
What you See is What you Get: Exploring the Relation between

Code Aesthetics and Code Quality

Theodoros Maikantis
Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece
 tmaikantis@uom.edu.gr

Alexander Chatzigeorgiou
Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece
achat@uom.edu.gr

Iliana Natsiou
Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece
 iis20043@uom.edu.gr

Stelios Xinogalos
Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece
 stelios@uom.edu.gr

Apostolos Ampatzoglou
Dept. of Applied Informatics

University of Macedonia

Thessaloniki, Greece
a.ampatzoglou@uom.edu.gr

Nikolaos Mittas
Hephaestus Laboratory, Dept. of

Chemistry, School of Science,

International Hellenic University

Kavala, Greece
nmittas@chem.ihu.gr

ABSTRACT

Software artifacts and source code are often viewed as pure tech-

nical constructs aiming primarily at delivering specific functional-

ity to the end users. However, almost each line of a computer pro-

gram is the result of developers’ craftsmanship and thus reflects

their skills and capabilities, but also their aesthetic view of how

code should be written. Additionally, by nature, the code is not an

artifact that is managed by a single person: the code is peer-

reviewed, in some cases programmed in pairs, or maintained by

different people. In this respect, the first impression for the quality

of a code is usually a matter of “reading” the aesthetics of the

code and then, diving into the details of the actual implementa-

tion. This “first-look” impression can psychologically bias the

software engineer, either positively or negatively and affect

his/her evaluation. In this article we investigate whether code

beauty (or code aesthetics) must be valued in software programs,

as a proxy to the quality of the code. Specifically, we attempt to

relate the notion of code beauty with code quality metrics. For this

purpose, we catalogued existing beauty measures (assessing the

aesthetics of images, objects, and alphanumeric displays), tailored

them to match code beauty, and correlated them to structural

properties that are related to Technical Debt Interest (such as cou-

pling, cohesion, etc.). The results of the study suggest that some

code beauty metrics can be considered as correlated to Technical

Debt Interest; and therefore, the “first-look” impression might to

some extent be representative of the quality of the reviewed code

chunk.

CCS CONCEPTS

• Software and its engineering→Software creation and manage-

ment→Software verification and validation→ Empirical software

validation

• Software and its engineering→Software creation and manage-

ment→Software post-development issues→Maintaining software

KEYWORDS

Code beauty, Code aesthetics, Code Quality, TD Interest

ACM Reference format:

T. Maikantis, I. Natsiou, A. Ampatzoglou, A. Chatzigeorgiou, and S.

Xinogalos, and P. Kyriakakis, “What you See is What you Get: Exploring

the Relation between Code Aesthetics and TD Interest”. In Proceedings of

ACM 7th International Conference on Technical (TechDEBT’ 24). ACM,

New York, NY, USA, 10 pages.

1 INTRODUCTION

Modern software development methodologies rely heavily on the

human-aspects of software engineering, dictating the use of prac-

tices (such as pair-programming [1] and code reviewing [2]) that

require the cross-checking of code by engineers different than

those that have originally written the code. On top of these inter-

developer human-code interactions, maintenance tasks are in

many cases assigned to developers, agnostically to who is the

original contributor of the code. Reading, understanding, and

changing the code that you have not authored is a task that is far

more challenging than changing your own code [2], promoting the

understandability of code as an important factor for keeping

maintenance cost [3][4] at an affordable level. In the literature the

“wasting” of maintenance effort, due to internal poor quality (such

as readability and understandability) is communicated as Tech-

nical Debt (TD) Interest payments.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distrib-

uted for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

TechDEBT’ 24 April 2024, Lisboa, Portugal

© 2018 Copyright held by the owner/author(s). 978-1-4503-0000-0/18/06...$15.00

https://doi.org/XXXX

mailto:achat@uom.edu.gr
mailto:iis20043@uom.edu.gr
mailto:stelios@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:nmittas@chem.ihu.gr
https://doi.org/XXXX

TechDEBT’ 24, April 2024, Lisboa, Portugal T. Maikantis et al.

In the first minutes of code inspection, review, or maintenance,

the developers’ assessment on the anticipated effort for the task

(and therefore the eagerness of the developer to start the task) can

be biased by the “first-look” of the code [5][6]. This “first-look” is

not related to the content or the quality of the code but is mostly

biased by treating (looking at) the code in its entirety as an image

or as a shape. Based on this assumption, in this paper, we aim at

exploring if this inherent psychological bias that can be aroused

by the “first-look” at the code can indeed mislead the software

engineer, or if this first impression is in the correct direction. In-

spired by the study of aesthetics in other scientific disciplines, we

are exploring if “code beauty” can be correlated to the quality of

the code, and more specifically to Technical Debt Interest.

The definition of “beauty” has been a matter of debate for many

years and has been a distinct branch of philosophy dealing with

the nature of art and beauty. We usually perceive something as

beautiful when it is pleasing to the senses, especially eyesight.

Many philosophers, psychologists and other scientists discuss if

beauty can be objective, or if it is always subjective: “Beauty is in

the eye of the beholder” [7]. Between these views, a common

ground was found supporting that the aesthetic evaluation of an

object is related to the observer’s memories and feelings. Beauty

is not only limited to objects or entities; it can also be observed in

text and mathematical equations. There have been brain scans im-

plying that seeing mathematical equations can sometimes evoke

the same sense of beauty as masterpieces of painting and music

suggesting that there is a neurobiological basis to beauty [8]. For

example, Euler’s identity is often cited as an example of deep

mathematical beauty, due to its simplicity, involvement of only

three arithmetic operations and five fundamental constants. Alt-

hough constants such as e, π and i are complex concepts, they are

beautifully linked by a simple and concise formula. Mathemati-

cians usually describe a pleasing proof or technique as elegant,

especially when it is concise and relies on a minimum number of

previous assumptions and when it can be generalized to solve a

variety of problems. As a result, we can assume that a similar case

exists for source code aesthetics [9]—see Section 2.

2 RELATED AND BACKGROUND WORK

Code Beauty: A prominent example of discussing beauty in cod-

ing, is provided by the book “Beautiful Code” [9], which supports

the importance of code appearance and studies the effects it has

on its performance. In this book, the beauty of the source code is

related to performance, elegance, simplicity, and understandabil-

ity of the final software product [9].

Coleman et al. [10] explored the correlation of code beauty and

software maintainability. Based on their findings, code beauty and

maintainability seem to be two intricately connected aspects of

software development. Beautiful code, characterized by clarity,

simplicity, and adherence to best practices, inherently contributes

to improved maintainability. When code is aesthetically pleasing,

it becomes more readable and understandable for developers [10].

The relationship between code beauty and maintainability under-

scores the idea that writing elegant, clear, and well-structured

code not only enhances the development process but also ensures

that software remains adaptable and sustainable over time. Anoth-

er study investigates the relation of beauty with the quality of

UML diagrams. Specifically, it discussed various design criteria

for UML class diagrams and emphasized the relation between the

aesthetic quality of a diagram and the quality of the object-

oriented design it represents [11]. Finally, Aldenhoven et al. [12]

highlight the impactful relationship between beautiful software

architecture and developer productivity, emphasizing the positive

influence on team dynamics and product quality. It stresses the

importance of beauty, since ugly software architecture tends to

frustrate and demotivate developers, thus decreasing productivity.

Beauty on Objects, Mathematics, and Text: Since code beauty

and functionality are independent, we reuse measures for object,

mathematical and text aesthetics. During the last centuries, several

measures that define the beauty of objects have been proposed by

scientists and artists. For example, balance was for the first time

referred to as a beauty trait back in the 5th century when the fa-

mous Greek sculptor Polykleitos made his statue Doryphoros. A

relation of beauty and harmony to symmetry was found during

Renaissance after the creation of the Vitruvian Man, a painting by

the Italian artist Leonardo Da Vinci. Other traits found in the 19th

century include quality and the form of the whole object which is

affected by its color, proportion, and size [13]. The elements of

regularity, mathematical harmony, order, and shortness along with

symmetry, size and quality which were also mentioned by artists

[14]. Another sector of beauty, mathematical beauty, introduced

the elements of understandability and simplicity which turned out

to be crucial for the beauty evaluation of mathematical formulae

[15]. These two factors were also mentioned by Wertheimer, i.e.,

the founder of the Gestalt theory [16], a theory which has been

further extended by many other researchers.

3 DEFINING AND MEASURING CODE

BEAUTY

For the aesthetic evaluation of code, we consider the screen as a

generic interface and evaluate it as such. An important resource

for the aesthetic evaluation of interfaces has been published by

Ngo [17]. We note that in terms of contributions, our work goes to

a different direction from Ngo [17], in the sense that his metrics

targeted UI, whereas ours are tailored for source code assessment.

Considering that we are interested in the overall aesthetic evalua-

tion of code, we consider the complete length and height of a code

file as our hypothetical interface borders. Also, another important

aspect of the interface is its quadrants. In Figure 1, we see the

screen split into the quadrants of Upper Right (UR), Upper Left

(UL), Lower Right (UR) and Lower Left (LL), playing an im-

portant role in the calculation of our selected measures. All the

selected measures are presented below briefly, and a detailed

presentation is given in an online supplementary material1.

1 https://users.uom.gr/~a.ampatzoglou/aux_material/techdebt24.pdf

https://users.uom.gr/~a.ampatzoglou/aux_material/techdebt24.pdf

Exploring the Relation between Code Aesthetics and TD Interest TechDEBT’ 24, April 2024, Lisboa, Portugal

Figure 1. Quadrants, Axis of symmetry & geographical center

3.1 Simplicity (SMM)

Figure 2. Left image is simpler because of fewer alignment points

Simplicity refers to the understandability of the code’s layout

based on its alignment points and non-blank lines. Simplicity is

achieved when all non-blank lines and their alignment points are

the least possible. Simplicity involves counting the number of dif-

ferent rows or columns on the screen that are used as starting posi-

tions of alphanumeric data items [17]. In Figure 2 we see two ex-

amples of entities with the left being simpler because of less ele-

ments and alignment points. Higher SMM values indicate greater

simplicity, while lower values suggest more complex and poten-

tially harder-to-read code. The code in the top part of Figure 3

scores 4.3% in SSM, whereas the code on the bottom scores 12%,

due to its reduced line count and fewer number of vertical and

horizontal alignment points.

Figure 3. Days of Week Code Examples

3.2 Symmetry (SYM)

Figure 4. Left image is more symmetrical

Symmetry is axial duplication. It measures how well characters of

a code file exhibit horizontal, vertical, and radial symmetry on the

screen. To achieve Symmetry, all units must be perfectly mirrored

vertically, horizontally, or diagonally on all screen quadrants. In

Figure 4 we see two examples of simple drawings, with the left

exhibiting higher symmetry.

Figure 5. Car Brands Example

To calculate Symmetry, we use a modified version of the formula

proposed by Ngo [17]. An example is provided in Figure 5. While

both codes share comparable levels of horizontal symmetry (0.353

for top / 0.156 for bottom), vertical (0.648 for top / 0.844 for bot-

tom), and radial symmetries (0.648 for top / 0.844 for bottom), the

first code surpasses the second in terms of the average value of

symmetry (45% for top, against 38% for bottom).

3.3 Sequence (SQ)

Sequence is a metric that assesses the distribution of lines in the

code and rates how well it follows the reading pattern commonly

used in Western cultures (the eye, trained by reading, starts from

the upper left and moves back and forth across the display to the

lower right.). In Figure 6 we see two examples of entities with

TechDEBT’ 24, April 2024, Lisboa, Portugal T. Maikantis et al.

“good” and “bad” sequence. Example (a) guides the viewer ac-

cording to the desired reading pattern, whereas example (b) has a

more irregular pattern.

Figure 6. Left image follows a common reading sequence pattern

To calculate the value of Sequence, we use the formula given by

Ngo [17]. The basic aspects that influence SQ are Quadrant

Weighting and Vertical Alignment of lines within each quadrant.

The former corresponds to the importance of each quadrant in

reading, whereas the latter refers to the lines of code within each

quadrant. A higher SQM value suggests that the code distribution

is closer to the expected reading pattern. For the code in the bot-

tom part of Figure 3, SQ scores 100%, whereas the code in the top

part of Figure 3 scores 50%. The bottom code adeptly distributes

characters across the four quadrants, aligning seamlessly with the

specified reading pattern. In contrast, the top code exhibits a mod-

erate Sequence value, attributed to a relatively consistent number

of characters across the quadrants from upper left to lower right.

3.4 Balance (BM)

Figure 7. Left image is more balanced

Balance is a metric related to the visual weight of code, particular-

ly how the length and positioning of lines affect the perceived

visual balance. Larger blocks of code appear “heavier” than

smaller ones, thereby changing the perception of the viewer. To

achieve Balance, all elements located above and below the center

of the frame on the y-axis must have the same weight. The same

applies for the elements placed at both sides of the center on the

x-axis [17]. In Figure 7 we see two examples of entities with

“good” and “bad” balance. Example (a) seems to be balanced,

whereas example (b) is clearly imbalanced towards the right.

A higher total BM value suggests that the code layout is visually

balanced, with lines distributed in a way that creates an aestheti-

cally pleasing and well-structured appearance. The top part of

Figure 3 scores 75% in terms of BM with BMvertical = -0.15 and

BMhorizontal = 0.35. These variables assess the visual weight

distribution in code, indicating whether the code is relatively

heavier on the left or right (BMvertical) or on the top or bottom

(BMhorizontal). If either of those values is 0, it indicates a bal-

ance in that plane. The bottom part scores 53.5% with BMvertical

= 0.78 and BMhorizontal = 0.15, because of a noticeable imbal-

ance between characters placed to left and right of frame center.

3.5 Equilibrium (EM)

Figure 8. Left image exhibits a higher EM

Equilibrium measures how well the center of mass of the code

aligns with the geographic center of the frame. To achieve ideal

Equilibrium, this difference must be equal to zero [17]. In Figure

8 we see two images, where example (a) is centered to the frame,

whereas example (b) has a mass shifted towards the lower left part

of the frame. Equilibrium can be defined along the X-Axis and

along the Y-Axis. Equilibrium along the X-Axis (EM_x)

measures the difference between the center of mass of the code in

the X direction (horizontal) and the center of the frame. Similarly,

the equilibrium along the Y-Axis (EMy) assesses the equilibrium

along the vertical axis (Y-axis). A higher EM value suggests that

the code's center of mass aligns well with the center of the frame,

which contributes to a more visually balanced and aesthetically

pleasing code layout. To discuss EM, we use the example codes

of Figure 3. The code on the top-side demonstrates minimal de-

viation from equilibrium on both the horizontal and vertical axes,

indicating a proximity between the center of the code’s mass and

the geographic center of the frame. Consequently, the Equilibrium

value for this code is notably high (EM = 93%, EMx = 0.04 and

EMy = -0.1). In contrast, the bottom-side code exhibits lower

equilibrium values on both the x-axis and y-axis, signifying a con-

siderable distance between the center of mass and the geographic

center (EM = 85.5%, EMx = -0.26 and EMy = -0.03).

3.6 Regularity (RM)

Figure 9. Left image is more regular

Regularity assesses the degree of consistency in alignment points

and spacing among the distribution of lines. The basic aspects that

influence RM are Alignment Regularity and Spacing Regularity.

It aims to determine how well the lines align (Alignment Regu-

larity) and are consistently spaced within the code (Spacing Regu-

larity) [17]. In Figure 9 we see two examples of entities, where

example (a) contains consistently spaced entities vertically and

horizontally, whereas example (b) does not. Using the example of

Figure 5, the code on the bottom-side scores 45% in RM (align-

Exploring the Relation between Code Aesthetics and TD Interest TechDEBT’ 24, April 2024, Lisboa, Portugal

ment 35% and spacing 55%), whereas the code on the top-side

scores 36% (alignment 34% and spacing 37%).

3.7 Rhythm (RHM)

Figure 10. Left image has a higher rhythm

This measure evaluates whether the lines follow a distribution pat-

tern and assesses the variety in both alignment points and line siz-

es. Unlike previous measures, good Rhythm value is achieved

when there is diversity in the code layout as in a variety in both

the alignment points and the lines sizes [17]. In Figure 10 we see

two examples of entities with “good” and “bad” rhythm. Example

(a) contains diverse, yet structured and aligned entities, whereas

example (b) has a very disorganized structure.

The basic aspects that influence RHM are Rhythm in the X-Axis,

Y-Axis, and Covered Area. Rhythm in the X-Axis (RHMx) eval-

uates the variety in the x-distances between lines in different

quadrants. Similarly, rhythm in the Y-Axis (RHMy) quantifies the

variety in the y-distance between lines in different quadrants. A

higher RHM value suggests that the code exhibits a more diverse

and aesthetically pleasing layout, contributing to improved code

readability and visual appeal. In order to attain a high RHM value,

we need RHMx and RHMy to be as low as possible. To demon-

strate RHM, we use the example of Figure 5. The bottom-side

code exhibits minimal disruption to rhythm, since the RHM val-

ues on both the horizontal (36%) and vertical axes (37%), as well

as across the entire frame area (25%) are low, This occurs because

the lines of this code are thoughtfully distributed among the four

quadrants, displaying a consistent and organized arrangement

(RHM equals 66%). The top-side code registers higher values in

the mentioned measures (62%, 58%, and 50% respectively), with

its lines appearing less systematic (RHM = 42%).

3.8 Deviation of the Center of Mass (DCM)

The Deviation of the Center of Mass (DCM) refers to the distance

between the geographic center of the code and its own center of

mass [18]. The center of mass is determined by the distribution of

lines within the frame. The DCM metric calculates the Euclidean

distance between the normalized coordinates of the geographic

center of the content and its center of mass [19]. Calculating DCM

relies on the normalized values for the Center of Mass for the X

(COMx) and Y (COMy) axis. For the final DCM measure, the

Euclidean distance between the COMx, COMy and the ideal cen-

ter of the frame (0.5, 0.5) is computed. In summary, the DCM

metric gives a numerical measure of how well-distributed the

lines are within the frame. It provides insights into the balance and

symmetry of the code layout, with a lower DCM indicating a

more centered and balanced distribution. Although DCM is very

similar to EM, since they both measure the balance of a code’s

structure, they do so from slightly different perspectives. DCM

measures the Euclidean distance from the geographic center to the

center of mass of the code thus giving an absolute measure of how

far the “weight” of the code (based online lengths) deviates from

the center. EM, on the other hand, measures the difference be-

tween the center of mass and the geo-graphic center, but it nor-

malizes this difference by the dimensions of the frame. This gives

a relative measure of balance, indicating how much the “weight”

of the code deviates from the center relative to the size of the

frame. So, while both metrics use the same reference point (the

geographic center), they provide different perspectives on the bal-

ance of the code’s structure. DCM gives an absolute measure of

deviation, while EM provides a relative measure of balance. This

subtle difference can offer complementary insights when analyz-

ing the structure of a code. Using the example of Figure 3, the

top-side code scores 7% (COMx: 52% and COMy: 43%) and the

bottom-side code scores 14% (COMx: 35% and COMy: 48%).

The top-side code is well-mirrored in terms of the center of the

frame, signifying that the center of mass is near the geographic

center of the code.

3.9 Density (DEN)

Figure 11. Left image has a higher density

Tullis [20] introduced a set of measures to evaluate text user inter-

faces, among them the Density Measure later used to evaluate the

aesthetics of user interfaces. Density depicts the screen coverage

with data, in the case of text is the percentage of the screen cov-

ered with characters. A simplified formulation by Ngo et al. [17]

refers to objects in the frame. Density is calculated by the division

of the Area Covered by Lines (a-covered) with the Area Occupied

by the Frame (a-frame). The Area Covered by Lines represents

the total area occupied by the lines in the code after removing any

leading spaces or indentation. In other words, it calculates the

space taken up by the actual content of the code. The Area Occu-

pied by the Frame represents the total area covered by the frame

that encloses the code. The frame refers to the boundary or con-

tainer that holds the code, which, in our case, is the whole code

file. This ratio provides an indication of how densely written the

code is in relation to the available space provided by the frame. In

the context of code aesthetics, lower density values are often pre-

ferred, as they suggest a more visually pleasant and readable lay-

out. Code that is too densely packed may be challenging to read

and understand. In Figure 11 we see two graphic examples with

the left being substantially less dense. For the code of Figure 5,

Density equals 23% for the top-side code (a-covered = 235 and a-

frame = 1026), and 34% for the bottom-side code (a-covered =

254 and a-frame = 740).

https://www.powerthesaurus.org/this_occurs_due_to/synonyms

TechDEBT’ 24, April 2024, Lisboa, Portugal T. Maikantis et al.

4 CASE STUDY DESIGN

To explore the relation of the proposed beauty metrics with struc-

tural quality, we have performed an exploratory case study on

open-source software projects. More specifically, we explore

which of these metrics are related to code quality calculation pa-

rameters. The case study is conducted, and reported, based on the

linear analytic structure [21].

4.1 Research Objectives and Research Questions

The goal of this study is to investigate several code beauty metrics

and to ascertain if a correlation exists between code aesthetics and

code quality. Based on this goal, we have set a main research

question (RQ), as follows: “To what extent does code beauty cor-

relate to TD Interest parameters?”. To answer this research ques-

tion, we explore if there are specific code beauty metrics that ex-

hibit stronger correlations with TD Interest calculation parame-

ters.

4.2 Cases and Units of Analysis

This case study is organized as an embedded single case study.

The subjects for this study are open-source software projects, and

the units of analysis are classes. The reporting is performed cumu-

latively for the complete dataset, and we do not separate per soft-

ware project. The decision to not explore the project parameter

does not influence the validity of the study in the sense that our

work is focusing on specific files and the studied relation is not

expected to change, due to organizational aspects of the project.

Table I. Selected Projects

Name Lines of Code Number of Classes

Antlr4 44,613 421

Conductor 53,488 507

DD-trace-java 175,482 2,686

Dolphin Scheduler 107,772 1,873

Druid 981,231 7,140

Dubbo 200,404 3,407

Incubator Sea Tunnel 92,462 1,797

Pulsar 527,708 3,899

Rocket MQ 169,725 1,698

Sky-walking 75,137 1,722

Stream-pipes 60,712 2,144

Our dataset consists of more than 27,000 classes, which corre-

spond to the complete set of classes from 11 Java open-source

projects. The selected projects along with some basic descriptive

statistics are presented in Table I. The selection of projects has

been reused from the work of Nikolaidis et al. [22]: i.e., the pro-

jects are written in Java to enable our static analysis, they are hav-

ing active development to ensure that they are up-to-date subjects,

and they are having substantial history that uses a structured

committing process to ensure that they are mature projects.

4.3 Data Collection

The data collection process can be split into two parts, the first

one for calculating the Code Beauty metrics, and the second for

the collection of the TD Interest parameters.

Part A-Code Beauty Metrics: The first part of data collection

aimed at calculating the metric scores of code beauty for the clas-

ses of the dataset. Since the presented metrics are novel, we need-

ed to develop a tool to automate their calculation. The tool is

available online2 and has been well-tested in various settings: (a)

small-scale projects for which the beauty metrics were calculated

manually and contrasted to the automatically extracted scores; (b)

large-scale projects for identifying abnormal (outside metric

range) score; and (c) checking common static analysis mistakes

that we have catalogued over the years in other source code

parsers. The code beauty metrics have been calculated in the last

version of the selected projects.

Part B-TD Interest Parameters: According to Arvanitou et al. [23]

the calculation of TD Interest is an open research problem, and no

established way for quantifying TD Interest exists in the state-of-

practice. To this end, we have preferred not to correlate Code

Beauty with TD Interest, but with the parameters of its calcula-

tion, and more specifically with structural quality metrics. Ac-

cording to FITTED [24], TD Interest is related to the major quali-

ty characteristics that are maintainability predictors: i.e., coupling,

complexity, cohesion, and size. To quantify these quality charac-

teristics, we have selected the following metrics:

• Cyclomatic Complexity (CC): This metric measures the

complexity of a program by counting the number of linearly

independent paths through the code. Cyclomatic complexity is

considered as the state-of-the-art complexity metric because it

is well-established and well-tested in terms of its relation to

maintainability. CC, when compared to other complexity met-

rics, considers the internals structure of a method, enabling the

capture of the actual complexity of the class.

• Lack of Cohesion of Methods (LCOM): LCOM measures

the lack of cohesion among methods within a class. It quanti-

fies the number of method pairs that do not share any instance

variables. This metric has been selected since: (a) high cohe-

sion is one of the most important principles of object-

orientation, and (ii) lack of cohesion directly implies the ex-

istence of the large class “bad smells”, which urges for the

application of well-known refactoring.

• Message Passing Coupling (MPC): MPC measures the num-

ber of distinct methods called from a class. MPC has been se-

lected since it is the only coupling metric that captures both

coupling volume (number of relationships) and coupling in-

tensity (how closely connected the two classes are). An addi-

tional characteristic of MPC is that it counts coupling intensity

using the discrete count function, and therefore is not biased

from the number of times one method is being called.

• Lines of Code (LoC): This is a simple metric that counts the

number of lines in the source code. It is a basic measure of the

size of the codebase. LoC can give an indication of the scale

of a class or project. LoC is used in almost all maintainability

studies and is accredited as a top predictor of maintenance

load, which is a basic component of TD Interest calculation.

2 https://github.com/teomaik/Code_Beauty_Calculator

https://github.com/teomaik/Code_Beauty_Calculator

Exploring the Relation between Code Aesthetics and TD Interest TechDEBT’ 24, April 2024, Lisboa, Portugal

The selected metrics have been indicated by previous as the opti-

mal maintainability predictors: Riaz et al. [25] have performed a

quality assessment of maintainability models, through a quantita-

tive checklist, to identify studies that provide reliable evidence on

the link between metrics and maintainability. Among the studies

with the highest scores were those of van Koten and Gray [26]

and Zhou and Leung [27]. Both studies have been based on two

metric suites proposed by Li and Henry [28] and Chidamber et al.

[29]. The employed suites contain metrics that can be calculated

at the source-code level, and can be used to assess well-known

quality properties, such as inheritance, coupling, cohesion, com-

plexity, and size. To calculate the metric scores, we used Metrics

Calculator, a well-tested and stable tool for calculating quality

metrics for Java code.

Figure 12. Distributions of beauty metrics per Open-Source Projects

4.4 Data Analysis

To answer the RQs, we performed correlation analysis. We com-

puted the Spearman's correlation [30] for each beauty and quality

metric to verify their relationship. Spearman's correlation is par-

ticularly effective when dealing with non-linear associations and

is less sensitive to outliers. It also helps mitigate potential con-

cerns of metric outliers that can skew results. In parallel, we cal-

culated the p-value of each correlation to determine the evidence

against a null hypothesis [31]. For interpreting the importance of

the correlations, we implemented the rule of thumb, proposed by

Hinkle [32] (0 to ±0.30 negligible/ ±0.30 to ±0.50 low/ ±0.50 to

±0.70 moderate/ ±0.70 to ±0.90 high/ ±0.90 to ±1.00 very high).

To visualize metric scores, we have used Violin plots.

5 RESULTS AND DISCUSSION

5.1 Answering the Research Question

As a first step of the analysis, we performed descriptive analytics

on the total set of the examined classes for the eleven Java open-

source projects (Table II), whereas Figure 12 visualizes the distri-

butions of the beauty metrics for each project.

Table II. Descriptive statistics for beauty metrics for the total set

of examined classes of Open-Source Projects

Beauty Metric M SD Mdn min max

Balance 0.42 0.10 0.41 0.00 0.98

Equilibrium 0.77 0.06 0.77 0.42 0.98

Overall Density 0.32 0.09 0.31 0.01 0.70

Regularity 0.44 0.02 0.44 0.25 0.62

Rhythm 0.49 0.07 0.48 0.34 0.79

Sequence 0.78 0.14 0.75 0.25 1.00

Simplicity 0.03 0.03 0.03 0.00 0.60

Symmetry 0.39 0.03 0.38 0.34 0.62

DCM 0.20 0.05 0.20 0.01 0.47

CC 1.41 2.09 1 0 107.53

LCOM 79.79 1007.25 4 0 63,190

MPC 19.66 42.09 7 0 1,574

LoC 91.18 259.92 32 0 13,816

To provide an answer to the posed research question in the study,

we evaluated the correlation coefficient for each pair of the set of

the code beauty metrics and the quality metrics. We note that: (a)

with this study, we do not aim extracting causal relations, but only

assess correlation; and (b) that we explore only one direction of

the relation; although by definition correlation analysis is bi-

TechDEBT’ 24, April 2024, Lisboa, Portugal T. Maikantis et al.

directional. Given the fact that the vast majority of pairwise corre-

lation coefficients are statistically significant (more than 95% of

the pairs), we can proceed with exploring the correlation coeffi-

cients. To aggregate the results at the dataset level, we constructed

violin plots, organized by quality metric. The violin plots depict

the variation in the correlation coefficients, between the quality

metrics and the proposed beauty metrics. For a correlation to be

consistent and very strong, we anticipate a “short” violin, with

values concentrated close to either -1.0 or 1.0. For other cases:

e.g., “long” violins, or values close to 0.0 the relation is inconclu-

sive or very weak, respectively.

Figure 13. Correlation of CC and Beauty Metrics

Cyclomatic complexity and Simplicity (Figure 13) exhibit a ro-

bust negative correlation ranging from -0.744 to -0.552, indicating

that as code simplicity increases, the cyclomatic complexity tends

to decrease. This negative correlation is reinforced by a very low

deviation, emphasizing the consistency of this relationship. Simi-

larly, Density and Equilibrium showcase significant negative cor-

relations, with medium deviations. These findings suggest that

well-dense and equally structured code tends to exhibit lower cy-

clomatic complexity. On the other hand, metrics like Balance,

Equilibrium, and Rhythm, and Sequence demonstrate negative

correlations with CC, but with higher deviations, indicating a

more inconclusive relationship. This (indicatively) implies that

while the more balanced a code is, generally the less complexity it

has; however, there are instances where this correlation is less

pronounced. Regularity and DCM exhibit varied correlations with

CC, emphasizing the multi-faceted nature of the relationship be-

tween beauty metrics and code complexity.

Figure 14. Correlation of LCOM and Beauty Metrics

The LCOM correlation with Simplicity (Figure 14) stands out

with an exceptionally strong negative value, ranging from -0.831

to -0.675. This suggests a clear trend wherein as code simplicity

increases, the Lack of Cohesion of Methods tends to decrease.

Symmetry also demonstrates a noteworthy negative correlation,

ranging from -0.632 to -0.432 with very low deviation, indicating

that codebases exhibiting greater symmetry tend to have lower

LCOM values. Equilibrium, Rhythm, and Density present sub-

stantial negative correlations, suggesting that well-balanced,

rhythmically structured, and dense code tends to have lower

LCOM values. The correlation with Balance and Sequence, while

negative, presents a more varied picture, emphasizing the intricate

nature of the interplay between these measures and LCOM. In

contrast, Deviation of the Center of Mass (DCM) shows a positive

correlation with LCOM, highlighting a potential trade-off between

structural coherence and the distribution of code mass. Finally, yet

again the results on Regularity are inconclusive.

Figure 15. Correlation of MPC and Beauty Metrics

Figure 16. Correlation of LoC and Beauty Metrics

The MPC correlation with Simplicity (Figure 15) emerges as a

key highlight, showcasing an extremely low deviation ranging

from -0.831 to -0.701. This indicates a robust negative correlation,

signifying that as code simplicity increases, the concerns related

to coupling tend to decrease consistently. Symmetry, with a value

between -0.735 and -0.459 and a low deviation, also exhibits a

noteworthy negative correlation, suggesting that well-symmetric

code structures are associated with improved maintainability. The

correlations with Equilibrium, Density, Rhythm, and Sequence

display high to very high deviations, although the sign of the cor-

Exploring the Relation between Code Aesthetics and TD Interest TechDEBT’ 24, April 2024, Lisboa, Portugal

relation is in most of the cases negative. For the rest of beauty

metrics, the results are clearly inconclusive.

Finally, in terms of the LoC correlation with beauty metrics (Fig-

ure 16), again Simplicity stands out as a striking observation,

showcasing an extremely low deviation and measured values

ranging from -0.967 to -0.871. This negative correlation implies

that as the simplicity of the code increases, the number of lines of

code decreases significantly. Regularity, with a very high devia-

tion and a variety of values ranging from -0.157 to 0.746, demon-

strates a complex and diverse correlation, suggesting that the im-

pact of structural aesthetics on code size is multifaceted. Sym-

metry exhibits a very low deviation between and measured values

between -0.764 and -0.542, indicating a negative correlation,

wherein well-symmetric code structures are associated with a re-

duction in code size. The correlations with Balance, Equilibrium,

Rhythm, and Sequence are inconclusive, due to the existence of

both positive and negative relations. Similarly, to the previous

metrics, Density seems to present for most cases a negative corre-

lation to LoC, suggesting that dense code is usually of small size.

Deviation of the Center of Mass (DCM) showcases a medium to

high deviation, however being concentrated always on the posi-

tive side for the sign of the correlation coefficients.

5.2 Interpretation of the Results

In this section, we summarize the most important findings and

interpret them. First, by contrasting the results per beauty metric,

we can observe an almost perfect consistency, in the sense that:

• Simplicity is negatively correlated to Complexity, Lack of Co-

hesion, Coupling, and Size. Thus, it is linked to code of better

quality.

• The same applies for Symmetry and Density, but the relation is

less strong (Moderate for Density).

• Equilibrium, Rhythm, and Sequence are in most of the cases

negatively correlated with all quality attributes / metrics, but the

correlation is very weak.

• Balance and Regularity produce only inconclusive results.

• DCM is the only beauty metric with a consistently positive cor-

relation to Complexity, Lack of Cohesion, Coupling, and Size.

We note that for DCM low values are desirable. Thus, it is

linked with low code quality. However, this relation is also of

moderate strength.

Since the presented code beauty metrics can be perceived by any-

one regardless of his / her programming background and technical

knowledge, even non-expert stakeholders can assess code quality

only by viewing the code and without needing to know its func-

tionality.

We claim that Simplicity, Symmetry, and Density can be used as

quite safe predictors of good structural quality.

This finding can be considered intuitive in the sense that code,

fragments which are simple, symmetrical, and dense usually do

not include many control statements (if, for, while, case, etc.) that

would disturb the symmetry, and yield for more indentation.

However, at this point we need to explain that this finding does

not suggest the omission of indentation to enhance beauty, but we

observe that the specific values for these beauty metrics are re-

flected to structural quality. Thus, any attempt to use such metrics

shall be made on code fragments that obey the basic code format-

ting principles (e.g., after running a code beautifier).

Given the above finding, we can claim that practitioners’ “first

look” on a code fragment can act as a quite reliable approximation

of the quality, as long as, basic formatting standards are obeyed.

In that sense, we believe that code beauty must be a concern of the

developer, while writing the code, especially targeting on writing

small, modular, and less complex methods. This rule of thumb

follows some basic principles of object-orientation, such as the

Open-Close Principle, the use of Polymorphism, the adoption of

the Single Responsibility Principle, etc.

5.3 Future Work Opportunities

From a researchers’ point of view, we can conclude that beauty

metrics seem to be useful for quality assurance purposes. There-

fore, we champion their further investigation in future studies.

However, an important first step before generalizing our results

from the level of the specific metrics that we have used for the

concept of beauty, there is a need for additional research on the

perception of software practitioners as ‘beautiful’ code. More spe-

cifically there is a need for validating the fact that the proposed

metrics capture the perception of developer for code beauty. This

can be performed either through a questionnaire study, or through

psycho metrics captured along a maintenance task or code read-

ing. It would also be interesting to investigate if the perception of

code beauty differs between developers and non-programmers, in

the sense that developers, consciously or subconsciously might

look for specific ‘anchors’ in the code they read before assessing

the overall picture.

Additionally, there is a need for studying how the specific beauty

metrics are changing when coding standards are applied, and

when they are not. This study will be important for differentiating

cases where lack of symmetry is due to lack of formatting and

necessary lack of blank spaces, e.g., due to reduced complexity of

the code chunk. To our perception, such a study would require the

combination of code styling and code beauty metric, under a

common model or tool. Finally, it is important to study possible

causality between beauty and quality, as well as tentative third

causal factors, e.g., style or skills of the developer.

6 THREATS TO VALIDITY

While our study endeavors to explore the correlation between

code aesthetics and quality metrics comprehensively, it is essen-

tial to acknowledge potential threats to the validity of findings.

First and foremost, the generalizability of our results may be lim-

ited by the specific set of projects and codebases chosen for anal-

ysis, as well as the use of only one programming language. The

characteristics and coding practices of these projects might not be

representative of the broader software development landscape

posing threats to external validity. Further replication studies

TechDEBT’ 24, April 2024, Lisboa, Portugal T. Maikantis et al.

would be needed to validate the identified correlations between

code beauty measures and quality attributes.

The construct validity of the study is threatened by the choice of

code quality metrics, as certain aspects of code quality may not be

fully captured by the selected indicators. Similarly, the concept of

beauty is inherently subjective and as a result the employed

measures of code beauty reflect only some aspects of aesthetics in

text/code. It would be reasonable to assume that the subjective

nature of aesthetic evaluations may introduce inter-rater variabil-

ity (in case of human assessments). The metrics employed for aes-

thetic evaluation might not encompass all dimensions of code

beauty, and different stakeholders may have diverse opinions on

what constitutes "beautiful" code. While the subjective evaluation

has not been included as an independent parameter in our study,

we attempted to mitigate this threat by substituting subjective

evaluation of beauty by established aesthetic metrics. Finally, we

note that this study is not aiming at identifying causal relations,

but only provide an initial exploration of correlations.

7 CONCLUSIONS

Confirming the correlation between code beauty and code quality

represents a pivotal finding in software engineering research.

Through a meticulous analysis of various aesthetic metrics and

their correlation with code quality measures, our study validates

the intuitive belief that beautifully crafted code aligns with higher

overall software quality. By employing Spearman correlation, our

research reveals the relationship between factors like code sim-

plicity, symmetry, balance, and metrics indicative of maintainabil-

ity, performance, and reliability. The confirmation of this correla-

tion underscores the importance of aesthetics in code develop-

ment. It implies that codebases exhibiting elegance in design and

structure are not only visually appealing but also tend to harbor

qualities associated with robustness and maintainability. This in-

sight has profound implications for software practitioners, high-

lighting that investments in code beauty can yield tangible bene-

fits in terms of enhanced code quality, fostering a paradigm where

aesthetics and functionality coalesce to form higher quality code.

ACKNOWLEDGMENTS

This research is funded by the University of Macedonia Research

Committee as part of the “Principal Research 2023” funding pro-

gram.

REFERENCES
[1] Begel, A., & Nagappan, N. (2008, October). Pair programming: what's in

it for me? In Proceedings of the Second ACM-IEEE international sympo-

sium on Empirical software engineering and measurement (pp. 120-128).

[2] Bacchelli, A., & Bird, C. (2013, May). Expectations, outcomes, and chal-

lenges of modern code review. In 2013 35th International Conference on
Software Engineering (ICSE) (pp. 712-721). IEEE.

[3] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, "An integrated measure of

software maintainability," Annual Reliability and Maintainability Sympo-

sium. 2002 Proceedings, Seattle, WA, USA, 2002, pp. 235-241.

[4] N. A. Al-Saiyd, "Source code comprehension analysis in software mainte-

nance," 2017 2nd International Conference on Computer and Communica-

tion Systems (ICCCS), Krakow, Poland, 2017, pp. 1-5.

[5] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, "An integrated measure of
software maintainability," Annual Reliability and Maintainability Sympo-

sium. 2002 Proceedings, Seattle, WA, USA, 2002, pp. 235-241.

[6] N. A. Al-Saiyd, "Source code comprehension analysis in software mainte-

nance," 2017 2nd International Conference on Computer and Communica-

tion Systems (ICCCS), Krakow, Poland, 2017, pp. 1-5.

[7] T. Duchess, Molly Bawn. Dodo Press, 2008.

[8] S. Zeki, J. P. Romaya, D. M. T. Benincasa, and M. F. Atiyah, “The experi-

ence of mathematical beauty and its neural correlates,” Front. Hum. Neu-
rosci., vol. 8, p. 68, 2014.

[9] Oram, A. and Wilson, G. (2007). Beautiful Code. Newton: O’ Reily.

[10] R. Coleman, "Beauty and Maintainability of Code," 2018 International

Conference on Computational Science and Computational Intelligence

(CSCI), Las Vegas, NV, USA, 2018, pp. 825-828.

[11] Η. Eichelberger. 2003. Nice class diagrams admit good design? In Pro-

ceedings of the 2003 ACM symposium on Software visualization (SoftVis

'03). Association for Computing Machinery, New York, NY, USA.
[12] C. M. Aldenhoven and R. S. Engelschall, "The beauty of software archi-

tecture," 2023 IEEE 20th International Conference on Software Architec-

ture (ICSA), L'Aquila, Italy, 2023, pp. 117-128.

[13] Santayana G. (1955). The Sense of Beauty. New York: Dover Publications

[14] Loukaki, A. (2008). Living Ruins. Value Conflict. Farnham: Ashgate.

[15] Zeki S., Romaya J. P., Benincasa D. M. T. and Atiyah M. F. (2014). The

experience of mathematical beauty and its neural correlates, Frontiers in
Human Neuroscience, vol. 8, article 68. DOI: 10.3389/fnhum.2014.00068

[16] Wertheimer M, Riezler K. (1994). Gestalt Theory, Social Research, vol.

11, no. 1, pp 78–99

[17] Ngo D. C. L., Teo L. S. and Byrne J. G. (2002). Evaluating Interface Es-

thetics, Knowledge and Information Systems, vol. 4, no. 1, pp. 46–79

[18] Khan Academy. What is the center of mass? [Accessed June 2023]

https://www.khanacademy.org/science/physics/linear-momentum/center-

of-mass/a/what-is-center-of-mass
[19] Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics

and image processing, 14(3), 227-248.

[20] Tullis, T. (1984). Predicting the Usability of Alphanumeric displays.

(Ph.D.). Rice University, Houston

[21] Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study re-

search in software engineering: Guidelines and examples. Wiley & Sons.

[22] Nikolaidis, N., Mittas, N., Ampatzoglou, A., Arvanitou, E. M., & Chat-
zigeorgiou, A. (2023). Assessing TD Macro-Management: A Nested Mod-

eling Statistical Approach. IEEE Transactions on Software Engineering,

49(4), 2996-3007.

[23] E. M. Arvanitou, P. Argyriadou, G. Koutsou, A. Ampatzoglou, and A.

Chatzigeorgiou, "Quantifying TD Interest: Are we Getting Closer, or Not

Even That?", 48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA' 22), IEEE Computer Society, August

2020, Gran Canaria, Spain
[24] Ampatzoglou, A., Mittas, N., Tsintzira, A. A., Ampatzoglou, A., Arvan-

itou, E. M., Chatzigeorgiou, A., ... & Angelis, L. (2020). Exploring the re-

lation between technical debt principal and interest: An empirical ap-

proach. Information and Software Technology, 128, 106391.

[25] Riaz, M., Mendes, E., & Tempero, E. (2009, October). A systematic re-

view of software maintainability prediction and metrics. In 2009 3rd inter-

national symposium on empirical software engineering and measurement

(pp. 367-377). IEEE.
[26] Van Koten, C., & Gray, A. R. (2006). An application of Bayesian network

for predicting object-oriented software maintainability. Information and

Software Technology, 48(1), 59-67.

[27] Zhou, Y., & Leung, H. (2007). Predicting object-oriented software main-

tainability using multivariate adaptive regression splines. Journal of sys-

tems and software, 80(8), 1349-1361.

[28] Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintain-
ability. Journal of systems and software, 23(2), 111-122.

[29] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-

oriented design. IEEE Transactions on software engineering, 20(6).

[30] De Winter, J. C., Gosling, S. D., & Potter, J. (2016). Comparing the Pear-

son and Spearman correlation coefficients across distributions and sample

sizes: A tutorial using simulations and empirical data. Psychological

methods, 21(3), 273.

[31] Thiese, M. S., Ronna, B., & Ott, U. (2016). P value interpretations and
considerations. Journal of thoracic disease, 8(9), E928.

[32] Hinkle D.E., Wiersma W., Jurs S.G. (2003). Applied Statistics for the Be-

havioral Sciences 5th ed. Boston: Houghton Mifflin.

https://www.khanacademy.org/science/physics/linear-momentum/center-of-mass/a/what-is-center-of-mass
https://www.khanacademy.org/science/physics/linear-momentum/center-of-mass/a/what-is-center-of-mass

