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Abstract

Background: The rapid integration of Artificial Intelligence (AI)—including Machine Learning (ML) and Generative AI—into
software systems is reshaping the software development lifecycle. As AI-driven systems become more dynamic and complex,
traditional approaches to Technical Debt (TD) management face increasing limitations. Simultaneously, AI-assisted development
introduces new forms of TD, particularly in relation to maintainability, explainability, and data governance.

Objective: This study aims to explore how Technical Debt Management (TDM) must adapt in the context of AI-enhanced soft-
ware development. It investigates (1) the evolution of TD in AI-driven systems, and (2) the implications of using AI technologies
within the software engineering process.

Method: We conducted a multivocal literature review (MLR), combining insights from both peer-reviewed research and
industry sources. Following established guidelines, we systematically analyzed 61 primary sources, categorized TD types and
management activities, and identified key challenges and practices emerging in the AI era.

Results: Our findings reveal that data-related, infrastructure, and pipeline-related TD are particularly prevalent in ML systems.
Machine Learning Operations (MLOps) practices are increasingly recognized as essential for managing such debt, especially
in relation to dynamic data dependencies and model retraining. In parallel, AI-generated artifacts and automated pipelines
introduce new governance and maintainability challenges.

Conclusion: Technical Debt in AI systems demands continuous, automated, and cross-functional management strategies. As
software evolves in response to data and usage, new operational paradigms—grounded in practices like MLOps and Small Lan-
guage Model Operations (SLMOps)—will be vital to ensure long-term software sustainability. This study provides a foundational
map for researchers and practitioners navigating the intersection of AI and TD management.

Keywords: Technical Debt, Multivocal Literature Review

1. Introduction

With the rise of Artificial Intelligence (AI), the software en-
gineering (SE) community faces new challenges but is also
alerted to grab “new” and “very promising” opportunities [1].
The intersection of AI and SE in both research and practice has
changed drastically in recent years, with the following broad
disciplines being the most prominent ones:

• An entirely new domain in SE aims at the development
of AI-driven applications tailoring existing software engi-
neering practices and tools (SE4AI) [2]. According to ABI
research1, the Artificial Intelligence (AI) software market
size was valued at 98 billion dollars in 2024. With a grow-
ing Compound Annual Growth Rate (CAGR)2 of 30%, the
AI software market is expected to reach a size of more

1https://www.abiresearch.com/news-resources/chart-data/report-
artificial-intelligence-market-size-global

2https://www.investopedia.com/terms/c/cagr.asp

than 391 billion dollars in 2030. Given the differences
in the development lifecycle of AI software to traditional
software, as well as their different quality needs, there
is a need for specialized SE approaches for developing
software that is driven by or uses AI.

• Software engineers leverage AI to enhance or redesign
software development approaches (AI4SE) [2]. As more
and more AI solutions (e.g., Co-Pilot, ChatGPT, etc.) are
becoming available, software engineers use them to in-
crease their productivity in various parts of the software
engineering lifecycle (e.g., write code and tests, gener-
ate documentation, improve requirements specifications,
identify hotspots, apply refactorings, etc.).

• SE researchers use AI to improve their methods and pro-
duce knowledge (AI4SE-Research) [3]. As Machine Learn-
ing (ML), Deep Learning (DL), Generative AI (GenAI), and
more classical AI models are becoming available and un-
derstandable to SE researchers, they tend to increasingly
use them to extend and validate their research contribu-
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tions (e.g., using ML for identifying energy hungry code,
or improve defect and vulnerability prediction).

A large portion of the cost of software systems and there-
fore their success, lies on the maintenance phase of the SDLC
(accounting up to 50% of the total software costs). To reduce
maintenance costs, the software development team needs to
pay attention to quality even from the early stages of devel-
opment. More specifically, when targeting the improvement
of maintainability, an established notion for collectively han-
dling software maintenance is Technical Debt Management
(TDM). In this work, acknowledging the importance of quality
for software systems regardless of their development strategy,
we focus on TDM and tailor the notion of TDM to match the
intersection of TDM and AI. In particular, we attempt through
a Multivocal Literature Review (MLR) to provide a panorama
of the intersection of the two domains. Given that AI4SE-
Research has already been covered by other secondary stud-
ies (e.g., [4], [5]), in this work, we focus on SE4AI and AI4SE.
Studying both directions of the relation between AI and SE is
a common place in the call for papers of various conferences
(e.g., Maltesque 3, FSE4, ESEM5, etc.), strengthening the intu-
ition that these two aspects are interconnected and cannot be
studied in isolation. Given this view, we have set the following
main research questions that will drive the study design and
reporting:

• [RQ1] How does TDM need to be tailored to match the
needs of developing AI-driven software?

• [RQ2] How does the use of AI during software develop-
ment affect TDM?

The answer to RQ1 is expected to shed light on how TDM
approaches and tools need to be adapted to match the de-
velopment lifecycle of AI-driven software. For example, we
expect to explore: (a) the special challenges of TDM in SE4AI,
by exploring the research goals of papers; (b) the TDM ac-
tivities that receive the most attention in SE4AI; and (c) any
possible new types of Technical Debt (TD) that have emerged
in SE4AI. The answer to RQ2 will explore TDM-related ben-
efits and consequences of using AI to develop software. For
instance, we will explore the opportunities that open up by
resorting to AI4SE, but also the negative impacts that AI4SE
might bring in terms of code quantity, quality, maintainability,
and therefore TD. The aforementioned contributions, along
with the context and the problem statement, are visualized in
Figure 1.

The rest of the paper is organized as follows. In Section 2,
we present secondary studies in the field of TDM to outline the
related work on the more generic domain of Technical Debt
research, as well as secondary studies on the intersection of
SE and AI. In Section 3, we present the study design, where we

3https://maltesque2022.github.io/
4https://conf.researchr.org/track/fse-2025/fse-2025-research-papers
5https://conf.researchr.org/track/esem-2025/esem-2025-vision-and-

emerging-results-track-
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Figure 1: Context, Problem Statement, and Contribution of the Work

outline the MLR protocol. We present the results of our work in
Section 4, and we discuss them (interpretations, comparison
with the literature, and implications for research and practice)
in Section 5. In Section 6, we report on the threats to validity
and conclude the paper in Section 7.

2. Related Work

In the last ten years, TD has been increasingly investigated
by attracting the attention of both academia and industry. Sev-
eral literature reviews and mapping studies in terms of TD and
TDM have been published. In this section, we present sec-
ondary studies that are focused on TD. To identify such stud-
ies we have exploited recent tertiary studies on TDM[6][7][8],
but have also conducted searches in the most known digi-
tal libraries–namely: ACM, IEEE, Springer, and ScienceDirect.
Several secondary studies have explored TD in traditional soft-
ware development, with a focus on architecture, prioritization,
measurement, and tool support (see Table 1). However, most
of these works do not address the impact of AI-driven devel-
opment or modern practices like MLOps. In contrast, our
study provides a multivocal and up-to-date perspective that
specifically investigates how TD evolves in the context of AI-
enhanced systems, making it among the first to bridge both
SE4AI (RQ1) and AI4SE (RQ2) viewpoints.

Beskel et al. [9] conducted a Systematic Literature Review
(SLR) to synthesize existing research on Architectural Techni-
cal Debt (ATD) and developed a descriptive model to classify
and analyze ATD characteristics. In particular, the study fo-
cused on understanding and managing ATD in large-scale
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Table 1: Overview of Secondary Studies on Technical Debt

Study Focus Area TD Type(s) Methodology Time Span RQ

Beskel et al. [9] Architectural Technical Debt ATD SLR 2005–2016 RQ1

Sousa et al. [10] Monitoring & Tools ATD SMS 2012–2022 RQ1

Koulla Moulla et al. [11] TD Measurement Code, Design, Arch Exploratory LR 2010–2023 RQ1

Perera et al. [12] TD Quantification Approaches Code, Design, Arch SMS to 2023 RQ1

Khomyakov et al. [13] Automated TD Measurement Various SLR 2011–2018 RQ1

Klimczyk and Madeyski [14] Estimation and TD Impact Various SMS – RQ1

Alfayez et al. [15] TD Prioritization General SLR 1992–2018 RQ1

Lenarduzzi et al. [16]] Prioritization Strategies Code, Arch SLR to 2020 RQ1

Perera et al. [17] RTD Quantification Requirements SMS 2012–2022 RQ1

Melo et al. [18]] Requirements TD RTD SLR 2010–2020 RQ1

Saraiva da Silva et al. [19] TD Tool Support All Types SMS to 2020 RQ1

Kleinwaks et al. [20] TD in Systems Engineering Theoretical SLR – RQ1

Behutiye et al. [21]] TD in Agile Practices Code, Arch, Process SLR 1992–2014 RQ1

Villa et al. [22] TD in Microservices Code, Arch SMS 2015–2020 RQ1

Ribeiro et al. [23] Repayment Decision Criteria All Types SMS to 2014 RQ1

Alves et al. [24] Identification and TDM All Types SMS 2010–2014 RQ1

Fernandez-Sanchez et al. [25] Elements of TDM General SMS to 2015 RQ1

Li et al. [26] TDM Activities & Tools All Types SMS 1992–2013 RQ1

Ampatzoglou et al. [27] Financial Aspects of TD Economic Perspective SLR to 2013 RQ1

Lunde and Colomo-Palacios [28] TD in DevOps/CI/CD Code, Infra SLR to 2019 RQ1

Nielsen et al. [29] TD in Digital Government General SLR 2017–2020 RQ1

Becker et al. [30] Trade-off Decisions Process/Time SLR to 2014 RQ1

Albuquerque et al. [31] Intelligent Techniques for TDM All Types SMS 2012–2021 RQ1, RQ2

Bogner et al. [32] TD in AI Systems Data, Model, Ethics SMS to 2020 RQ1, RQ2

Saeeda et al. [33] Non-Technical Debt (NTD) Process, Org, Social MLR to 2022 RQ2

Our Work Evolution of Technical Debt All Types MLR to 2024 RQ1, RQ2

software companies. The search process was performed in
six Digital Libraries (DLs) (namely ACM, IEEE, ScienceDirect,
SpringerLink, Scopus, and Web of Science) from 2005 to 2016.
After applying the selection criteria, 43 studies were identified.
As a result of the study, the authors proposed a model in which
the model categorizes the main characteristics of ATD and
elucidates their interrelations. The findings suggest that by
utilizing this model, stakeholders can enhance system success
rates and mitigate adverse outcomes by increasing awareness
of ATD.

Sousa et al. [10] conducted a Systematic Mapping Study
(SMS) to explore methods and tools for identifying, monitor-
ing, and managing ATD. The search process was performed
in four DLs (namely Scopus, Web of Science, IEEE, and ACM)
from 2012 to 2022. After applying the selection criteria, 70
studies were identified. As a result of the study, the authors
proposed a structured roadmap to assist software engineers
in identifying and monitoring ATD items systematically.

Koulla Moulla et al. [11] performed an exploratory literature
review to explore the current state of research on measur-
ing technical debt. The authors executed a comprehensive
search across five DLs: Scopus, ScienceDirect, ACM, IEEE, and
SpringerLink between 2010 and 2023. At the end of the se-

lection process, 21 primary studies were retained for further
analysis. The results of the study suggest that TD measure-
ment primarily focuses on code quality, design issues, and
architectural concerns. Additionally, the authors identified (a)
various measurement solutions for measuring TD (static anal-
ysis tools, code metrics, TD principal, TD interest, etc.), (b) TD
categorization methods, and (c) the research gaps identified
in TD measurement research (e.g., measuring other types of
debt beyond code debt, quantifying risks, etc.).

Perera et al. [12] performed a systematic mapping study
to explore and categorize existing approaches for quantifying
Technical Debt in software systems, focusing on code, design,
and architectural levels. The search process was conducted in
four DLs (namely Scopus, ACM, IEEE, and SpringerLink), and
identified 96 primary studies. Based on the results, the authors
explored 39 distinct quantification approaches for TD. Addi-
tionally, they analyzed these approaches by classifying them
based on a set of abstract TD Quantification concepts and
their high-level themes, including process/time, cost, benefit,
probability, and priority. Khomyakov et al. [13] executed a sys-
tematic literature review to investigate existing approaches for
measuring and analyzing TD, focusing on quantitative meth-
ods that can be automated. The search strategy was performed
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in three DLs: ACM, IEEE, and Google Scholar between 2011
and 2018. After applying filtering criteria, 21 papers were se-
lected for in-depth analysis. The results suggest that in the lit-
erature, there are various methods to measure TD, each using
different criteria and not necessarily building upon existing
models, however, the field is not yet mature. Many models
lack validation, and there is a scarcity of tools to automate TD
assessment.

Klimczyk and Madeyski [14] conducted a systematic map-
ping study to identify estimation problems arising from previ-
ously introduced TD in software projects and to explore solu-
tions that address these challenges. The search process was
conducted in five DLs (namely Scopus, ACM, IEEE, SpringerDi-
rect, and SpringerLink), identifying 42 primary studies. The
study highlights the significant influence of TD on software
project estimations and underscores the necessity for incorpo-
rating TD management into estimation practices. Addressing
TD proactively can lead to more accurate project planning and
resource allocation.

Alfayez et al. [15] performed a systematic literature review
on technical debt prioritization. The search was constrained
to published literature from 1992 to 2018 in the DLs: ACM,
Google Scholar, IEEE, Inspec, ScienceDirect, Scopus, Springer,
and Web of Science. Additionally, they search manually in
two TD conferences. At the end of the selection process, 23
primary studies were retained for further analysis. The study
identified 24 TD prioritization approaches, which employed
the use of 10 prioritization techniques.

Additionally, Lenarduzzi et al. [16] conducted a systematic
literature review to investigate existing approaches for priori-
tizing TD in software engineering, focusing on the strategies,
processes, factors, and tools utilized in TD prioritization. The
authors executed a comprehensive search across eight DLs
(namely ACM, IEEE, ScienceDirect, Scopus, Google Scholar,
CiteSeer, Inspec, and Springerlink) and on the most important
conferences and workshops on TD until 2020. At the end of
the selection process, 44 primary studies were retained for
further analysis. The results of the study suggest that code
and architectural debt are the most frequently investigated
types of debt when considering TD prioritization. Moreover,
the study provides an impact map that highlights 53 factors
related to the impact of TD to be considered for prioritization.

Perera et al. [17] conducted a systematic mapping study
to identify and analyze existing Requirements Technical Debt
(RTD) quantification approaches. The search strategy was
conducted in four digital libraries (ACM, IEEE, Scopus, and
ScienceDirect) between 2012 and 2022. After the selection cri-
teria, 7 authors were selected for 7 studies. Then, the authors
developed a conceptual model, namely RTD Quantification
Model (RTDQM), to represent and compare various RTD quan-
tification approaches through a common framework. Further-
more, Melo et al. [18] executed a systematic literature review
to identify the state of the art related to TD management in
software requirements, focusing on identification and mea-
surement. The search process was conducted between 2010
and 2020 in five DLs (namely Scopus, ACM, ScineceDirect,
IEEE, and SpringerLink), identifying 61 primary studies. The

study identified several causes related to RTD, including strate-
gic decisions for immediate gains and unintended changes in
context. However, the authors explored that the research on
RTD is still in its early stages, especially concerning manage-
ment tools, whereas there is a need for metrics to support the
measurement stage of RTD.

Saraiva da Silva et al. [19] conducted a systematic mapping
study to identify and analyze available tools for managing TD.
They focused on understanding the activities, functionalities,
and types of TD addressed by these tools. The search process
was applied on six DLs (namely: ResearchGate, ACM, IEEE,
ScienceDirect, and Scopus) until January 2020. At the end of
the selection process, 47 primary studies were retained for fur-
ther analysis, and 50 tools. As an outcome of this research is a
holistic view of TD tools regarding the features proposed by
them to address TD in different dimensions and a categoriza-
tion that describes and encompasses the main characteristics
of the tools.

Kleinwaks et al. [20] performed a systematic literature re-
view to investigate how the concept of TD is applied within
the field of systems engineering, aiming to identify its usage
and the stages of the systems engineering lifecycle most sus-
ceptible to technical debt. The search strategy was conducted
on four DLs, namely IEEE, ScienceDirect, Wiley, and Springer-
Link, selecting 18 relevant studies for detailed analysis. The
results of the study show that the TD metaphor is not widely
prevalent in systems engineering research, and the existing
research primarily focuses on theoretical aspects rather than
practical applications.

Behutiye et al. [21] conducted a systematic literature re-
view to analyze and synthesize the current state of knowl-
edge regarding TD in agile software development, focusing
on its causes, consequences, and management strategies.
The search strategy was conducted in six DLs (ACM, Google
Scholar, IEEE, ProQuest, Scopus, and the Web of Science) be-
tween 1992 and June 2014. After the selection criteria, the
authors selected 38 studies.

The results of the study identified five key research areas
related to TD in agile, with the highest attention given to man-
aging TD, followed by architecture and its relationship with Ad-
ditionally, they found eight categories of causes for incurring
TD in agile, focusing on quick delivery, whereas five categories
of consequences were identified, including reduced produc-
tivity, system degradation, and increased maintenance costs.
Finally, the authors explored twelve strategies for managing
TD in agile, with refactoring and enhancing the visibility of TD
being the most significant.

Villa et al. [22] conducted a systematic mapping study to
gather evidence and characterize technical debt in systems
with microservices architecture. The search strategy was per-
formed in four DLs: ACM, IEEE, ScienceDirect, and Springer-
Link between 2015 and 2020. After applying filtering criteria,
12 papers were selected for in-depth analysis. The results of
the study identified eight types of technical debt, with archi-
tecture debt and code debt being the most frequently reported.
Additionally, the study identified that design and implemen-
tation activities are those with the highest number of cases of
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technical debt, followed by migration activities.
Ribeiro et al. [23] performed a systematic mapping study to

identify decision-making criteria related to TD repayment in
software projects. The search was constrained until 2014 in
three DLs: ACM, IEEE, and Scopus. At the end of the selection
process, 38 primary studies were retained for further analy-
sis. The results of the study identified a list of 14 criteria that
can be used to support decision-making on the repayment
of TD items, categorized them into four categories (i.e., na-
ture of the TD, customer, effort, and project). These criteria
include factors such as the severity of the debt, the existence
of workarounds, the visibility, the impact on customers, the
impact on the project, the scope of tests, the nature of the
project, and the lifetime of the system. Additionally, the study
provided a list of types of TD related to the identified decision-
making criteria, helping software engineers to understand
which criteria apply to specific TD types.

Alves et al. [24] conducted a systematic mapping study on
identification and management of TD. The search strategy was
performed in 8 DLs (namely ACM, IEEE, ScienceDirect, En-
gineering Village, SpringerLink, Scopus, Citeseer, and DBLP)
from 2010 to 2014. After the selection criteria, the authors
selected 100 studies.

The authors proposed: (a) a taxonomy of TD types; (b) a list
of proposed TD management strategies; (c) an analysis of the
types of empirical evaluation performed on the studies; (d) a
list of data sources used in TD identification activities; and (e)
a list of software visualization techniques used to identify and
manage TD.

Additionally, Fernandez-Sanchez et al. [25] performed a
systematic mapping study to identify elements that are re-
quired to manage TD. The search strategy was performed in
six DLs (IEEE, ACM, Scopus, ScienceDirect, Web of Science,
and SpringerLink) until 2015. After the selection criteria, the
authors selected 63 studies.

The study identified the elements of technical debt man-
agement and the methods that support the elements in the in-
dustrial environment. Moreover, the authors classified the ele-
ments into three groups (basic decision-making factors, cost
estimation techniques, practices, and techniques for decision-
making) and mapped them according to three stakeholders’
points of view (engineering, engineering management, and
business-organizational management).

Li et al. [26] conducted a systematic mapping study, which
was aimed at collecting studies on TD and TDM to identify
and classify activities employed for managing TD. The search
strategy was performed in seven DLs (namely IEEE, ACM, Sco-
pus, ScienceDirect, Web of Science, Inspec, and SpringerLink)
between 1992 and 2013. As a result, 94 studies were found
for further analysis. The study classified TD into 10 types,
identified 8 TDM activities, and 29 tools for TDM.

Ampatzoglou et al. [27] performed a systematic literature
review to analyze the financial aspects of managing technical
debt. The search was conducted until 2013 in seven DLs: ACM,
Google Scholar, IEEE, SpringerLink, ScienceDirect, Scopus,
and Web of Science. At the end of the selection process, 69 pri-
mary studies were retained for further analysis. The results of

the study suggest that the most common financial terms that
are used in TD research are principal and interest, whereas
the financial approaches that have been more frequently ap-
plied for managing technical debt are real options, portfolio
management, cost/benefit analysis, and value-based analysis.

Lunde and Colomo-Palacios [28] conducted a systematic lit-
erature review to explore the relationship between continuous
software engineering practices (such as continuous integra-
tion, delivery, deployment, and DevOps) and the accumula-
tion of technical debt. The search strategy was performed in
four DLs: ACM, IEEE, ScienceDirect, and SpringerLink until
2019. After applying filtering criteria, 23 papers were selected
for in-depth analysis. The results suggest that while contin-
uous practices aim to enhance software quality and delivery
speed, they can also contribute to the accumulation of techni-
cal debt if not managed properly.

Nielsen et al. [29] conducted a systematic literature review
on TDM for digital government. The search strategy was con-
ducted in 6 DLs (ACM, Google Scholar, IEEE, ProQuest, Sco-
pus, and the Web of Science) between 2017 and 2020. After
the selection criteria, the authors selected 49 studies.

The authors identified several gaps in the existing literature,
such as an absence of theory explaining the relation of events,
a shortage of studies conducted in the public sector, and an
absence of specific techniques to study the actual technical
debt management behavior. The authors proposed a research
agenda for digital government scholars to address these gaps.

Becker et al. [30] performed a systematic literature review
to examine how trade-off decisions related to TD are studied
in software engineering. The authors focus on time-based
trade-offs, i.e., how short-term benefits and long-term costs
are balanced in TD management. The search was constrained
until 2014 in three data sources: ACM, IEEE, and Scopus. At
the end of the selection process, there are only 9 studies that
explicitly used empirical methods to study specific trade-off
decisions. The results explored that while many studies em-
phasize engineering measures and idealized decision-making
processes, few have investigated how decisions are made in
practice.

Albuquerque et al. [31] performed a systematic mapping
study on managing TD using intelligent techniques. The
search strategy was performed in four data sources: ACM,
IEEE, Scopus, and Engineering Village from 2012 to 2021. After
the selection criteria, the authors selected 150 studies.

The results of the study identified a variety of intelligent
techniques employed in TDM, including machine learning,
data mining, and artificial intelligence. Additionally, the au-
thors emphasized the need to expand research beyond code-
level TD to address other forms, such as architectural and
design debt.

Bogner et al. [32] conducted a systematic mapping study to
provide an overview and characterization of the types of TD
and antipatterns in AI systems. The search strategy was con-
ducted in Google Scholar until mid-2020, selecting 21 relevant
studies for detailed analysis. The results of the study suggest
that there are 4 new TD types, namely data, model, configura-
tion, and ethics debt, in AI-based systems. Additionally, the
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authors identified 72 antipatterns, most of which are related to
data and model deficiencies, and 46 solutions that are either
to address specific TD types, antipatterns, or TD in general.

Finally, Saeeda et al. [33] conducted a multivocal literature
review on non-TD (NTD) in software development. The search
process was performed until October 2022 in the Google
Scholar engine, retrieving 40 papers for in-depth analysis. The
results of the study identified 5 NTD types, namely process
debt, people debt, social debt, cultural debt, and organiza-
tional debt. Additionally, the study explored the causes of
NTD (e.g., poor customer responsiveness, Insufficient com-
munication, weak organizational culture, etc.) and potential
mitigation strategies (e.g., measurement of process, continued
monitoring and communication, creating the right mindset in
the company, etc.).

While prior studies have examined particular aspects of
TD in AI systems, such as model versioning, data quality, or
architecture-level concerns, our work provides a more com-
prehensive and updated perspective by analyzing the evolu-
tion of the concept and management of TD in response to
the adoption of ML and GenAI. Furthermore, contrary to pre-
vious reviews that exclusively focused on ML or on classical
topic modeling TD categories, we adopt a more comprehen-
sive approach that incorporates academic and gray literature
to capture emerging industry practices. Building on these
concepts, our study employs a dual-perspective approach,
anchored by two complementary themes: adapting software
engineering practices for AI (SE4AI) and understanding how
AI alters the software lifecycle (AI4SE). This dual lens reflects
the bidirectional influence between AI technologies and TD,
offering a comprehensive and nuanced understanding of the
relationship. This positioning ensures that our work is relevant
for researchers and practitioners seeking to understand and
navigate the new forms of debt introduced, initially in ML and
now in the GenAI era.

3. Methodology

To understand the state of the art and the practice of Tech-
nical Debt prioritization, we conducted a multivocal literature
review based on the guidelines defined by Garousi et al. [34].
In this Section, we describe the goal and the research ques-
tions (Section 3.1) and report our search strategy approach
(Section 3.2). Moreover, we performed a quality assessment
(Section 3.3) for each included paper and outlined the data
extraction and the analysis (Section 3.4) of the corresponding
data.

3.1. Goal and Research Questions

Our main goal is to explore the evolution of TD in the con-
text of the changing landscape of software development and
operations. Specifically, we want to examine how TD has
evolved alongside the transition from traditional DevOps to
MLOps and, more recently, to GenAIOps.

Based on our goal, we defined two research questions (RQs ):

RQ1

How does TDM need to be tailored to match the needs
of developing AI-driven software?

By addressing RQ1, we aim to identify the specific adap-
tations required in TDM strategies and tools to effectively
manage debt in today’s evolving AI landscape. This includes
understanding how existing methodologies may need to be
restructured, what new techniques or automation capabilities
are necessary, and how organizations can proactively mitigate
Technical Debt in AI-centric development workflows.

RQ2

How does the use of AI during code development affect
TDM?

By answering RQ2, we aim to provide a balanced perspec-
tive on how AI influences TDM, highlighting both its advan-
tages and the unintended consequences that organizations
must consider when leveraging AI for software development.
As an example, AI has the potential to enhance TDM in sev-
eral ways. First, it can automate code refactoring, optimize
maintenance efforts, predict debt accumulation, and improve
decision-making through intelligent recommendations. How-
ever, it’s important to note that AI itself introduces new forms
of Technical Debt, such as model drift, data dependencies,
and explainability concerns. These could complicate software
maintenance and long-term sustainability.

3.2. Search Strategy

The search strategy involves the outline of the most relevant
bibliographic sources and search terms, the definition of the
inclusion and exclusion criteria, and the selection process rele-
vant to the inclusion decision. Our search strategy is depicted
in Figure 2.

Search terms. When constructing the search string, we or-
ganized it into three main components. First, we aimed to
explicitly include the most commonly studied types of Tech-
nical Debt, as identified in prior literature, to ensure we cap-
tured works related to debt prioritization and categorization.
Second, we incorporated the term “debt”. Third, we aligned
the query with the overall objective of our review by incorpo-
rating terms related to Machine Learning and its associated
paradigms (e.g., Deep Learning, Generative AI). This layered
approach allowed us to systematically retrieve both focused
and peripheral studies addressing the evolving relationship
between TD and AI-driven software development. The devel-
oped search string contained the following search terms:

(Technical OR design OR architect* OR test OR
implementation OR documentation OR requirement OR
code OR Infrastructure OR versioning OR defect OR build

OR testing)
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AND
Debt
AND

(GenerativeAI OR “Generative AI” OR “Machine Learning”
OR MLOps OR LLMOps OR SLM OR GenAI OR “Gen AI” OR
SLMOps OR “large language model*” OR “small language

model*” OR GPT* OR ChatGPT OR LLM OR Gemini OR
Llama OR ML OR GenAIOps)

Bibliographic sources. We selected the list of relevant bibli-
ographic sources for peer-reviewed literature following the
suggestions of Kitchenham and Charters [35], since these
sources are recognized as the most representative in the soft-
ware engineering domain and used in many reviews. The list
for the white literature includes: ACM Digital Library, IEEEX-
plore Digital Library, Web of Science, and Scopus. For the grey
literature (e.g., non-peer-reviewed), we included the first 200
entries from each search from Google, Yahoo, and Bing. This
limit was set to balance breadth and relevance, as general-
purpose search engines tend to produce redundant results,
often favoring mirrored content and infinite scrolling. We
found that extending beyond 200 entries added little value, as
many hits were duplicates or low-quality. Duplicates were re-
moved during screening, after which we applied our inclusion

criteria.

Inclusion and exclusion criteria. We defined inclusion and
exclusion criteria to be applied to the title and abstract (T/A),
the full text (F), or both cases (All), as reported in Table 2.

Table 2: Inclusion and exclusion criteria

Criteria Assessment Criteria Step

Inclusion
Papers discussing TD management have changed
when developing ML or GenAI applications

All

Papers discussing how ML and GenAI changed the
software development lifecycle concerning TD

All

Exclusion

Papers not fully written in English T/A

Duplicated papers and Books T/A

Out of topic T/A

Non peer-reviewed papers T/A

Not accessible by institution T/A

Position papers/discussion papers that present a
new method without validation

T/A

Videos T/A

Paper about Generative AI dated before 2021 T/A

Search and selection process. The search was conducted
in September 2024 and included all the publications available
until this period. The application of the search terms returned
894 unique works, composed of 433 unique peer-reviewed
papers and 461 online entries.

Testing the applicability of inclusion and exclusion criteria:
Before applying the inclusion and exclusion criteria, we tested
their applicability [36] on a subset of 10 papers (assigned to
two authors) randomly selected from the papers retrieved.

Applying inclusion and exclusion criteria to title and ab-
stract: We applied the refined criteria to the remaining 894
works. Each work was read by two authors; in the case of dis-
agreement, a third author was involved in the discussion to
clear up any such disagreement. For 27 works, we involved
a third author. Out of the 894 initial papers, we included 82
based on title and abstract. The application of the inclusion
and exclusion criteria resulted in an almost perfect agreement
(Cohen’s Kappa coefficient = 0.8652).

Full reading: We fully read the 82 papers included by title
and abstract, applying the same criteria defined in Table 2
and assigning each one to two authors. We involved a third
author for 6 papers to reach a final decision. Based on this
step, we discarded 20 papers and therefore, selected 62 papers
as possibly relevant contributions, as reported in Table 4. The
application of the inclusion and exclusion criteria resulted in
a substantial agreement (Cohen’s Kappa coefficient = 0.7944).

3.3. Quality Assessment

Before proceeding with the review, we checked whether the
quality of the selected papers was sufficient to support our
goal and whether the quality of each paper reached a certain
quality level. We performed this step according to the protocol
proposed by Dybå and Dingsøyr [37]. To evaluate the selected
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papers, we prepared a checklist (Table 3) with a set of specific
questions. We ranked each answer, assigning a score on a
five-point Likert scale (0=poor, 4=excellent). A paper satisfied
the quality assessment criteria if it achieved a rating higher
than (or equal to) 2. To account for the different nature of
white and grey literature while maintaining methodological
consistency, we adopted a differentiated quality assessment
strategy grounded in the same protocol. While all sources
were evaluated using this common framework, a more flex-
ible approach was applied to the grey literature. Given that
the concepts explored, particularly the relationship between
DataOps and TD in the GenAI era, are still emerging and only
partially addressed in peer-reviewed work, we selected a sub-
set of criteria from the checklist for non-academic sources.
Specifically, we applied criteria 2, 3, 10, and 11 (in bold in Ta-
ble 3), which assess the clarity of the stated aim, contextual
grounding, relevance of contributions, and practical applica-
bility. This selective strategy ensured that the included grey
literature maintained both relevance and credibility in relation
to the study’s objectives.

Table 3: Quality Assessment Criteria

QAs Quality Assessment Criteria (QA)

QA1 Is the paper based on research (or is it merely a “lessons learned”
report based on expert opinion)?

QA2 Is there a clear statement of the aims of the research?

QA3 Is there an adequate description of the context in which the
research was carried out?

QA4 Was the research design appropriate to address the aims of the
research?

QA5 Was the recruitment strategy appropriate for the aims of the re-
search?

QA6 Was there a control group with which to compare treatments?

QA7 Was the data collected in a way that addressed the research issue?

QA8 Was the data analysis sufficiently rigorous?

QA9 Has the relationship between researcher and participants been
considered to an adequate degree?

QA10 Is there a clear statement of findings?

QA11 Is the study of value for research or practice?

Response scale: 4 (Excellent), 3 (Very Good), 2 (Good), 1 (Fair), 0 (Poor)

Among the 894 papers included in the review from the
search and selection process, only 62 were not discareded
in the previous steps and also fulfilled the quality assessment
criteria, as reported in Table 4.

Table 4: Results of search and selection, and application of quality assessment
criteria

Step # Papers

Retrieval from bibliographic sources (unique) 894

Reading by title and abstract -812

Full reading -20

Quality Assessment Criteria -0

Primary Studies 62

3.4. Data Extraction

We extracted data from the Primary Studies (PSs) that sat-
isfied the quality assessment criteria and categorized them
into two main categories. The first category includes stud-
ies addressing the question: “How has Technical Debt (TD)
management changed when developing ML or GenAI applica-
tions?”—corresponding to RQ1. The second category includes
studies focusing on “How ML and GenAI have influenced the
software development lifecycle about TD”—corresponding to
RQ2. Following this initial classification, we defined the spe-
cific data to be extracted for each category. The data extraction
form, along with the mapping of the information needed to
answer each research question, is summarized in Table 5. For
RQ1, we began by identifying the study’s main goal theme to
understand its context. We then extracted the types of TD
management activities described, as well as the types of TD
considered. In both categories, we identified the challenges
reported to highlight areas requiring further investigation.

For RQ2, in addition to the challenges, we also extracted
the opportunities discussed in the studies. Furthermore, we
focused on two key aspects: the impact of the work and the
main problem it aimed to address.

Table 5: Data Extraction

RQs Data Outcome

RQ1

GoalsThemes Study GoalTheme

Activities Activities of TD management

Type Type of TD identified in the work

Challenges Challenges faced in the work

RQ2

Impact What is the impact of the work

Problem Main problem addressed

Challenges Challenges faced in the work

Opportunities Opportunities encountered in the work

3.5. Replicability

To allow replication and extension of our work by other
researchers, we prepared a replication package6 for this study
with the complete results obtained.

4. Results

In this section we present the results to answer our RQs.
Each study was first categorized based on its alignment with
one of two conceptual perspectives, which we use as a short-
hand to map to our research questions.

Studies addressing RQ1 (“How has Technical Debt (TD)
management changed when developing ML or GenAI applica-
tions?”) are framed as focusing on adapting to emerging soft-
ware”, while studies aligned with RQ2 (“How ML and GenAI
have influenced the software development lifecycle about
TD”) reflect the perspective of software evolving as a result

6https://doi.org/10.6084/m9.figshare.28930268
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Table 6: White and gray literature distribution

Code PSs #

Conference
Paper (White)

[PS1], [PS2], [PS3], [PS4], [PS5], [PS6], [PS7], [PS8],
[PS9], [PS10], [PS11], [PS12], [PS14], [PS15], [PS16],
[PS17], [PS18], [PS19]

18

Journal
Article (White)

[PS13] 1

Grey Sources [PS20], [PS21], [PS22], [PS23], [PS24], [PS25], [PS26],
[PS27], [PS28], [PS29], [PS30], [PS31], [PS32], [PS33],
[PS34], [PS35], [PS36], [PS37], [PS38], [PS39], [PS40],
[PS41], [PS42], [PS43], [PS44], [PS45], [PS46], [PS47],
[PS48], [PS49], [PS50], [PS51], [PS52], [PS53], [PS54],
[PS55], [PS56], [PS57], [PS58], [PS59], [PS60], [PS61],
[PS62]

43

Table 7: RQ-baseds distribution

RQs PSs #

RQ1 [PS1], [PS2], [PS3], [PS4], [PS6], [PS7], [PS8], [PS9],
[PS10], [PS11], [PS12], [PS13], [PS14], [PS15], [PS16],
[PS17], [PS18], [PS19], [PS20], [PS23], [PS25], [PS26],
[PS28], [PS32], [PS35], [PS36], [PS37], [PS41], [PS42],
[PS43], [PS44], [PS45], [PS46], [PS48], [PS50], [PS52],
[PS53], [PS54], [PS55], [PS56], [PS57], [PS60], [PS61],
[PS62]

44

RQ2 [PS5], [PS21], [PS22], [PS24], [PS27], [PS29], [PS30],
[PS31], [PS33], [PS34], [PS38], [PS39], [PS40], [PS47],
[PS49], [PS51], [PS58], [PS59]

18

of its usage”. These labels are not substitutes for the formal re-
search questions but serve to clarify the thematic focus during
categorization and discussion.

Before delving into the specifics of each RQ, we first ana-
lyzed the overview of the publication years and the countries
of affiliation of the primary studies.

4.1. Preliminary analysis on the number of Primary Studies.

The final pool of 62 work extracted from the described
methodology can be categorized in multiple ways.

The first main distinction we need to address is the one be-
tween works being part of white literature (or peer-reviewed)
and those being part of the grey literature, described in Table 6.
In our selected primary studies (PSs), we included 19 works
from white literature (composed of 18 conference papers and
1 journal article) and 43 works from grey literature. This means
that almost 70% of the PSs are from grey literature. Another
way to categorize is by the main research question each PS ad-
dresses and is depicted in Table 7. In this classification we can
assign 44 PSs to the first group and 18 PSs related to the sec-
ond, which means that according to this classification almost
71% of the works are related to the first RQ.

The collected data shows a clearly increasing trend in aca-
demic and industry activity around the topic, showing the
temporal evolution of attention to TD in the context of AI and
ML (Figure 3).

The fact that some PSs included in the analysis originate
from non-peer-reviewed sources has made it difficult to accu-
rately trace their publication year. As a result, these studies
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Figure 3: Number of PSs per year

are labeled as “N/A” in the figure. Despite this limitation, the
overall trend observed in the remaining PSs provides a strong
indication of how this topic has gained prominence over the
years.

It is worth noting that the release of generative AI tools
like ChatGPT in 2022 has led to a significant rise in interest.
The rapid adoption and integration of these technologies has
not only sped up the deployment of AI-driven applications
but also raised concerns about the long-term sustainability,
maintainability, and operational risks associated with ML sys-
tems. This heightened awareness has led to a surge in discus-
sions surrounding TD specific to ML, including issues related
to model degradation, data dependencies, ethical consider-
ations, and the complexities of continuous monitoring and
updating of AI systems.

4.2. How does TDM need to be tailored to match the needs of
developing AI-driven software (RQ1)

To answer RQ1, we extracted 4 different factors: Study Goal
Theme, TD management activities, TD types, and Challenges
faced in the work (Table 5).

The analysis revealed a predominant focus on a partic-
ular type of TD, known as ”TD specific to ML”. This trend
highlights the growing recognition of ML-specific TD [PS12],
[PS17], [PS19], [PS20], [PS23], [PS32], [PS37], [PS42], [PS44],
[PS45], [PS46], [PS48], [PS50], [PS52], [PS53], [PS54], [PS56],
[PS57], [PS60], [PS61], [PS62] as a distinct and pressing con-
cern, prompting researchers to explore new methodologies
for identifying, understanding, and mitigating its unique chal-
lenges. Unlike traditional software engineering TD, ML TD
introduces complexities related to model performance degra-
dation, data dependencies, and the dynamic nature of learn-
ing systems (Figure 4).

A particularly noteworthy trend within this field is the em-
phasis on data-related TD. Nine studies [PS17], [PS21], [PS32],
[PS42], [PS45], [PS46], [PS48], [PS54], [PS61] have specifically
addressed data debt, emphasizing the critical role of data in
the ML lifecycle and its direct impact on TD accumulation in
AI systems. Unlike traditional TD, which is primarily associ-
ated with code and architectural decisions, ML TD is inher-
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Figure 4: Study Themes (RQ1)

ently linked to data quality, availability, and its evolution over
time.

A clear example of this relationship is seen in the concepts
of data drift and concept drift, which, much like traditional TD,
describe the gradual degradation of system performance over
time. However, in the case of ML, this degradation is driven by
the strong coupling between models and their underlying data
distributions. As data shifts—whether due to external factors,
user behavior changes, or evolving real-world conditions—ML
models can become outdated or misaligned. This necessitates
frequent updates, retraining, or redesign efforts to maintain
optimal performance.

These insights confirm that ML-specific TD is distinct from
traditional software debt and necessitates specialized strate-
gies for monitoring, managing, and mitigating its impact. The
prevalence of data-related objectives within the analyzed stud-
ies further indicates that addressing ML TD requires a mul-
tidisciplinary approach, incorporating best practices in data
engineering, continuous monitoring, and model lifecycle man-
agement to ensure the long-term sustainability and reliability
of AI-driven systems. Eight PSs [PS10], [PS21], [PS24], [PS41],
[PS50], [PS52], [PS53], [PS56] specifically address MLOps, re-
flecting a growing interest in operationalizing machine learn-
ing while systematically tackling its TD.

This finding indicates that researchers and practitioners are
increasingly viewing MLOps as a crucial discipline for mitigat-
ing the risks associated with the deployment of ML models.
These risks include the need to automate model retraining,
ensure reproducibility, and integrate continuous monitoring
mechanisms. This will help to manage evolving data and
model performance over time. The convergence of TD in ML
and MLOps research indicates a shift toward more structured
and scalable approaches to sustaining AI-driven systems in
production environments.

Figure 5 provides a comprehensive overview of the various
TD management activities identified in the PSs analyzed. As

Figure 5: RQ1: Activities of different PSs

illustrated, the activities extend across the entire range of TD
management, from initial identification to proactive preven-
tion and subsequent mitigation. However, it should be noted
that for several studies [PS3], [PS24], [PS26], [PS32], [PS37],
[PS56], [PS57], [PS62] a specific focus on TD management
activities could not be determined based on the available in-
formation.

The most significant finding from the Figure is that the iden-
tification of TD [PS1], [PS2], [PS6], [PS7], [PS8], [PS10], [PS11],
[PS13], [PS14], [PS15], [PS16], [PS18], [PS19], [PS20], [PS21],
[PS23], [PS25], [PS35], [PS42], [PS43], [PS44], [PS46], [PS48],
[PS50], [PS52], [PS54], [PS60] emerges as the predominant ac-
tivity across the analyzed works, emphasizing a fundamental
aspect of TD management. Recognizing and identifying TD
instances is not only essential but also the most extensively
explored area in the current literature. The increased focus on
identification is a key response to the broader industry and
academic initiatives aimed at systematically detecting, catego-
rizing, and documenting various forms of TD, particularly in
the context of machine learning and AI-driven systems, where
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complexity is increasing.
Following identification, the activities of prevention [PS4],

[PS9], [PS10], [PS12], [PS17], [PS21], [PS36], [PS61] and miti-
gation [PS42], [PS43], [PS44], [PS46], [PS60] are the next most
frequent areas of focus among the primary studies. The promi-
nence of these two activities is also unsurprising, given their
complementary role in effective TD management. Prevention
strategies aim to proactively avoid the accumulation of TD
through improved design decisions, rigorous development
practices, and adherence to best practices, which are particu-
larly crucial in rapidly evolving machine learning ecosystems.
Mitigation, on the other hand, involves reactive measures to re-
duce the impact of already accumulated debt. These measures
encompass techniques such as refactoring, model retraining,
and data cleansing to maintain or restore system integrity and
performance.

Figure 6 presents a detailed breakdown of the various types
of TD identified across the PSs. It is important to note that
for certain studies [PS2], [PS9], [PS32], [PS36], [PS41], [PS43],
[PS52], [PS53], [PS56], [PS57], and [PS62] we were unable to
classify the specific type of TD due to insufficient information
or unclear definitions provided within these works.

The data presented indicates that infrastructure debt [PS1],
[PS4], [PS7], [PS8], [PS10], [PS11], [PS12], [PS13], [PS15], [PS16],
[PS17], [PS18], [PS23], [PS26], [PS35], [PS36], [PS42], [PS44],
[PS45], [PS46], [PS48], [PS50], [PS61] is the most frequently
identified type of debt, with 23 separate studies addressing it.
This prevalence highlights a significant challenge in manag-
ing the underlying hardware, cloud resources, deployment
pipelines, and continuous integration/continuous deploy-
ment (CI/CD) environments essential for supporting robust
ML systems. In the context of ML, common challenges often
include suboptimal resource management, lack of scalability,
and inadequate maintenance of deployment environments.
These issues can result in performance bottlenecks, downtime,
and increased operational costs.

The second most prevalent TD type identified is code
debt [PS3], [PS12], [PS13], [PS16], [PS18], [PS19], [PS23], [PS24],
[PS25], [PS42], [PS44], [PS45], [PS46], [PS48], [PS50], [PS60]
as indicated in 16 studies. In the context of ML, the rapid ex-
perimentation and iterative development practices towards
higher performance of employed models, can swiftly result in
the accumulation of code-related debt. Over time, this debt
can impede debugging, refactoring, and the integration of new
features or models, hindering the overall maintainability of
the system and its evolution.

Interestingly, both architectural debt and data debt are iden-
tified as the third most frequent types, with each observed
in 14 studies. Architectural debt [PS7], [PS8], [PS10], [PS11],
[PS12], [PS15], [PS18], [PS20], [PS25], [PS42], [PS45], [PS46],
[PS50], [PS61] differs from infrastructure debt in that it con-
cerns the high-level system design and structure, including
decisions related to modularity, interoperability, and adapt-
ability of the overall system architecture. Poor architectural
choices in ML systems can result in rigid dependencies, limit
scalability, and make it difficult to integrate new algorithms or
technologies.

The prevalence of data debt [PS6], [PS8], [PS10], [PS12],
[PS14], [PS15], [PS16], [PS17], [PS21], [PS25], [PS35], [PS48],
[PS54], [PS60] in the context of ML and GenAI is not unex-
pected, given the central role that data plays in defining sys-
tem performance. Data debt encompasses a range of issues,
including inadequate data quality, outdated datasets, inade-
quate data governance, and inefficiencies in data pipelines.
These challenges are particularly salient in these fields, as sub-
optimal or mismanaged data can significantly compromise
model performance, introduce bias, and necessitate costly
retraining efforts.

Figure 7 presents an overview of the key challenges associ-
ated with TD in the analyzed PSs. Notably, a significant portion
of studies did not explicitly identify specific challenges [PS2],
[PS4], [PS8], [PS11], [PS14], [PS16], [PS17], [PS18], [PS20],
[PS23], [PS24], [PS26], [PS36], [PS41], [PS45], [PS48], [PS52],
[PS53], [PS57], [PS62]. This dominance of studies without
identified challenges suggests a potential gap in the litera-
ture, indicating that while TD is widely discussed, its specific
challenges may not always be systematically categorized or
explicitly addressed.

Among the challenges that have been identified, issues re-
lated to ML pipelines and feedback loops [PS1], [PS6], [PS9],
[PS10], [PS12], [PS13], [PS15], [PS19], [PS21], [PS25], [PS32],
[PS37], [PS42], [PS46], [PS50], [PS54], [PS56],[PS60],[PS61] are
the most frequently mentioned, identified in 19 studies. This
trend aligns with the growing interest in MLOps, which has
emphasized the need for automated pipelines and structured
feedback loops to enhance model development, deployment,
and maintenance. The rising adoption of these systems is also
contributing to the accumulation of TDs as automation mech-
anisms introduce new complexities and maintenance burdens.
Ensuring the effective functioning of feedback loops without
introducing unintended biases or reinforcing outdated models
has become a key concern within the ML community.

Following, technical and architectural debt [PS7], [PS10],
[PS12], [PS13], [PS15], [PS21], [PS25], [PS35], [PS37], [PS44],
[PS46], [PS56], [PS60], [PS61] remain prominent concerns.
These issues primarily arise from the rapid evolution of ML
frameworks, the challenge of maintaining scalable architec-
tures, and the accumulation of legacy code that is often not
designed with long-term maintainability in mind. The com-
plexity of AI-driven software systems further increases archi-
tectural TD, as dependencies between components, model re-
training workflows, and integration with evolving data sources
require continuous adaptations and refinements. This is a
particularly relevant point in ML-based architectures as most
of the dependencies between components rely on external li-
braries. Such external libraries are developed and delivered by
entities external to the development team, making the team re-
sponsible on assessing the risk of abandonment of such tools
before adopting them in their project [38]. It is interesting
to note that data dependencies and evolution [PS6], [PS9],
[PS10], [PS12], [PS15], [PS21], [PS32], [PS42], [PS50], [PS56],
[PS61] do not rank among the top three challenges, despite
the well-established centrality of data in ML and GenAI appli-
cations. Given the critical role that data quality, availability,
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Figure 6: RQ1: TD Types of different PS

Figure 7: RQ1: Challenges of different PSs

and consistency play in model performance and sustainabil-
ity, one would expect data-related challenges to be among
the most frequently discussed. This discrepancy may be in-
dicative of a twofold phenomenon: first, that data issues are
widely acknowledged; second, that they are often considered
inherent to ML workflows rather than explicitly framed as a
form of TD. Alternatively, this lack of emphasis could indicate
a need for further research into how evolving data dependen-
cies contribute to long-term ML system maintainability and
TD accumulation.

4.3. AI usage affect on TDM during code development (RQ2)

To answer RQ2, we extracted 3 different factors.
Figure 8 provides a detailed overview of the various impact

categories that have been investigated in the PSs. It is impor-
tant to note that in this case only for one work was not possible
to identify the impact [PS55].

The category with the highest mentions for impact is TD
Management & Reduction [PS5], [PS24], [PS27], [PS29], [PS30],
[PS31], [PS34], [PS40], [PS51], [PS55]. This underscores the
increasing awareness and emphasis on addressing TD within
AI and ML systems. The focus on managing and reducing
TD indicates a shift towards more sustainable development
practices, with the aim of enhancing long-term maintainabil-
ity, scalability, and efficiency in AI-driven applications. The
growing recognition of TD’s impact highlights the need for
structured frameworks and automation strategies to mitigate
its effects.

The second most frequently identified impact category is
AI-Driven Code Automation & Management [PS22], [PS24],
[PS27], [PS29], [PS31], [PS34], [PS40], which highlights the
growing influence of AI in automating various aspects of soft-
ware engineering, from optimizing development practices to
improving maintainability. AI-powered automation is being
used more and more to streamline workflows, reduce manual
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Figure 8: RQ2: Impact of AI on TDM studied by different PSs

intervention, and enhance software quality having the poten-
tial to positively impact software lifecycle management and
mitigating the accumulation of new TD. This trend reflects
a broader movement toward integrating intelligent systems
that support continuous integration, automated refactoring,
and efficient TD management. The intersection of AI and
software engineering practices suggests a promising direction
for improving the sustainability and adaptability of AI-driven
solutions.

Figure 9 provides an in-depth analysis of the various chal-
lenges associated with TD as identified in the examined PSs.
It is important to note that, also in this case, for some stud-
ies [PS31], [PS34], [PS32], [PS40], [PS59], it was not possible to
determine specific TD-related issues due to a lack of sufficient
details or ambiguous descriptions within these works.

The category with the highest mentions for problems
is Maintainability & Software Maintenance [PS22], [PS30],
[PS33], [PS47], [PS49], [PS55], [PS58]. This indicates an increas-
ing emphasis on ensuring that AI and ML systems maintain
their resilience, adaptability, and ease of maintenance over
time. Given the rapid evolution of ML models and their de-
pendencies, maintaining software quality and performance
in the long term has become a critical factor. The complexity
of continuously updating models, managing dependencies,
and ensuring compatibility with evolving infrastructure con-
tributes significantly to TD accumulation.

The second most frequently identified category is MLOps
& Automation [PS24], [PS27], [PS29], [PS38], [PS39], [PS51],
highlighting, once again, the ongoing struggle to achieve seam-
less automation in ML-based systems. While MLOps practices
have been increasingly adopted to standardize and streamline
model deployment, monitoring, and retraining, achieving a
high level of automation remains both an objective and a chal-

lenge. The difficulties stem from the need to integrate various
tools, orchestrate workflows, and manage data pipelines ef-
fectively while mitigating TD-related risks. The complexity of
ML automation further compounds TD issues, especially in
large-scale, production-grade AI systems where continuous
delivery and adaptation are critical.

The last factor, Challenges, is depicted in Figure 10. In this
case, challenges were not explicitly identified in three stud-
ies [PS31], [PS34], [PS59].

The results presented in the figure indicate that the pri-
mary challenges revolve around Code Quality, Maintainabil-
ity, and the Development Process [PS22], [PS33], [PS38],
[PS40], [PS55], [PS58]. This finding is consistent with pre-
vious research in the impact category, underscoring the on-
going commitment to maintaining high-quality code while
ensuring long-term maintainability, particularly during the
development phase. The emphasis on these aspects reflects
the necessity for robust engineering practices to effectively
manage the increasing complexity of AI and ML systems while
minimizing TD accumulation.

Another set of notable challenges pertains to AI & ML-
specific TD [PS5], [PS33], [PS39], [PS49], [PS55], highlighting
that many issues related to TD in AI remain unresolved. The
unique characteristics of AI-driven systems, such as evolving
dynamic dependencies, model drift, and the lack of standard-
ized maintenance strategies, contribute to persistent chal-
lenges that require further research and practical solutions.

The category of AI Governance, Explainability, and Com-
pliance [PS27], [PS29], [PS30], [PS33] is also a significant chal-
lenge. This shows that there is a growing demand for trans-
parency and regulatory adherence in AI systems. As machine
learning models are increasingly used in important situations,
it is important to ensure that they are fair, easy to understand,
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and follow the law and ethics. The combination of governance
and TD shows the need for organized ways to make sure that
AI systems are responsible and follow the best practices.

5. Discussion

The results of this research provide a thorough view of how
TDM is changing in response to the rise of AI-driven software,
and how the integration of AI into software development is im-
pacting the accumulation and management of TD. Specifically,
the findings presented in this study are derived from a com-
bined analysis of both white (academic) and grey (practitioner)
literature. This dual lens is essential for capturing not only the
conceptual evolution of TD in AI-driven systems but also the
practical strategies currently employed in the field. Academic
sources primarily contribute to the theoretical framing of TD

by offering various classifications, taxonomies, and method-
ological perspectives. On the other hand, grey literature high-
lights real-world practices, particularly the operationalization
of MLOps and the implementation of automation to manage
evolving data and model behavior. Recognizing these com-
plementary viewpoints helps ground our discussion in both
rigor and relevance. Table 8 summarizes the key differences in
findings across these two source types.

5.1. Tailoring TDM for AI-driven software development (RQ1)

Our analysis indicates that TD specific to ML has emerged as
a prevalent concern within the current literature. The unique
and dynamic nature of ML, particularly compared to tradi-
tional software development practices, demands specialized
attention. ML-specific complexities—such as model degra-
dation, evolving performance criteria, and dynamic data de-
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Table 8: Summary of Findings by Source Type

Aspect White Literature (Academic) Grey Literature (Industry)

RQ1 – TD in ML/GenAI
Systems

Conceptualization of ML-specific TD types (e.g.,
data, model, infrastructure). MLOps introduced as a
structured response.

Emphasis on practical MLOps pipelines, tooling issues, and
deployment bottlenecks. Frequent references to real-world
challenges (e.g., retraining triggers).

RQ2 – Impact of Using AI
in SE

Emerging concerns on explainability debt, compli-
ance, and governance. AI-enhanced SE tools dis-
cussed conceptually.

Focus on developer productivity, toolchains (e.g., Copilot,
ChatGPT), and maintainability risks from GenAI-generated
code.

Tooling and Practice Framework proposals and TD taxonomies. Hands-on guidance, DevOps/MLOps integrations, and prac-
titioner heuristics.

Perspective Theory-driven, focusing on design implications and
methodological rigor.

Experience-driven, often emphasizing adoption hurdles, in-
formal best practices.

pendencies—pose significant challenges that traditional TD
management practices are often ill-equipped to handle effec-
tively.

A key finding from our reviewed studies highlights the criti-
cal importance of data-related TDs. Given the central role that
data quality and availability play in AI-driven systems, it is
clear that robust and integrated data engineering practices are
essential. Moreover, the dynamic nature of data itself further
amplifies the need for continuous and adaptive MLOps prac-
tices. Ensuring sustainable AI systems necessitates proactive
management of data debt, underscoring the strategic need
for enterprises to integrate comprehensive and dynamically
adaptive data governance and engineering frameworks.

MLOps (Machine Learning Operations) is widely recognized
as the natural evolution of DevOps for ML-based applications.
It extends automation and governance across the full AI life-
cycle, with a particular emphasis on data and model manage-
ment [39]. A key differentiator when compared to DevOps is
its emphasis on continuous training, a necessity in real-world
deployments where changing data distributions can lead to
model degradation. By automating performance monitoring,
triggering retraining workflows, and maintaining traceabil-
ity across data, code, and models, MLOps provides the op-
erational backbone for sustaining data-centric AI systems in
production.

Moreover, our findings consistently identified infrastructure
and code debt as critical areas requiring attention. Infrastruc-
ture TD, closely linked to resource allocation and continuous
integration/deployment environments, directly influences op-
erational efficiency and scalability, potentially causing signifi-
cant performance bottlenecks and increased operational costs
if not adequately managed.

A clear and increasingly endorsed solution to these chal-
lenges is the adoption of MLOps practices. The growing ac-
knowledgment within both academia and industry of MLOps’
potential to systematically mitigate deployment risks associ-
ated with ML models underscores its strategic importance.
MLOps practices enable enterprises to automate critical ac-
tivities such as model retraining, ensure reproducibility, and
implement robust continuous monitoring mechanisms. This
strategic shift toward structured and scalable management

practices is vital for sustaining AI-driven systems in competi-
tive production environments.

Furthermore, the critical challenges associated with ML
pipelines and feedback loops are precisely the areas where
MLOps promises significant improvements. By emphasizing
robust automation, continuous monitoring, and resilience,
MLOps provides enterprises with proactive tools and method-
ologies to address and manage TD more effectively.

With the increased adoption of Generative AI tools, imple-
menting an approach specifically tailored for this technology
will become essential. Specifically, with the rise of language
models, companies are moving towards adopting some of
these practices and making use of compact and optimized ver-
sions of such models, better known as Short Language Models
(SLMs). Looking ahead, similar principles could be equally
impactful as enterprises begin adopting SLMs more broadly.
Future adaptations of MLOps principles, potentially evolving
into frameworks such as Short Language Models Operations
(SLMOps), could become essential. This represents a promis-
ing avenue for research and innovation, offering strategic ad-
vantages to organizations aiming to leverage the full potential
of SLMs while maintaining control over TD.

5.2. Impact of AI Use on Technical Debt Management (RQ2)

The increasing integration of AI technologies into software
development environments is not only reshaping how soft-
ware is built, but also how it evolves over time. A fundamental
shift is occurring: software is no longer a static artifact but a
continuously evolving entity, shaped by its interaction with
data, users, and operating contexts. This evolution—driven
by feedback loops, learning mechanisms, and adaptive behav-
iors—creates a dynamic landscape for TD management that
demands new strategies.

Our analysis shows that AI-powered development tools,
such as intelligent code generators and automated testing
frameworks, offer substantial productivity and maintainability
benefits. They streamline development workflows, accelerate
time-to-market, and reduce certain types of code-related debt.
However, they also introduce novel forms of TD, particularly
around system transparency, reproducibility, and maintain-
ability. These tools can generate code or artifacts that are not
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easily interpretable, challenging standard documentation and
testing practices and potentially leading to long-term mainte-
nance issues.

Additionally, AI introduces a unique form of governance-
related TD. As AI systems become more autonomous and em-
bedded in decision-making processes, ensuring compliance
with legal, ethical, and operational standards becomes more
complex. Organizations must proactively address issues re-
lated to explainability, data lineage, and bias to prevent these
concerns from compounding into unsustainable technical or
reputational debt.

What emerges from our findings is that traditional TD
frameworks are no longer sufficient. The fluidity of AI-
enhanced systems calls for adaptive and continuous TD man-
agement strategies. This reinforces the strategic importance
of evolving MLOps into domain-specific operations prac-
tices—frameworks that enable continuous integration, moni-
toring, and mitigation of AI-specific debt forms.

For example, as organizations increasingly deploy gener-
ative models and fine-tune them based on usage data, soft-
ware systems begin to learn and shift autonomously. This self-
evolving behavior makes it essential to establish robust trace-
ability, testing, and rollback mechanisms. Companies adopt-
ing SLMs are especially positioned to benefit from emerging
practices like SLMOps.

From a business perspective, these findings emphasize the
urgent need for organizations to develop comprehensive gov-
ernance strategies, dedicated AI operations workflows, and
long-term maintenance plans. Proactively investing in AI-
aware TD management practices not only helps mitigate fu-
ture risks but also positions companies to harness the full
transformative potential of AI technologies. Companies that
succeed in embedding such operational discipline into their
AI initiatives are more likely to maintain software quality, re-
duce unforeseen maintenance costs, and gain a competitive
advantage in rapidly evolving markets.

5.3. Implications for Practitioners

This study provides valuable insights for professionals in
software engineering, architecture, and related fields. As AI
technologies become increasingly integrated into software
systems, TD emerges as both a pragmatic and a strategic con-
cern, affecting system maintainability, development agility,
and regulatory compliance.

• First, practitioners should focus on integrating MLOps
capabilities into their development pipelines, particu-
larly when working with ML or data-centric systems. This
involves setting up tools for continuous integration of
models, versioning of datasets, model monitoring, and
feedback-informed retraining. Teams should be encour-
aged to build workflows that are reproducible and observ-
able by design. For instance, a team deploying a fraud
detection model could benefit from an MLOps pipeline
that automatically triggers retraining based on perfor-
mance drift, thereby reducing data-related debt.

• Second, teams that are starting to adopt Language Mod-
els should plan for TD from the start. This includes au-
diting and validating AI-generated artifacts, maintaining
traceability of prompt engineering and model outputs,
and ensuring fallback strategies for failure scenarios. For
example, teams deploying GenAI-based assistants can
maintain prompt versioning linked to model iterations,
helping manage explainability and reproducibility risks.

• Third, TD related to governance—such as explainabil-
ity, fairness, and data bias—requires close alignment be-
tween engineering and compliance units. Practitioners
should engage in designing AI systems with built-in con-
trols, documentation standards, and ethical assessment
gates. As a practical case, teams working with sensitive
user data may automate fairness checks and explainabil-
ity metrics within their CI/CD workflows to reduce long-
term governance debt.

• The advent of SLMOps and AIOps as conceptual exten-
sions of MLOps offers a promising opportunity for practi-
tioners to manage the lifecycle of AI-based systems more
efficiently. These frameworks offer a structure for au-
tomating processes, establishing accountability, and for-
tifying resilience across software stacks that incorporate
AI. For example, startups adopting SLMs in mobile ap-
plications can leverage lightweight monitoring and fine-
tuning practices to minimize infrastructure debt while
maintaining service quality.

6. Open Issues and Research Gaps

While this review identifies a growing body of work at the
intersection of TD and AI-enhanced software development,
several important gaps remain. As illustrated in Figure 1, most
of the literature clusters around conceptualizing debt in ML
and GenAI systems (SE4AI) or highlighting the impact of AI
tools on the software lifecycle (AI4SE). However, critical parts
of this space are still underexplored. Notably, despite frequent
references to MLOps, few studies offer in-depth technical or
empirical evaluations of MLOps practices in relation to TD.
In many cases, MLOps is either treated as a background as-
sumption or only superficially discussed, without addressing
its operational complexity or implementation trade-offs.

In many cases, MLOps is either treated as a background as-
sumption or only superficially discussed, without addressing
its operational complexity or implementation trade-offs. No-
tably, aspects such as security are often treated as marginal or
assumed to be inherently managed. However, clearly defining
the deployment environment and the supporting toolchain
is essential, particularly from a security standpoint. When
leveraging managed platforms like AWS, Azure, or Databricks,
many security mechanisms—such as network isolation, access
control, and compliance—are handled by the provider. In con-
trast, building a fully open-source MLOps pipeline demands
explicit attention to securing each component, as the respon-
sibility for safeguarding data, models, and infrastructure lies
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entirely with the development team. This highlights a broader
research gap: there is a pressing need for greater attention and
dissemination not only around the practical implementation
of MLOps, but also around its associated security concerns,
which remain largely underexplored in both academic and
industrial contexts.

Moreover, while issues such as code and data debt are fre-
quently discussed, other emerging forms (such as governance
related debt, explainability debt, or prompt related TD in
GenAI) are rarely addressed in a structured manner. In partic-
ular, operational frameworks specifically designed for GenAI,
such as SLMOps, remain at an early stage, with limited dis-
cussion on their practical adoption, standardization, or con-
nection to TDM. Similarly, the rise of prompt engineering
introduces new maintenance challenges, including prompt
drift, undocumented changes, and strong coupling with down-
stream outputs, which are currently underexplored in both
research and practice. There is also a lack of work on formal-
izing strategies for managing lightweight generative models
and aligning AI system operations with long term compliance
and sustainability goals. These open areas represent key op-
portunities for future research, especially in bridging theory
and practice across the SE4AI and AI4SE dimensions.

7. Threats to Validity

In accordance with the established guidelines for secondary
studies in software engineering proposed by Ampatzoglou et
al. [40], we have structured our discussion of threats to validity
into three categories: study selection validity, data validity,
and research validity. For each of these, we outline potential
threats and describe the mitigation strategies applied. Table 9
summarizes all the identified Threats to Validity (TVs) and
their respective Mitigation Approaches (MAs). The TV column
corresponds to the ID of each threat to validity in the guide-
lines [40] and missing IDs suggest that the specific threat is
not applicable to our study.

Study Selection Validity: Study selection validity refers to
the degree of which relevant PSs are comprehensively and
consistently identified and selected. To mitigate the risk as-
sociated with incomplete or biased study selection (TV1), we
adopted a systematic search protocol. This, thoroughly de-
scribed in Section 3, includes querying the search string from
the most representative sources in the software engineering
domain (i.e. ACM Digital Library, IEEEXplore Digital Library,
Web of Science, and Scopus), applying and the application of a
piloted search string, and performing backward snowballing.
To reduce subjectivity, the studies were selected through a
rigorous two-stage screening process (initially by title and
abstract, then by full text) with disagreements resolved collab-
oratively (TV7)

To capture insights from current practitioners, grey litera-
ture was included in the study. This aligns with our multivocal
objective (TV6). We recognize that the inclusion of non-peer-
reviewed sources may introduce potential bias. However, we
applied a consistent quality assessment strategy to all entries
to mitigate this potential challenge. The possibility of bias due

to language cannot be discounted. This is due to the fact that
only English-language sources were considered (TV3). How-
ever, this is typical in software engineering MLRs, due to the
dominance of English in technical discourse.

Duplicate publications were handled carefully by retaining
only the most informative version (TV5).

Data Validity: Data validity concerns the correctness, con-
sistency, and completeness of the data extracted from primary
studies. Therefore, in order to reduce errors in data extrac-
tion (TV13), we applied a piloted extraction template and per-
formed cross-checking on a subset of studies. The data was
coded according to predefined categories that align with our
research questions; the extraction schema was refined iter-
atively (TV9). Despite our efforts to ensure consistent inter-
pretation, we acknowledge that the qualitative nature of the
data may introduce a degree of interpretive subjectivity (TV14,
TV16). To overcome this challenge, we triangulated findings
across multiple sources and used team discussions to calibrate
interpretations.

The classification schema was adapted from prior sec-
ondary studies and refined during the coding process to im-
prove fit and clarity (TV15). Although we included both white
and gray literature sources to reduce publication bias (TV10),
we acknowledge that certain trends, especially in industrial
practice, may not have been fully reported.

Research Validity: Research validity addresses the overall
credibility, repeatability, and generalizability of the study’s de-
sign and findings. We ensured repeatability (TV17) by making
our full replication package publicly available6. This includes
the search strings, selection protocol, inclusion/exclusion de-
cisions, and coding schema, enabling full transparency and
reproducibility of our process. The chosen MLR methodol-
ogy is well-aligned with our dual research focus on SE4AI and
AI4SE (TV18), and the research questions were iteratively vali-
dated to maintain alignment with study objectives (TV19).

8. Conclusions

This study offers a comprehensive examination of how TDM
practices must evolve to meet the challenges and opportuni-
ties introduced by AI-driven software development. Through
a multivocal literature review, we identified how the dynamic
and data-centric nature of ML and GenAI systems introduces
new forms of TD—particularly in areas such as data, infras-
tructure, and governance—that are not adequately addressed
by traditional software engineering practices.

Our findings underscore the strategic importance of MLOps
as a response to the complexities of ML-specific TD, partic-
ularly in ensuring automation, scalability, and maintainabil-
ity across the model lifecycle. Moreover, we highlighted how
emerging practices, like SLMOps, will support organizations in
managing the operational implications of adopting compact
and efficient generative models.

The evolution of software from a static artifact to a continu-
ously adapting system demands adaptive TD management ap-
proaches. As AI technologies become more embedded in busi-
ness operations, organizations must adopt forward-looking,
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Table 9: Threats to Validity and Mitigation Approaches

TV Threat to Validity (TV) Description Mitigation Approach (MA)

TV1 Inadequate identification of PSs Systematic search across 4 digital libraries (IEEE, ACM, Scopus, Springer) and snowballing.

TV3 Language bias Inclusion limited to English-language PSs; justified by language norms in SE and AI fields.

TV5 Duplicate publications Retained most recent or complete version when duplicates were detected.

TV6 Grey literature bias Applied consistent quality assessment; used in combination with academic literature.

TV7 Selection bias due to reviewer subjectivity Dual screening with conflict resolution through consensus discussion.

TV9 Inadequate extraction schema Piloted and iteratively refined data extraction form aligned with RQs.

TV10 Publication bias Inclusion of grey literature to reduce reliance on peer-reviewed venues.

TV13 Data extraction error Pilot-tested extraction form; subset cross-checked by additional coder.

TV14 Subjectivity in coding Coder calibration sessions; definitions and coding schema refined collaboratively.

TV15 Inadequate classification schema Based on prior studies and adapted based on observed themes in data.

TV16 Over-interpretation of qualitative trends Used triangulation across sources and transparent reasoning.

TV17 Lack of repeatability Full replication package made publicly available6.

TV18 Misalignment with review methodology Followed MLR principles tailored to SE and AI context.

TV19 Poorly scoped/ambiguous RQs RQs reviewed and refined collaboratively during study design.

TV22 Limited generalizability Broad inclusion criteria used; time-sensitivity acknowledged due to fast AI evolution.

context-aware strategies that balance innovation with main-
tainability, and automation with governance.

This review also uncovered substantial implications for
practitioners, who must adapt their workflows, governance
structures, and toolchains to meet the demands of AI-
integrated systems. It further points to a growing convergence
of software engineering and operations.

Future research should further investigate how operational
frameworks specifically tailored for GenAI such as SLMOps
can be matured, standardized, and integrated into organiza-
tional workflows. As GenAI practices such as prompt engi-
neering continue to evolve, their potential impact on TD also
warrants further exploration. Addressing these needs will be
crucial to ensuring that the adoption of AI enhances long-term
software sustainability rather than introducing unmanageable
forms of debt.
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