2012 Eighth International Conference on the Quality of Information and Communications Technology

Selecting Refactorings: An Option Based Approach

Androklis Mavridis, Apostolos Ampatzoglou,
loannis Stamelos

Department of Informatics
Aristotle University
Thessaloniki, Greece
amavridis@csd.auth.gr, apamp@csd.auth.gr;
stamelos@csd.auth.gr

Abstract — Refactoring, aims to improve the design of existing
code to cope with foreseen software architecture evolution. The
selection of the optimum refactoring strategy can be a
daunting task involving the identification of refactoring
candidates, the determination of which refactorings to apply
and the assessment of the refactoring impact on software
product quality characteristics. As such, the benefits from
refactorings are measured from the quality advancements
achieved through the application of state of the art structural
quality assessments on refactored code. Perceiving refactoring
trough the lens of value creation, the optimum strategy should
be the one that maximizes the endurance of the architecture in
future imposed changes. We argue that an alternative
measurement and examination of the refactoring success is
possible, one, that focuses on the balance between effort spent
and anticipated cost minimization. In this arena, traditional,
quality evaluation methods fall short in examining the
financial implications of uncertainties imposed by the frequent
updates/modifications and by the dynamics of the XP
programming. In this paper we apply simple Real Options
Analysis techniques and we perceive the selection of the
optimum refactoring strategy as an option capable of
generating value (cost minimization) upon adoption. Doing so,
we link the endurance of the refactored architecture to its true
monetary value. To get an estimation of the expected cost that
is needed to apply the considered refactorings and to the effect
of applying them, in the cost of future adoptions we conducted
a case study. The results of the case study suggest that every
refactoring can be associated with different benefit levels
during system extension.

Keywords — Refactorings; Real Options; Architecture Edurance

[. INTRODUCTION

Extreme programming (XP) [3], has emerged as one of the
most popular agile methods [4]. XP is an iterative and
incremental development methodology to delivering high-
quality software quickly and continuously, with a short
planning horizon (three month releases, 1-2 week
iterations). It is based on four simple values — simplicity,
communication, feedback, and courage — and twelve
supporting practices: planning game, small releases, simple
design, testing, refactoring, pair programming, collective
ownership, continuous integration, sustainable pace (used to
be: 40-hour week), on-site customer, coding standards and

978-0-7695-4777-0/12 $26.00 © 2012 IEEE
DOI 10.1109/QUATIC.2012.53

272

Panagiotis Sfetsos, Ignatios Deligiannis

Department of Information Technology
Alexander Technology Educational InstituteThessaloniki,
Greece
psfetsos@it.teithe.gr, ignatios(@it.teithe.gr

metaphor. In XP, a release - a stable and working deliverable
version of the product - is divided into shorter increments of
development (iterations) where individual tasks are assigned
to developers. Promoting continuous planning, continuous
testing and refactoring, customers’ involvement and close
teamwork, XP delivers high-quality software quickly and
continuously (every 1-3 weeks).

XP introduces two critical practices to improve the design of
existing code and to manage the evolution of software
architectures: test driven development [5], [2] and
refactoring [14]. Refactoring is a disciplined way to make
changes to source code, improving its design (internal
structure) without changing its external behavior. Mens and
Tourwé [18] describe refactoring as a multi-stage process
involving many activities which are: the identification of
refactoring candidates (i.e., where the software should be
refactored), the determination of which refactorings to apply
and the assessment of the refactoring impact on software
product quality characteristics (e.g., complexity,
understandability, and maintainability) or software process
(e.g., productivity, cost, and effort).

A growing number of studies address the relationship
between refactoring and the internal structure of source code
and its impact on program understanding, software quality,
and the evolution of a software design. Most of these studies
focus on the identification of code smells to locate possible
refactorings [14], [23], [8], [31], [27], the reconstruction of
the overall design of existing systems [10] and the
improvement of the legacy code [7], [20]. Concerning
quality, most of the studies found a positive relationship
between software refactoring and the software quality, either
indirectly or directly measured, [11], [28], [17], [29], [25],
[19], [1], [15], [23], [30].

While the most research studies conclude that refactoring
has long-term benefits on the quality of a software product
(in particular on program understanding) there is no such
consensus regarding the economic benefits gained from the
refactored architecture. In this paper we argue that value
based reasoning can be injected to decision making process
regarding the selection of the optimum refactoring strategy.
In our approach we perceive each refactoring strategy as a
different project leading to different value. In this context,

cpss

Conference Publishing Services

from the pool of available refactoring strategies the analyst
should opt for the one that maximises the value of the
refactored architecture. Our notion of value is correlated
with the architecture's capability to cope to requests for new
features (system extension) as this is often the case with the
Agile development paradigm. This capability is reflected in
the cost required to add new features to the system. Under
this perspective, a refactoring strategy that minimizes the
cost of features implementation with minimum refactoring
cost is the one that should be preferred. Hence selecting the
suitable refactoring strategy is a question of balancing
between expected gains (cost minimization of system
extension) and the cost to refactor the system.

We make the hypothesis that refactoring carries economic
value in the form of Real Options, expressed through the
right, but not the obligation, to select a refactoring strategy
within a given time frame, where the refactoring strategy to
be selected is treated as a real asset. Framing refactorings as
options, we can discover when and under which conditions
(cost and expected value) a given refactoring should be
implemented or not.

The paper is structured as follows. In section two we
present related work on refactorings and we introduce the
fundamentals of Real Options Theory along with its
application in the software engineering and agile
development paradigm. In section three, we present the
proposed methodology followed by the case study in section
four. Finally we discuss the findings and we conclude in
section six.

II. RELATED WORK

Real Options Analysis (ROA) is based on the analogy
between investment opportunities and financial options. A
real option is a right, but not an obligation, to make a
decision for a certain cost within a specific time frame. A
project is perceived as an option on the underlying cash
flows with multiple associated investment strategies to be
exercised if conditions are favourable. The big advancement
is that ROA accommodates not only the value of the
investment’s expected revenues but also the future
opportunities that flexibility creates.

As option is an asset that provides its owner the right with
out a symmetric obligation to make an investment decision,
the owner can exercise the option by investing the strike
price defined by the option. A call option gives the right to
acquire an asset of uncertain future value for the strike price.
A call option gives the buyer of the option the right to buy
the underlying asset at a fixed price, called the strike or the
exercise price, at any time prior to the expiration date of the
option: the buyer pays a price for this right. If at expiration,
the value of the asset is less than the strike price, the option
is not exercised and expires worthless. If, on the other hand,
the value of the asset is greater than the strike price, the
option is exercised — the buyer of the option buys the asset
at the exercise price and the difference between the asset
value and the exercise price comprises the gross profit on

273

the investment.

While ROA was applied extensively as a decision making
tool for in IT projects, during the last decade the application
of ROA is concentrated in valuating the inherent
uncertainties in software engineering practices such as in
[6],[12],[13],[21],[22], [26] [31].

Based on these foundations, the central idea of our work is
that a refactoring selection, is analogous to a financial
derivative expressed as a call option, where the owner (the
analyst) has the right but not the obligation to make the
selection within a given time frame.

IIL.LMETHODOLOGY

In this work we apply Real Options Analysis in the context
of refactoring selection in order to address the following
uncertainties:

e Which candidate refactoring offers more value?
What is the added value offered from the
refactoring if this is properly executed?

How the conditions (i.e. number of features added
or developers ability to perform the refactoring
task), affects the value of the extended system?

Our method employs three consecutive steps. The first step
regards the identification of the candidate refactoring
strategies. In the second, we calculate the costs required to
implement each refactoring, the revenues expected from
each refactoring and the standard deviation (volatility) of
these revenues reflecting the uncertain conditions (i.e:
number of features added). Finally in the third step we
calculate the call options for each OSS candidate and we
compare the results.

We extend the ROA valuation mechanism to accommodate
the specificities and constraints of the refactoring context as
shown in table 2:

Real Option on an IT

Real options on a refactoring

project strategy
The business value of IT The value of the refactoring
project contributing to system's profitability

upon selection.
The costs to implement the refactoring
strategy.

Expenditures associated
with the project investment.

Time until the IT Time until the refactoring adoption
investment opportunity opportunity runs out.
runs out.

Uncertainty for product or
service offerings from the
project.

[Uncertainty regarding the successful
implementation of the refactored
architecture, directly affecting the cost
of system's extension.
Risk-free interest rate in theRisk-free interest rate
IT domain domain.

in the IT|

Table 1. Real Options capturing the refactoring constructs

Extending the applicability of the Real Options theory we
make the following mapping to ROA variables:

Expected Value of refactoring (S): Is given as the
the cash flows resulted from the implementation of
adding new features. It is constant for all
refactoring strategies.
Exercise Price (X): Expressed as the accumulation
of the costs to implement the given refactoring.
Time to Expiration (T): This is the time until the
opportunity disappears for making the refactoring
selection.
Volatility of the Expected Value (c): Represents
the % percentage of up or down fluctuations on the
Expected Value due to uncertainties affecting the
successfulness of the refactored system.
Risk Free Rate (r): Assumed to be a known market
value, or the cost of capital.
Having these variables we can calculate the Call Option
Value of each refactoring strategy applying binomial options
pricing model [9].
We build for each candidate refactoring strategy two
binomial lattices based on the American call option fashion,
which dictates that the option (the selection) can be
exercised at any given time until the expiration. The first
lattice calculates the maximum and the minimum expected
refactoring value within the given time frame, while the
second calculates the option value (OV), the amount by
which the option to implement the refactoring is in the
money, or in other words what is the added value of
correctly implementing the system extension when
favorable conditions exist. The Option Value (OV) depends
on two variables, the Intrinsic Value (IV) and the Time
Value (TV), as such,

OV=IV+TV
The intrinsic value (IV) of an option is the value of the
option if exercising it now and is given as:

IV=S-X,

Intrinsic value can be defined as the amount by which the
strike price of an option is “in-the-money”. Thus the higher
the intrinsic value the better for the given refactoring
strategy.
Time value or Extrinsic Value, or "Time Premium", given
as:

TV=0V -1V,
is the real cost of owning the option to refactor or in other
words it is the cost that the analyst have to pay waiting for
favorable conditions to arise. Accordingly, the less the time
value the better it is for opting for the given refactoring.
This cost can be attributed to various factors such as not
early market presence of the extending system, delayed
revenues from successful adoption, delayed revenues from
successful reuse and so forth, depending on the actual
investment and scenario of use. Finally the real value of the
extended system (The Net Profit) is given as the subtraction
of the Expected value with the Exercise price and the Time
Value:
Net Profit = S-X-TV

274

Hence, the refactoring strategy giving the highest Net Profit
for the extended system is the one that should be preferred.

IV.CASE STUDY

This section deals with presenting the structure and the
results of a case study, which was performed to valuate the
economical benefits of three refactoring activities, (a) Move
Method, (b) Extract Method and (c) Polymorphism. The
case study is divided into two parts, first the calculation of
ROA variables and the second the actual Option-Based
Analysis.

A. Calculating ROA Variables

This section aims at calculating the variables needed in
the real options analysis. For every investigated refactoring,
the method needs three variables, (a) S (expected value), (b)
X (cost — exercise price) and (c) o (volatility). In order to
calculate these variables we conducted a case study on one
hundred (100) junior programmers, according to the
guidelines described in [16]. The steps that have been
followed during case study execution are the following:
Build the dataset
Identify the method of comparison
Execute case study
Analyze and report the results

Build the Dataset

The subjects of the case study have been one hundred (100)
junior programmers with a BSc in Computer Science. The
objects of the case study have been four successive versions
of a medium size, sales management system, approximately
4500 lines of code.

The first version of the system included no refactoring
activities (v0). In version 1 one instance of a move method
refactoring has taken place (v/). In version 2, and additional
instance of an extract method refactoring has been
performed (v2) and in the final version (v3) an opportunity
of using the polymorphism has been identified and applied.
The application of each refactoring (refactoring type) has
been performed by 6-7 subjects and time needed for each
transition (transition_time) has been recorded.

Next, the (80) eight remaining developers have been divided
into four groups, each one attached with one version of the
system. Every subject has been given two extension
scenarios that should be adopted. For every developer the
time needed for performing several perfective maintenance

tasks has been recorded (exlension_time)*.
Thus, the dataset of the case study included three variables
as shown below:

* Project Version
Average Transition Time for Corresponding Project
Version

The successful completion of all maintenance tasks lead
to a 10% LOC increase in the initial system

¢ Extension Time

Identify the Comparison Method

On the completion of data collection phase, the following
steps have been performed so as to answer the research
questions described above:

1. Calculate Average Transition Time for
Corresponding Project Version. For each version,
average transition time is the sum of all previous
versions average transitions time, plus the time needed
for current transition.

2. Calculate Average Extension Time for Every
Project Version.

3. Calculate Average Standard Deviation
Extension Time for Every Project Version.

Jor

Results
The dataset created from the above mentioned procedure is
summarized in Table 2.

System Version vl vl v2 v3

AV G transition time 0 7.55 10.83 16.92
AV G extension time 4422 | 38.57 32.52 | 3042
AVG standard deviation | 8.39 6.09 5.47 4.09

Table 2. Case Study Dataset

B. Option-Based Analysis

From the dataset presented in table 2, we measured the
variables necessary for calculating the call options for each
refactoring leading to system versions v1 to v3.

To convert time to money and be able to calculate the
exercise price for each refactoring we assumed an average
hourly pay rate of 6€. Having a 10% increase of the original
system after the maintenance tasks completion, we simply
attributed a 10% increase in the systems revenue as its
expected value, giving an (S) of approximately 1000€. The
calculated the exercise price for each systems version we
first added the transition and extension times and then
multiply the product with the pay rate. Finally the lattices
are shown in table 3.

System Version v0 vl v2 v3
Total time 4422 | 46.12 | 4335 | 4734
\Exercise Price (X) 265.32| 276.72 | 260.1 | 284.04

Table 3. Exercise price for system versions

with an options time to expiration (T) of 4 months (the time
to make the decision), cost of capital () at 15% and using
AVG standard deviation as volatility (o), we have for each
system version the following results:

Version 0:

1108.22

1085.68

1063.59

1063.59 |

1041.96

1041.96

1020.76

1020.76

1020.76 |

1000.00

1000.00

1000.00

979.66

979.66

979.66 |

959.73

959.73

Option Valuation Laltice

940.21

940.21 |

921.08

902.35
842 50

822.34

802.61

797.87 |

783.32

778.62

76444

759.78

755.04 |

| 7as5.97

741.36

736.66

723.33

718.68

713.94 |

701.09

696.39

Version 1:

679.23

674.49 |

B657.74

636.63

1077.44

1061.49

1045.77

1045.77 |

1030.28

1030.28

[1015.03

1015.03

1015.03 |

1000.00 |

1000.00

1000.00

| 985.19

985.19

985.19 |

970.61

970.61

Option Valuation Lattice

956.23

956.23 |

942 .08

928.13
800.72

787.25

773.99

769.05 |

760.94

756.04

[748.09

743.25

738.31 |

[7#35.486 |

730.65

725.76

| 718.26

713.41

708.47 |

701.26

696.37

Version 2:

684 45

679.51 |

667.84

651.41

1069.29

1055.06

1041.01

1041.01 |

1027.16

1027.16

[101349

1013.49

1013.49 |

1000.00 |

1000.00

1000.00

| 986.69

986.69

986.69 |

973.56

973.56

Option Valuation Lattice

960.60

960.60 |

947.82

935.20
809.19

797.29

785.55

780.91 |

773.99

769.39

[762.59

758.03

753.39 |

[75135 |

746.83

742.23

| 735.79

731.23

726.59 |

720.39

715.79

705.14

700.50 |

690.05

675.10

Version 3:

1051.37
1040.89
1030.51 1030.51 |
1020.24 1020.24
1010.07 1010.07 1010.07_|
1000.00 1000.00 1000.00
990.03 990.03 990.03 |
980.16 980.16
970.39 970.39 |
960.72
951.14
767.33
Option Valuation Laitice Lt
751.54 746.47 |
743.77 738.74
736.07 731.10 726.03 |
[_728.46 723.53 718.50
716.04 711.06 705.99 |
703.69 698.67
691.42 686.35 |
679.22
667.10

Having calculating the Option Values for each system
extended version we can finally obtain the Net Profits for
each version, as shown in table 4.

System Version v0 vl v2 v3
Option Value 745.97 | 735.46 | 751.35 | 728.46
Time Value 1129 | 12.18 | 1145 | 125
INet Profit 723.39 | 711.1 | 728.45 | 703.46

Table 4. Net profits for each system version

V. DISCUSSION

From table 4 we can conclude that the optimum refactoring
strategy is the one of the system version 3, as it offers the
higher Net Profit. The results from the analysis highlight the
following remarks. Firstly it is not always the case that the
refactored system will provide the adequate level of
assistance to developer to better handle the required
extensions. As it is shown in table 4 system Vo (without
refactoring) has a higher Net profit surpassing two of the
three refactored versions. This is rather surprisingly and
highlights the importance of balancing between the cost to
refactor and expected value.

Adding refactoring activities has a positive effect in
decreasing the time to extension. However this is not always
translating to increase profit. This suggests that the benefits
from the increased quality are visible and explorable upon
system extension. It is therefore not a matter of the number
of refactoring activities performed, but a matter of which
activities produce the higher profit.

Volatility either measured from Expected Values or from
costs, plays a catalytic role options values and as a
consequence to the final Net profit. This is clear in the case
of system Vo which has the higher volatility amongst the
three refactored versions.

276

VI.CONCLUSIONS

We have presented an alternative approach aiming to assist
system analysts to better select the most profitable
refactoring strategy. This was possible by perceiving
refactoring trough the lens of value creation, focusing on the
maximization of the benefits imposed by required future
system extensions. We argued that an alternative
measurement and examination of the refactoring success is
possible, one, that focuses on the balance between effort
spent and anticipated cost minimization. We employed Real
Options Analysis to identify the relationship and the
mechanisms between the cost to refactor, the anticipated
value and the uncertainties of refactoring successfulness. To
provide an initial indication of Real Options applicability in
the context of system Refactoring we conducted a case
study. The results of suggest that the most profitable
refactoring strategy is not always the one that includes the
most refactoring activities but the one that properly balances
the cost to refactor and the expected value.

VII.ACKNOWLEDGMENTS

The research work is co-founded by the European Social
Fund and National Resources, ESPA 2007-2013, EDULLL,
“Archimedes III” program.

REFERENCES

[1] Alshayeb, M. (2009). Empirical Investigation of Refactoring Effect on
Software Quality(], Information and Software Technology, 51 (9), pp.
1319-1326.

[2] Astels, D. 2003. TestDriven development: A practical guide. Upper
Saddle River, N.J.: Prentice Hall.

[3] Beck, K. (2000) Extreme programming explained: Embrace change.
Reading, MA.: Addison Wesley Longman, Inc.

[4] K. Beck, M. Beedle, A. Bennekum van, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,R. Jeffries, J.
Kern, B. Marick, R. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D.
Thomas, "Manifesto for Agile Software Development," vol. 2002, 2001.

[5] Beck, K. 2003. Test-driven development: By example. Boston:
Addison-Wesley.

[6] Boehm, B.W. & Sullivan, K. (2000) Software Economics: A
Roadmap, in the Future of Software Engineering, 22nd International
Conference on Software Engineering, June.

[7] Bois, B.D., Mens, T. (2003): Describing the impact of refactoring on
internal program quality. In: Proceedings of the International Workshop on
Evolution of Large-scale Industrial Software Applications (ELISA),
Amsterdam, The Netherlands, pp. 37-48.

[8] Bois, B.D., Demeyer, S., Verelst, J. (2005). Refactoring — Improving
Coupling and Cohesion of Existing Code. In: Belgian Symposium on
Software Restructuring, Gent, Belgium.

[9] Copeland, T. Antikarov, V. (2001). Real Options: A Practitioner’s
Guide, TEXERE, New York, NY.

[10] Demeyer, S., Ducasse, S., Nierstrasz, O. (2000). Finding Refactorings
via Change Metrics. In: Proceedings of the 15th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2000, Minneapolis, USA.

[11] Demeyer, S. (2002). Maintainability versus Performance: What’s the
Effect of Introducing Polymorphism?, technical report, Lab. On
Reengineering, Universiteit Antwerpen, Belgium.

[12] Engel, A. & Browning, T. Designing systems for adaptability by
means of architecture options. Systems Engineering, 11 2 (2008), (pp125-
146).

[13] Erdogmus,

H. Valuation of Learning Options in Software

Development under Private and Market Risk, The Engineering Economist,
47 3 (2002), (pp 308-353).

[14] Fowler M., 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Boston, MA, USA.

[15] Kataoka, Y., Imai, T., Andou, H., Fukaya, T. (2002). A Quantitative
Evaluation of Maintainability Enhancement by Refactoring[], Proceedings
of the International Conference on Software Maintenance (ICSM.02), pp.
576-585.

[16] Kitchenham B., Pickard L., Pfleeger S.L, “Case Studies for Method
and Tool Evaluation”, IEEE Software, IEEE Computer Society, 12 (4), July
1995. Leitch, R., Stroulia, E. (2003). Assessing the Maintainability Benefits
of Design Restructuring Using Dependency AnalysisL], Ninth International
Software Metrics Symposium (METRICS'03), pp. 309-322.

[17] Mens, T., Tourwe, T. (2004). A Survey of Software Refactoring, IEEE
Transactions on Software Engineering[|, 30(2), pp. 126-139.

[18] Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G. (2008).
A Case Study on the Impact of Refactoring on Quality and Productivity in
an Agile Team[], In Balancing Agility and Formalism in Software
Engineering. Lecture Notes In Computer Science, (5082). Springer-Verlag,
Berlin, Heidelberg, pp. 252-266.

[19] Pizka, M. (2004). Straightening spaghetti-code with refactoring? In:
Proceedings of the Int. Conf. on Software Engineering Research and
Practice - SERP, Las Vegas, NV, pp. 846-852.

[20] Racheva, Z., Daneva M., and Buglione, L. Complementing
Measurements and Real Options Concepts to Support Inter-iteration
Decision-Making in Agile Projects, Proc. 34th Euromicro Conf. Software
Engineering and Advanced Applications, pp. 457-464, 2008.

[21] Racheva, Z., & Daneva M. Using Measurements to Support Real-
Option Thinking in Agile Software Development, Proc. 2008 Int'l
Workshop Scrutinizing Agile Practices or Shoot-Out at the Agile Corral,
May 2008.

[22] Ratzinger, J., Fischer, M., Gall, H. (2005). Improving Evolvability
Through Refactoring, Proceedings of the 2nd International Workshop on
Mining Software Repositories (MSR’05), 1-5.

[23] Schofield, C., Tansey, B., Xing, Z., Stroulia, E. (2006). Digging the
Development Dust for Refactorings. In: Proceedings of the 14th
International Conference on Program Comprehension (ICPC 2006),
Athens, Greece.

[24] Shatnawi, R., Li, W. (2011). An Empirical Assessment of Refactoring
Impact on Software Quality Using a Hierarchical Quality Model.
International Journal of Software Engineering and Its Applications Vol. 5 —
October, No. 4.

[25] Shaw, M. et al. (2005). In search of a unified theory for early
predictive design evaluation for software, Technical Reports CMU-ISRI-
05- 114, Carnegie Mellon University.

[26] Simon, F., Steinbruckner, F., Lewerentz, C. (2001). Metrics based
refactoring. In: Proc. European Conf. Software Maintenance and
Reengineering, pp. 30-38. IEEE Computer Society Press, Los Alamitos.
[27] Stroulia, E., Kapoor, R.V. (2001). Metrics of Refactoring-Based
Development: an Experience Reportl], In The seventh International
Conference on Object-Oriented Information Systems, pp. 113-122.

[28] Tahvildari, L., Kontogiannis, K. (2004). Improving Design Quality
Using Meta-Pattern Transformations: A Metric-Based Approach(], J.
Software Maintenance. Evolution: Research and Practice, 16 (4-5), pp.
331-361.

[29] Yu, Y., Mylopoulos, J., Yu, E., Leite, J.C., Liu, L., D’Hollander, E. H.
(2003). Software refactoring guided by multiple soft-goals. In: Proceedings
of the 1st workshop on Refactoring: Achievements, Challenges, and
Effects, in conjunction with the 10th WCRE conference 2003, Victoria,
Canada, November 13-16, pp. 7-11.

[30] Van Emden, E., Moonen, L.: (2002). Java Quality Assurance by
Detecting Code Smells. In: Proceedings of the 9th Working Conference on
Reverse Engineering. IEEE Computer Society Press, Los Alamitos.

[31] Wang T. & de Neufville, R. (2006). Identification of real options "in"
projects. In Proc. 16th Annual International Symposium of the International
Council on Systems Engineering (INCOSE), Orlando, FL, July.

271

