ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346222518

Technical Debt Management and Energy Consumption Evaluation in
Implantable Medical Devices: The SDK4ED Approach

Chapter - October 2020

DOI: 10.1007/978-3-030-60939-9_25

CITATIONS READS
0 11

6 authors, including:

P Charalampos Marantos Angeliki Agathi Tsintzira
National Technical University of Athens University of Macedonia
13 PUBLICATIONS 43 CITATIONS 11 PUBLICATIONS 13 CITATIONS
SEE PROFILE SEE PROFILE
Lazaros Papadopoulos Apostolos Ampatzoglou
National Technical University of Athens University of Macedonia
33 PUBLICATIONS 190 CITATIONS 115 PUBLICATIONS 1,198 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project JDeodorant: Extract Class refactorings View project

Project SDKA4ED - Software Development toolKit for Energy optimization and technical Debt elimination View project

All content following this page was uploaded by Apostolos Ampatzoglou on 02 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/346222518_Technical_Debt_Management_and_Energy_Consumption_Evaluation_in_Implantable_Medical_Devices_The_SDK4ED_Approach?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/346222518_Technical_Debt_Management_and_Energy_Consumption_Evaluation_in_Implantable_Medical_Devices_The_SDK4ED_Approach?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/JDeodorant-Extract-Class-refactorings?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SDK4ED-Software-Development-toolKit-for-Energy-optimization-and-technical-Debt-elimination?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Charalampos-Marantos?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Charalampos-Marantos?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Charalampos-Marantos?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angeliki-Tsintzira-2?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lazaros-Papadopoulos-4?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lazaros-Papadopoulos-4?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lazaros-Papadopoulos-4?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Macedonia?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Apostolos-Ampatzoglou?enrichId=rgreq-00be244fc8b79d6ce16f405edce528e8-XXX&enrichSource=Y292ZXJQYWdlOzM0NjIyMjUxODtBUzo5NjQzNjEyMDQwMjczOTVAMTYwNjkzMzAzNjY0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Technical Debt Management and Energy
Consumption Evaluation in Implantable Medical
Devices: The SDK4ED approach

Charalampos Marantos!, Angeliki-Agathi Tsintzira?, Lazaros Papadopoulos®,
Apostolos Ampatzoglou?, Alexander Chatzigeorgiou?, and Dimitrios Soudris’

! School of Electrical and Computer Engineering,

National Technical University of Athens, Greece
hmarantos@microlab.ntua.gr, lpapadop@microlab.ntua.gr,
dsoudris@microlab.ntua.gr
2 Department of Applied Informatics,

University of Macedonia, Thessaloniki, Greece
angeliki.agathi.tsintzira@gmail.com, ampatzoglouQuom.edu.gr,
achat@uom.edu.gr

Abstract. The design constraints of Implantable Medical Devices (IMD),
such as the low energy consumption, impose significant challenges to
application developers. Software tools that improve the quality of the
source code by means of technical debt management and provide energy
consumption estimations are useful to IMD application developers for ad-
dressing such challenges. In this work, we demonstrate the effectiveness
of tools that manage the technical debt and provide energy consumption
estimations applied to an IMD application for seizure detection.

Keywords: Technical Debt - Energy Consumption - Implantable Med-
ical Devices - Embedded Systems

1 Introduction

The Implantable Medical Devices (IMDs) are objects surgically inserted into the
human body for medical purposes [7]. They are used to treat conditions such
as cardiac disorder, epilepsy, numerous autoimmune diseases and psychological
disorders (among others), thus contributing to the normal quality of patient’s
lives. Nowadays, IMDs are a common part of modern medical care, support
physicians to diagnose and treat diseases and enable the quality of life of patients.

The design requirements of IMDs include the small volume in terms of size
and weight, long lifespan, low energy consumption, high biocompatibility and
reliability [8]. As the clinical demand for IMDs increases, addressing design and
efficiency challenges is even more urgent. From application development per-
spective, increasing the quality of source code (improving maintainability and
reusability) and evaluating the energy efficiency contribute to meeting the afore-
mentioned challenges.

The SDK4ED platform integrates a number of toolboxes for application de-
velopers of embedded systems that enable the optimization of various source
code qualities, such as the source code maintainability (e.g. the management of
technical debt), the security and the energy consumption optimization 3. Addi-
tionally, it identifies trade-offs between the optimization of the maintainability,
security and energy qualities at application source code-level and enables deci-
sion support. More specifically, the toolboxes are the following: i) Technical Debt
Management ii) Security iii) Energy consumption iv) Forecasting and v) Decision
support. The toolboxes recommend source-to-source optimizations, while the de-
cision support toolbox provides guidance to developers about the optimizations
that should be applied based on user-selected priorities.

In this paper, we leverage specific tools from the SDK4ED platform to ef-
ficiently manage the technical debt of a seizure detection IMD application and
estimate the energy consumption. Therefore, this work contributes to the eval-
uation of the SDK4ED tools on a real-word use case from the IMD domain and
we reach interesting conclusions.

The rest of the paper is organized as follows: Section 2 provides more details
about the SDK4ED tools used in the present work, as well as related work
about the technical debt management and energy consumption approaches in
the IMD domain. Section 3 describes the implementation of the tools in the
IMD application and in Section 4 we draw conclusions.

2 Related Work

Technical debt (TD) in software engineering refers to the additional maintenance
costs caused by quality compromises which are often taken for short-term bene-
fits during the software development process. The TD metaphor which was first
coined in 1992 by Ward Cunningham [6] has proved highly effective as a means of
conveying to nontechnical product stakeholders the need for what we call “refac-
toring” [9]. The concept of Technical Debt Management (MTD) encompasses all
processes that should be undertaken by software development teams to identify,
measure, prioritize and repay TD.

Embedded systems form a software-intensive domain where platform-specific
run-time constraints such as performance, energy consumption and memory us-
age, have to be strictly satisfied. However, embedded systems exhibit long life-
time expectancy, often beyond a decade, resulting in intense maintenance activi-
ties. To limit the effort spent on maintenance, companies could invest in boosting
design-time quality through the management of TD. A case study involving seven
embedded software industries revealed that quality attributes such as function-
ality, reliability, and performance are indeed given higher priority compared to
managing TD [3]. However, developers of embedded software clearly acknowl-
edge the need for low TD on components that are expected to have a longer
lifetime [3].

3 The SDK4ED platform: https://sdkded.eu/

Energy efficiency challenge for IMDs is usually addressed through approaches
such as energy harvesting [10] and the design of ultra-low power hardware de-
vices [1]. For instance, the integration of dedicated hardware blocks that per-
form the computational expensive operations, as well as frequency and voltage
scaling are typical techniques applied at OS/hardware-level to improve energy
efficiency [7]. However, source-to-source energy optimization techniques, such as
cache utilization improvement, which are widely applicable in embedded sys-
tems are also applicable in the IMD domain. The tools used in the context of
this work enable such optimizations by providing relevant information about
the energy efficiency of the application. More specifically, the SDK4ED tools
for energy consumption optimization extend advanced machine-learning tech-
niques described in the literature for estimating energy consumption [11][5] and
identifying acceleration opportunities [2].

3 Technical Debt and Energy Consumption Evaluation

3.1 Overview of the application and source code

The use-case application targets modern Implantable Medical Devices (IMDs),
which are battery-powered embedded devices with high safety and reliability
standards. These devices are designed to operate for long time (up to 10 years)
implanted in the human body. To support the treatment capabilities of these
devices, they are equipped with wireless transceivers, able to communicate with
external reader/programmer or a base station for local and/or remote monitoring
of patient health, performing a device test, reading sensors, updating device
settings.
The application provides primary implant functionality, e.g. Neuro-stimulation,

seizure detection, cardiac pacing etc. More specifically, the application performs
the following tasks:

— The sensor (ECoG/EEG) values are received via ADC periodically (using
interrupts)

— An FIR filter operation is performed on the input samples. This filter accu-
rately approximates a continuous complex Morlet wavelet

— Based on the filter output a decision whether the seizure is detected or not
is made

— Optogenetic or electrical stimulus are applied via GPIO in order to suppress
the seizure

3.2 Technical Debt Management

Methodology In this subsection we present the methodology that has been
followed to measure the levels of Technical Debt for the software that belongs
to the Implantable Medical Devices application domain.

In the context of the SDK4ED platform, Technical Debt management consists
of monitoring all key aspects of TD, namely Principal, Interest and Interest

Sonarqube Tool H
Bugs,

: Static Analysis - : Code smells, Vulnerabilities,
: TD Principal ; Code duplications, LOC
Application ﬂ e i s} . .
Source code Breaking Point
M _____________________________ Tool

Metrics Calculator

Fan Out, Lack of cohesion
Static Analysns between Lines

------------------------------ TD Interest Indicators,
TD Principal Indicators,

Technical Debt Management of embedded platforms <: Breaking Point,
Interest Probability

Fig. 1: Tool flow for technical debt management

Probability. Fig.1 graphically depicts the tool flow of TD management (TDM).
TDM toolkit relies on three tools: i) SonarQube ii) Metrics Calculator and iii)
Breaking point tool.

SonarQube is considered by many the world’s leading software quality dash-
board. It is based on the SQUALE method and: (a) contrasts the source code of
an application with a set of predefined rules, so as to identify violations called
code smells, and (b) for each identified violation it calculates a remediation time
that is required to resolve it. The sum of the remediation time for all identi-
fied violations is recorded as the SQUALE index, representing TD principal.
In addition, SonarQube calculates the number of bugs, vulnerabilities and the
percentage of duplicated code.

The Metrics Calculator has been developed in the context of SDK4ED with
the purpose of calculating maintainability metrics for object oriented and non-
object oriented software. For non-object oriented languages (like C) it calculates
coupling (Fan out) and cohesion (Lack of cohesion between Lines) per file. Fan
out refers to the number of modules called from a file and Lack of cohesion
between Lines represents the coherence between all possible pairs of lines of
code of a method (aggregated at file level as an average). For object oriented
languages (like Java) it calculates 10 metrics: Message-passing couple (MPC),
Depth of inheritance tree (DIT), Number of children (NOCC), Response for
class (RFC), Lack of cohesion in methods (LCOM), Weighted methods per class
(WMPC), Data abstraction coupling (DAC), Number of methods (NOM), Lines
of Code (LOC), Number of Properties (NOP).

The results of SonarQube and Metrics Calculator are being used as input to
the Breaking Point tool to calculate TD Interest and the time point at which
the accumulated interest will exceed TD principal (breaking point) and Inter-
est Probability. TD Interest is calculated based on the FITTED Framework [4].

The FITTED framework has been introduced to measure software sustainabil-
ity, which is the ability of a system to meet “the needs of the present without
compromising the ability of future gemerations to meet their own needs”. FIT-
TED measures this as the period in which the cumulative interest is lower than
the saved principal. When cumulative interest is equal to the saved principal the
system is on its breaking point which means that any savings resulting from the
decision to not repay TD will vanish due to increased maintenance effort during
evolution. To calculate TD Interest, FITTED suggests the following steps:

1. identify the five artifacts that are most structurally similar to the artifact
under consideration

2. based on the values of the selected object-oriented metrics for all structurally
similar artifacts, compile an artificial optimal one

3. calculate the average distance of the artifact under analysis from the artificial
optimal one—this distance is referred as the ratio of additional maintenance
effort

4. calculate the average maintenance product (i.e., lines of code maintained) in
each version

5. multiply the ratio of additional maintenance effort with the average mainte-
nance product (extract from past changes on the artifact under analysis)

6. divide the previous outcome with the average lines of code maintained in
one hour, so as to retrieve the interest in minutes; and

7. calculate interest in currency using the same hourly rate as in principal
calculation.

Finally, Interest probability is a measure of how frequently a file changes in the
sense that a file that changes frequently adds more debt (interest).

Results In this subsection we present the results on TD quantification, focusing
on TD Principal, TD Interest and Interest Probability for the target system. The
results are summarized in Table 1.

The TD Principal varies across system files; in relative terms on can identify
file 'reader.cpp’ as the one holding the largest principal. This particular file
requires 302$ to fix the 29 identified code smells. Even more important is the
fact that it also exhibits the highest interest (9.68%) and a very high interest
probability (0.8). In other words, this file violates several of the rules checked by
SonarQube, its metrics indicates that the maintainability is quite low and has
a high probability of being changed in the subsequent version. All these signals
provide an imminent risk which should be mitigated by the development team.
Similar observations can be made for file ’cisc.cpp’.

In terms of the particular code smells that appear in the code, SonarQube
indicates for example that more unit tests should be added so as to increase
coverage. For file reader.cpp’ one of the most demanding issues reads ’92 more
lines of code meed to be covered by tests to reach the minimum threshold of 65.0%
lines coverage’. Such an issue requires substantial effort to be resolved (estimated
by SonarQube to 3h4min). Another striking issue, which also contributes heavily

Table 1: Technical Debt Management output

Source File ‘TD Principal‘TD Interest‘Interest Probability Code Smells‘LOC‘Complexity
api.cpp 92 0 0 7 93 15
api.h 50 0 0 15 11 0
body.cpp 14 0 0 4 11 2
body.h 10 0 0 1 1 0
resources/imdcode_v1.3/imdcode.c 191 0 0 17 111 26
resources/imdcode.c 183 0 0 18 111 26
main.cpp 53 0 0 7 53 6
mistyl.c 148 0 0 7 145 15
mistyl.h 65 0 0 16 58 0
reader.cpp 302 9.68 0.8 29 206 25
reader.h 9 0 0 3 1 0
sec_primitives.cpp 23 2.8 0.25 3 24 4
sec_primitives.h 19 0.7 0.25 5 3 0
sims.cpp 14 0 0 4 11 2
sims.h 10 0 0 4 1 0
sisc.cpp 280 30 0.87 26 199 24
sisc.h 9 0 0 3 1 0

to the total principal, is code duplication. For file 'reader.cpp’ 2 duplicated blocks
of code must be removed requiring an estimated time of 30 mins.

On the other hand, one can observe files with relative high TD Principal (such
as imdcode.c) but without any TD Interest or Interest Probability. This is due
to the fact that this file has been introduced in the last version and thus it has
never been the subject of change. Thus, to be certain whether the development
team will face maintainability issues, one should probably wait for data from
further revisions. However, we need to note that files with high Principal, but
low Interest (that have been maintained for some versions) are usually assigned
a low priority for TD management.

These findings imply that a software development team wishing to manage
TD in its products, shouldn’t focus only on selected figures, but seek a combined
interpretation of the findings. In other words, maintenance problems are probable
for files with a high TD principal, substantial interest and non-negligible interest
probability.

It is well known that all contemporary software systems evolve frequently over
time. Thus, beyond the analysis of the current snapshot of each system, it makes
sense to observe the evolutionary trends of TD-related concepts. In Figures 2a
and 2b we plot the evolution of Principal/Interest and Breaking Point across
system versions, respectively.

From Figure 2b, we can observe that the system is slightly deteriorating
over time, in terms of TD principal, presenting some high spikes (introduction
of considerable TD principal at once) in version 4 and 8. Its interest remains
relatively stable; nevertheless, the cumulative interest is naturally increasing
almost linearly, as the interest of each version is added to the already existing
interest.

However, the evolution of the Breaking Point in Figure 2b reveals a rather
healthy project status: The Breaking Point, i.e. the time at which the accumu-
lated interest will exceed the TD Principal lies for most of the versions 20 versions
ahead. The Breaking Point is doubled in the final version. This is primarily due

TD Principal & Interest Evolution

1800
1600
1400
1200
1000
800
600
400

200

——Interest = Principal Cumulative Interest

(a) Evolution of TD aspects
Breaking Point

a5

40

25
20
15

10

1 2 3 4 5 6 7 8 9

(b) Evolution of TD Breaking Point

Fig. 2: Evolution of TD aspects and Evolution of TD Breaking Point

to the addition of new code in the last version, which increases Principal - see
Figure 2a (resulting in additional rule violations being detected by SonarQube).
However, it seems that the new code has not introduced additional interest,
which possibly implies that it is well designed in terms of coupling and cohe-
sion. Considering the rather short history of the project (9 versions), a Breaking
Point of 40 version indicates that the development team is not expected to face
significant additional maintenance costs in the near future.

Hotspot
identification tool

Source code
Application i | Static analysis | i
source code |fl> '| and dynamic |!

Hotspots

: |
Hotspot 1

instrumentation

: ' Energy consumption
) estimation tool
er'fesrtlmats%s machine dynamic
gy gam 1 | learning model instrumentation
by acceleration !

Identification of cache blocking optimization

Static analysis

machine

opportunities learning models

et

Estimated energy consumption on
embedded platforms

Fig. 3: Tool flow for energy consumption estimation and optimization.

3.3 Energy Consumption Evaluation

Fig.3 shows the tool flow of for energy consumption estimation and optimization.
It consists of three tools: i) Hotspots identification ii) Acceleration opportunities
identification and iii) Energy consumption estimation.

The hotspot identification tool parses the application source code and uses
dynamic instrumentation to identify the parts of the application that are com-
putationally expensive in terms of CPU cycles. The main purpose of the tool
is to provide the parts of the application source code in which optimizations
are expected to have major impact in energy and/or performance. From techni-
cal perspective, the hotspot identification tool is based on CLANG and on the
Cachegrind tool from the Valgrind benchmark suite. CLANG is used to iden-
tify loops and functions through source code static analysis. Valgrind performs
dynamic instrumentation and estimates the number of CPU cycles across the
application in line-by-line granularity. By combining the outputs of the static
analysis and Cachegrind the CPU cycles spent in each loop and function are
estimated. The most computationally expensive loops and functions of the ap-
plication source code are the ”hotspots”.

The results of the IMD application analysis are shown in Table 2. 5 compu-
tationally expensive functions are identified and one critical loop. The starting

Table 2: Hotspot identification output

Hotspot‘Line start‘Line end‘CPU cycles‘Cache miss‘Function name ‘Source file
Function-level granularity

1 218 705 5% 16 % main imdcode.c

2 106 153 1% 0% misty1l_encrypt_block mistyl.c

3 32 44 3% 9% fi mistyl.c

4 191 211 3% 0% cmac imdcode.c

5 47 62 4% 0 % fo mistyl.c
Loop-level granularity

1 202 206 3% 0% - imdcode.c

and ending line of each hotspot is reported, as well as the percentage of CPU
cycles spent in each one. Based on Cachegrind analysis, the cache miss ratio is
also reported for each hotspot. Thus, developers may consider applying opti-
mizations that improve cache utilization (e.g. cache blocking) in hotspots with
high cache miss ratio.

The hotspots are further analyzed by the acceleration opportunities iden-
tification tool. This tool is based on dynamic instrumentation techniques. It
extracts information from each hotspot, such as ILP level and memory access
pattern. This information feeds a machine learning model, which provides an
estimation of the energy gains of offloading the specific hotspot on a GPU accel-
erator. For the specific application no acceleration opportunities were identified.
In other words, none of the hotsposts is estimated to provide energy gains by
being executed on a GPU.

The energy consumption estimation tool, processes the hotspots through
source code static analysis and extracts information from the assembly instruc-
tions, such as the type of instructions and their sequence. This information is
the input of a machine learning model that estimates the execution time and the
energy consumption. The tool can provide estimations for any embedded plat-
form provided that the dataset will be prepared and the model will be trained
for each one.

Table 3: Time and Energy estimation of various platforms integrating different
ARM CPU architectures

Platform (CPU) Time (us)|Energy Consumption (mJ)
Nvidia Tegra TX1 (ARM Cortex A-57) 16 0.09

Raspberry Pi 4 (ARM Cortex A-72) 17.5 -

Arduino Nano 33 IOT (ARM Cortex M0+) {1400 0.0008

Table 3 shows the energy consumption and execution time estimation for
a number of ARM-based embedded platforms. Energy consumption model was
trained for A-57 and M0+ only. However, the execution time model was trained
for all embedded platforms of Table 3. The selected CPUs belong to the Cor-

tex A family (A-57 and A-72) and to the Cortex M family, which mainly targets
microcontrollers. Developers may exploit these results by selecting the most suit-
able platform, based on the design constraints. For example, by deploying the
IMD application on Arduino Nano, execution time is traded for very low energy
consumption.

4 Conclusions

Both TD analysis and energy consumption tools aim at assisting application
developers in the process of maintaining and optimizing the application source
code. More specifically, the analysis of TD does not aim at characterizing a
software system as well- or poor-performing. Rather, it can serve the purpose of
raising warnings about repeating code or design inefficiencies, such as lack of unit
tests or duplicate chunks of code. The development team, considering also the
change frequency of the affected files, can value the merit of such warnings, and
proceed to code quality improvements. The application of the SDK4ED platform
on the IMD application revealed that a unified view of TD principal, interest
and interest probability can help to quickly identify and prioritize code quality
improvements on selected artifacts so as to increase their maintainability.

The energy consumption analysis set of tools identify critical parts of the
application and provide energy consumption and execution time estimations
for various embedded platforms. Thus, developers may obtain estimations in
a fast and convenient way and identify performance vs. energy trade-offs by
application deployment in various architectures. As presented in the previous
section, the IMD application is not suitable for acceleration, however, interesting
execution time vs. energy trade-offs have been identified through static analysis
at instruction-level for three different ARM-based architectures.

5 Acknowledgement

This work has received funding from the EU’s Horizon 2020 research and innova-
tion programme, under grant agreement No. 780572 (SDK4ED, www.sdk4ed.eu).
The authors would like to thank the group of Ass. Prof. Christos Strydis at Eras-
mus MC, Netherlands for providing the implantable medical devices application.

References

1. Ahmed, S., Kakkar, V.: An electret-based angular electrostatic energy harvester
for battery-less cardiac and neural implants. IEEE Access 5, 19631-19643 (2017)
2. Alavani, G., Varma, K., Sarkar, S.: Predicting execution time of cuda kernel using
static analysis. In: 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Com-
puting, Social Computing & Networking, Sustainable Computing & Communica-
tions (ISPA/IUCC/BDCloud/SocialCom/SustainCom). pp. 948-955. IEEE (2018)

10.

11.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Abrahams-
son, P., Martini, A., Zdun, U., Systa, K.: The perception of technical debt in the
embedded systems domain: An industrial case study. In: 2016 IEEE 8th Interna-
tional Workshop on Managing Technical Debt (MTD). pp. 9-16 (2016)
Ampatzoglou, A., Michailidis, A., Sarikyriakidis, C., Ampatzoglou, A., Chatzige-
orgiou, A., Avgeriou, P.: A framework for managing interest in technical debt:
An industrial validation. In: Proceedings of the 2018 International Conference
on Technical Debt. p. 115-124. TechDebt ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3194164.3194175,
https://doi.org/10.1145/3194164.3194175

Bazzaz, M., Salehi, M., Ejlali, A.: An accurate instruction-level energy estimation
model and tool for embedded systems. IEEE transactions on instrumentation and
measurement 62(7), 1927-1934 (2013)

Cunningham, W.: The wycash portfolio management system. SIGPLAN
OOPS Mess. 4(2), 29-30 (Dec 1992). https://doi.org/10.1145/157710.157715,
https://doi.org/10.1145/157710.157715

Kakkar, V.: An ultra low power system architecture for implantable medical de-
vices. IEEE Access 7, 111160-111167 (2018)

Khan, W., Muntimadugu, E., Jaffe, M., Domb, A.J.: Implantable medical devices.
In: Focal controlled drug delivery, pp. 33-59. Springer (2014)

Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory
and practice. IEEE Software 29(6), 18-21 (2012)

Kumar, V., Kakkar, V.: Miniaturized resonant power conversion for implanted
medical devices. IEEE Access 5, 15859-15864 (2017)

Mendis, C., Renda, A., Amarasinghe, S., Carbin, M.: Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks. In: Inter-
national Conference on Machine Learning. pp. 4505-4515 (2019)

https://www.researchgate.net/publication/346222518

