
An Empirical Investigation of Modularity Metrics for
Indicating Architectural Technical Debt

Zengyang Li

Department of Mathematics and
Computer Science

University of Groningen
Nijenborgh 9, 9747 AG

Groningen, The Netherlands
(+31) 50 363 7127

zengyang.li@rug.nl

Nicolas Guelfi
Computer Science and

Communications Research Unit
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg, Luxembourg

(+352) 46 66 44 5251
nicolas.guelfi@uni.lu

Peng Liang
State Key Lab of Software

Engineering, School of Computer
Wuhan University
Luojiasha 430072

Wuhan, China
(+86) 27 6877 6137

liangp@whu.edu.cn

Paris Avgeriou
Department of Mathematics and

Computer Science
University of Groningen
Nijenborgh 9, 9747 AG

Groningen, The Netherlands
(+31) 50 363 7057
paris@cs.rug.nl

Apostolos Ampatzoglou
Department of Mathematics and

Computer Science
University of Groningen
Nijenborgh 9, 9747 AG

 Groningen, The Netherlands
(+31) 50 363 5181

a.ampatzoglou@rug.nl

ABSTRACT
Architectural technical debt (ATD) is incurred by design decisions
that consciously or unconsciously compromise system-wide
quality attributes, particularly maintainability and evolvability.
ATD needs to be identified and measured, so that it can be
monitored and eventually repaid, when appropriate. In practice,
ATD is difficult to identify and measure, since ATD does not
yield observable behaviors to end users. One indicator of ATD, is
the average number of modified components per commit
(ANMCC): a higher ANMCC indicates more ATD in a software
system. However, it is difficult and sometimes impossible to
calculate ANMCC, because the data (i.e., the log of commits) are
not always available. In this work, we propose to use software
modularity metrics, which can be directly calculated based on
source code, as a substitute of ANMCC to indicate ATD. We
validate the correlation between ANMCC and modularity metrics
through a holistic multiple case study on thirteen open source
software projects. The results of this study suggest that two
modularity metrics, namely Index of Package Changing Impact
(IPCI) and Index of Package Goal Focus (IPGF), have significant
correlation with ANMCC, and therefore can be used as alternative
ATD indicators.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics- Product metrics; D.2.11
[Software Engineering]: Software Architectures - languages

General Terms
Measurement, Experimentation

Keywords
Architectural technical debt; modularity metric; commit; software
architecture

1. INTRODUCTION
Technical debt has been increasingly gaining attention from
researchers in the software engineering domain and from
practitioners in the software industry in the past years [3; 9; 16].
The concept of technical debt was coined by Ward Cunningham
to describe immature work in coding that can yield short-term
benefit (e.g., fast delivery), but will lead to high maintenance and
evolution cost in the long term [4]. Technical debt can span all
phases of the software development lifecycle, including
requirements analysis, architecture design, detailed design, testing
etc. [8]. More generally, technical debt refers to immature work in
a software system that takes compromises in one dimension to
meet urgent needs in some other dimension [3]. In this work, we
focus on the technical debt at architecture level [11], i.e.,
architectural technical debt (ATD).

ATD is caused by design decisions that consciously or
unconsciously compromise system-wide quality attributes (QAs),
especially maintainability and evolvability [8; 10]. Typical ATD
includes violations of best architecture practices and breakages of
the consistency and integrity of software architectures. An
example of ATD is the creation of architecture dependencies that
violate the strict layered architectural pattern, i.e., a higher layer
having direct dependencies to layers other than the one directly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
QoSA'14, June 30 - July 04 2014, Marcq-en-Bareul, France
Copyright 2014 ACM 978-1-4503-2576-9/14/06…$15.00.
http://dx.doi.org/10.1145/2602576.2602581

below it. ATD may also include the adoption of immature
architecture techniques. Another ATD example is the use of an
immature web application framework, which might require
significant modifications, and therefore extra effort, to adapt in
the developed web application.

By taking into account the negative impact on the long-term
health of a software system, ATD needs to be effectively managed
to keep its amount under a reasonable level. Management of ATD
entails identifying and measuring it, so that it can be monitored
and eventually repaid [10]. However, in practice ATD is difficult
to identify and measure, since ATD does not yield observable
behaviors to end users [3; 10; 16]. One solution is to define ATD
indicators that denote the presence and relative amount of ATD.
One such indicator is the average number of modified components
per commit (further referred as ANMCC). A commit, also called a
revision, is a unit of modification to the source code of a software
system. ANMCC indicates the presence of ATD as follows:

- ANMCC reflects the complexity and difficulty of making
changes to a software system. A high ANMCC means that
in a specific revision, and in order to perform a
maintenance task (e.g., debugging or implementing a new
feature) many components had to be modified. This fact
indicates a difficulty in performing maintenance activities,
due to high coupling between components, and intensive
ripple effects.

- The increase of the complexity and difficulty of making
changes to a software system is the consequence of
accumulated ATD. If not repaid, ATD will continuously
accumulate interest, which makes the system more
complex and difficult to implement changes later on [3; 4].

- A higher ANMCC entails an increase in the complexity
and difficulty to change, thus implying potential increase
in ATD.

However, it is hard and sometimes even impossible to calculate
ANMCC, because the commit records (i.e., history data of source
code changes) are not always available. For instance, a legacy
system may not have commit history data; or a system that is built
based on reused components from different projects has no
complete commit history data. To address this issue, we try to find
a substitute for ANMCC indicator that can be calculated based on
source code; such a substitute should be accurate (ground truth
representation of the system) and available.

In order to identify such a substitute we look into modularity
metrics. According to ISO/IEC 25010 standard [7], modularity is
one of the sub-characteristics of maintainability, which is one of
the QAs compromised by ATD. Modularity is defined as the
“degree to which a system or computer program is composed of
discrete components such that a change to one component has
minimal impact on other components [7]”. A snapshot of the
source code of a project is the result of previous changes
(commits). The modularity metrics of a snapshot of the project
source code can, to a certain extent, reflect the development
difficulty of changes to this project in the near future [19].
Specifically, as the modularity of a software system increases, the
ANMCC of this software system is expected to decrease.
Consequently, system modularity, to a certain degree, can also
substitute ANMCC in terms of indicating ATD.

In this work, we empirically investigate the ability of existing
modularity metrics to substitute ANMCC as ATD indicators,
through a holistic multiple case study on thirteen open source
projects. The main contribution of this work is the empirical
evidence supporting that two of the investigated modularity

metrics, i.e., Index of Package Changing Impact (IPCI) and Index
of Package Goal Focus (IPGF), have significant negative
correlations with ANMCC – the ATD indicator. Thus, the two
software modularity metrics (IPCI and IPGF) can be used as
indicators of ATD of a system. The merit of using IPCI and IPGF
as ATD indicators is that they can be automatically calculated
using a single version of source code, while the calculation of
ANMCC requires commit history information of a project which
is not always available.

The remainder of this paper is organized as follows: we discuss
related work on technical debt measurement, especially ATD
measurement in Section 2. The case study design is illustrated in
Section 3. Section 4 describes the results of the case study and
Section 5 discusses the study results and their implications. The
threats to the validity of the case study are identified in Section 6.
We conclude this work with future work directions in Section 7.

2. RELATED WORK
Technical debt measurement is considered as an important step in
the technical debt management process [18]. Although technical
debt is not easy to measure [3], there have already been some
attempts trying to estimate it at various levels (e.g., code level,
architecture level) and from different perspectives.

In [3], Brown et al. proposed to aggregate individual technical
measures of technical debt in three aspects similarly to financial
debt: principal, interest probability, and interest amount. The total
technical debt is the sum of the principal, and the product of
interest probability and interest amount. Seaman and Guo
measured these three aspects of a technical debt item by assigning
them values of high, medium, or low [18]. They suggested that
these coarse-grained estimates should be sufficient for tracking
technical debt items and making preliminary decisions on
technical debt management. When more required information
(e.g., historical effort data) is available, fine-grained estimations
can be made upon that information for refined management
decision-making.

Curtis et al. estimated technical debt by calculating the cost of
fixing different types of violations (e.g., code smells) that were
identified through automatic static analysis of source code against
rules of good architecture and coding practice [5]. They analyzed
millions of lines of source code of business applications collected
from various companies in different application domains. These
collected applications were written in 28 programming languages.
The principal of technical debt can be calculated through the
following formula [5]:

Principal =
((Σ high-severity violations) × (percentage to be fixed) ×
(average hours needed to fix) × ($ per hour)) +
((Σ medium-severity violations) × (percentage to be fixed) ×
(average hours needed to fix) × ($ per hour)) +
((Σ low-severity violations) × (percentage to be fixed)
× (average hours needed to fix) × ($ per hour)).

When the percentages of high-, medium-, and low-severity
violations to be fixed are 50%, 25%, and 10%, respectively, fixing
each violation takes one hour and the labor cost is 75 US dollar
per hour, the average estimated technical debt principal is 3.61 US
dollar per line of code in the aforementioned collected source
code. The technical debt principal per line of source code differs
among programming languages. However, there are some issues
with estimating the technical debt of a concrete software system
with fixed value (i.e., 3.61 US dollar per line of code). Usually,
architectural violations are much more difficult to fix compared

with the design-level and code-level violations. In addition, the
cost of fixing the same type of violations differs largely in
different contexts of various software projects.

Marinescu proposed an approach to identify and measure
technical debt of object-oriented software systems by detecting
and assessing specific types of design flaws through object-
oriented metrics [12]. The approach is composed of four steps: (1)
choose a set of concerned design flaws, (2) define rules for
detecting the selected design flaws, (3) measure the negative
impact of each instance of the design flaws, and, finally, (4)
calculate an overall score based on all detected design flaws to
indicate the design quality of a system. The accuracy of the
technical debt measurement in this approach depends on the
ability of the design flaws detection. This approach can only
identify and measure technical debt at detailed design level, while
our investigation focuses on technical debt at architecture level.

Nord et al. defined a metric for managing ATD [15]. The value of
this metric, calculated for each release, is the total cost of the
implementation of new architectural elements introduced in this
release, and the rework of pre-existing elements in previous
releases. They considered architectural rework as the necessary
adaption work for adding new architectural elements to the
existing architecture of a software system. The rework cost is
calculated based on the analysis of the changing dependencies
from existing adapted architectural elements to the new
introduced elements. This metric can be used to calculate the
relative amount of ATD incurred in different software evolution
paths, i.e., release plans. Suppose that there are two release plans
RP1 and RP2, in which the same features are implemented, i.e.,
they generate the same amount of business value. The relative
amount of ATD is the difference between the values of metric
calculated on RP1 and RP2. Thus, this metric can facilitate
architecture decision-making in ATD management. The main
limitation of this approach is the accuracy of the estimation of
implementing new features and rework, especially the latter. Each
software evolution path involves several releases, which implies
that the estimation of rework and new implementations of later
releases is based on the estimation of the earlier releases. This
may pose a significant threat to the accuracy of ATD estimation.

In our work, we consider that the estimation of ATD should be
calculated on real data (i.e., source code), and the estimation
makes more sense within a relative short term, e.g., between two
releases. That is, the estimation of the next release is based on the
real data of this implemented release.

3. CASE STUDY DESIGN
In order to investigate the ability of modularity metrics to
substitute the average number of modified components per
commit (ANMCC), and thus act as alternative indicators of
system’s ATD, we performed a holistic multiple case study on
thirteen C# open source software (OSS) projects provided by
GitHub1. The main reason for conducting a case study is that,
through using OSS projects, and more specifically their source
code and commit information, we examine the phenomenon in its
real-life context, since both factors, i.e., modularity and ANMCC,
cannot be monitored in isolation, and their environment cannot be
controlled. In this section we describe the case study, which was
designed and reported according to the guidelines proposed by
Runeson and Host [17].

1 https://github.com/

3.1 Objective and Research Questions
The goal of this study, described using the Goal-Question-Metric
(GQM) approach [2], is: to analyze modularity metrics for the
purpose of evaluation with respect to their ability to act as
substitutes of ANMCC, for indicating ATD, from the point of view
of software architects in the context of OSS evolution.

Based on the abovementioned goal, we have extracted two
research questions (RQs):

RQ1: Are there modularity metrics that correlate with ANMCC?

RQ2: Which modularity metrics have the most accurate
correlation with ANMCC?

3.2 Case and Unit Analysis
According to [17], case studies can be characterized based on the
way they define their cases and units of analysis. This study is a
holistic multiple case study, in the sense that we investigate
multiple OSS projects, i.e., cases, and from each case we extract a
single unit of analysis. In this study, as unit of analysis we use the
pair of two selected releases of an OSS project.

3.3 Case Selection
In this study, we only investigate C# OSS projects, since we make
use of the functionalities provided by Microsoft Visual Studio
2012 (MS VS2012). Specifically, the functionality of code map
generation can create detailed and complete reports on the
structure of a software system, and the reports on the software
structure can be used to calculate modularity metrics.

For selecting cases (OSS projects) included in our study, we apply
the following criteria:

1. Each selected project should have at least 6 releases, so
that we can choose two neighboring releases that meet
the release selection rules that are defined in the later
part of this section. If a project has only two releases, it
may still be in very early development stages, leading to
tremendous changes between two neighboring releases.
Thus, any estimation for the second release based on the
first release is not likely to be reliable.

2. Each release of a selected project should have at least 5
components. With this criterion, the modularity concept
for a software system makes sense, in the sense that a
system with less than five components is either not
modular, or small in terms of size.

3. The full list of commit records of the selected project
can be automatically extracted using the TortoiseSVN2
client. The TortoiseSVN client is a user-friendly tool
that can automatically export the complete commit
records of a project from most SVN servers.

The source code of the selected project should be successfully
compiled, which is the prerequisite of generating code maps using
MS VS2012. The code maps generated by VS2012 are used as
input for the modularity metrics calculation.

Since a unit of analysis is the pair of two selected releases of the
OSS, we need to set rules to ensure that the selected releases are
reasonable. The rules are defined as follows:

1. The difference between the numbers of components of
the two selected releases is relatively small (<=2).

2 http://tortoisesvn.tigris.org

2. The difference between the numbers of types (e.g.,
classes, interfaces) of the two selected releases should
not be too small (>=10);

3. The number of commits between the two selected
releases should not be too small (>=15).

The first two rules ensure that the OSS project did not
dramatically change, but still changed significantly, and the third
rule helps to reduce the unevenness of changes over commits.

3.4 Data Collection
3.4.1 Dataset
For each unit of analysis, we have recorded seven variables, six
modularity metrics (V1-V6) and the ANMCC value, i.e., the ATD
indicator (V7), as follows:

V1. Index of Inter-Package Usage (IIPU) is the ratio of the
number of Use dependencies between classes within a local
package against the total number of Use dependencies
between classes of the whole software system [1].

V2. Index of Inter-Package Extending (IIPE) is the ratio of the
number of Extend dependencies between classes within a
local package against the total number of Extend
dependencies between classes of the whole software system.
The Extend dependency here can be the inheritance
relationship between two classes or the implementation
relationship between a class and an interface [1].

V3. Index of Package Changing Impact (IPCI) is the
percentage of the number of the non-dependency package
pairs against the total number of all possible package pairs.
This metric measures the strength of the independency of
packages [1].

V4. Index of Inter-Package Usage Diversion (IIPUD) is the
average extent of how diverse the classes used by a specific
package distribute in different packages [1].

V5. Index of Inter-Package Extending Diversion (IIPED) is the
average extent of how diverse the classes extended by a
specific package distribute in different packages [1].

V6. Index of Package Goal Focus (IPGF) is the average extent
of the overlap between the different service sets provided by
the same component to other different components in a
software system [1]. IPGF indicates the average extent that
the services of a specific package serve for the same goal.

V7. Average Number of Modified Components per Commit
(ANMCC) is the average number of components that are
modified during each commit (i.e., revision) in the studied
period.

The value of each modularity metrics falls in the range [0, 1]. A
greater value of a modularity metric indicates that the software
system is better modularized. Finally, in order to mitigate the
influence of project size on the ANMCC value, for data analysis,
we have used the normalized value of ANMCC. We normalize the
ANMCC value by dividing ANMCC with the number of the
components (as a representation of project size) of the early
release in the two selected releases. All the modularity metrics are
calculated by the ModularityCalculator tool, while the ANMCC
is calculated by the CommitAnalyer tool. Both tools are developed
by the authors and publicly available3.

3 http://www.cs.rug.nl/search/uploads/Resources/ATDAnalysis
Tools.zip

Note that in this study we define a component as an assembly4 in
C# software projects.

3.4.2 Data collection method
Figure 1 shows the data collection method of this case study.
More specifically, for each selected C# OSS project, we need to
collect its full list of commit records and the source code of a set
of releases. The former is used to calculate the ANMCC, and the
latter is used to calculate the modularity metrics of releases. A
commit record is the log information of changes to the source
code repository during this commit.

Figure 1. The method to collect the data for calculating
ANMCC and modularity metric M.

Suppose that there are n OSS projects. For project i, the two
selected releases are releases i1 and i2, ki is the total number of
commits of the first i1 releases, and release i2 has hi commit
records. In Figure 1, NMC(ki+j) denotes the number of modified
components in commit ki+j of project i, and ANMCCi denotes the
value of ANMCC during release i2 (i.e., between releases i1 and i2)
of project i. Thus, we use formula (1) to calculate ANMCCi:

௜ܥܥܯܰܣ ൌ ሺ∑ ሺ݇௜ܥܯܰ ൅ ݆ሻ௛೔
௝ୀଵ ሻ/݄௜ (1)

Mi denotes the value of the modularity metric M of release i1 of
project i. Mi is calculated based on the source code of release i,
i.e., the commit ki.

4 In C# (or generally in .NET) “an assembly is a collection of

types and resources that forms a logical unit of functionality
[13].”

3.4.3 Data collection procedure for modularity
metrics
The task of data collection for modularity metrics calculation is
performed in four steps that are described below:

(1) Source code download. The source code of each release of a
selected OSS project can be downloaded and stored locally using
the TortoiseSVN client for further analysis.
(2) Code map generation. The goal of this step is to get the
structure data of the selected OSS projects. The code map of a
version of the source code of a C# OSS project is an XML file
that contains the structure data of all the software elements (e.g.,
assembly, class, and method) and links between them. We
generate the code maps for all releases of the selected C# OSS
projects using VS2012. For an OSS project, there are two types of
code that should be filtered out when generating the code maps: 1)
test code (e.g., unit tests, integration tests) and 2) code of
examples that show how to use the functions and APIs provided
by the functional part. The reasons for excluding these two types
of code are that: test code will not be delivered to users, and code
of examples is not related to the internal quality of the OSS. But
both types of code are tightly coupled with the functional code
and can seriously reduce the modularity of software systems, and
consequently should be removed from modularity metrics
calculation.
(3) Code map parsing. Since the code maps generated by
VS2012 are too complicated to understand and use, we use our
tool CodeMapParser to parse the generated code map into a
simplified and clean format that is easier to handle than the
original format. This CodeMapParser tool is available together
with the other two tools used in this work5.
(4) Modularity metrics calculation. We use the tool
ModularityCalculator to calculate the modularity metrics (V1-V6)
presented in Section 3.4.1 based on the simplified form of the
code map data generated in the previous step. For each selected
OSS project, this tool can generate a report in Microsoft Excel
format, which contains the modularity metrics of all releases of
the project.
3.4.4 Data collection procedure for ANMCC
The goal of this task is to calculate the average number of the
components that are modified in each commit (i.e., ANMCC, the
ATD indicator) in the selected projects. For each project, we need
to extract all the commit records and to identify the component
that each modified source code file belongs to in every commit.
The detailed steps of the data collection procedure for ANMCC
are described as follows:

(1) Commit records download. The commit records of the
selected OSS projects can be downloaded using the TortoiseSVN
client, which can automatically extract a complete list of commit
records of a project. With the TortoiseSVN client, we can extract
commit records from standard SVN servers and any code
repositories supporting Subversion, such as GitHub.

(2) Commit records parsing. We need to parse the commit
records to extract needed data items for ANMCC calculation. This
step can be performed using our developed tool CommitAnalyzer.
The extracted data items include the start and end commit
numbers of each release and the list of files modified in each
commit.

5http://www.cs.rug.nl/search/uploads/Resources/ATDAnalysis
Tools.zip

(3) Commit records filtering. Some data in commit records are
invalid for the ANMCC calculation and therefore need to be
filtered out. First, the data on the test code files should be
removed, and second, the data on the code files of examples
should also be removed for the same reasons we presented in
Section 3.4.3. The tool CommitAnalyzer can semi-automate the
commit records filtering with human intervention to confirm
which source code directories contain the invalid data.

(4) ANMCC calculation. In order to calculate the ANMCC, we
need to identify the component that a modified source code file
belongs to in every commit, and the release that each commit
record belongs to. The tool CommitAnalyzer also provides the
functionality for calculating ANMCC.

3.5 Data Analysis
In order to explore the research questions, set in section 3.1, we
will investigate the correlations between the modularity metrics
and ANMCC. Intuitively, we expect that there are negative
correlations between modularity metrics and ANMCC. There are
two candidate correlation tests, i.e., the Pearson correlation
coefficient and Spearman’s rho [6]. Pearson correlation
coefficient is a parametric test, used to measure the strength of a
linear association between two variables. Spearman’s rho is a non-
parametric test used to measure the strength of monotonic
association between two variables. The values of both Pearson
correlation coefficient and Spearman’s rho range in [-1, 1], where
the value 1 means a perfect positive correlation, and the value -1
means a perfect negative correlation. Using the Pearson
correlation coefficient requires that two variables for the
correlation calculation follow normal distributions, while using
the Spearman’ rho does not have such a requirement. To select the
appropriate correlation calculation method, we need to check the
normality of the variables (i.e.,V1-V7), through a Shapiro-Wilk’s
test [6].

Concerning RQ1, we choose the appropriate correlation test
according to the results of the Shapiro-Wilk’s tests. We use the
correlation coefficient value of the selected correlation test and
the level of statistical significance, for each correlation. Next,
concerning RQ2, we use the Hoteling-Williams test [6], in order
to test possible differences among the predictive ability of
different modularity metrics, which appear to be significantly
correlated to ANMCC, in RQ1.

All statistical tests will be performed with Matlab by one author,
and will be validated with SPSS by another author.

4. CASE STUDY RESULTS
We analyzed thirteen OSS projects by following the case study
design presented in Section 3. The list of the selected OSS
projects along with demographic information is shown in Table 1,
where: “#Release” is the number of all the releases of the project,
“#Component” is the number of the components of the latest
release of the project, “#Type” is the number of the types of the
latest release of the project, and “#Commit” is the number of all
the commits of the project. The data of the aforementioned four
columns describe the sizes and change frequency of the selected
OSS projects.

The rest of this section presents the collected dataset and the
results of the correlation tests between the modularity metrics and
ANMCC.

4.1 Collected Dataset
The selected releases and their demographic information of the
thirteen selected OSS projects are shown in Table 2, where: the

column “Release 1” is the early release of the corresponding
project; the column “Release 2” is the later release; the columns
“#Component” and “#Type” are the number of components and
the number of Types of Release 1, respectively; the column
“#Commit” is the number of commits during the period between
Release 1 and Release 2; and the “∆(#Component)” and
“∆(#Type)” are the difference of the numbers of components and
types between Release 1 and Release 2, respectively.

As shown in Table 3, the dataset has thirteen data rows, and each
data row is collected from a different C# OSS project. A data row
in Table 3 includes two parts: the modularity metrics and
(normalized) ANMCC. The former is calculated based on the
source code of an early release (i.e., release 1 in Table 2), and the
latter is calculated based on the commit records that occurred
during the period between the early release and later one (i.e.,
release 2 in Table 2).

Table 1. Selected OSS projects in the case study

Name #Release #Component #Type a #Commit Duration URL

1 Cassette 8 13 398 2022 1.5 years github.com/andrewdavey/cassette

2 CastleCore 12 6 569 6744 9.0 years github.com/castleproject/Core

3 CCNET 28 14 1093 6359 10.5 years github.com/ccnet/CruiseControl.NET

4 ILSpy 7 14 2641 1706 6.0 years github.com/icsharpcode/ILSpy

5 MassTransit 20 17 960 4165 6.0 years github.com/phatboyg/MassTransit

6 Nancy 25 20 493 3471 4.5 years github.com/NancyFx/Nancy

7 NSpec 38 5 162 644 2.5 years github.com/mattflo/NSpec

8 NUnit 20 20 861 3723 10.0 years github.com/nunit/nunitv2

9 Rebus 87 18 304 1257 2.0 years github.com/rebus-org/Rebus

10 Scriptcs 9 5 120 842 0.5 year github.com/scriptcs/scriptcs

11 SignalR 23 18 598 18978 2.5 years github.com/SignalR/SignalR

12 SimpleData 21 9 307 774 3.0 years github.com/markrendle/Simple.Data

13 SolrNet 11 9 301 1782 6.0 years github.com/mausch/SolrNet
 a A Type in C# can be a Class, Interface, Enum, Delegate, or Struct

Table 2. Selected releases and their demographic information

Project Release 1 #Component #Type #Commit Release 2 ∆(#Component) ∆(#Type)

1 Cassette v2.0.0 12 327 134 v2.1.0 1 71

2 CastleCore v3.0.0 6 558 44 v3.1.0 0 10

3 CCNET v1.3.0 8 547 239 v1.4.1 0 52

4 ILSpy v1.0.0-M3 8 1772 179 v1.0.0-Beta 1 68

5 MassTransit v1.x.eol 18 564 107 v2.0b1 -1 70

6 Nancy v0.7.1 12 241 155 v0.8.1 0 32

7 NSpec v0.9.61 5 150 76 v0.9.64 0 10

8 NUnit v2.5.9 22 767 194 v2.6.0 0 28

9 Rebus v0.27.0 16 232 20 v0.28.0 0 36

10 Scriptcs v0.7.0 5 109 55 v0.8.0 0 10

11 SignalR v1.0.0a2 17 377 423 v1.1.0beta 2 25

12 SimpleData V1.0.0-beta3 9 285 68 v0.18.1 0 22

13 SolrNet v0.2.3 6 166 191 v0.3.0b1 1 62

Table 3. Dataset of modularity metrics and ANMCC.

Project IIPU IIPE IPCI IIPUD IIPED IPGF ANMCC
Normalized
ANMCC

1 Cassette 0.7444 0.7128 0.8939 0.8676 0.9444 0.9379 1.8284 0.1524

2 CastleCore 0.9837 0.9612 0.8667 0.9063 1.0000 0.9343 1.6136 0.2689

3 CCNET 0.8032 0.9419 0.8214 0.763 0.9028 0.8473 1.1297 0.1412

4 ILSpy 0.9017 0.9733 0.7500 0.7334 0.8311 0.7516 2.6983 0.3373

5 MassTransit 0.7930 0.8991 0.9118 0.8333 0.9259 0.9527 3.7757 0.2098

6 Nancy 0.7367 0.7755 0.9167 1.0000 1.0000 0.9355 1.6387 0.1366

7 NSpec 0.4937 0.5923 0.8500 1.0000 1.0000 0.8952 1.4737 0.2947

8 NUnit 0.5143 0.7593 0.9113 0.6640 0.8526 0.8563 2.6804 0.1218

9 Rebus 0.7943 0.7213 0.9333 0.9346 1.0000 0.9501 1.7500 0.1094

10 Scriptcs 0.3936 0.5882 0.6000 0.6493 0.8933 0.7804 2.1636 0.4327

11 SignalR 0.8702 0.8015 0.9265 0.7658 0.8822 0.9093 2.0047 0.1179

12 SimpleData 0.8043 0.7368 0.8333 0.7382 0.9306 0.8494 2.3529 0.2614

13 SolrNet 0.7691 1.0000 0.8333 1.0000 1.0000 0.8927 1.8063 0.3011

Table 4. Results of Shapiro-Wilk Test

 IIPU IIPE IPCI IIPUD IIPED IPGF Normalized ANMCC

W 0.899 0.925 0.803 0.917 0.880 0.891 0.903

p-value 0.096 0.296 0.007 0.231 0.072 0.101 0.145

4.2 Correlation Coefficient Results
As described in Section 3.5, we performed Shapiro-Wilk’s tests
on the modularity metrics and the normalized ANMCC to check
their normality. The results of the Shapiro-Wilk’s tests are shown
in Table 4, where only the IPCI does not follow a normal
distribution, with p-value <0.05 (the corresponding column is
marked with gray background); the normalized ANMCC and
other modularity metrics (i.e., IIPU, IIPE, IIPUD, IIPUE, and
IPGF) follow normal distributions. Thus, we cannot use Pearson
correlation test to calculate the correlation between the IPCI and
normalized ANMCC. However, since we need to run the
Hotelling-Williams’ test on the correlation coefficients between
the modularity metrics and normalized ANMCC, the correlation
coefficients should be calculated by the same test. In order to use
a uniform test for all correlations, we selected to use the
Spearman’s correlation test. As presented in the Introduction
section, an increase of modularity indicates a decrease of
ANMCC. This is a directional hypothesis for the correlation tests
between the modularity metrics and normalized ANMCC, thus we
use one-tailed test. In this Section, we answer the research
questions stated in Section 3.1.

RQ1: Are there modularity metrics that correlate with ANMCC?

The results of Spearman’s correlation tests between the six
modularity metrics and the normalized ANMCC are shown in
Table 5. The second and third columns present the resulting
correlation coefficient using Spearman’s rho test (shortly, rho)
and its p-value, respectively.

Table 5. Correlation coefficients between modularity metrics
and normalized ANMCC.

 rho p-value

IIPU -0.099 0.3741
IIPE -0.104 0.3671
IPCI -0.828 0.0001
IIPUD -0.138 0.3261
IIPED -0.028 0.4631
IPGF -0.522 0.0341

As shown in Table 5, concerning IPCI the Spearman’s rho is -
0.828 with p-value 0.0001 < α=0.05, which means the IPCI has a
significant negative correlation with the normalized ANMCC. In
addition, the IPGF also has a significant negative correlation with
the normalized ANMCC, because the Spearman’s rho is -0.522,
and its p-value is 0.0341 (less than 0.05).

The modularity metrics IIPU, IIPE, IIPUD, and IIPED, do not
significantly correlate with the normalized ANMCC, since the
value of the Spearman’s rho of each modularity metric is close to
zero and the p-value is way bigger than 0.05.

RQ2: Which modularity metrics have the most accurate
correlation with ANMCC?

We used the Hotelling-Williams test to explore the possible
difference in the predictive ability of IPCI and IPGF. The test
result shows that IPCI and ANMCC are more highly correlated
than IPGF and ANMCC. To obtain this result, we first calculated
the rho between IPCI and IPGF and the resulting rho is 0.831 with
p-value=0.0001 < α=0.05. Then, with the three rhos (i.e., the rho
between IPCI and IPGF, rho between IPCI and ANMCC, and rho
between IPGF and ANMCC), we conducted the Hotelling-
Williams test, which is used to investigate if there is significant
difference between two dependent correlations. We got t = -
3.4838, p-value = 0.0059, i.e., |t| > 1.771 (α=0.05) => p-value <
0.05. Thus, we can reject the null hypothesis, i.e., equality
between two dependent correlations, which means that there is
significant difference between the rho values of IPCI and IPGF. In
addition, the rho value of IPCI is greater than the rho value of
IPGF, therefore, IPCI has a significantly stronger correlation with
ANMCC than IPGF. That means IPCI is more accurate than IPGF
as an alternative indicator of ANMCC.

5. DISCUSSION
In this section, we interpret the case study results and discuss their
implications for researchers and practitioners in this section.

5.1 Explanation of Obtained Results
The results of the correlations between modularity metrics and
ANMCC show that the modularity metrics IPCI and IPGF have a
significant negative correlation with the normalized ANMCC,
while the other modularity metrics (i.e., IIPU, IIPE, IIPUD, and
IIPED) do not. Although the main objective of this work is not to
investigate the casual relationship between modularity metrics and
ANMCC, we still try to explore the potential reasons for the
aforementioned correlation results.

To understand the potential reasons for the significant negative
correlation between IPCI, IPGF and ANMCC, we examined the
definitions of IPCI and IPGF. First, according to [1], ICPI is
defined as the percentage of the number of non-dependency
component pairs against the number of all possible component
pairs. This metric measures to what extent other components will
not be impacted by changes to a specific component. Intuitively, a
higher ICPI indicates a smaller change propagation influence. In
other words, a higher ICPI indicates that a smaller number of
components will be modified in each commit (which directly links
to ANMCC). Second, IPGF is defined as the extent of the overlap
between the different service sets provided by the same
component to other different components in the software system.
IPGF indicates to what extent the services of a specific component
serve the same goal. A larger value of IPGF of a software system
indicates that services of components focus more on the logical
goals provided by the components. Thus, to a certain degree, each
component is more stable and provides services to relatively
fewer client components. Therefore, the components will undergo
relatively fewer modifications, and the value of ANMCC of the
software system will decrease.

The results of the correlation analysis have also shown that the
other four modularity metrics (i.e., IIPU, IIPE, IIPUD, and IIPED)
do not have significant correlations with the ANMCC value. The
potential reason for these insignificant correlations is that the
calculation of the four modularity metrics does not take into
account both Use and Extend dependencies at the same time. Thus,
some of the dependencies are ignored in the calculation of these
four modularity metrics. In these four modularity metrics, IIPU
and IIPUD are defined based on the Use dependencies among
classes, while IIPE and IIPED are defined based on the Extend
dependencies (i.e., implementing an interface or inheriting from a
class) among classes. In contrast, both Use and Extend
dependencies are used in the calculation of the modularity metrics
IPCI and IPGF which are in significant negative correlations with
ANMCC. The ANMCC value of a software system is calculated
based on all the commits occurring during the later release in the
two selected releases, i.e., all the changes made during this release,
and these changes can involve any one of the Use and Extend
dependencies between classes. In this sense, the exclusion of
either the Use or Extend dependencies in the calculation of a
modularity metric can lead to a weak and insignificant correlation
between this metric and ANMCC.

The result of the Hotelling-Williams test has shown that the
modularity metric IPCI has a stronger correlation with the
normalized ANMCC than the modularity metric IPGF. The
potential reason leading to this fact is: the calculation of the ICPI
metric takes into consideration the influence of all the types (e.g.,
interfaces) acting as services to the client components, while the
calculation of the IPGF metric does not. A change to any service
of a specific component may lead to the change(s) of its client
component(s). When calculating the ICPI metric of a software
system, the influence of all the services (e.g., interfaces) in every

component on its client components has been taken into account.
The IPGF metric calculates the average percentage of the overlap
between the service (e.g., interface) sets that each component
provides to its client components. Thus, the IPGF metric
emphasizes the influence of part of the services in a component
out of all services provided to its client components, i.e., the
intersection of the service sets that the component provides to its
client components. However, the changes of the rest services can
also lead to the modifications of their client components, which is
not taken into consideration in the calculation of the IPGF metric.
Thus, the IPGF metric may lose some ability of correlating to the
ANMCC, compared to the IPCI metric, i.e., the IPGF metric is
less accurate than the IPCI metric in terms of substituting the
ANMCC.

5.2 Implications for Researchers
The results of this work imply that the modularity metrics defined
purely based either on the Use dependencies or on the Extend
dependencies among classes may not effectively reflect the
complexity and difficulty of making changes to a software system
(and thus potentially ATD). We should take into account both the
Use and Extend dependencies (i.e., all kinds of dependencies in a
software system) when considering modularity metrics in relation
to ATD.

The architecture of a software system is in a higher level and more
abstract than the source code of the system, and consequently the
architecture quality is harder to measure than source code. A
feasible way to measure architecture quality is to relate
architecture quality to software metrics based on source code; the
architecture quality can then be estimated if the source code-based
software metrics have a significant correlation with the
architecture quality. In our case, modularity metrics are calculated
based on the source code, but some of these metrics (e.g., IPCI
and IPGF) can still indicate architecture-level phenomena such as
ATD.

5.3 Implications for Practitioners
Based on the results of this study, we can conclude to a number of
implications for practitioners. First, the modularity metrics IPCI
and IPGF can be used to indicate ATD. We have provided
evidence about the significant negative correlation between IPCI,
IPGF and ANMCC, which means that a greater IPCI or IPGF is
linked to a smaller ANMCC (indicator of the amount of ATD).
Like ANMCC, IPCI and IPGF are also not absolute quantifiable
measures of ATD, but they can be used to relatively suggest
whether one version of a software system has more or less ATD
than another version [10]. This way, architects and project
managers can get informed about the potential ATD of the
software system. Consequently, IPCI and IPGF can be considered
as ATD indicators. A higher IPCI or IPGF indicate less ATD.

Second, IPCI and IPGF can be used to estimate the needed effort
for software development in the near future (e.g., next release).
The ANMCC reflects the degree of the difficulty and complexity
to maintain and evolve a project, thus, it can facilitate the
estimation of the needed effort of software development in the
near future. Due to the significant negative correlations between
IPCI, IPGF and ANMCC, the values of IPCI and IPGF can also
be used to estimate effort needed of software development.
Furthermore, as presented in Section 4.2, IPCI has a significantly
stronger negative correlation with ANMCC than IPGF, thus, IPCI
is preferable than IPGF when both metrics can be calculated with
similar effort.

Third, modularity metrics can be calculated based on source code.
Therefore, it is an opportunity for Integrated Development
Environment (IDE) vendors to integrate such kind of ATD
indicators (e.g., IPCI and IPGF) into IDE tools based on source
code, which is directly available in IDE tools, for practical use.
This can facilitate the ATD management in the daily work of
architects and project managers as well as provide ATD indication
information to developers, since they can measure and monitor
ATD easily and take appropriate actions timely to prevent the
situation when too much ATD is accumulated.

6. THREATS TO VALIDITY
There are several threats to the validity of the study results. We
discuss these threats according to the guidelines in [17]. We note
that internal validity is not discussed, because we do not
investigate causal relationships.

6.1 Construct Validity
Construct validity is related to whether we can correctly use
modularity metrics as substitutes for ANMCC. Both ANMCC and
modularity metrics of a software system will change due to the
evolution of the system. The modularity metrics of a software
system at some specific point of development time can only be
used to substitute ANMCC in a relatively short period after that
point of time (e.g., a release of a project in this work), in which
not too many commits occur. If the period is too long and too
many commits happen, and the software system evolves
dramatically, the modularity metrics may not be appropriate to be
used to substitute ANMCC. To mitigate this threat, we have
proposed three rules for release selection for each OSS project in
Section 3.3 to ensure that the software system did not dramatically
change but still significantly changed, and to reduce the
unevenness of changes over commits.

6.2 External Validity
External validity is concerned with the generalization of the case
study results. This is related to the representativeness of the
selected OSS projects used in the case study. The rules for OSS
project selection described in Section 3.3 may affect the
representativeness of the selected projects. However, to a large
extent, the project selection is random and representative. We
searched OSS projects in GitHub, which is one of the largest OSS
repositories. For each retrieved project, we checked if it meets all
the project selection rules defined in Section 3.3. During the OSS
searching and selecting process, we prevented introducing any
personal preference or bias on the OSS selection. Furthermore, the
selected OSS projects come from different application domains,
and the projects have significantly different size and development
duration. This also improves the representativeness of the selected
OSS projects.

In this case study, only C# OSS projects were selected and used to
validate the correlation between modularity metrics and ANMCC.
Consequently, the conclusion drawn is only valid for C# projects.
There is a need of conducting more studies for the projects written
in other object-oriented languages, such as Java.

6.3 Conclusion Validity
Conclusion validity concerns the statistical significance of the
study. In the data analysis of the case study, we carefully checked
if the variables meet the prerequisites of using different statistical
tests and in order not to use the wrong tests. For example, when
selecting the appropriate correlation test, we checked the
normality of variables (V1-V7), and then we found the variable
V3 is not normally distributed. Thus, we choose the Spearman
analysis rather than Pearson analysis. When conducting the

Hotelling-Williams test, we used the correlation coefficients
calculated by the same correlation test, i.e., the Spearman’s rho
test, as source data. To make sure the correctness of the statistical
results, two authors separately used different tools (i.e., Matlab
and SPSS) running the statistical tests and got the same results.
We believe that the aforementioned actions mitigate the threats to
conclusion validity.

7. CONCLUSION AND FUTURE WORK
In this paper, we provided evidence that the modularity metrics
IPCI and IPGF have significant negative correlations with
ANMCC – an ATD indicator. Therefore, we can consider the
IPCI and IPGF metrics as alternative indicators of ATD. The
advantage of using the modularity metrics IPCI and IPGF as ATD
indicators is that these modularity metrics can be automatically
calculated based on source code (i.e., the update-to-date and
accurate structure data of a software system), while ANMCC
should be calculated based on commit records that are not always
available, and ANMCC calculation is hard to be performed
automatically. Moreover, the modularity metric IPCI is more
strongly correlated with ANMCC than IPGF, which means that
IPCI is a more accurate substitute ATD indicator to ANMCC than
IPGF.

Based on the results and findings of this work, we plan to do
further research in the following directions. First, we intend to
validate the correlation between modularity metrics and ANMCC
with Java projects. Second, it will be interesting to define new
system-wide modularity metrics or adapt existing modularity
metrics defined in other perspectives (e.g., complex networks
[14]), and investigate the correlation between the metrics and
ATD indicators. We expect that the new modularity metrics can
improve the accuracy or take less effort of predicting ANMCC.
Third, it is practically valuable to develop plugins to calculate the
modularity metrics IPCI and IPGF for IDE tools (e.g., in VS2012
or Eclipse).

8. ACKNOWLEDGMENTS
This work is partially supported by AFR-Luxembourg under the
contract No. 895528 and the NSFC under the grant No. 61170025.
Thanks to Can Menekse for his contribution to the tool
CodeMapParser during his internship at the University of
Groningen.

9. REFERENCES
[1] Abdeen, H., Ducasse, S., and Sahraoui, H., 2011.

Modularization Metrics: Assessing Package
Organization in Legacy Large Object-Oriented
Software. In Proceedings of the Proceedings of the
2011 18th Working Conference on Reverse Engineering
(2011), IEEE Computer Society, 2086275, 394-398.
DOI= http://dx.doi.org/10.1109/wcre.2011.55.

[2] Basili, V.R., 1992. Software modeling and
measurement: the Goal/Question/Metric paradigm.
University of Maryland at College Park.

[3] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M.,
Kruchten, P., Lim, E., Maccormack, A., Nord, R.,
Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., and
Zazworka, N., 2010. Managing technical debt in
software-reliant systems. In Proceedings of the
Proceedings of the FSE/SDP workshop on Future of
software engineering research (FoSER'10) (Santa Fe,
New Mexico, USA2010), ACM, 1882373, 47-52. DOI=
http://dx.doi.org/10.1145/1882362.1882373.

[4] Cunningham, W., 1992. The WyCash portfolio
management system. In Proceedings of the Addendum
to the proceedings on Object-oriented programming
systems, languages, and applications (Addendum)
(Vancouver, British Columbia, Canada1992), ACM,
157715, 29-30. DOI=
http://dx.doi.org/10.1145/157709.157715.

[5] Curtis, B., Sappidi, J., and Szynkarski, A., 2012.
Estimating the size, cost, and types of Technical Debt.
In Proceedings of the 3rd International Workshop on
Managing Technical Debt (MTD '12), 49-53. DOI=
http://dx.doi.org/10.1109/mtd.2012.6226000.

[6] Field, A., 2013. Discovering Statistics using IBM SPSS
Statistics. SAGE Publications Ltd.

[7] ISO/IEC, 2011. Systems and software engineering —
Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality
models. In ISO/IEC FDIS 25010:2011, 1-34.

[8] Kruchten, P., Nord, R.L., and Ozkaya, I., 2012.
Technical Debt: From Metaphor to Theory and Practice.
IEEE Software 29, 6, 18-21. DOI=
http://dx.doi.org/10.1109/MS.2012.167.

[9] Kruchten, P., Nord, R.L., and Ozkaya, I., 2013. 4th
International workshop on managing technical debt
(MTD 2013). In Software Engineering (ICSE), 2013
35th International Conference on, 1535-1536. DOI=
http://dx.doi.org/10.1109/ICSE.2013.6606774.

[10] Li, Z., Liang, P., and Avgeriou, P., 2014. Architectural
debt management in value-oriented architecting. In
Econimics-driven software architecture Elsevier, In
press.

[11] Li, Z., Liang, P., Avgeriou, P., Guelfi, N., and Chen, Y.,
2014. A systematic mapping study on technical debt and
its management. In Under submission.

[12] Marinescu, R., 2012. Assessing technical debt by
identifying design flaws in software systems. IBM
Journal of Research and Development 56, 5, 9:1-9:13.
DOI= http://dx.doi.org/10.1147/JRD.2012.2204512.

[13] Microsoft, 2002. Understanding and Using Assemblies
and Namespaces in .NET. DOI=
http://dx.doi.org/http://msdn.microsoft.com/en-
us/library/ms973231.aspx.

[14] Newman, M.E., 2003. The structure and function of
complex networks. SIAM review 45, 2, 167-256. DOI=
http://dx.doi.org/doi:10.1137/S003614450342480.

[15] Nord, R.L., Ozkaya, I., Kruchten, P., and Gonzalez-
Rojas, M., 2012. In search of a metric for managing
architectural technical debt. In Proceedings of the 10th
Working IEEE/IFIP Conference on Software
Architecture (WICSA '12) IEEE Computer Society,
Helsinki, Finland.

[16] Ozkaya, I., Kruchten, P., Nord, R., and Brown, N.,
2011. Second international workshop on managing
technical debt (MTD 2011). In Proceedings of the
Proceedings of the 33rd International Conference on
Software Engineering (ICSE '11) (Waikiki, Honolulu,
HI, USA2011), ACM, 1986051, 1212-1213. DOI=
http://dx.doi.org/10.1145/1985793.1986051.

[17] Runeson, P. and Höst, M., 2009. Guidelines for
conducting and reporting case study research in
software engineering. Empirical Software Engineering
14, 2 (2009/04/01), 131-164. DOI=
http://dx.doi.org/10.1007/s10664-008-9102-8.

[18] Seaman, C. and Guo, Y., 2011. Measuring and
Monitoring Technical Debt. In Advances in Computers,
M. Zelkowitz Ed. Elsevier Science, 25-45.

[19] Sethi, K., Yuanfang, C., Wong, S., Garcia, A., and
Sant'anna, C., 2009. From retrospect to prospect:
Assessing modularity and stability from software
architecture. In Software Architecture, 2009 &
European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on, 269-272. DOI=
http://dx.doi.org/10.1109/WICSA.2009.5290817.

