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Software artifacts and source code are often viewed as pure technical constructs aiming primarily at delivering 

specific functionality to the end users. However, almost each line of a computer program is the result of software 

engineer’s craftsmanship and thus reflects their skills and capabilities, but also their aesthetic view of how code 

should be written. Additionally, by nature, the code is not an artifact that is managed by a single person: the code 

is peer-reviewed, in some cases programmed in pairs, or maintained by different people. In this respect, the first 

impression for the quality of a code is usually a matter of “reading” the “beauty” of the code and then diving into 

the details of the actual implementation. This “first-look” impression can psychologically bias the software engi-

neers, either positively or negatively and affect their evaluation. In this article we propose a novel code beauty 

model (accompanied with metrics) and empirically explore: (a) if different software engineers perceive code 

beauty in the same way; (b) if the proposed code beauty metrics are correlated to the perceived code beauty by 

individual software engineers; and (c) if code beauty metrics are correlated to software maintainability. The re-

sults of the study suggest: (a) that code beauty is highly subjective and different software engineers perceive a 

code chunk as beautiful or not in an inconsistent way; (b) that some code beauty metrics can be considered as 

correlated to maintainability; and therefore, the “first-look” impression might to some extent be representative of 

the quality of the reviewed code chunk. 
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1. Introduction 

Modern software development methodologies rely heavily on the human-aspects of software engineering, dictat-

ing the use of practices (such as pair-programming (Begel and Nagappan, 2008) and code reviewing (Davila and 

Nunes, 2021)) that require the cross-checking of code by software engineers different than those that have origi-

nally written the code. On top of these inter-developer human-code interactions, maintenance tasks are in many 

cases assigned to software engineers, agnostically to who is the original contributor of the code. Reading, under-

standing, and changing the code that you have not authored is a task that is far more challenging than changing 

your own code (Davila and Nunes, 2021), promoting the understandability of code as an important factor for 

keeping maintenance cost (Chen et al., 2017; Al-Saiyd, 2017) at an affordable level. In the literature the “wast-

ing” of maintenance effort, due to internal poor quality (such as readability and understandability) is communi-

cated as Technical Debt (TD). 

In the first minutes of code inspection, review, or maintenance, the software engineers’ assessment on the antici-

pated effort for the task (and therefore the eagerness of the software engineer to start the task) can be biased by 

the “first-look” of the code (Chen et al., 2017; Al-Saiyd, 2017). This “first-look” is not related to the content or 

the quality of the code but is mostly biased by treating (looking at) the code in its entirety as an image or as a 

shape. Based on this assumption, in this paper, we aim at exploring if this inherent psychological bias, that can 

be aroused by the “first-look” at the code, can indeed mislead the software engineer, or if this first impression is 
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in the correct direction. Inspired by the study of aesthetics in other scientific disciplines (e.g., mathematics), we 

are exploring if “code beauty” can be correlated to the quality of the code, and more specifically to maintainabil-

ity, which according to a recent literature review on TD interest is the most relevant factor for future TD pay-

ments (Arvanitou et al., 2020) (High-Level Goal). 

The definition of “beauty” has been a matter of debate for many years and has been a distinct branch of philoso-

phy dealing with the nature of art and beauty. We usually perceive something as beautiful when it is pleasing to 

the senses, especially eyesight. Many philosophers, psychologists and other scientists discuss if beauty can be 

objective, or if it is always subjective: “Beauty is in the eye of the beholder” (Duchess, 2008). Between these 

views, a common ground was found supporting that the aesthetic evaluation of an object is related to the observ-

er’s memories and feelings. Beauty is not only limited to objects or entities; it can also be observed in text and 

mathematical equations. There have been brain scans implying that seeing mathematical equations can some-

times evoke the same sense of beauty as masterpieces of painting and music suggesting that there is a neurobio-

logical basis to beauty (Zeki et al., 2014). For example, Euler’s identity is often cited as an example of deep 

mathematical beauty, due to its simplicity, involvement of only three arithmetic operations and five fundamental 

constants. Although constants such as e, π and i are complex concepts, they are beautifully linked by a simple 

and concise formula. Mathematicians usually describe a pleasing proof or technique as elegant, especially when 

it is concise and relies on a minimum number of previous assumptions and when it can be generalized to solve a 

variety of problems. As a result, we can assume that a similar case exists for source code (Oram and Wilson, 

2007).  

To this end, and to serve our high-level goal, in this study we propose a hierarchical “Code Beauty Model 

(CBM)”, which first decomposes code beauty (1st level entity) into code beauty characteristics (2nd level enti-

ties), and subsequently links these characteristics to metrics (3rd level entities). Next, through empirical analysis, 

we explore if an assessment based on the CBM can be related to code quality, and more specifically maintaina-

bility. In this work, we investigate: (a) if software engineers have a common perception of code beauty (subgoal-

1); (b) if CBM metrics can accurately capture the perceived code beauty (subgoal-2); and (c) if CBM metrics are 

correlated with maintainability (subgoal-3).  

The rest of the paper is organized as follows: Section 2 presents related work: i.e., studies related to code beauty 

as well as studies that are related to the capture of aesthetics on Objects, Mathematics, and Text. In Section 3, we 

present in detail the Code Beauty Model, and in Section 4 the setup of our validation study. In Section 5 we re-

port the results, which we discuss in Section 6. Finally, Section 6 concludes the paper.  

2. Related Work 

In this section we present related work. Initially, since there are no established code aesthetic metrics in the liter-

ature, first we discuss studies that are related to the capture of aesthetics on Objects, Mathematics, and Text. 

Since code beauty and functionality are independent, we reuse measures for object, mathematical and text aes-

thetics. During the last centuries, several measures that define the beauty of objects have been proposed by scien-

tists and artists. For example, balance was for the first time referred to as a beauty trait back in the 5th century 

when the famous Greek sculptor Polykleitos made his statue Doryphoros. A relation of beauty and harmony to 

symmetry was found during the Renaissance after the creation of the Vitruvian Man, a painting by the Italian 

artist Leonardo Da Vinci. Other traits found in the 19th century include quality and the form of the whole object 

which is affected by its color, proportion, and size (Santayana, 1955). The elements of regularity, mathematical 

harmony, order, and shortness along with symmetry, size and quality were also mentioned by artists (Loukaki, 

2008). Another sector of beauty, i.e., mathematical beauty, introduced the elements of understandability and 

simplicity which turned out to be crucial for the beauty evaluation of mathematical formulae (Zeki et al., 2014). 
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These two factors were also mentioned by Wertheimer, i.e., the founder of the Gestalt theory (Wertheimer and 

Riezler, 1994), a theory which has been further extended by many other researchers. 

Next, we focus on studies that are related to code beauty. Oram and Wilson (2007) wrote a book for the im-

portance of beauty in coding and the effect of beauty on its performance. In particular, the authors present a col-

lection of papers from some well-known software engineers that reveal what they considered to be beautiful 

code in different programming languages in most cases. In this book, the beauty of the source code is related to 

performance, elegance, simplicity, and understandability of the final software product. 

Coleman (2018) explored the correlation of code beauty with three maintainability indexes. To identify the rela-

tion between code beauty and maintainability, the author performs two testable hypotheses. He tests hypotheses 

on a corpus of 53,000 lines of code written by software engineers. Then, the author conducts a statistical correla-

tion analysis with 33 experiments in total. Based on their findings, code beauty and maintainability seem to be 

two intricately connected aspects of software development. Beautiful code, characterized by clarity, simplicity, 

and adherence to best practices, inherently contributes to improved maintainability. When code is aesthetically 

pleasing, it becomes more readable and understandable for software engineers (Coleman, 2018). The relationship 

between code beauty and maintainability underscores the idea that writing elegant, clear, and well-structured 

code not only enhances the development process but also ensures that software remains adaptable and sustaina-

ble over time. 

Eichelberger (2003) investigated the relation of beauty with the quality of UML diagrams. Specifically, he dis-

cussed various design criteria for UML class diagrams and emphasized the relation between the aesthetic quality 

of a diagram and the quality of the object-oriented design it represents. As a first step, the author described crit-

ics from the viewpoint of Human Computer Interaction to the UML notation and concluded that he does not re-

quire non-standard modifications to the UML notation guide. Then, the author listed relations between design 

and layout quality. The author analyzed object-oriented design metrics (e.g., number of children, depth of inher-

itance tree, size, etc.) leading to a formalized judgement of UML class diagrams with respect to object-oriented 

aspects. Then, Eichelberger (2003) presented a set of aesthetic criteria with respect to these results and discussed 

the realization of his proposal.  

Finally, Aldenhoven and Engelschall (2023) highlight the impactful relationship between beautiful software ar-

chitecture and software engineer productivity. To achieve their goal, the authors conducted a descriptive survey 

which contains sixteen questions for practitioners about their experiences and their perceptions. The participants 

filled in the survey online. Moreover, the authors conducted semi-structured interviews to identify how beauty in 

software architecture can be taught to the next generation. The participants of this study were eight and they are 

experienced architects. The interviews were conducted via video calls. The results of this study emphasize the 

positive influence on team dynamics and product quality. It stresses the importance of beauty, since ugly soft-

ware architecture tends to frustrate and demotivate software engineers, thus decreasing productivity 

3. Code Beauty Metrics 

According to Gelernter “Beauty is more important in computing than anywhere else in technology because soft-

ware is so complicated. Beauty is the ultimate defense against complexity” (Gelernter, 1998). Code beauty refers 

to the qualities of code that make it not only functional but also elegant, readable, and maintainable. Also, as 

noted on the Software Engineering Stack Exchange1, "Most programmers will agree that beautiful code demon-

strates a balance between clarity and transparency, elegance, efficiency and aesthetics".  

 

 
1 https://softwareengineering.stackexchange.com/questions/207929/what-is-beautiful-code    

https://softwareengineering.stackexchange.com/questions/207929/what-is-beautiful-code
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Figure 1. Code Beauty Scheme  

In this study we propose a Code Beauty Model (CBM)—see Figure 1—that is organized hierarchically in three 

levels. The first level corresponds to the overall concept of Code Beauty. In the second level, code beauty is de-

composed to four characteristics that provide a holistic view of code beauty, emphasizing both on technical and 

human-readable viewpoints of the code: 

• Aesthetics Viewpoint. Code aesthetics refers to the visual and conceptual appeal of the code, focusing on how 

pleasing and intuitive it is to the reader. For example, the software engineer develops a code in a way that 

aligns naturally with its purpose, treating the code as an image or a painting (Dexter et al., 2011). 

• Styling Viewpoint. Code styling focuses on the adherence of code to consistent and standardized practices in 

writing code. For example, the software engineer should follow writing guidelines (e.g., uniform formatting 

in terms of indentation and styling) (Oliveira et al., 2023). 

• Textual Viewpoint. The textual structure of the code relates to the meaning that a code has when treated as 

natural language. For example, the use of appropriate comments clarifies intent or explains complex logic 

and improves readability without introducing redundancy; whereas the meaningful use of variable and meth-

od names enable the understanding and readability of the code, using well-established naming conventions 

(Cates et al., 2021). 

• Structural Viewpoint. Considering that a software engineer cannot completely decouple the image from cod-

ing anti-patterns, code smells, and other structural inefficiencies, this viewpoint focuses on the structure of 

the code. For example, the selection of the appropriate design pattern (or avoidance of anti-patterns and code 

smells), the decision to split a large method into smaller, the proper use of classes, methods, and namespaces 

lead the code to be reusable and easier to understand (Connolly et al., 2023).  
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In the third level of CBM, we provide different metrics (e.g., simplicity, textual coherence, number of condition-

als) for each characteristic. In Section 3.1 we present the proposed eight novel Code Aesthetic Metrics (CAM), 

since we have not been able to identify similar metrics in the literature. In Section 3.2 we present the used met-

rics in all other three viewpoints. These metrics have been identified in the literature, and therefore are presented 

together.  

3.1 Code Aesthetic Metrics (CAM) 

For the aesthetic evaluation of code, we consider the frame as a generic interface and evaluate it as such. An im-

portant resource for the aesthetic evaluation of interfaces has been published by Ngo et al. (2002). We note that 

in terms of contributions, our work goes in a different direction from Ngo et al. (2002), in the sense that his met-

rics targeted UI, whereas ours are tailored for source code assessment. Considering that we are interested in the 

overall aesthetic evaluation of code, we consider the complete width (bframe) and height (hframe) of a code file 

(frame) as our hypothetical interface borders. Τhe frame of the code is divided into four quadrants by the inter-

section of the vertical and horizontal axes, UL (upper-left), UR (upper-right), LL (lower-left), and LR (lower-

right). Another important aspect is the intersection of the vertical and horizontal axes, marked as a red circle and 

called geometric center, which is determined by dividing the total width (bframe) and height (hframe) of the 

frame by two. In addition some other measures that play an important role in the calculation of our selected 

measures are: nvap that represents the number of vertical alignment points, calculated by counting the blank 

lines in the code; nhap that refers to the horizontal alignment points, determined by the number of distinct tab 

levels plus one to account for the zero-tab case; n that denotes the total number of blocks in the code, where 

blocks are defined as sections separated by either blank lines or tab indentations; b that represents the width of a 

line, defined as the total number of characters excluding the initial and intermediate tabs; h that refers to the 

height of the line; and l that represents the total number of lines in the code (see Figure 2). All selected metrics 

are presented briefly below; whereas a detailed presentation of their calculation is provided in Appendix A. 

 

Figure 2. Code Aesthetics Metrics (CAM) 
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3.1.1 Simplicity Metric (SMM) 

Simplicity in coding refers to the understandability of the code’s layout based on its alignment points, non-blank 

lines and number of blocks (n). These alignment points can be either horizontal or vertical. Specifically, horizon-

tal points (nhap) are the sum of distinct tabs in front of the non-blank lines plus 1, which refers to the “zero tab” 

case, while vertical points (nvap) are the sum of blank lines. Achieving simplicity involves minimizing both 

types of alignment points. The calculation of the metric has as a pre-condition the existence of one statement per 

line of code. In Figure 3, two examples of entities are presented with the left being simpler because of less 

blocks and alignment points (Ngo et al., 2002). Higher SMM values indicate greater simplicity, while lower val-

ues suggest more complex and potentially harder-to-read code. The detailed calculation of the SMM metric for 

the code of Figure 2 is presented in Appendix A. 

 

Figure 3. Left image is simpler because of fewer alignment points 

3.1.2 Symmetry Metric (SYM) 

Symmetry measures the extent of axial duplication. It measures how well characters of a code file exhibit hori-

zontal, vertical, and radial symmetry. To achieve Symmetry, all units must be perfectly mirrored vertically, hori-

zontally, or diagonally on all four quadrants (UL, UR, LL, and LR), considering the total x-distance of quadrant; 

total y-distance of quadrant; total height; total width; total angle as well as total distance all lines in quadrant 

from the geometric center of the frame. In Figure 4, we showcase two simple drawings, with the left exhibiting 

higher symmetry (Ngo et al., 2002). The detailed calculation of the SYM metric for the code of Figure 2 is pre-

sented in Appendix A. 

 

Figure 4. Left image is more symmetrical 

3.1.3 Equilibrium Metric (EM) 

Equilibrium measures the stability achieved when the center of the code aligns with the geometric center of the 

frame, ensuring a visually centered layout. Equilibrium can be defined along the X-Axis and along the Y-Axis. 

Regarding the X-Axis, it measures the alignment of lines of the code in the X direction (horizontal) relative to 

the center of the frame. Similarly, the equilibrium along the Y-axis, assesses the alignment of the lines of the 

code in the vertical direction (Y-axis). 

 

Figure 5. Left image exhibits a higher EM  

 In Figure 5 we see two images, wherein example (a) the mass is centered, whereas example (b) has a mass shift-

ed towards the lower left corner (Ngo et al., 2002). A higher EM value suggests that the code's center of mass 
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aligns well with the center of the code, which contributes to a more visually balanced and aesthetically pleasing 

code layout. The detailed calculation of the EM metric for the code of Figure 2 is presented in Appendix A. 

3.1.4 Rhythm Metric (RHM) 

This measure evaluates whether the lines follow a distribution pattern and assesses the variety in both alignment 

points and line sizes. Unlike previous measures, good Rhythm value is achieved when there is diversity in the 

code layout as in a variety in both the alignment points and the lines sizes (Ngo et al., 2002). The basic aspects 

that influence RHM are Rhythm in the X-Axis, Y-Axis, and Covered Area. Rhythm in the X-Axis (RHMx) 

evaluates the variety in the x-distances between lines in different quadrants, while rhythm in the Y-Axis (RHMy) 

quantifies the variety in the y-distance between lines in different quadrants. In Figure 6 we see two examples of 

entities with “good” and “bad” rhythm. Example (a) contains diverse, yet structured and aligned entities, where-

as example (b) has a very disorganized structure. Therefore, a higher RHM value suggests that the code exhibits 

a more diverse and aesthetically pleasing layout, contributing to improved code readability and visual appeal. 

The detailed calculation of the RHM metric for the code of Figure 2 is presented in Appendix A.  

 

Figure 6. Left image has a higher rhythm 

3.1.5 Regularity Metric (RM) 

Regularity assesses the degree of consistency in alignment points and spacing among the distribution of lines. 

The basic aspects that influence RM are Alignment Regularity and Spacing Regularity. It aims to determine how 

well the lines align (Alignment Regularity) and are consistently spaced within the code (Spacing Regularity) 

(Ngo et al., 2002). More specifically, nspacing is the sum of the unique distances between the horizontal and 

between the vertical alignment points. In Figure 7 we see two examples of entities, where example: (a) contains 

consistently spaced entities vertically and horizontally, whereas example (b) does not (Ngo et al., 2002). The 

detailed calculation of the RM metric for the code of Figure 2 is presented in Appendix A. 

 

Figure 7. Left image is more regular 

 3.1.6 Sequence Metric (SQM) 

Sequence is a metric that assesses the distribution of lines in the code and rates how well it follows the reading 

pattern commonly used in Western cultures (the eye, trained by reading, starts from the upper left and moves 

back and forth across the display to the lower right). To calculate the value of Sequence, we use the formula giv-

en by Ngo et al. (2002). The basic aspects that influence SQM are Quadrant Weighting and Vertical Alignment 

of lines within each quadrant (UL, UR, LL and LR). The former corresponds to the importance of each quadrant 

in reading, whereas the latter refers to the area occupied by the lines of code within each quadrant. In Figure 8, 

two examples of entities with “good” and “bad” sequence are presented (Ngo et al., 2002). Example (a) guides 
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the viewer according to the desired reading pattern, whereas example (b) has a more irregular pattern. Therefore, 

a higher SQM value suggests that the code distribution is closer to the expected reading pattern. The detailed 

calculation of the SQM metric for the code of Figure 2 is presented in Appendix A. 

 

Figure 8. Left image follows a common reading sequence pattern 

3.1.7 Density Metric (DM) 

Density depicts the frame coverage with data, so in the case of code is the percentage of the frame covered with 

characters. Calculated by dividing the area covered by lines after removing any tabs or indentation, by the area 

occupied by the frame. This ratio provides an indication of how densely written the code is in relation to the 

available space provided by the code. In the context of code aesthetics, lower density values are often preferred, 

as they suggest a more visually pleasant and readable layout. Code that is too densely packed may be challenging 

to read and understand. In Figure 9 we see two graphic examples with the left being substantially less dense. 

(Ngo et al., 2002). The detailed calculation of the RHM metric for the code of Figure 2 is presented in Appendix 

A. 

 

Figure 9. Left image has a higher density 

3.1.8 Balance Metric (BM) 

Balance is a metric related to the visual weight of code, particularly how the length and positioning of lines af-

fect the perceived visual balance. Larger blocks of code appear “heavier” than smaller ones, thereby changing 

the perception of the viewer. To achieve Balance, all elements located above and below the center of the code on 

the y-axis must have the same weight. The same applies for the elements placed at both sides of the center on the 

x-axis. To calculate Balance, we consider the total weight of characters (non-blank characters); as well as the 

distance between the character and the center of the frame for the total number of lines on each side (L, R, T, and 

B stand for left, right, top, and bottom side). In Figure 10 we see two examples of entities with “good” and “bad” 

balance. Example (a) seems to be balanced, whereas example (b) is clearly imbalanced towards the right (Ngo et 

al., 2002). Therefore, a higher total BM value suggests that the code layout is visually balanced, with lines dis-

tributed in a way that creates an aesthetically pleasing and well-structured appearance. The detailed calculation 

of the BM metric for the code of Figure 2 is presented in Appendix A. 

 

Figure 10. Left image is more balanced 
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3.2 Metrics for the Styling, Textual, and Structural Viewpoints 

In this section we present the metrics that have been selected from the literature to capture the styling, textual, 

and structural viewpoints of the CBM. We note that although this list of metrics is not exhaustive (a long list of 

such metrics exists in the literature), we have selected those that appeared as more closely connected to the tar-

geted characteristics. For the corresponding threat to validity emerging out of this selection, please check Section 

6.3. The employed code beauty metrics are described below:  

• Number of Styling Violations (Styling Viewpoint) is calculated as the number of styling issues that are 

identified by CheckStyle (Loriot et al., 2022). Checkstyle is a static code analysis tool that helps software en-

gineers to write Java code that adheres to a coding standard. 

• Textual Coherence (Textual Viewpoint) refers to the overlaps between terms used in pairs of syntactic 

blocks (Scalabrino et al., 2018). According to Scalabrino et al. (2018) this metrics is in the top-3 predictors of 

readability among the textual features. 

• Number of Concepts (Textual Viewpoint) is calculated as the number of topics detected among the state-

ments (Scalabrino et al., 2018). According to Scalabrino et al. (2018) Number of Concepts is among the top-

3 predictors of readability among the textual features. 

• Comments Readability (Textual Viewpoint) is calculated as the Flesch-Kincaid reading-ease score (FRES) 

of the comments linked to methods (Scalabrino et al., 2018). According to Scalabrino et al. (2018) Comments 

Readability is the best predictor of readability among the textual features. 

• Comments Area (Textual Viewpoint) refers to the ratio of characters that are commented compared to the 

total number of characters in the code (Scalabrino et al., 2018). The number of comments in the code is ex-

pected to be positively related to code readability and understandability (Buse and Weimer, 2010). 

• Number of Code Smells (Structural Viewpoint) is calculated as the number of code smells identified by 

SonarQube (Letouzey, 2012). SonarQube performs an analysis and generates a report to ensure reliability.  

• Number of Conditionals (Structural Viewpoint) refers to the number of conditional (e.g., if, switch) and 

loop (e.g., for, while) statements that exist in the code (Buse and Weimer, 2010). In software engineering lit-

erature conditional statements have been related to the cognitive complexity of the code, hindering code 

readability (Campbell, 2018). 

4. Empirical Validation 

4.1 Objectives & Research Questions 

To serve the high-level goal of this study (“Explore if code beauty can be correlated to the quality of the code, 

and more specifically to software maintainability”), we have performed two empirical studies, targeting the 3 

sub-goals explained in the introduction. Each subgoal is in this section transformed to a research question (RQ): 

[RQ1] Is code beauty a concept that is uniformly perceived by different individuals? 

[RQ2] Are CBM metrics correlated to perceived code beauty? 

[RQ3] To what extent does code beauty correlate to software maintainability? 

RQ1 and RQ2 are answered through a study with human participants (i.e., senior software engineers). The aim 

is to explore the extent to which software engineers can assess code beauty in the same way, providing an as-

sessment on the subjectivity of the code beauty matter. Additionally, we explore the extent to which the CBM 

metrics are accurate, i.e., if they capture the code beauty phenomenon. RQ3 is answered through an analysis of 

existing software artifact. Given the two different setups, we report the two studies separately in the upcoming 

sections. A detailed replication package has been developed and is available online2. 

 
2 https://users.uom.gr/~a.ampatzoglou/aux_material/code_beauty_replication.zip  

https://users.uom.gr/~a.ampatzoglou/aux_material/code_beauty_replication.zip


10 

 

 

4.2 Case Selection and Units of Analysis 

Study with Human Participants: As subjects for this study, we have recruited 10 SE professional. Some de-

mographics, of the participants are presented in Figure 11 (the experience is measured in years).  

  
(a) Role (b) Working Experience  

  
(c) Gender (d) Age 

Figure 11. Study Demographics 

Artifact Analysis Study: The subjects for this study are open-source software projects, and the units of analysis 

are classes. The reporting is performed cumulatively for the complete dataset, and we do not separate per 

software project. The decision to not explore the project parameter does not influence the validity of the study in 

the sense that our work is focusing on specific files, and the studied relation is not expected to change, due to 

organizational aspects of the project. We note that this study solely depends on source code analysis and no 

humans are involved. Our dataset consists of more than 27,000 classes, which correspond to the complete set of 

classes from 11 Java open-source projects. The selected projects along with some basic descriptive statistics are 

presented in Table 1. The selection of projects has been reused from the work of Nikolaidis et al. (2023), 

following three criteria: i.e., the projects are written in Java to enable our static analysis, they are having active 

development to ensure that they are up-to-date subjects, and they are having substantial history that uses a 

structured committing process to ensure that they are mature projects. 

Table 1. Selected Projects 

Name Lines of Code Number of Classes 

Antlr4 44,613 421 

Conductor 53,488 507 

DD-trace-java 175,482 2,686 

Dolphin Scheduler 107,772 1,873 

Druid 981,231 7,140 

Dubbo 200,404 3,407 
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Name Lines of Code Number of Classes 

Incubator Sea Tunnel 92,462 1,797 

Pulsar 527,708 3,899 

Rocket MQ  169,725 1,698 

Sky-walking 75,137 1,722 

Stream-pipes 60,712 2,144 

4.3 Data Collection 

The data collection process can be split into three parts, the first one for recording the Perceived Code Beauty 

(PCB) to be used for answering RQ1 and RQ2; the second one for calculating CBM metrics; and the third for the 

collection of the maintainability predictors. CBM metrics have been calculated in two contexts. For answering 

RQ1 and RQ2 they have been calculated for the 20 sample code chunks of the study with human participants, 

whereas for answering RQ3 they have been calculated for the open-source projects of Table 1. The 20 sample 

code chunks have been developed by the first author of the publication. All code chunks are delivering the same 

functionality to filter out the confounding factor of functionality in the “first-impression” evaluation of the 

software engineers. Thus, the code chunks are functionally equivalent, but are using different logic to deliver it, 

leading to source codes of different shapes—also differing in terms of CBM metrics scores. More specifically, in 

our final dataset, we have attempted to include as many combinations of HIGH / MEDIUM / LOW scores for 

each CBM metrics, as possible. The set of code chunks along with the presentation of the CAM calculation are 

presented in Appendix B.  

Assessment of Perceived Code Beauty (PCB): To assess code beauty each one of the 10 participants have been 

given the code chunks and have been asked to rank them from 1 to 20 (not allowing ties), based on their per-

ceived code beauty, with 1 being the most aesthetically pleasing and 20 being the least. From this process, we 

retrieved a dataset for which the rows corresponded to individual raters, whereas the columns to the rank of the 

specific code chunk in terms of perceived beauty by the corresponding rater. During the ranking phase, we have 

not allowed for equal ranking in the beauty of two different code chunks, since in this data collection step we are 

interested in prioritization. As a metric of PCB, we have computed the mean score of ranking assessments for 

PCB (MRPCB) for each code chunk, by all participants. We note that PCB and MRPCB are inversely proportional, 

i.e., a code chunk with low MRPCB is the most pleasing aesthetically for most participants. 

Code Beauty Model Metrics: The second part of data collection aimed at calculating the metric scores of CBM 

metrics for the classes of the dataset. To collect the metrics, we have developed a tool for CAM assessment, and 

we have reused SonarQube, CheckStyle, and RSM. The CAM assessment tool3 is available online and has been 

tested in various settings: (a) small-scale projects for which CAM were calculated, manually, and contrasted to 

the automatically extracted scores; (b) large-scale projects for identifying abnormal (outside metric range) score; 

and (c) checking common static analysis mistakes that we have catalogued over the years in other source code 

parsers. All CBM metrics have been calculated in the last version of the selected projects. 

Maintainability Predictors: According to Riaz et al. (2009) the major quality characteristics that can be used as 

maintainability proxies are coupling, complexity, cohesion. To quantify these quality characteristics, we have 

selected the following metrics: 

• Cyclomatic Complexity (CC): This metric measures the complexity of a program by counting the number of 

linearly independent paths through the code. CC is considered as the state-of-the-art complexity metric be-

cause it is well-established and well-tested in terms of its relation to maintainability. CC, when compared to 

other complexity metrics, considers the internals structure of a method, enabling the capture of the actual 

complexity of the class (McCabe, 1976). 

 
3 https://github.com/teomaik/Code_Beauty_Calculator.git  

https://github.com/teomaik/Code_Beauty_Calculator.git
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• Lack of Cohesion of Methods (LCOM): LCOM measures the lack of cohesion among methods within a 

class. It quantifies the number of method pairs that do not share any instance variables. This metric has been 

selected since: (a) high cohesion is one of the most important principles of object-orientation, and (ii) lack of 

cohesion directly implies the existence of the large class “bad smells”, which urges for the application of re-

factoring (Chidamber and Kemerer, 1994). 

• Message Passing Coupling (MPC): MPC measures the number of distinct methods called from a class. MPC 

has been selected since it is the only coupling metric that captures both coupling volume (number of relation-

ships) and coupling intensity (how closely connected the two classes are). An additional characteristic of 

MPC is that it counts coupling intensity using the discrete count function, and therefore is not biased from the 

number of times one method is being called (Li and Henry, 1993). 

• Lines of Code (LoC): This is a simple metric that counts the number of lines in the source code. It is a basic 

measure of the size of the codebase. LoC can give an indication of the scale of a class or project. LoC is used 

in almost all maintainability studies and is accredited as a top predictor of maintenance load, which is a basic 

component of TD Interest calculation (Chidamber and Kemerer, 1994). 

The selected metrics have been indicated by previous as the optimal maintainability predictors: Riaz et al. (2009) 

have performed a quality assessment of maintainability models, through a quantitative checklist, to identify stud-

ies that provide reliable evidence on the link between metrics and maintainability. Among the studies with the 

highest scores were those of van Koten and Gray (2006) and Zhou and Leung (2007). Both studies have been 

based on two metric suites proposed by Li and Henry (1993) and Chidamber and Kemerer (1994). The employed 

suites contain metrics that can be calculated at the source-code level, and can be used to assess well-known qual-

ity properties, such as inheritance, coupling, cohesion, complexity, and size. To calculate the scores for the 

aforementioned metrics, we used Metrics Calculator4, a well-tested and stable tool for calculating quality metrics 

for Java code. 

4.4 Data Analysis 

To answer the posed RQs, we performed appropriate multivariate statistical methods and ML modelling tech-

niques for accomplishing the objectives that are described in Section 4.1. More specifically, for RQ1, we made 

use of exploratory visualization techniques for examining how SE participants perceived code beauty, based on 

their ranking assessments on the set of the inspected code chunks. Next, the Kendall’s W coefficient of concord-

ance (Kendall, 1948) was evaluated for the total number of the participants to infer about the degree to which 

multiple raters rank the beauty of the set of code chunks consistently.  

Concerning RQ2, we developed a Random Forest (RF) model that was built between MRPCB (response) and the 

set of CBM metrics (features). Regarding the selection of the significant features to be inserted into the building 

of the RF model, we made use of a well-known wrapper algorithm, known as the Boruta algorithm (Kursa and 

Rudnicki, 2010). In brief, the algorithm evaluates the importance of each feature by comparing it to randomly 

shuffled data (shadow features) combined with the original values of features. This iterative process results in the 

characterization of predictors as informative or non-informative features through formal hypothesis testing pro-

cedures. In addition, to gain insights on the subset of CBM metrics: (a) that have the most impact on PCB; and 

(b) how their values affect MRPCB, by applying a well-established eXplainable Artificial Intelligence (XAI) 

method, namely: SHapley Additive exPlanations (SHAP) analysis (Lundberg and Lee, 2017).  

Finally, for RQ3, we conducted correlation analysis, focusing on association rather than causation, between the 

set of CBM metrics that are related to PCB (based on RQ2) and maintainability metrics using the Spearman’s 

correlation coefficients (Winter et al., 2016).        

 
4 https://github.com/dimizisis/metrics_calculator.git  

https://github.com/dimizisis/metrics_calculator.git
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5. Findings and Answers to the Research Questions 

In this section, we present the results of this study, organized by RQ. For simplicity, we have preferred to present 

the results in a raw way in this section and discuss them (interpretations and implications) in Section 6. 

5.1 Objectivity of Perceived Code Beauty (RQ1) 

To answer RQ1, we have explored the ranking assessments distributions of each code chunk among individual 

software developers (see Figure 12). The investigation of the distributions suggests that regarding the beauty of 

the examined code chunks, there is noted a moderate level of agreement among software engineers. For example, 

the cases of “Code Chunk 4” and “Code Chunk 3” highlight that software developers assessed as less “beautiful” 

(i.e. higher MRPCB denoted by red colour) these specific code chunks, as all the respondents (100%) gave a 

ranking that is higher or equal to 11 (𝑚𝑖𝑛 = 1 (𝑚𝑜𝑠𝑡 𝑎𝑒𝑠𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑝𝑙𝑒𝑎𝑠𝑖𝑛𝑔), 𝑚𝑎𝑥 = 20). In contrast, a 

consensus among respondents is noted regarding the “beauty” for “Code Chunk 6”, “Code Chunk 13” and “Code 

Chunk 20”. The findings from the visual inspection of the distributions were validated by the results of the inter-

rater agreement analysis through the computation of the Kendall's W concordance coefficient. Indeed, the 

analysis revealed a statistically significant and moderate agreement among the total set of the participants (𝑊 =

0.485, 𝑝 < 0.001).  

 

Figure 12. Distribution of responses for PCB 

This finding suggests that code beauty is something that cannot be uniformly perceived by software engineers, 

buy some common perception of what code beauty is, probably exists with deviations. 

5.2 Assessing Perceived Code Beauty from Code Aesthetics and Other Beauty Metrics (RQ2) 

RQ2 focuses on the investigation of whether a set of CBM metrics can serve as suitable proxies for quantifying 

PCB. The analysis was based on CBM metrics values for the total set of 20 code chunks for which descriptive 

statistics were evaluated and summarized in Table 2. To investigate if there is a subset of CBM metric that was 

able to capture perceived beauty, an RF model was, initially, built between MRPCB and the subset of features 

(CBM metrics) that were deemed as important from the application of the Boruta algorithm, whereas SHAP 

analysis was adopted for interpretability purposes. During the tuning phase of the model, a grid search with 

repeated cross-validation was performed to identify the optimal hyper-parameters including the number of 
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estimators (i.e., the number of trees in the forest), maximum depth of the trees, the minimum number of samples 

required to split an internal node, the minimum number of samples required to be at a leaf node, the maximum 

number of features considered for splitting, and whether to bootstrap samples when building trees. This 

comprehensive approach ensured that the model's performance was maximized by selecting the best combination 

of hyperparameters. Regarding the informative features identified by the execution of the Boruta algorithm, we 

have identified five predictors (“Number of Conditionals”, “Regularity”, “Comments Area”, “Number of Code 

Smells” and “Simplicity”) out of a total set of fifteen candidate predictors (see Table 2) to be statistically 

significant (𝑝 < 0.05) for insertion into the model building phase of the RF model. The fitted model achieved a 

noteworthy performance in terms of Mean Absolute Error (𝑀𝐴𝐸 = 0.73), Mean Squared Error (𝑀𝑆𝐸 = 0.82) 

and R-squared (𝑅2 = 0.95) indicators suggesting that a relatively high proportion of variability in PCB can be 

explained by the examined set of CBM metrics.  

Table 2. Descriptive statistics of CBM metrics for the total set of 20 Code Chunks 

CBM Metrics Statistical Measure Overall (N=20) 

Simplicity Metric (SMM) Mean (SD) 0.121  (0.021) 

Median (min, max) 0.125  (0.083, 0.176) 

Symmetry Metric (SYM) Mean (SD) 0.823  (0.075) 

Median (min, max) 0.830  (0.693, 0.925) 

Equilibrium Metric (EM) Mean (SD) 0.557  (0.039) 

Median (min, max) 0.561  (0.486, 0.617) 

Rhythm Metric (RHM) Mean (SD) 0.815  (0.080) 

Median (min, max) 0.807  (0.691, 0.944) 

Regularity Metric (RM) Mean (SD) 0.862  (0.025) 

Median (min, max) 0.858  (0.833, 0.920) 

Sequence Metric (SQM) 0.5 (N, %) 8  (40%) 

0.75 (N, %) 12 (60%) 

Density Metric (DM) Mean (SD) 0.531  (0.091) 

Median (min, max) 0.526  (0.369, 0.698) 

Balance Metric (BM) Mean (SD) 0.559  (0.137) 

Median (min, max) 0.500  (0.403, 0.897) 

Number of Styling Violations Mean (SD) 7.750  (1.118) 

Median (min, max) 8.000  (6.000, 10.000) 

Number of Code Smells Mean (SD) 3.400  (2.644) 

Median (min, max) 2.000  (2.000, 9.000) 

Textual Coherence Mean (SD) 0.941  (0.071) 

Median (min, max) 0.969  (0.794, 1.000) 

Number of Concepts Mean (SD) 4.723  (0.672) 

Median (min, max) 4.464  (3.942, 6.565) 

Comments Readability Mean (SD) 0.724  (0.095) 

Median (min, max) 0.726  (0.541, 0.838) 

Comments Area Mean (SD) 0.087  (0.019) 

Median (min, max) 0.088  (0.041, 0.121) 

Number of Conditionals Mean (SD) 3.500  (2.085) 

Median (min, max) 3.000  (1.000, 8.000) 
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Next, the focus has shifted to the examination of the findings that were extracted from the SHAP analysis on the 

fitted RF model with an emphasis on the identification of CBM metrics that highly affected MRPCB (and 

subsequently PCB). Figure 13 illustrates how each metric contributed to MRPCB fitted values in decreasing order 

of importance as quantified by the mean absolute SHAP values. The feature with the highest impact is 

“Regularity”, with a mean absolute SHAP (𝑚𝑒𝑎𝑛|𝑆𝐻𝐴𝑃|) value of 0.870, followed by “Comments Area” 

(𝑚𝑒𝑎𝑛|𝑆𝐻𝐴𝑃| = 0.803), “Number of Code Smells” (𝑚𝑒𝑎𝑛|𝑆𝐻𝐴𝑃| = 0.783) and “Number of Conditionals” 

(𝑚𝑒𝑎𝑛|𝑆𝐻𝐴𝑃| = 0.434). In contrast, “Simplicity” seems to have a rather small effect on MRPCB with a value of  

𝑚𝑒𝑎𝑛|𝑆𝐻𝐴𝑃| = 0.265. Based on the findings related to the importance of each metric on MRPCB (see Figure 

13), we decided to further investigate the underlying relationships between the actual values of the informative 

features and code beauty. To achieve this objective, we made use of the global SHAP force plots that constitute a 

straightforward visualization XAI technique for the examination of the impact of the estimated Shapley values 

on the response value.  

 

Figure 13. SHAP feature importance plot  

Figures 14-16 display the global SHAP force plot for three illustrative metrics that influenced code beauty in 

opposite directions. In these plots, the 𝑥-axis and the 𝑦-axis represent the values of the examined feature, and the 

values of the response variable (MRPCB) derived from the fitted RF model, respectively. Moreover, the negative 

and positive Shapley values are shaded with blue- and red- colored regions, respectively, to facilitate the 

examination of the effect of the feature on the estimated response values. For example, the inspection of Figure 

14 reveals that higher values of “Number of Conditionals” are associated with high mean scores of ranking 

assessments and thus, lower perceived beauty. In addition, the “Number of Conditionals” value close to 4 can be 

considered as the “break point”, at which the model switches from lower (negative Shapley values) to higher 

(positive Shapley values) mean ranking scores of perceived code beauty. In simple words, “Number of 

Conditionals” values above 4 contribute to less aesthetically pleasing code. This trend also holds for Regularity 

and Number of Code Smells (see Figure 15). In contrast, Figure 16 shows that as “Comments Area” increases, 

the mean scores of ranking assessments tend to decrease, which practically means that the code is perceived as 

more aesthetically pleasing, while the value of “Comments Area” close to 0.08 can be considered as the breaking 

point.  
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Figure 14. Global SHAP force plot for Number of Conditionals 

 
Figure 15. Global SHAP force plot for Number of Sonar Issues 

 
Figure 16. Global SHAP force plot for Comments Area 

Summarizing, the Boruta algorithm signified that a set of five Code Beauty Model metrics can be considered as 

informative and effective proxies for quantifying perceived code beauty. Additionally, SHAP analysis revealed 

that Simplicity (Aesthetics Viewpoint) and Number of Conditionals (Structural Viewpoint) have a small impact 

on PCB as they exhibited low SHAP values, that practically means, their contributions to the model are 

relatively small. In contrast, another Structural (Number of Code Smells) and one Textual Viewpoint (Comments 

Area) metrics along with Regularity (Aesthetics Viewpoint) are significantly more influential than the other 

features.       
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5.3 Relation of Code Beauty Model Metrics and Maintainability Predictors (RQ3) 

RQ3 is dedicated to the exploration of the nature and strength of the correlation between CBM metrics and 

Maintainability Predictors. In this regard, a total set of more than 21,000 classes from 11 Java open-source 

projects were analyzed. In Table 3, we present the descriptive analytics for CBM metrics and the Maintainability 

Predictors. 

Table 3. Descriptive statistics for each CΒM metrics and Maintainability Predictors  

Suite Metric Statistical Measure Overall (N=21,137) 

CBM  

Metrics 

Simplicity (SMM) Mean (SD) 0.092  (0.076) 

Median (Q1, Q3) 0.071  (0.039, 0.125) 

Regularity (RM) Mean (SD) 0.823    (0.068) 

Median (Q1, Q3) 0.831 (0.777, 0.874) 

Number of Conditionals Mean (SD) 12.448  (68.900) 

Median (Q1, Q3) 3.000 (1.000, 10.000) 

Comments Area Mean (SD) 0.320      (0.256) 

Median (Q1, Q3) 0.272 (0.102, 0.511) 

Number of Code Smells Mean (SD) 1.998      (5.517) 

Median (Q1, Q3) 0.000 (0.000, 2.000) 

Maintainability  

Predictors 

Cyclomatic Complexity 

(CC) 

Mean (SD) 1.305    (1.775) 

Median (Q1, Q3) 1.000 (0.500, 1.500) 

Lack of Cohesion of 

Methods (LCOM) 

Mean (SD) 45.354 (680.224) 

Median (Q1, Q3) 0.000 (0.000, 6.000) 

Message Passing Cou-

pling (MPC) 

Mean (SD) 15.502  (34.495) 

Median (Q1, Q3) 5.000 (0.000, 17.000) 

Lines of Code (LoC) Mean (SD) 62.824 (141.151) 

Median (Q1, Q3) 23.000 (6.000, 66.000) 

To provide an answer to RQ3, we evaluated the Spearman’s rho correlation coefficient for each pair of the set of 

CBM metrics and code quality metrics. Table 4 summarizes the descriptive statistics for the total number of the 

pair-wise comparisons between the set of important CBM metrics and Maintainability Predictors, in which all 

pair-wise comparisons resulted into a statistically correlation (𝑝 < 0.001). Rows represent maintainability 

predictors and columns CBMs. 

Table 4. Descriptive statistics of correlation coefficients for each pair of CBM and Maintainability Metrics  

 Measure Regularity Simplicity Number of 

Conditionals 

Comments 

Area 

Number of 

Code Smells 

CC Mean 

(SD) 

0.712  

(0.050) 

-0.720  

(0.060)  

0.834 

(0.065) 

-0.513  

(0.299) 

0.303 

 (0.125)   

Median 

(min, max) 

0.740   

(0.630, 

0.759) 

-0.742  

(-0.792, -

0.588) 

0.853  

(0.702,  

0.898) 

-0.661  

(-0.748, 0.174) 

0.277  

(0.097,  

0.522) 

LCOM Mean 

(SD) 

0.563 

(0.158) 

-0.606  

(0.171)  

0.644  

(0.156)  

-0.357  

(0.230)  

0.262  

(0.162) 

Median 

(min, max) 

0.552 

(0.332, 

0.807) 

-0.602 

(-0.854, -

0.340) 

0.627 

(0.435,  

0.874) 

-0.435  

(-0.583, 0.184) 

0.221 

(0.073,  

0.545) 
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 Measure Regularity Simplicity Number of 

Conditionals 

Comments 

Area 

Number of 

Code Smells 

LoC Mean 

(SD) 

0.784  

(0.071)   

-0.917  

(0.032)  

0.879 

(0.034) 

-0.732  

(0.384)  

0.470  

(0.149) 

Median 

(min, max) 

0.774   

(0.698, 

0.887) 

-0.923  

(-0.951, -

0.845) 

  0.886 

(0.809,  

0.922) 

-0.888  

(-0.948, 0.218) 

0.473  

(0.246,  

0.692) 

MPC Mean 

(SD) 

0.624  

(0.121) 

-0.750  

(0.061)  

0.729 

(0.098) 

-0.635  

(0.357)  

0.419 

(0.153) 

Median 

(min, max) 

0.640   

(0.430, 

0.788) 

-0.773  

(-0.843, -

0.658) 

0.748 

(0.555,  

0.853) 

-0.797  

(-0.853, 0.239) 

0.422   

(0.169,  

0.653) 

To extract meaningful conclusions concerning the distributions of the pair-wise comparisons between the CBM 

and maintainability metrics, we constructed the corresponding boxplots (Figure 16). A first interesting remark 

concerns the direction and strength of the relationship between CBM and maintainability metrics. “Simplicity” 

presents a statistically significant negative correlation with all maintainability metrics ranging from moderate 

(𝑚𝑖𝑛 = −0.534) to very strong (𝑚𝑎𝑥 = −0.951) for the cases of LCOM and LoC, respectively. Additionally, 

the interquartile range of the boxplots suggest a low amount of variability in the extracted findings apart from 

LCOM. This negative trend is also observed for most projects concerning the comparison between “Comments 

Area” and the maintainability metrics. The remaining CBM metrics are positively correlated with all 

maintainability metrics. For example, “Regularity” is positively correlated with all maintainability metrics that 

ranges from low (𝑚𝑖𝑛 = 0.332) for the case of LCOM to very strong (𝑚𝑎𝑥 = 0.887). Finally, although 

statistically significant correlations are observed between each pair of CBM metrics and “Number of Code 

Smells”, the strength of these associations is, generally, weaker compared to other CBM metrics, a result that is 

reflected through the examination of the distribution ranges. 

 

Figure 16. Distributions of Spearman’s rho correlation coefficient for Maintainability and CBM Metrics 
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Regarding cohesion (LCOM) the stronger relation appear with CAMs (Simplicity and Regularity). Size (LoC) 

appears to be highly correlated with every CBM metric, with exceptional high correlation (with very limited 

variability) with Simplicity and Comments Area. Regarding code complexity (CC), we can observe an almost 

perfect correlation with Number of Conditionals and a strong one with CAMs.  Finally, regarding coupling 

(MPC) we can observe a strong relation with CAMs and Comments Area. “Reading” the correlations in a vice-

verse way, we can observe that all CBM metrics are stronger correlated to LoC. Neglecting the obvious relation 

to project size, Comments Area, Number of Code Smells, and Simplicity are highly correlated with MPC, and 

Regularity with CC. 

6. Discussion 

6.1 Interpretation of Results 

In this section, we summarize the most important findings and interpret them. Upon analyzing the inter-rater 

agreement results, it becomes evident that there was a moderate and statistically significant agreement across all 

software engineers. It highlights that software engineers tend to share a cohesive understanding of code beauty, 

albeit with some deviations possibly influenced by personal preferences. The overall agreement on what 

constitutes “beautiful code” among software engineers implies that training and experience in software 

engineering leads to a quite consistent criterion for good code.  

Next, we performed an aesthetic metrics analysis on 20 survey code files. Using MRPCB, as the target, and the 

calculated CBM metrics, as features, we trained a Random Forest regression model. We then performed a SHAP 

analysis to extract the feature importance of each CBM metrics. By using this XAI approach, we aimed not only 

at identifying the magnitude of CBM metrics influence, but also the relationship the CBM metrics value has to 

the PCB. The findings reveal that software engineers value “Number of Conditionals”, “Regularity”, “Comments 

Area”, “Number of Code Smells”, and “Simplicity”, when assessing the beauty of a code chunk. Regarding 

beauty characteristics, the results suggested that the Aesthetics Viewpoint and the Structural Viewpoint are 

represented with two metrics in the most important features for perceived code beauty, followed by the Textual 

Viewpoint. The Styling Viewpoint is not represented; however: (a) in this study there was only one generic 

metric for this characteristic; and (b) this characteristic is indirectly captured by other CBM metrics (e.g., the 

number of indentations used is considered in the calculations of CAMs and is proxied by the “Number of 

Conditionals”). The result on CAMs comes as no surprise, as simple code (captured by “Simplicity”) has been 

advocated by numerous authors in software engineering literature, as one of the primary rules for clean, 

maintainable and understandable software (Martin, 2008). Similarly, a code that is “Regular” is expected to lack 

indentions (and probably styling), leading to intuitively being perceived as less aesthetically pleasing to software 

engineers (Oliveira et al., 2023). In terms of structure, the fact that a code with more comments (“Comments 

Area”) is regarded as more “beautiful” is also intuitive, in the sense that: (a) the colored lines of comments (in 

most IDEs) are easily spotted in the first-impression of the code; (b) the belief that comments is a way to 

safeguard understandability is well accepted among software engineers (Cates et al., 2021), making software 

engineers as positively engaged with a code chunk with comments directly. The second line of interpretation 

suggests that most engineers consider comments as part of beautiful code, and not as a sign of poor code that 

“needs the comment” to be interpreted. This line of interpretation also applies to other metrics of the Textual 

Viewpoint (e.g., “Comments Readability” and “Textual Coherence”), which are also acknowledged as important 

for readability (Cates et al., 2021), but cannot be captured by the “first-look” of the code. Finally, the structural 

assessment of code also seems to take place, at least to some extent, in the first minute look, in the sense that 

both “Number of Conditional” and “Number of Code Smells” are related to PCB. If the “Number of 

Conditionals” (especially on well-styled or beautified code) is excessive, it can be easily spotted in the “first-

look” impression and directly alerts the reader of a complex code chunk (McCabe, 1976). Similarly, the fact that 
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the “Number of Code Smell” is less important stems from the fact that several code smells (e.g., God class 

(Fowler et al., 1999), long methods (Fowler et al., 1999), magic numbers (Campbell, 2013), etc.) can be spotted 

very quickly, whereas others (e.g., feature envy (Fowler et al., 1999) or replace conditionals with polymorphism 

(Fowler et al., 1999)) require a timely code inspection. 

Lastly, to evaluate the aesthetic metrics connection with maintainability predictors, we performed a correlation 

analysis on eleven Java open-source projects. The CBM metrics we examined are the five ones which are valued 

the most by software engineers when assessing code beauty, namely “Number of Conditionals”, “Regularity”, 

“Comments Area”, and “Number of Code Smells” and consider the “Simplicity”. The interpretation of the results 

of this endeavor can be performed in two ways (i.e., from maintainability predictors to CBM metrics and vice-

verse). The first finding is that all CBM metrics are correlated to code size (LoC), which is supported (either 

directly or indirectly) by the definition of CBM metrics and the quality laws of evolution (Herraiz et al., 2013). 

In this respect, we can underline that the correlations with size were almost perfect for non-structural CBMs, but 

moderate to strong for the Structural Viewpoint metrics (“Number of Conditionals” and “Number of Code 

Smells”), suggesting that at population level there are cases where a small code chunk might concentrate 

structural mishaps, and larger codes of good quality. An interesting finding is that code cohesion (LCOM) is 

better captured in the first minute inspection by the Aesthetics Viewpoints metrics. This finding cannot be 

explained by the definition of the CAMs and has been raised as a rather unexpected result from the empirical 

analysis. The relation between CAMs and cohesion is usually moderate (but with quite high deviation) and 

certainly deserves further investigation. In terms of coupling (captured by MPC), “Comments Area” had the most 

striking correlation. This relation can be explained by supposing that the software engineer feels “obliged” to 

explain (through a comment) the need to call a method from another class. This mental procedure might explain 

the co-growth of comment areas and remote method calls, leading to a strong correlation with very low 

deviation. Finally, in term of complexity (captured with CC), the findings were very intuitive, in the sense that 

the “Number of Conditionals” is part of the calculation of cyclomatic complexity (simplistically counting if, 

switch, for, while, etc. statements in the code). Apart from this, CAMs also showcased a strong relation to 

complexity, since they are capturing indentations, which in well-styled code are used when conditional 

statements are implemented. We note that any attempt to use and interpret CAMs shall be made on code 

fragments that already conform to the basic code formatting principles (e.g., after running a code beautifier) or 

by employing an LLM (e.g., ChatGPT), feed it with a code fragment and request from the LLM to return a 

“beautified” version of the code.  

6.2 Lessons Learnt: Implications to Researchers and Practitioners 

Implications to Researchers: From a researcher’s point of view, we can conclude that beauty metrics seem to be 

useful for quality assurance purposes. Therefore, we champion their further investigation in future studies. Our 

findings make clear that software engineers often look for specific 'anchors' in the code they read, consciously or 

subconsciously, which influences their assessment of overall aesthetic quality. Additionally, there is a need to 

study how the specific CAMs are changing when coding standards are applied, and when they are not. This 

study will be important for differentiating cases where lack of simplicity is due to lack of formatting and 

necessary lack of blank spaces, e.g., due to reduced complexity of the code chunk. To our perception, such a 

study would require the combination of code styling and code beauty metric, under a common model or tool. 

Moreover, it is important to study possible causality between beauty and quality, as well as tentative third causal 

factors, e.g., style or skills of the software engineer. Another interesting extension to this work would be to 

conduct a qualitative study in which the software engineers are asked “why” they perceive a code snippet as 

beautiful, and when not. Such work would provide explainability to our models and could lead to additional 

metrics, or updates of the existing ones. Moreover, we can replicate this study with additional programming 

paradigms and languages, to check the transferability of the findings outside object-orientation and Java code.  
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Finally, since the proposed beauty model is comprehensive as possible extensions, we foresee both the addition 

of extra beauty viewpoints, characteristics, or metrics. For instance, we believe that metrics that would be able to 

capture the compliance of variable and method names to internal styling conventions, or the proper instantiation 

of a design pattern would improve the completeness of the model—constituting them as an interesting future 

work direction. 

Implications to Practitioners: Given the above findings, we can claim that practitioners’ “first look” on a code 

fragment can act as a quite reliable approximation of the quality, if basic formatting standards are obeyed. In that 

sense, we believe that code beauty must be a concern of the software engineer, while writing the code, especially 

targeting on writing small, modular, and less complex methods. This rule of thumb follows some basic principles 

of object-orientation, such as the Open-Close Principle, the use of Polymorphism, the adoption of the Single 

Responsibility Principle, etc. Finally, based on the outcomes of RQ2 we can propose some high-level guidelines, 

which software engineers can instantiate and consider along code beautification, to fit available tool-support and 

company internal regulations and working style: 

• First, the developer must use some kind of beautifier support to fix styling issues that can be automated; 

• Second, the developer must consider, check and validate the textual consistency of code, and the conform-

ance to naming conventions of variables and methods; 

• Third, the code must be Simple and Regular, with only the necessary intends and blank lines 

• Finally, the developer must check the conformance to the following metric thresholds for approximately a 

screen of code (~30 lines): 

o the Commented Area must be more than 10% of the code (see Figure 16) 

o the class must not have more than 4 Conditional Statements (see Figure 14) 

o the class must not have more than 8 SonarQube issues (see Figure 15) 

6.3 Threats to Validity 

While our study endeavors to explore the correlation between code aesthetics and quality metrics 

comprehensively, it is essential to acknowledge potential threats to the validity of findings. First and foremost, 

the generalizability of our results may be limited by the specific set of people, projects and codebases chosen for 

analysis, as well as the use of only one programming language (i.e., Java) and one programming paradigm (i.e., 

object-orientation). The characteristics and coding practices of these projects might not be representative of the 

broader software development landscape posing threats to external validity. Further replication studies would be 

needed to validate the identified correlations between code beauty measures and quality attributes. The construct 

validity of the study is threatened by the choice of code quality metrics, as certain aspects of code quality may 

not be fully captured by the selected indicators. Additionally, the validity of the selected metrics is presented in 

Section 5.2, and those that have not proven to be significant can be replaced with others. Similarly, the concept 

of beauty is inherently subjective and as a result the employed measures of code beauty reflect only some aspects 

of aesthetics in text / code. It would be reasonable to assume that the subjective nature of aesthetic evaluations 

may introduce inter-rater variability (in the case of human assessments). The metrics employed for aesthetic 

evaluation might not encompass all dimensions of code beauty, and different stakeholders may have diverse 

opinions on what constitutes "beautiful" code. Furthermore, some aesthetic metrics may be counterintuitive for 

code development, as many were adapted from UI design metrics. Since source code naturally follows a left-

skewed structure due to indentation and varying line lengths, metrics like Symmetry and Equilibrium, which aim 

for equal character distribution across all four quadrants, may not align with the inherent characteristics of 

writing code. While subjectivity has not been included as an independent parameter in our study, we attempted 

to mitigate this threat by substituting subjective evaluation with established code aesthetic metrics. Finally, we 

note that this study is not aimed at identifying causal relations but providing an initial exploration of correlations. 
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7. Conclusions 

Confirming the correlation between code beauty and code quality represents a pivotal finding in software 

engineering research. Through a meticulous analysis of various aesthetic metrics and their correlation with code 

quality measures, our study validates the intuitive belief that beautifully crafted code aligns with higher overall 

software quality. Furthermore, the consensus of beauty in the eyes of software engineers and its correlation with 

code quality, reveals a nuanced understanding of what constitutes code beauty across diverse programming 

backgrounds and levels of expertise. By employing Spearman correlation, our research reveals the relationship 

between factors like code simplicity, regularity and metrics indicative of maintainability, performance, and 

reliability. The confirmation of this correlation underscores the importance of aesthetics in code development. It 

implies that codebases exhibiting elegance in design and structure are not only visually appealing but also tend to 

harbor qualities associated with robustness and maintainability. 
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