SDK4ED: One-click platform for Energy-aware,
Maintainable and Dependable Applications

Charalampos Marantos*, Miltiadis Siavvas’, Dimitrios Tsoukalas, Christos P. Lamprakos®,
Lazaros Papadopoulos*, Pawet Boryszko$, Katarzyna Filus$, Joanna Domarska$,

Apostolos Ampatzoglou?, Alexander Chatzigeorgiou?, Erol Gelenbe$, Dionysios Kehagias', Dimitrios Soudris

*

* School of Electrical and Computer Engineering, National Technical University of Athens, Greece
T Centre for Research and Technology Hellas, Thessaloniki, Greece
! Department of Applied Informatics, University of Macedonia, Greece
§ Institute of Theoretical & Applied Computer Science, IITIS-PAN, Gliwice, Poland

Abstract—Developing modern secure and low-energy applica-
tions in a short time imposes new challenges and creates the need
of designing new software tools to assist developers in all phases
of application development. The design of such tools cannot
be considered a trivial task, as they should be able to provide
optimization of multiple quality requirements. In this paper, we
introduce the SDK4ED platform, which incorporates advanced
methods and tools for measuring and optimizing maintainability,
dependability and energy. The presented solution offers a com-
plete tool-flow for providing indicators and optimization meth-
ods with emphasis on embedded software. Effective forecasting
models and decision-making solutions are also implemented to
improve the quality of the software, respecting the constraints
imposed on maintenance standards, energy consumption limits
and security vulnerabilities. The use of the SDK4ED platform is
demonstrated in a healthcare embedded application.

Index Terms—Software quality, Energy consumption, Depend-
ability, Development Toolkit

I. INTRODUCTION

Computing devices are now everywhere, installed in many
environments such as industrial, sanitary, and residential build-
ings. As these applications continue to evolve, developers
face the challenges of meeting very different requirements
such as energy saving, software maintainability, and security
standards. Designing high quality software for such systems
is not an easy task, due to the high complexity of modern
applications. Demanding calculations and data processing re-
quire a large amount of energy. To make things worse, the
maintenance costs caused by poor design quality (often result
of a rapid development process) increase the complexity even
more. Finally, security is an aspect of major concern, as an
individual vulnerability, caused by a common programming
error, can have severe consequences.

Several approaches have been proposed over the years to
quantify and optimize individual software quality aspects [1]
[2] [3]. However, existing work varies significantly, depend-
ing on the quality aspect and the level of abstraction at
which it is addressed. On the one hand, there are tools that
suggest best practices for software maintainability based on
empirical studies and, on the other hand, practitioners suggest

This work was funded by the EU’s Horizon 2020 Research and Innovation
Programme through SDK4ED project under Grant Agreement No. 780572.

@’ Forecasting ‘
118 models J

SW Quality?
Energy?

S

SDK4ED

i
SDK4ED
DASHBOARD

Fig. 1: Overview of the SDK4ED framework

Financial models |

cision

| SW Quality models |hpiistiinnis] Forecaster-
e Optimization
‘.(_—/Energy measurements| | Energy hd

Sl:LWEEEEIY SDK4ED TOOLKIT

Support

Det

reducing energy by making source code transformations for
using specialized DSPs, accelerators, memory management
optimizations, etc. These optimizations are usually customized
and closely related to the targeted applications. Another im-
portant thing is that optimizing one quality aspect can have a
positive or a negative impact on another, for example energy
optimizations can make code less maintainable. None of the
existing solutions has combined different attributes such as
energy and maintainability in a unified way offering a trade-off
analysis and a decision-support between conflicting criteria.

This work aims to give a solution to the aforementioned
challenges by designing and combining cutting-edge tech-
nologies in one place. During three years of research, sub-
features and new tools-components, related to the optimization
of individual quality characteristics were designed and pre-
sented in a large number of research articles (https://sdk4ed.
eu/documents). This paper aims to present the unified and
fully functional platform, which is the final product of the
SDKA4ED EU Project, offering a flexible, easy-to-use software
analysis toolkit to assist designers in developing Energy-aware,
Maintainable and Dependable embedded applications.

The rest of the manuscript is structured as follows. Section
II provides the overview of the SDK4ED Platform, along with
detailed description of its individual components. In Section
III the SDK4ED Platform is demonstrated in one pilot use-case
and finally, conclusions are summarized in Section IV.

I1I. SDK4ED INTEGRATED PLATFORM
A. Overview

Figure 1 presents a high-level overview of the SDK4ED
Platform. The SDK4ED platform consists of five basic units,

three autonomous and two that operate based on the first three:

o Energy Optimization: Estimates and minimizes the En-
ergy of a given application on specified target devices.

o Technical Debt Management: Monitors and optimizes the
Maintainability through the notion of Technical Debt.

« Dependability Optimization: Monitors and optimizes the
Security and Reliability of applications.

o Forecaster: Predicts the future evolution of the three
aforementioned quality attributes of interest.

o Decision Support: Combines the input from the other
modules and performs a trade-off analysis to determine
impacts of refactorings and provide recommendations.

More details are provided in the the rest of the Section. Each
of the main toolboxes consists of two parts. The first provides
indicators to help developers identify the characteristics that
have the greatest impact on each quality attribute. In addition,
this part identifies code blocks (classes, functions, statements)
that are candidate places for relevant optimizations. The sec-
ond part is responsible for providing refactorings suggestions
in order to improve the targeted quality attribute.

B. Energy Toolbox

1) Energy Monitoring: Energy indicators are monitored
using dynamic instrumentation tools (Valgrind and Perf). The
selected indicators include CPU cycles, Branch misses, Num-
ber of memory accesses, Ratio of D-Cache/lI-Cache misses
and Data races. To identify the energy hotspots, the toolbox
analyses the CLANG Abstract Syntax tree (AST) and the
profilling results from the previous step to find the code blocks
in which the number of CPU cycles exceeds a limit (> 1%).

To reduce the overhead of dynamic instrumentation, a
static analysis mechanism is also integrated. This mecha-
nism estimates the time and energy required for executing
each application code block on different targeted devices.
Regarding the loop statements, a dynamic information (the
number of iterations) is gathered as an input from the user
to provide results for the entire application. As the SDK4ED
Energy Toolbox aims to provide a cross-platform solution,
the proposed approach uses general features at assembly level
that model and characterize the application’s performance and
energy consumption: Estimated throughput (by LLVM-mca),
number of instructions, number of loads, stores, operation
instructions in class 1 (add, sub, shift and mul) and class 2
(conv, arrays, div) and operation-load-store instructions order.
The dataset includes synthetic loops that perform random
matrix operations. A k-means clustering pre-processing is
performed to avoid using similar data-points that may cause
overfitting and an Orthogonal Matching Pursuit regressor was
employed, after comparing the accuracy of alternative models.
Results on Rodinia benchmark applications executed on ARM
Cortex AS57 are considered acceptable (R2 score = 0.92) [4].

2) Energy Optimizations: The SDK4ED Energy Toolbox
suggests 3 categories of optimizations.

o Data flow-related optimizations: This type of optimiza-

tions aim to improve the memory hierarchy utilization
and reduce memory accesses. Typical examples are the

loop transformations that are proposed in the case that the
hot-spot under analysis includes nested loops that have a
ratio of cache misses that is beyond a threshold.

o Concurrency-related optimizations: As modern embedded
systems typically integrate multiple cores, developers are
facing challenges imposed by concurrency. A typical
example is the deadlock bug which causes application
stalls. The solution in this case is the proper use of
locking mechanisms to avoid deadlocks, when a large
number of Data races are monitored for a hotspot.

o Energy Gains by Acceleration: A massive improvement
can be achieved by using the accelerators of modern
heterogeneous embedded architectures. The role of the
Energy Toolbox is to predict the potential energy gains
by acceleration assisting developers to decide if it is worth
developing GPU code for a hotspot. This component is
based on a dynamic instrumentation approach. Classifica-
tion models use features already presented in the literature
[5] for estimating speedup of using General Purpose
GPUs (GPGPUs) after investigating which of them are
also related to energy gain (correlation analysis). After
comparing different models we employ an Ensemble
Voting Method reaching a final level of 85% classifi-
cation accuracy. For building the dataset we combined
an equal number of synthetic benchmarks and real-world
applications (i.e. taken from benchmark suites).

The Energy Toolbox is a docker API service (Python Flask),
the estimation models were built in Scikit Learn and a Mon-
goDB database is used for saving the results.

C. Maintainability Toolbox

1) Maintainability Monitoring: The SDK4ED maintain-
ability toolbox leverages the power of the successful Technical
Debt (TD) metaphor to capture and represent inefficiencies in
the analyzed software. Technical Debt refers to a universal
software development phenomenon where design constructs
are expedient in the short term but set up a technical context
that can make future changes more costly or impossible [1].
In particular, the SDK4ED TD toolbox calculates the key
concepts of principal, interest and interest probability [6].

For assessing the effort required to resolve the identified
inefficiencies (principal) the toolbox relies on the most widely
used tool , namely SonarQube. SonarQube identifies five types
of problems, namely bugs, vulnerabilities, code smells, (lack
of) test coverage, and duplications. Furthermore, the SDK4ED
toolbox identifies Long Methods, violations of the modularity
principle in the design of packages and architectural smells
(such as cyclic and unstable dependencies). The TD toolbox
incorporates a method for assessing TD interest which reflects
the additional maintenance cost in future maintenance because
of the presence of TD in the current software version. Particu-
lar emphasis is placed on the analysis of New Code that is to be
committed to the codebase, since ensuring the high quality of
new code can gradually lead to software quality improvement.

As TD management requires the continuous monitoring of
the underlying issues over time, the SDK4ED toolbox provides

various views for studying its evolution. Other views, such as
the TD Analysis panel offer insight into key indicators such as
the TD in minutes and currency, the ranking of the analyzed
project against other projects in the database of analyzed sys-
tems, the number of issues and the novel indicator of Breaking
Point. Breaking Point equals the number of software versions
ahead in which the accumulated additional maintenance costs
(interest) are expected to exceed any savings gained by not
repaying TD (principal) [7].

2) Maintainability Optimizations: Each identified TD issue
represents an opportunity for improving the internal quality
of software thereby repaying TD. The user is presented with
lists of refactoring opportunities . Among them, the toolbox
yields major maintainability optimizations consisting in "Ex-
tract Long Method” and "Move Class” refactoring sugges-
tions. Since the number of opportunities may become large
and intractable even for medimum-sized systems, refactoring
suggestions are ranked according to their urgency. For each
recommended code-level optimization the user is referred to
examples of the underlying problem and ways to address it.
For design-level refactoring suggestions, appropriate visual-
izations are employed, such as a heatmap illustrating methods
in need of Extract Method refactoring and tree structures
illustrating the proposed package organization.

D. Dependability Toolbox

1) Dependability Monitoring: With respect to Software Se-
curity, the Dependability Toolbox provides a novel hierarchical
Security Assessment Model (SAM) [8] for measuring the
internal security level of software products. The proposed
model employs static analysis in order to detect security
weaknesses (i.e., potential vulnerabilities) that reside in the
source code of the analyzed software, and aggregates them
through several levels of normalization and aggregation in
order to produce a high-level score, i.e., the Security Index,
which reflects the security level of the analyzed software. The
proposed model is based on popular international standards,
including the ISO/IEC 25010 and the ISO/IEC 27001.

Vulnerability Prediction Models (VPMs) are also provided
with the purpose to identify security hotspots, i.e., software
components (e.g., classes) that are likely to contain vulnerabili-
ties. The toolbox provides VPMs that are based on text mining,
software metrics, and deep learning, which have demonstrated
sufficient predictive performance. The output of the VPMs is
a vulnerability flag (a binary value), which indicates whether
the analyzed component is potentially vulnerable or not, and a
vulnerability score (a continuous value), which indicates how
likely it is for the given component to contain a vulnerability.

With respect to Software Reliability, the Dependability
Toolbox focuses on the popular Checkpoint and Restart (CR)
mechanism. However, since the CR mechanism and particu-
larly the selection of the checkpoint interval (i.e., frequency of
checkpointing) is known to affect important runtime attributes,
the toolbox provides mathematical models to estimate the
performance and energy consumption of a given program with
and without the adoption of the CR mechanism. Based on

these mathematical models, both numerical and analytical [2]
solutions are provided for determining the Optimum Check-
point Interval, i.e., the interval that strikes a good balance
among reliability, performance, and energy consumption.

2) Dependability Optimizations:

o Correction of Security Weaknesses: The Security Assess-
ment Model, apart from the high-level security indicators,
it also provides a detailed report of the security weak-
nesses (i.e., static analysis alerts) that it detected. For each
static analysis alert, important information is provided by
the toolbox, including its type, the exact line of code on
which it resides, as well as external links with additional
information and examples on how to fix them.

o Idendification of Security Hotspots: The VPMs of the
Dependability Toolbox identify security hotspots, which
are demonstrated to the user in the form of a table and
a heatmap, allowing the developers to pinpoint those
components that are critical from a security viewpoint.
Hence, fortification activities can be better prioritized, by
allocating limited test resources to high risk areas.

e Optimum Checkpoint Interval Recommendation: The
computational- and energy-hungry hotspots (in fact,
loops) that are detected by the Energy Toolbox, are
analyzed with the mathematical models [2], and their op-
timum checkpoint interval is computed and recommended
to the user. The user can then decide which hotspots to
checkpoint and what interval to set, in order to achieve
the highest possible energy and time savings.

E. Forecasting Toolbox

The Forecaster Toolbox focuses on predicting the future
evolution of the three quality attributes of interest, namely
Maintainability, Energy Consumption, and Dependability of
software products. For this purpose, it integrates within its
business logic various forecasting models and, depending on
the occasion, it allows for the remote invocation of the most
appropriate ones in order to provide meaningful forecasts to
the front-end of the SDK4ED dashboard. This is achieved
through the provision of time series and machine-learning
(ML) models, built based on the results (i.e., monitored
indicators) of the three core SDK4ED modules (see Fig. 1).

To limit the initial set of indicators to those that have
significant effects on the targeted quality attributes, the Fore-
caster Toolbox employs feature selection techniques, resulting
in the development of less complex, but equally accurate
forecasting models. Examples of selected indicators (i.e., pre-
dictors) include code smells for Maintainability, CPU cycles
for Energy, and exception handling for Dependability, among
others. These indicators constitute the external data that the
Forecasting Toolbox expects to receive as input from the three
core SDK4ED Toolboxes for the execution of the models.

Depending on the forecasting horizon and the targeted
quality attribute, the Forecaster Toolbox employs either time
series or popular ML models. In particular, regarding the time
series approach, the ARIMA model was found to provide
accurate results for short-term forecasts up to 8 commits

Energy Indicators Estimated Energy over project versions

le-5

=1le-6
7114619 311 1546270 S1e7
S le-8
le-9
1610 Cortex A57 Cortex MO+
2.53% 0.5% 6.88% g L0 0

Version

(a) Indicators panel (b) History panel

Fig. 2: Energy toolbox results

ahead. Regarding mid-and long-term forecasts, various ML
models such as the Linear Regression, Support Vector Re-
gression, and Random Forest were investigated and compared
[9]. The results indicated that non-linear models, such as the
Random Forest, are capable to capture the future evolution
trend of the three investigated quality attributes, providing
reliable forecasts up to 40 commits ahead.

FE. Decision-Support Toolbox

The main goal of the Decision Support Toolbox is to support
decision making by enabling the development team to rank,
sort and choose from alternative suggestions to improve TD,
energy and dependability of the target software systems.

None of the individual toolboxes does take into consider-
ation code qualities other than the one it optimizes. To take
meaningful decisions, however, the user will need to evaluate
all refactorings universally. Regardless of the source toolbox
of a suggestion, the displayed information should include its
impact on all aspects.From this point on, this information will
be referred to as ’design space’. Production of the design space
is based on approximate methods. Each toolbox deals with
extremely dissimilar aspects making it hard to provide a fine-
grained estimation of a suggestion’s impact without actually
applying it and repeating the analysis.Also, the approach
should be as project- and platform-agnostic as possible.

In this component, after gathering all proposed refactorings
from all the toolboxes, an empirically-derived, static model is
queried for each of the suggestions. All matching entries are
returned, forming the final design space of the problem which
is solved using a state-of-the-art Multiple Criteria Decision
Making (MCDM) algorithm [10].

G. Implementation

Toolboxes provide their functions as individual web ser-
vices. They have been implemented in the form of Docker
Images and have been deployed as independent Docker Con-
tainers. Docker provides flexibility in the sense that each
toolbox is implemented using extremely different languages
and technologies, encouraging agile software development.
A central front panel provides an easy-to-use interface for
invoking all functionalities through graphical elements. The
Dashboard is built using React in conjunction with MD-
Bootstrap, ASPNET Core and PostgreSQL5. The software
project for analysis is retrieved from a Git repository. The
user can invoke the toolboxes individually or perform a Central

Energy consumption and execution time estimation

PLATFORM#& GRANULARITY#, ga;ma Energy
“@l* ARM Cortex
S -
Time AS7
Function Source
Energy est Ins Load Store ; 5.779e-5
hame File e ——
Est0) (ms) :H:Tote Energy
8.87e-7 1.508 29715 10513 4381 main imdcode.c ‘@ ARM Cortex
8.63e-8 0.147 2885 1024 420 cmac imdcode.c MO+
8.36e-8 0.142 2803 992 408 encrypt mistyl.c 8.874e-7

Fig. 3: Energy toolbox static analysis panel

Analysis (for all quality attributes). Each toolbox has a page
to inspect the produced results.

III. EVALUATION - DEMONSTRATION

This Section presents the SDK4ED platform analysis results
on an embedded healthcare application developed by Neuras-
mus (IMD). The application includes functionality for receiv-
ing data from (ECoG/EEG) sensors periodically, performing
FIR filtering and deciding whether a seizure is detected or not
in order to apply electrical stimulus via GPIO to suppress it.

1) Energy: The first version of the IMD application was an
emulator of the entire system, running on a linux PC (v1.3).
Figure 2a depicts the results of Energy indicators. We have a
relatively small number of Memory accesses (1546270), while
the cache misses refer to the beginning of the application
(initialization). A large number of data races is detected in the
use of I/O C libraries (printf, scanf). The identified hotspots
correspond to locks waiting for the rest of the threads and
one hotspot is a loop statement. The toolbox proposes this
loop as a candidate block for acceleration because there is
a large instruction parallelism combined with a few control
operations, while a significant part of operations are memory
operations (not referring to the same address). However this
loop has a small number of iterations and thus acceleration was
not applied because we would have more delays on data trans-
mission. In the next versions of the use-case (implemented on
the hardware devices), static analysis energy estimation was
used (Figure 3). This component provides an easy and fast
way to estimate the energy and to compare the use of different
platforms. Based on this analysis, we observe that selecting the
microprocessor ARM Cortex MO+ is more energy efficient but
with a penalty on the response time. Using this microcontroller
can achieve energy savings up to 98% compared to using
ARM Cortex A57. The Energy toolbox provides the option
of adding more platforms (relevant guidelines are provided
in Wiki page). A presentation of the estimations for all
application revisions is also supported by the toolbox (Figure
2b). According to these results, the estimated energy is always
lower when using ARM Cortex M0+, while there is an increase
about in the middle of the project’s history. In these versions, a
cryptographic function was added. After measuring the energy
overhead it was replaced by using a special peripheral and the
CPU energy was reduced by 95%. Note that energy toolbox
only analyses the software part of the application.

40
E35
230
®25
©

315
@10

1 2 3 4 5 6 7 8 9
Version

Fig. 4: Evolution of Breaking Point for IMD application

2) Maintainability: The results on the maintainability of the
IMD application are presented on the basis of the three major
TD aspects, namely principal, interest and interest probability.
The principal varies largely across files. The highest principal
was identified in file ’reader.cpp’ requiring $302 to fix 29
identified code smells. The same file was found to suffer from
an interest equal to $9.68, corresponding to the additional
maintenance costs for developing each new version of the file.
At the same time the interest probability is quite high (0.8 - a
value of 1 would imply that the file is being changed in every
revision of the system). Such values can alarm the develop-
ment team about an imminent risk of costly maintenance. As
an example of identified opportunities for improvement, it is
recommended to add unit tests so as to cover 92 more lines
of code need to reach the minimum threshold of 65% lines
coverage. This issue requires substantial effort to be resolved
(estimated at approximately 3 hours by SonarQube).

On the other hand, the SDK4ED TD toolbox identified files
which have relatively high TD Principal but with limited TD
Interest or interest probability. Such files should be assigned
a low priority for TD repayment. Of particular interest is
the evolution of the Breaking Point for the IMD application
(Fig. 4) revealing a rather healthy overall status. The Breaking
Point, i.e. the time point at which the accumulated additional
maintenance costs will exceed TD Principal, lies for most
of the analyzed versions 20 versions ahead, while its value
reaches 40 for the last version. Based on these findings we
can conjecture that while the IMD application suffers from the
presence of some code-level inefficiencies, its overall design
quality do not call for immediate repayment of TD: Even if
the problems remain in the code, it is expected that the team
will not face significant overhead in maintenance costs.

Finally, through a dedicated component , we have performed
a separate TD analysis of the medical and the security compo-
nents of IMD. The results suggested that the TD of the medical
part is almost stable across the years of its evolution. At the
timepoint of introducing additional security mechanisms TD
has increased significantly; thereof, the TD of the complete
system follows the evolution of the TD of the security com-
ponent (see Fig. 5). This finding suggests an evident trade-off
between guaranteeing security at the system level and code
maintainability. Such analysis initiated a research line within
Neurasmus considering the security costs in the IMD domain,
urging for more cost-efficient solutions at the software level.

3) Dependability: The results of the security analysis,
shown in Figure 6, indicate that the application is highly

2000 - " ! Secu‘rity introd uéed .
=—8— Medical
® 1500 | |—8—Security| | e -
=%
S5 Total /,f’ﬂ
S @ 1000 - -
a2 p——=0 e @rrem Q0
[a) e e 08
= 500 /
0 . . L . . .
1995 2000 2005 2010 2015 2020 2025 2030
Time
(a) TD Principal
200 T T T T T
&— Medical Security introdu d
150 |- | —8— Security
Total

TD Interest
(USD)
=]
o

o
=}

QOO
2010 2015 2020 2025
Time

(b) TD Interest

0 —ea
1995 2000

2005 2030

Fig. 5: Evolution TD in the two components of IMD

Security Index

1 0-0.9°0 ¢

93%
Characteristics Scores Pro perties Scores
Confidentiality Assignment

0 Complexity, 0 Dpead_code

0.6 Str_lIssues Exception

Resource handling

Availabilt handling 10
vailability Integrity Misused

Overflow NPE functionality

Fig. 6: Security Assessment Results

secure. Particularly, the Security Index was found to be 93%,
which is a very high score, whereas the Security Charac-
teristics of Confidentiality, Integrity, and Availability, were
found to have a score above 86%. In addition, high security
scores (above 94%) are assigned to almost all the low-level
Security Properties (which corresponds to groups of security
weaknesses), with the only exception of Dead Code, which
received a low score (36%); however, this property is less
critical compared to the others. It should be noted, that two
important buffer overflow vulnerabilities were found and fixed
using the security model through the course of the project.

In Figure 7, the results of the Vulnerability Prediction
Models are illustrated in the form of a heatmap, where each
rectangle corresponds to a specific source file, whereas the
color denotes the probability of the corresponding source code
file to contain vulnerabilities. More specifically, the greener
the rectangle, the higher the probability of its associated file
to contain vulnerabilities. As can be seen by Figure 7, three
files are highly likely to contain vulnerabilities, namely the
abc.c, the spi_interface.c, and the spi_interface_sisc.c, as they
have a vulnerability score of 0.99, 0.95, and 0.81 respectively.
This allowed the developers to pinpoint those source files that
require more care from a security viewpoint.

Finally, with respect to reliability enhancement, Figure 8
shows an example of an actual computational loop retrieved

Vulnerability prediction heatmap

Probability of Vulnerability

adc.c rtcec.c fir.c security.c _
housekeeping.c ~ wdog.c main.c spi_common.c -

- r—
0 025 05 075 1

Fig. 7: Vulnerability Prediction Results

Time over loop repetitions between Checkpoints ll Energy over loop repetitions between Checkpoints

5.8 0.001535 .
5.7u 0.001530)
5.6u 0.0000052 200 0.001525 0_005_5302
5.5U S 0.001520 e
) 0.001515

. 0.001510
5.3p 0.001505
5.2u

1 10 100 1 10 100

(a) Execution Time (b) Energy Consumption

Fig. 8: Optimum Checkpoint Interval

from the IMD application. Figure 8a suggests that a checkpoint
should be generated every 200 loop repetitions in order to min-
imize the execution time of the application. On the contrary, it
should be genereated every 30 repetitions in order to optimize
its energy consumption as shown in Figure 8b.

4) Forecasting: Figure 9 illustrates the forecasting results
for the Maintainability (i.e. TD) of the IMD application,
having selected 10 commits as the forecasting horizon. The
main screen of the TD Forecasting panel depicts an interactive
plot that shows the past TD evolution (in green) followed
by the forecasted evolution (in red). Tables with the detailed
forecasted values are also provided. Based on these results,
the TD of the IMD application is expected to increase during
the next commits. While the current effort to repay TD is
almost 5 days, in 10 commits from now it will have increased
by 67% (~8 days). This information helped the developers
allocate the resources needed to quickly repay TD. Equally
useful information were obtained also from the Energy and
Dependability panels, where, with respect to the former the
forecasts showed a slight increase during the next commits,
while no big changes were expected with respect to the latter.

5) Decision Support: The output of the SDK4ED Decision
Support toolbox is shown in Figure 10. Each refactoring has
a total value (orange color) which can be broken down in
individual impacts that the refactoring is expected to have on
each of the three qualities. Positive-signed values denote im-
provement. The magnitude of each impact value is calibrated
by the user’s preferences: E.g. if energy is declared as more
important than TD, the colored bars on the left would have
bigger blue segments and smaller black segments.

IV. CONCLUSIONS

This work introduces SDK4ED, a software analysis frame-
work that combines Energy, Maintainability and Dependability
optimizations. A detailed description of each component is
provided, along with the interaction between each other, to
provide suggestions that help developers design embedded
software. Using a healthcare embedded application as a use

echnical Debt Evolution @

@ [Real [___] Forecast

£ 4000

3

£

€ 3000 _/

£

= 2000

©

2

E 1000

o

a 0

= 0 10 20 30 40 50 60
Commit

Fig. 9: TD Forecasting Results

Overall values of refactorings

0.2 Energy @TD © Security
0.14 ® Total Calculated Value
2
01 0;))7 0.07
0.05 0.05
0.07 0.01 B 007204 007%9* 007%:04 0.03]
0 %nﬁ 0.02 | mD 0.02 m[0.02 &i
I 0,03
-0.07
-0.1 “0.08
Q
$Pey, £ 5 ®g3Te oz o3
S5=0%5m ¢ 5 23 o€ 99 © =
2220 E ®T §858°°3g5 §
© [Q — P >
& T g g o= 4 = 3 S
< < S22
Fig. 10: Decision Support Results

case, the proposed solution is demonstrated, emphasizing the
integration of individual tools and the presentation of the
analysis results through a unified platform.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing techni-

cal debt in software engineering (dagstuhl seminar 16162),” in Dagstuhl

Reports, vol. 6, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2016.

E. Gelenbe and M. Siavvas, “Minimizing energy and computation in

long-running software,” Applied Sciences, vol. 11, no. 3, p. 1169, 2021.

[3] S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle
for energy efficiency: techniques and tools,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1-33, 2019.

[4] C. Marantos, K. Salapas, L. Papadopoulos, and D. Soudris, “A flexible

tool for estimating applications performance and energy consumption

through static analysis,” SN Computer Science, vol. 2, no. 1, pp. 1-11,

2021.

I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance from

cpu runs using machine learning,” in 2014 IEEE 26th International Sym-

posium on Computer Architecture and High Performance Computing,

pp. 254-261, IEEE, 2014.

[6] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampatzoglou,
A. Chatzigeorgiou, and P. Avgeriou, “A framework for managing interest
in technical debt: An industrial validation,” in Proceedings of the 2018
International Conference on Technical Debt, TechDebt 18, (New York,
NY, USA), p. 115-124, Association for Computing Machinery, 2018.

[71 A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Ama-
natidis, “Estimating the breaking point for technical debt,” in 2015
IEEE 7th International Workshop on Managing Technical Debt (MTD),
pp. 53-56, 2015.

[8] M. Siavvas, D. Kehagias, D. Tzovaras, and E. Gelenbe, “A hierarchical
model for quantifying software security based on static analysis alerts
and software metrics,” Software Quality Journal, vol. 29, no. 2, pp. 431-
507, 2021.

[9]1 D. Tsoukalas, D. Kehagias, M. Siavvas, and A. Chatzigeorgiou, “Tech-

nical Debt Forecasting: An empirical study on open-source repositories,”

in Journal of Systems and Software, vol. 170, p. 110777, 2020.

S. Guo and H. Zhao, “Fuzzy best-worst multi-criteria decision-making

method and its applications,” Knowledge-Based Systems, vol. 121,

pp. 23-31, 2017.

[2

—

[5

[t}

(10]

