than the source code of the system, and consequently the 
architecture quality is harder to measure than source code. A 
feasible way to measure architecture quality is to relate 
architecture quality to software metrics based on source code; the 
architecture quality can then be estimated if the source code-based 
software metrics have a significant correlation with the 
architecture quality. In our case, modularity metrics are calculated 
based on the source code, but some of these metrics (e.g., IPCI 
and IPGF) can still indicate architecture-level phenomena such as 
ATD.  

5.3 Implications for Practitioners 
Based on the results of this study, we can conclude to a number of 
implications for practitioners. First, the modularity metrics IPCI 
and IPGF can be used to indicate ATD. We have provided 
evidence about the significant negative correlation between IPCI, 
IPGF and ANMCC, which means that a greater IPCI or IPGF is 
linked to a smaller ANMCC (indicator of the amount of ATD). 
Like ANMCC, IPCI and IPGF are also not absolute quantifiable 
measures of ATD, but they can be used to relatively suggest 
whether one version of a software system has more or less ATD 
than another version [10]. This way, architects and project 
managers can get informed about the potential ATD of the 
software system. Consequently, IPCI and IPGF can be considered 
as ATD indicators. A higher IPCI or IPGF indicate less ATD. 

Second, IPCI and IPGF can be used to estimate the needed effort 
for software development in the near future (e.g., next release). 
The ANMCC reflects the degree of the difficulty and complexity 
to maintain and evolve a project, thus, it can facilitate the 
estimation of the needed effort of software development in the 
near future. Due to the significant negative correlations between 
IPCI, IPGF and ANMCC, the values of IPCI and IPGF can also 
be used to estimate effort needed of software development. 
Furthermore, as presented in Section 4.2, IPCI has a significantly 
stronger negative correlation with ANMCC than IPGF, thus, IPCI 
is preferable than IPGF when both metrics can be calculated with 
similar effort. 



Third, modularity metrics can be calculated based on source code. 
Therefore, it is an opportunity for Integrated Development 
Environment (IDE) vendors to integrate such kind of ATD 
indicators (e.g., IPCI and IPGF) into IDE tools based on source 
code, which is directly available in IDE tools, for practical use. 
This can facilitate the ATD management in the daily work of 
architects and project managers as well as provide ATD indication 
information to developers, since they can measure and monitor 
ATD easily and take appropriate actions timely to prevent the 
situation when too much ATD is accumulated. 

6. THREATS TO VALIDITY 
There are several threats to the validity of the study results. We 
discuss these threats according to the guidelines in [17]. We note 
that internal validity is not discussed, because we do not 
investigate causal relationships. 

6.1 Construct Validity 
Construct validity is related to whether we can correctly use 
modularity metrics as substitutes for ANMCC. Both ANMCC and 
modularity metrics of a software system will change due to the 
evolution of the system. The modularity metrics of a software 
system at some specific point of development time can only be 
used to substitute ANMCC in a relatively short period after that 
point of time (e.g., a release of a project in this work), in which 
not too many commits occur. If the period is too long and too 
many commits happen, and the software system evolves 
dramatically, the modularity metrics may not be appropriate to be 
used to substitute ANMCC. To mitigate this threat, we have 
proposed three rules for release selection for each OSS project in 
Section 3.3 to ensure that the software system did not dramatically 
change but still significantly changed, and to reduce the 
unevenness of changes over commits. 

6.2 External Validity 
External validity is concerned with the generalization of the case 
study results. This is related to the representativeness of the 
selected OSS projects used in the case study. The rules for OSS 
project selection described in Section 3.3 may affect the 
representativeness of the selected projects. However, to a large 
extent, the project selection is random and representative. We 
searched OSS projects in GitHub, which is one of the largest OSS 
repositories. For each retrieved project, we checked if it meets all 
the project selection rules defined in Section 3.3. During the OSS 
searching and selecting process, we prevented introducing any 
personal preference or bias on the OSS selection. Furthermore, the 
selected OSS projects come from different application domains, 
and the projects have significantly different size and development 
duration. This also improves the representativeness of the selected 
OSS projects. 

In this case study, only C# OSS projects were selected and used to 
validate the correlation between modularity metrics and ANMCC. 
Consequently, the conclusion drawn is only valid for C# projects. 
There is a need of conducting more studies for the projects written 
in other object-oriented languages, such as Java. 

6.3 Conclusion Validity 
Conclusion validity concerns the statistical significance of the 
study. In the data analysis of the case study, we carefully checked 
if the variables meet the prerequisites of using different statistical 
tests and in order not to use the wrong tests. For example, when 
selecting the appropriate correlation test, we checked the 
normality of variables (V1-V7), and then we found the variable 
V3 is not normally distributed. Thus, we choose the Spearman 
analysis rather than Pearson analysis. When conducting the 

Hotelling-Williams test, we used the correlation coefficients 
calculated by the same correlation test, i.e., the Spearman’s rho 
test, as source data. To make sure the correctness of the statistical 
results, two authors separately used different tools (i.e., Matlab 
and SPSS) running the statistical tests and got the same results. 
We believe that the aforementioned actions mitigate the threats to 
conclusion validity. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we provided evidence that the modularity metrics 
IPCI and IPGF have significant negative correlations with 
ANMCC – an ATD indicator. Therefore, we can consider the 
IPCI and IPGF metrics as alternative indicators of ATD. The 
advantage of using the modularity metrics IPCI and IPGF as ATD 
indicators is that these modularity metrics can be automatically 
calculated based on source code (i.e., the update-to-date and 
accurate structure data of a software system), while ANMCC 
should be calculated based on commit records that are not always 
available, and ANMCC calculation is hard to be performed 
automatically. Moreover, the modularity metric IPCI is more 
strongly correlated with ANMCC than IPGF, which means that 
IPCI is a more accurate substitute ATD indicator to ANMCC than 
IPGF. 

Based on the results and findings of this work, we plan to do 
further research in the following directions. First, we intend to 
validate the correlation between modularity metrics and ANMCC 
with Java projects. Second, it will be interesting to define new 
system-wide modularity metrics or adapt existing modularity 
metrics defined in other perspectives (e.g., complex networks 
[14]), and investigate the correlation between the metrics and 
ATD indicators. We expect that the new modularity metrics can 
improve the accuracy or take less effort of predicting ANMCC. 
Third, it is practically valuable to develop plugins to calculate the 
modularity metrics IPCI and IPGF for IDE tools (e.g., in VS2012 
or Eclipse). 
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