
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344955654

Software Architecture Reconstruction via a Genetic Algorithm: Applying the

Move Class Refactoring

Conference Paper · November 2020

DOI: 10.1145/3437120.3437292

CITATIONS

0
READS

100

8 authors, including:

Some of the authors of this publication are also working on these related projects:

Software Project Management View project

SPEAR: Secure and PrivatE smArt gRid (H2020-DS-2016-2017/H2020-DS-SC7-2017) View project

Theodore Maikantis

University of Macedonia

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Angeliki Agathi Tsintzira

University of Macedonia

11 PUBLICATIONS 13 CITATIONS

SEE PROFILE

Apostolos Ampatzoglou

University of Macedonia

115 PUBLICATIONS 1,198 CITATIONS

SEE PROFILE

Elvira Maria Arvanitou

University of Macedonia

23 PUBLICATIONS 135 CITATIONS

SEE PROFILE

All content following this page was uploaded by Apostolos Ampatzoglou on 29 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344955654_Software_Architecture_Reconstruction_via_a_Genetic_Algorithm_Applying_the_Move_Class_Refactoring?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344955654_Software_Architecture_Reconstruction_via_a_Genetic_Algorithm_Applying_the_Move_Class_Refactoring?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Software-Project-Management-3?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SPEAR-Secure-and-PrivatE-smArt-gRid-H2020-DS-2016-2017-H2020-DS-SC7-2017?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Maikantis?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Maikantis?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Theodore-Maikantis?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elvira-Maria-Arvanitou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elvira-Maria-Arvanitou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elvira-Maria-Arvanitou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-e637b3c346bad905aad942af42f2f25d-XXX&enrichSource=Y292ZXJQYWdlOzM0NDk1NTY1NDtBUzo5NTIwNDE1NTE3MjA0NDhAMTYwMzk5NTgwMjg3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Architecture Reconstruction via a Genetic Algorithm: Applying the Move

Class Refactoring

THEODOROS MAIKANTIS, ANGELIKI-AGATHI TSINTZIRA, APOSTOLOS AMPATZOGLOU,

ELVIRA-MARIA ARVANITOU, ALEXANDER CHATZIGEORGIOU

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

IOANNIS STAMELOS

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

STAMATIA BIBI

Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece

IGNATIOS DELIGIANNIS

Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece

Modularity is one of the four key principles of software design and architecture. According to this principle, software should be orga-

nized into modules that are tightly linked internally (high cohesion), whereas at the same time as independent from other modules

as possible (low coupling). However, in practice, this principle is violated due to poor architecting design decisions, lack of time, or

coding shortcuts, leading to a phenomenon termed as architectural technical debt (ATD). To alleviate this problem (lack of architec-

tural modularity), the most common solution is the application of a software refactoring, namely Move Class—i.e., moving classes

(the core artifact in object-oriented systems) from one module to another. To identify Move Class refactoring opportunities, we em-

ploy a search-based optimization process, relying on optimization metrics, through which optimal moves are derived. Given the

extensive search space required for applying a brute-force search strategy, in this paper, we propose the use of a genetic algorithm

that re-arranges existing software classes into existing or new modules (software packages in Java, or folders in C++). To validate

the usefulness of the proposed refactorings, we performed an industrial case study on three projects (from the Airborne, Healthcare,

and Manufacturing application domains). The results of the study indicate that the proposed architecture reconstruction is able to

improve modularity, improving both coupling and cohesion. The obtained results can be useful to practitioners through an open

source tool; whereas at the same point, they open interesting future work directions.

CCS CONCEPTS • Software and its engineering → Software creation and management → {Software development techniques →

Object-oriented development, Software verification and validation → Empirical software validation}

Additional Keywords and Phrases: architecture reconstruction, coupling, cohesion, move class

ACM Reference Format:

T. Maikantis, A. A. Tsintzira, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, I. Stamelos, S. Bibi, and I. Deligiannis. 2020.

Software Architecture Reconstruction via a Genetic Algorithm Applying the Move Class Refactoring. In PCI ’20: 24th Panhellenic

Conference on Informatics, Athens, Greece, 20-22 November, 2020, 6 pages.

1. Introduction

Quality assessment in early stages of software development (such as architecture) is prominent, in the sense that

changing early design artifacts usually leads to substantial rework—increasing maintenance costs [1]. The magnitude

of maintenance costs can accumulate up to 50%-70% of the complete lifecycle cost for software development [2].

Therefore, it is of paramount importance to reduce such costs; usually caused by poor development quality. One of

the main problems regarding architecture quality is architecture decay [3]: i.e., a phenomenon through which the

quality of an architecture diminishes along evolution and starts to drift away from the original architectural decisions.

According to van Vliet [2] architectural quality can be perceived through assessing three central object-oriented con-

cepts: abstractness, modularity, and complexity. Among those, in this paper we focus on modularity, i.e., the level of

internal coherence and independence of a software component. In the literature, the aforementioned two factors of

modularity are termed as coupling and cohesion [4]. The desired evolution (in terms of modularity) would be that cou-

pling decreases and cohesion increases over time; however, in practice this rarely occurs, since modules become

larger, providing more diverse functionality, and become in need of more external modules [4].

To ensure the viability of software (i.e., decrease maintenance cost) by preventing architecture decay, we need to

reconstruct the originally planned architecture, so as to optimize it current state (in this paper in terms of modularity):

improved modularity would make the design more reusable and extensible [5]. In this study, we propose a method for

refactoring existing software architectures aiming to improve modularity, by identifying conceptually similar artifacts,

placing them in the same component, and creating a hierarchical component-based architecture. The outcome of the

method is a modified architectural decomposition, which could be instantiated by applying the “Move Class” refactor-

ing [6]1. The proposed method, namely Design Reconstruction based on a Genetic Evolutionary Algorithm (DeRec-

GEA), which relies on Genetic Evolutionary Algorithms (GEA). This choice was influenced by several factors, since

through GEA we are able of: (a) solving problems of varying complexity; and (b) identifying a possible solution faster

than a Brute Force algorithm, given the complexity of a problem and the amount of necessary calculations. Until now,

modularity has been intensively studied at both class and method level by applying the “Move Method”, the “Extract

Class”, and the “Extract Method” refactorings. However limited research has been performed for supporting the appli-

cation of the “Move Class” refactoring. We note that as input for DeRecGEA we provide the source code of the exam-

ined software. This decision was made since: (a) the intended architecture (as captured by design / architecture doc-

uments) rarely available in practice [7]—thus, the applicability of the method would be limited; and (b) all changes that

are applied along evolution are applied in the implemented architecture—i.e., the source code. Therefore, the pro-

posal of “Move Class” refactoring would be more straightforward; and would not imply the existence of traceability

links between architecture elements and source code.

To evaluate the proposed approach, we have performed a case study on three industrial projects: one from the air-

borne domain (written in C++), one from the healthcare domain (written in C), and the final one from the smart manu-

facturing domain (written in Java). In particular, we obtained the original code of the projects, and refactored them,

using the proposed GEA algorithm. To explore if the application of the GEA improved modularity, we followed a pre-

post analysis, i.e., we compared the values of modularity before the application of the treatment (i.e., the application

of the architectural refactoring) to the values of modularity. The rest of the paper is organized as follows: in Section 2

we present background information necessary to understand the proposed process, and related work (i.e., automated

approaches for architectural refactorings); and in Section 3 we present the DeRecGEA approach. In Section 4, we

present the case study design and the obtained results. Finally, in Section 5 we conclude the paper by providing

some implications for researchers and practitioners and threats to validity.

2. Background Information and Related Work

Several attempts – methodologies exist for the identification of Architectural Refactorings, or otherwise known as

solutions to Architectural Smells. The methodologies identified in the literature utilize either manual or semi-manual

processes; therefore, there is a lack of purely automated processes. Garcia et al. [8] propose the use of schematic

diagrams, utilized by architects to detect architectural smells in both conceptual and recovered / implemented archi-

tecture. After detection a manual analysis is performed by the architect, to assess the impact of the smell on relevant

qualities. Marinescu [9] suggests the use of Detection Strategies (quantifiable expressions of a rule), to detect con-

forming source code fragments. These strategies, analyze source code models by using metrics. Tourwe and Mens

[10] use a semi-automated approach, based on meta programming logic, to detect if refactorings are needed, identify

which refactorings should be applied and finally automatically apply them. Finally, Arnold [11] remarks that system

modularization currently requires much human judgment, and lists a few principles for manually performing the identi-

fication of smell and applying the refactoring. It has been argued that search-based software engineering can provide

1 The move class refactoring suggests to move one class from one package to another, to which it is more conceptually relevant

acceptable solutions to many problems with competing constraints employing metaheuristic approaches such as Ge-

netic Algorithms, Simulated Annealing and Tabu Search [12]. The optimum assignment of responsibilities to classes

has been for example tackled with the help of multi-objective genetic algorithms [13].

Genetic Evolutionary Algorithms are inspired by biology; thus, they adopt characteristics and processes found in na-

ture. These stem mainly from Darwin’s theory of evolution, and utilize the process of natural selection [14]. GEA is

basically a random process of evolving solutions (each new solution stems from a combination of existing ones) that

will eventually end-up with an optimal solution. In order for the GEA iterations to end we need to define a termination

criterion. We note that the use of a Genetic Evolutionary Algorithm, contrary to the use of a Brute Force algorithm, will

most likely not provide us with the best possible result (global optimum); however, the result will be adequate (local

optimal), but it will be timely retrieved. The basic steps of any GEA are the following: (a) Population Initialization; (b)

Selection; (c) Crossover; and (d) Mutation—see Figure 1; whereas the basic entities are: (a) the population, (b) the

individual, and (c) the gene. The individual is a representation of a possible solution, the gene is the actual useful

information about the solution (contained in each Individual), and the population is the collection of our calculated

possible solutions (Individuals). Imitating nature, steps 2-4 are repeated over several generations, resulting in a final

solution [14]. The basic steps are outlined below; whereas their application in DeRecGEA are detailed in Section 3:

• Selection refers to the evaluation of an Individual. The evaluation is based on the fitness value representing

each Individual of the Population. The Fitness value is the score of the proposed solution (gene).

• Crossover is the function of combining two or more existing Individuals, usually the ones with already good

Fitness, and producing a new one. The main purpose of this is the improvement of the solution pool, by

making the population more diverse, and introducing new high Fitness Individuals to the population.

• Mutation process although different, serves a similar purpose as Crossover. The process uses a single In-

dividual and mutates – changes its gene, in order to diversify it and produce new combinations.

Figure 1: Genetic Evolutionary Algorithm process

3. Architectural Design Reconstruction based on a Genetic Evolutionary Algorithm (DeRecGEA)

In this section, we present the proposed algorithm for applying the Move Class refactoring. In particular, we organize

the section, based on the generic steps of the GEA, presented in Section 2. The goal of DeRecGEA is to group clas-

ses, into modular components, in a recursive manner (as dictated by GEA), resulting into sub-components. These

sub-components, act as the input of GEA input, to achieve the intended hierarchical structure.

1 3 1 3 2

Gene Representation for class A to E

Figure 2: Component Class distribution

Entities Representation: The main entity of DeRecGEA, the Individual contains a representation of the classes that

we want to group into components, the components themselves and the relation between the two—see Figure 2. In

particular, the gene of the individual is represented as a vector, with size equal to the number of classes. The index of

the vertex corresponds to an id of the class, whereas the value of the vertex to the component that it is mapped to.

For the selection process the required information is the Fitness value. The fitness value is a compound metric rely-

ing to coupling and cohesion (since we aim to increase modularity) [4]. To assess class Cohesion and Coupling, we

are utilizing the classes’ outgoing “Desired” and “Non-Desired” edges. By edges we mean the outgoing dependencies

of a class. A Correct edge (Figure 3 green dependency) would be a dependency where the classes belong to the

same component; similarly, a False edge (Figure 3 red dependency) would refer to one where the classes belong to

different components. Ultimately the Cohesion of a class would be the total of its “Desired” edges and its Coupling

would be that of its “Non-Desired” edges. The calculation of the fitness value relies on the following equation.

𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =
|𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐸𝑑𝑔𝑒𝑠| − |𝑁𝑜𝑛 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐸𝑑𝑔𝑒𝑠|

|𝑇𝑜𝑡𝑎𝑙 𝐸𝑑𝑔𝑒𝑠|

The fitness value is bounded in the [-1, 1] range; and follows the generic practice that modularity is positively affected

by cohesion, and negatively affected by coupling [2]. Given the fact that both coupling and cohesion are calculated as

edges (similarly to the total number of edges), we consider the aggregation through subtraction and division as ap-

propriate. The component fitness is defined by the mean value of its contained classes. Similarly, the fitness of an

Individual is the mean value of its components. The termination condition is the lack of improvement in the fitness

score for 30 evolution generations.

Figure 3: Correct (green) and False (red) edges between Classes

Population Initialization is randomly performed in DeRecGEA, in the sense that all the Individuals comprising the

population are created with a random structure regarding the number of components and the classes belonging to

them. To accelerate the solution process, some restrictions (upper and lower component number limitations) are in

place guided by the rules of good software engineering—e.g., a single component should contain at most 30 entities

(methods to classes, classes to packages, etc.) [15]. Considering the aforementioned rule, we set as upper limit for

our number of components the number of classes divided by 20 (instead of 30) to provide some leeway, considering

that the dictated number of objects to components is not absolute and applicable to all the real-world implementa-

tions. As the lower limit for the number of components we simply chose the number 2, to enable at least one split.

The Selection starts by calculating the Fitness value of each Individual. It happens on two occasions, before the

Crossover and before the Mutation. For the Crossover, the 10% of the best performing Individuals are selected to

undergo the process. Similarly, for the Mutation the 20% of the best performing Individuals are selected. All the new

Individuals that are produced, as a result of the two aforementioned processes, are put back into the population pool.

The population pool has a fixed number of Individuals; therefore any excess ones are automatically deleted. This

selection is aided again by the fitness value, where the Individuals that are performing the worst are discarded.

During Crossover process, two (parent) Individuals are combined, resulting in the creation a new (child) Individual.

The new Individual is reinserted into the population pool, thus representing part of the population’s new generation.

The child inherits characteristics from its parents, mainly the number of components and the way that the classes are

distributed to them. The inherited characteristics are not exact copies of the ones the parents had, but a combination

of them. The two important elements of our Algorithm’s Crossover process are: (a) the selection of the component

number of the new Individual; (b) the distribution of classes to the available Components. For the number of com-

ponents, the choice is restricted between the parents’ number of Components, but the exact number is randomly

chosen. To increase the GEA’s performance, the new random component number value has an increased probability

to be closer to value of the parent with the best fitness. This is achieved by using a shifted Gaussian Distribution in

favor of the better performing parent’s component number, to decide the resulting component number. For the class

distribution we check in which parent component each class had a better fitness, and then assigned it to that.

The implemented Mutation function is a simple component change for a class. The mutation process is repeated for a

number of times, equal to that of a fifth of the total Individual classes. The class that will undergo a component

change is selected by the Fitness value. Classes with the lowest value are selected for mutation; the selection of its

new component however is random. There are complimentary functions to the mutation process, which are used on

special occasions and help with the avoidance of local optimums. These functions either split a component into two

separate ones (in case a component has low cohesion), or join two components together to create a larger one (in

case the two components have high coupling). On a final note, as mentioned before the GEA is executed recursively

for the entirety of the project, including its newly made components. Except for the GEA’s termination condition, there

also needs to be a recursion termination condition. By following the aforementioned rules of good software engineer-

ing, we set the recursion to terminate when all components contain 30 or less classes.

4. Empirical Validation

Study Design: To validate DeRecGEA, we have performed an exploratory case study on three industrial codebases,

retrieved as part of the SKD4ED consortium2. SDK4ED is a research project that focuses (among others) on the

management of technical debt, in embedded systems. Therefore, the retrieved codebases are embedded applica-

tions that can be classified as Airborne (App1), Healthcare (App2), and Smart Manufacturing (App3). Some de-

mographics of the applications are presented in Table 1. In the table apart from the descriptive statistics, we also

report the initial scores of coupling, cohesion, and modularity—i.e., the metric scores before the applying DeRecGEA.

Table 1: Sample Demographics

Project
Programming

Language
Initial

Cohesion
Initial

Coupling
Initial

Modularity
Size in

Packages
Size in

Lines of Code

App1 C++ 0.30 2.20 -0.76 152 398578

App2 C++ 2.40 3.50 0.00 2 5964

App3 Java 1.20 7.70 -0.73 7 2700

Given the initial versions of the three codebases, we have automatically applied the DeRecGEA, using its implemen-

tation in the SDK4ED toolbox3. The source code of the application is also available online4. Subsequently, we have

re-calculated the three metrics: coupling, cohesion, and modularity and contrasted the results. By considering the

small sample size, we were not able to perform any statistical analysis further than descriptive statistics. The results

aim to answer the following high-level question: “Is the application of DeRecGEA able to improve the modularity

of the implemented architecture?”.

Results: Upon the application of the DeRecGEA algorithm, we have observed that in 2 out of 3 cases the modularity

of the systems has improved, whereas in the other it was slightly decreased. The results are visualized in Figure 4: in

the figure, as positive or negative, we do not refer to the increase or decrease in absolute numbers, but to positive or

negative effects (as positive we consider increase in the score of modularity and cohesion, and decrease in the

scores of coupling and size). By focusing on specific quality properties, regarding cohesion we can observe effects

ranging from -17% to 67%; whereas for coupling from -50% to 28%. The fact that DeRecGEA performs better in op-

2 https://sdk4ed.eu/
3 http://160.40.52.130:3000/
4 https://github.com/teomaik/DeRecGEA

https://sdk4ed.eu/
http://160.40.52.130:3000/

timizing cohesion rather than coupling (in all three cases) suggests that there might be some room for calibration of

the algorithm (e.g., the fitness function or the mutation) to favor moves that decrease coupling. Regarding modularity

the impact of DeRecGEA is ranging from -13% to 167%, whereas in terms of size the impact was ranging from no

impact to 22% improvement. Thus, we can claim that the proposed algorithm tents to not increase the number of

components in systems, but either just re-arranges classes or merges packages. Nevertheless, the negative effect of

DeRecGEA optimization on one pilot case, suggests that the aforementioned refinement, might be necessary.

Figure 4: Application of DeRecGEA on Software Modularity

5. Conclusions

In this paper, we present the results of an initial attempt to improve software architecture modularity, through the ap-

plication of a metrics-driven Evolutionary Genetic Algorithm. The proposed algorithm has been tested in three indus-

trial projects: two small-scaled and one large scale. The results on the two-small scaled projects are satisfactory, in

the sense that their modularity is significantly improve. However, regarding the large-scale project the results are en-

couraging, but still not satisfactory. In particular, we have been able to reduce the size of the project (in terms of

number of components), by only getting a limited modularity penalty. Nevertheless, the degradation of coupling in the

retrieved solution is alerting, and points into an interesting research direction, on how the algorithm of the fitness

function can be calibrated to lead to more coupling-wise viable solutions. Nevertheless, we encourage practitioners

(esp. of small- and medium-scale applications) to experiment with the developed tool and Move Class refactorings,

since they seem as promising solutions for architecture decay in terms of modularity.

REFERENCES

[1] Sommerville, I. 2015. Software Engineering. 10th. In Book Software Engineering. 10th, Series Software Engineering. Addison-Wesley.

[2] H. van Vliet. 2008. Software Engineering Principles and Practice: Third Edition

[3] D. M. Le, C. Carrillo, R. Capilla and N. Medvidovic. 2016. "Relating Architectural Decay and Sustainability of Software Systems," 2016 13th Work-

ing IEEE/IFIP Conference on Software Architecture (WICSA), Venice. pp. 178-181, doi: 10.1109/WICSA.2016.15.

[4] A. Ampatzoglou, A.A. Tsintzira, E.M. Arvanitou, A. Chatzigeorgiou, I. Stamelos, A. Moga, R. Heb, O. Matei, N. Tsiridis, D. Kehagias. 2019. Apply-

ing the Single Responsibility Principle in Industry: Modularity Benefits and Trade-Offs. Association for Computing Machinery.

[5] M. Pizka, 2004. Straightening Spaghetti-Code with Refactoring? 846-852.

[6] M. Fowler, and K. Beck, John Brant, William Opdyke, Don Roberts and Erich Gamma, Refactoring: Improving the Design of Existing Code

[7] C. Manteuffel, D. Tofan, P. Avgeriou, H. Koziolek, T. Goldschmidt. 2016. Decision architect – A decision documentation tool for industry. Journal of

Systems and Software. https://doi.org/10.1016/j.jss.2015.10.034

[8] J. Garcia, D. Popescu, G. Edwards and N. Medvidovic. 2009. "Identifying Architectural Bad Smells," 2009 13th European Conference on Software

Maintenance and Reengineering, Kaiserslautern. pp. 255-258, doi: 10.1109/CSMR.2009.59.

[9] R. Marinescu. 2004. "Detection strategies: metrics-based rules for detecting design flaws," 20th IEEE International Conference on Software

Maintenance. Proceedings., Chicago, IL, 2004, pp. 350-359, doi: 10.1109/ICSM.2004.1357820.

[10] T. Tourwe and T. Mens,. 2003. "Identifying refactoring opportunities using logic meta programming," Seventh European Conference on Software

Maintenance and Reengineering. Proceedings., Benevento, Italy, 2003, pp. 91-100, doi: 10.1109/CSMR.2003.1192416.

[11] R. S. Arnold. 1989. "Software restructuring". in Proceedings of the IEEE, vol. 77, no. 4, pp. 607-617. doi: 10.1109/5.24146.

[12] M. Harman, B. F Jones. 2001. “Search-based software engineering”, Information and Software Technology, Volume 43, Issue 14, Pages 833-839.

[13] M. Bowman, L. C. Briand and Y. Labiche. Nov.-Dec. 2010. "Solving the Class Responsibility Assignment Problem in Object-Oriented Analysis

with Multi-Objective Genetic Algorithms," in IEEE Transactions on Software En-gineering, vol. 36, no. 6, pp. 817-837, doi: 10.1109/TSE.2010.70.

[14] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies Evolutionary Programming Genetic Algorithms

[15] McConnell, S. 2009. Code Complete: A Practical Handbook of Software Construction 2nd Edition. Redmond.

View publication statsView publication stats

https://www.amazon.com/Hans-van-Vliet/e/B001HD3ZVK/ref=dp_byline_cont_book_1
https://www.sciencedirect.com/science/article/abs/pii/S0164121215002290#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121215002290#!
https://doi.org/10.1016/j.jss.2015.10.034
https://www.researchgate.net/publication/344955654

