IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Experience with Managing Technical Debt in
Scientific Software Development using the
EXA2PRO framework

Nikolaos Nikolaidis?!, Dimitrios Zisis!, Apostolos Ampatzoglou?, Alexander Chatzigeorgiou! and Dimitrios

Soudris?
Department of Applied Informatics, University of Macedonia, Thessaloniki 54636, Greece
2School of Electrical and Computer Engineering, National Technical University of Athens, Athens 15780, Greece

Corresponding author: Nikolaos Nikolaidis (e-mail: it14189@uom.edu.gr).

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801015 - EXA2PRO
(https://exa2pro.eu)

ABSTRACT Technical Debt (TD) is a software engineering metaphor that resembles the production of poor-quality code to
going into debt. In particular, a development team that “saves” effort while developing by not removing inefficiencies, has
to “pay-back” with interest, in the form of additional maintenance costs (i.e., fixing bugs, adding features, etc.) due to the
poor maintainability of the developed code. Although maintainability assurance is an established practice in traditional soft-
ware development (lately known as TD management), it has still not attracted the attention of scientific software developers;
i.e., researchers writing code and developing tools for purely research purposes. Nevertheless, based on the literature and
practice, maintainability seems to be ranked as an important key-driver for the development of such applications; since the
effort needed to update the code before the experimentation (e.g., executing a simulation) is common and should not receive
low priority. In this paper, we present the outcome of a 3-year research project on Technical Debt Management (TDM) for
scientific software development. The outcome of the project is a framework (termed: EXA2PRO TDM framework) and an
accompanying platform for assisting scientific software developers in managing the TD of their applications. The framework
is a collection of methods tailored for the mainstream programming languages of scientific software development, which
have been empirically validated through five pilot applications. The majority of the EXA2PRO framework suggestions have
been applied by scientific software developers and eased future maintenance activities.

INDEX TERMS code quality, refactoring, scientific software development, and technical debt

|. INTRODUCTION

Scientific software development refers to the process of
developing software applications for research purposes (e.g.,
simulations, large-scale data analytics, etc.) [1]. The
execution of such applications is so time-consuming that they
are usually executed on High-Performance Computing
(HPC) infrastructures [2]. The long execution time of
scientific software applications can lead to substantial “loss
of resources” if execution of the software fails; rendering
maintenance activities (such as bug-fixing, updating an
algorithm, etc.) of paramount importance both in terms of

correctr_1ess_ and efficiency. We no_te that maintainability has required if the software was of optimal maintainability) [5].
been highlighted as comparably important to performance To bridge the two communities (the scientific software

and scalability in the field of software engineering for development and the TD community), the EXA2PRO
scientific computing, based on a recent secondary study [3]. research project (exa2pro.eu), among other goals, attempts to

To assure the maintainability of software systems, in
“traditional” software engineering, the concept of Technical
Debt Management (TDM) has been adopted along the last
decade [4] as a means of highlighting, in monetary terms, the
maintainability problems that should be fixed as well as the
associated effort for fixing them. Technical Debt resembles
the deterioration of maintainability to going into debt: the
effort that a company saves (termed as principal) while
developing a software in a suboptimal maintainability state is
paying interest, in the form of additional effort needed to
maintain the software (compared to the effort that would be

VOLUME XX, 2017

mailto:it14189@uom.edu.gr
https://exa2pro.eu/
https://exa2pro.eu/

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

bring knowledge and best practices from the software
engineering community (which is more knowledgeable in
developing software) to scientific software development
(which urges for applying those practices). To achieve this
goal, the project delivers the EXA2PRO TDM framework,

TD Prevention TD Identification TD Quantification

which tailors TDM methods and tools to fit the scientific
software development domain, e.g., given programming
languages and the imposed run-time constraints—need for
high levels of performance (in terms of time),
interoperability, hardware heterogeneity, etc.

A

il

TD Principal

TD Interest

TD Interest Probability TD Repayment
Extract Class

Extract Method

TD issue #1 TD issue #2

Rename Variable

if doesn't péy off

R
O
=
5}
c
[}
0
=

TD Forecasting .‘l_ﬂ-l

Future Principal

TD issue #3

TD issue #4 Future Interest

Future Interest Probability

FIGURE 1. EXA2PRO TDM Framework: Bird’s Eye View

In Figure 1, we present the high-level view of the
EXA2PRO TDM framework. In particular, the goal of the
project is to cultivate a culture of TD Prevention, i.e., that new
TD is not introduced into the system. However, this is not
fully feasible in practice [6]. Therefore, if technical debt
prevention does not pay off, some technical debt items will
eventually creep into the system, or they might exist in legacy
code (the code that pre-existed the adoption of the EXA2PRO
TDM framework). By analyzing the code, the framework
will provide developers a list of items (files, procedures, etc.)
that suffer from TD (TD Identification). Since the number of
these items is expected to be quite high, a TD Prioritization
approach that ranks them in terms of urgency to resolve is
required. For EXA2PRO TDM framework, the prioritization
relies on the outcome of two systematic activities, namely TD
Quantification (that assesses the current values of Principal
and Interest) and TD Forecasting (that predicts the future
values of these TD aspects). Next, being supported by the
prioritization process, the software engineers must decide
which TD items (files, procedures, etc.) they should focus on,
and apply targeted refactorings (TD Repayment), gaining
maintainability.

In this paper, we focus on TD identification,
quantification, and repayment. From all the TD identification
approaches in the literature (e.g., static-code analysis, self-
admitted TD, etc.), the one used by EXA2PRO framework
relies on a metric-based approach that flags files and
procedures (or modules in FORTRAN) with extreme metric
scores for the complexity, coupling, and cohesion quality
properties. These files / procedures urge for refactoring, since
they are expected to hinder future maintenance. In addition to
that, we assess the time that would be needed for the manual
resolution of each type of problem, approximating Principal,

! https://www.cperi.certh.gr/en/
2 https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html

VOLUME XX, 2017

based on the type of problem (TD quantification). In terms
of refactoring these problems (TD repayment), we have
updated an existing approach for the decomposition of Long
Procedures (SEMI [7]), so that it scales for extremely long
artifacts and adapted the Agglomerative Clustering
Technique, proposed by Fokaefs et al. [8] to decompose
Large Files/ Modules into more coherent ones. The proposed
refactorings are the Extract Procedure and the Extract File /
Module that are able to improve multiple code qualities:
namely, decrease size, complexity, coupling and increase
cohesion. To validate the EXA2PRO TDM framework, we
have assessed the usefulness of the proposed methods and
tools on five (5) real-world scientific software applications,
from the pilot case providers of EXA2PRO project (i.e.,
CERTH?, Julich? and CNRS®). In terms of programming
languages, we focus on FORTRAN and C, since these
languages are heavily used in HPC software [3].

The rest of the paper is organized as follows: in Section Il
we present background information and related work in terms
of technical debt management and scientific software
development. In Section 111, we present in detail the novel
approach for TD identification and quantification; in Section
IV we present an overview of how we adapted the refactoring
approaches; and in Section V we illustrate the provided tool.
In Section VI we provide the empirical results on the usage
of the EXA2PRO TDM framework. Finally, we conclude the
paper and present threats to validity in Section VII.

1. BACKGROUND INFORMATION

A. TECHNICAL DEBT MANAGEMENT
The technical debt (TD) metaphor was introduced in 1992 by
Ward Cunningham [9]. Cunningham used this analogy to

3 https://www.cnrs.fr/

https://www.cperi.certh.gr/en/
https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
https://www.cnrs.fr/

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

emphasize the consequences of shipping “not-quite right”
code (code with inefficiencies) for the first time. The
presence of these inefficiencies hinders future software
maintenance acting as interest that needs to be paid [9]. In the
next decades, this metaphor gained a lot of ground and is
currently considered as an established terminology in both
academia and industry. The primary benefit of the TD
metaphor is that it serves as a channel of communication
between technical and non-technical stakeholders [10].

1) TECHNICAL DEBT CONCEPTS

While applying the metaphor, the software engineering
community has borrowed the concepts of principal and
interest from economics. In the context of TD, Principal is
the effort required from the developers to remove code and
design inefficiencies; thereby, bringing the software closer to
an optimal quality. Although, we acknowledge that the notion
of optimal quality might be utopic for software, for the sake
of applying the metaphor, the community considers as
optimal a hypothetical version of the software system under
consideration, with improved maintainability. On the other
hand, Interest is the extra effort required to maintain the
software, in comparison to the effort that would be needed if
the system was in the optimal state [5].

For the calculation of the TD Principal several automated
tools have been developed, but SonarQube is one of the most
widely used [11]. SonarQube calculates TD Principal by
identifying fragments of code that violate certain predefined
rules and associates these violations (TD issues) with the time
required to resolve them. We note that, since SonarQube
principal calculation relies on micro level coding violation
and does not considers more prolific issues (such as the
violations of design principles, etc.), in this paper we do not
rely on SonarQube for the calculation of principal, but
describe a novel approach—see Section IlI.

While principal can be calculated in a straightforward
manner when referring to code TD (using static analyzers),
the calculation of TD Interest is far more challenging, as it
assumes the knowledge of an ‘optimal’ system as well as the
difference of the actual system to that optimal. Conejero et al.
[12] found that maintainability is one of the main contributors
of TD Interest and Seaman and Guo [13] established a similar
relationship. These studies paved the way for the usage of
proxies for the estimation of TD Interest. In EXA2PRO, the
calculation of interest relies on the FITTED framework
(Framework for Managing Interest in Technical Debt)
introduced by Ampatzoglou et al. [14]. The calculation of the
TD interest relies on: (a) identifying comparable software
artifacts so as to judge optimality among structurally similar
artifacts, (b) constructing a hypothetical optimal artifact as a
collection of maintainability scores of all similar artifacts; (c)
calculating the distance of the artifact under consideration
from the hypothetical optimal; and (d) monetizing the effort
required to perform a future change, based on the distance
and past maintenance effort on the specific artifact—more
details are provided in [15].

VOLUME XX, 2017

2) TECHNICAL DEBT MANAGEMENT

According to Li et al. [4] the management of TD consists of
eight activities: repayment (i.e., reducing the accumulated
TD), identification (i.e., finding artifacts with excessive TD
values), measurement (i.e., quantifying TD), monitoring (i.e.,
recording and valuation of TD evolution), prioritization (i.e.,
find items that needs to be repaid first), communication (i.e.,
explain TD to stakeholders), prevention (i.e., keep away of
additional TD), representation / documentation (i.e., record
metrics, actions about TD).

According to Eisenberg [6], the complete repayment of TD
is not a realistic goal. In particular, the current literature
supports that it might be profitable to prioritize the repayment
of TD in parts of the code, which are rarely the subject of
maintenance activities [13]. Based on the above, continuous
management of TD is required, so as to consider not only
software quality, but also the effort required to make changes,
and the cost of investment on software improvement [10].

B. SCIENTIFIC SOFTWARE DEVELOPEMENT

A literature review by Heaton and Carver [16] shed light on
how the scientific software development community is using
software engineering practices (we note that the vast majority
of scientific applications are executed in HPC
infrastructures). They found that “Issue Tracking” and
“Version Control Systems” are the most adopted practices,
but there is still room for improvement. Another study found
similar results with validation and testing being the least
adopted ones [17]. Moreover, the literature review of Sletholt
et al. [18] focused on the effect of the agile practices being
used in HPC. The results of this study showed that agile
practices achieve better testing and requirement results.
Based on these studies, there is evidence that HPC developers
care about software technology practices, as they seem to
have a positive impact on the development of software.

To empirically assess the EXA2PRO TDM framework, in
this study, we used five HPC software applications, provided
by three pilot providers of the EXA2PRO project. CERTH
provided two versions of the CO.Capture application, which
is a simulator of the design and control of chemical processes
and materials in CO; capture. CNRS contributed through the
MetalWalls application, which accurately simulates the
behavior of supercapacitors. Finally, JULICH provided the
LQCD and KKRnano applications, which implement the
functionality of the Grid LQCD library and the core operation
of the density functional theory.

I1l. EXA2PRO TD IDENTIFICATION / QUANTIFICATION
In this section, we present our approach for identifying
artifacts that suffer from technical debt and quantify their TD
Principal at the design level. Design Debt is calculated as the
amount of money corresponding to the effort required to
resolve design inefficiencies [4]. To quantify Design Debt
Principal, in the EXA2PRO TDM framework, we have
followed a 4-step approach:

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

1. define a list of design problems to be identified

2. identify items (i.e., files, modules, or procedures) that
suffer from these design problems

3. estimate the time required to fix each design problem

4. sum the time required to fix all identified design
problems, in all items

Each one of the aforementioned steps is detailed in the

upcoming sub-sections. We note that Design Debt Interest

calculation follows without any deviation the FITTED

framework [14]; therefore, we exclude it from this paper.

A. DEFINITION OF DESIGN PROBLEMS

As a starting point for identifying tentative design problems,

to be captured by the EXA2PRO TDM framework, we used

the seminal book on refactorings by Fowler and Beck [19].

After examining the design problems presented in the book,

and by considering the fact that in scientific software

applications, the use of object-orientation is sparse, we
decided to focus on four design problems that can also fit in
the imperative and procedural programming paradigms:

e complex artifacts: the body of some procedures presents
excessive levels of complexity, in terms of decision or
iteration nodes. Such code chunks (and files containing
them) are difficult to understand and maintain [20].

o over-coupled artifacts: some files or modules depend on
an excessive number of external files, since they need
their information to compile. Such files are prone to ripple
effects, i.e., they need retesting every time that a
dependent file changes and are also hard to reuse. This
leads to additional maintenance effort [21].

o large artifacts: some artifacts (modules, files, or
procedures) are of large size (usually in terms of lines of
code). These artifacts (procedures) have more reasons to
change (i.e., due to their additional responsibilities).
These artifacts violate [22] the Single Responsibility
Principle (SRP) [23]; thus, are more probable to undergo
maintenance and produce TD Interest.

We note that the above list is by no means comprehensive;

thus, the captured Design Debt Principal will be a fraction of

the actual one. However, we consider this list as appropriate,
at least as a starting point, since: (a) it captures the most
important (hon-object-oriented) properties of software
maintainability [24] and (b) it would not be feasible to capture
all types of design problems in the course of the project.

Summarizing the above, and by considering that artifacts in

non-object-oriented languages are usually files and

procedures, the following design problems need to be treated:

(a) Complex Procedures, (b) Over Coupled Files/Modules;

(c) Large Files/Modules; and (d) Long Procedures.

B. IDENTIFICATION OF DESIGN PROBLEMS

To identify design problems in large code-bases a scalable
approach that can be automated is required. To this end, we
have opted for a metric-based approach for identifying
problems [25], i.e., to calculate the values of suitable metrics

VOLUME XX, 2017

for each type of problem, sort the artifacts (for the case of
EXA2PRO framework: files and procedures) in terms of each
metric, and mark the worse ones, as problematic. The
approach of using metric thresholds as indicators of
problematic artifacts is well-cited in the literature [26]. In the
next subsection, we present the metrics’ selection process, as
well as details on their calculation; while after that, we
present the approach for extracting the metric thresholds and
the actual values that we have retrieved.

C. METRICS SELECTION AND CALCULATION
As a first step towards the application of the proposed
methodology, we need to select the metrics that we will use
for the identification of design problems. This strategy (i.e.,
using metrics to identify design problems) is well-established
in the software engineering literature [27]. Based on the
problems that we have defined in Section IlI.A and the
quality properties considered for applying a “good design”
paradigm (i.e., low coupling, high cohesion, and low
complexity) [27], the EXA2PRO TDM framework calculates
five metrics:
e cyclomatic complexity (CC) [20]—for
Complex Procedures;
e coupling between files (CBF)—for identifying Over
Coupled Files / Modules;
o lines of code (LOC) [28]—for identifying Large Files /
Modules;
o lack of cohesion of lines (LCOL) [7]—for identifying
Long Procedure; and
o lack of cohesion of procedures (LCOP)—for identifying
Large Files/Modules.
From the above list, three metrics (namely: CC, LOC, and
LCOL) are reused, as they have been proposed in the
literature; whereas the other two are introduced (CBF and
LCOP) as part of this paper. Nevertheless, we need to note
that CBF and LCOP are not developed from scratch, since
they rely on Coupling between Objects (CBO) and Lack of
Cohesion of Methods (LCOM) [22]. In particular: (a) CBF
refers to the number of external dependencies of
filess/modules; whereas (b) LCOP refers to the number of
disjoint procedures in terms of variables’ usage. To be able to
calculate the aforementioned metrics, we need to differentiate
between FORTRAN and C, in the sense that they have a
completely different approach for managing the scope of
variables, which directly affects how coupling and cohesion
is perceived/defined in the two languages. The differences in
the calculation of these metrics between the two languages
(e.g., treating global variables) are presented in detail in
Appendix A and Appendix B, respectively.

To summarize the above, in Table I, we provide an
overview of calculated metrics per design problem. For cases
in which more than one metrics are used for identifying the
existence of a specific design problem (i.e., Large Files /
Modules), a union of the artifacts identified by the metrics, is
performed. Finally, we note that modu1es are applicable only

identifying

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

to FORTRAN 90 and the LCOP metric is not applicable to
FORTRAN 77.

TABLE I: METRICS SELECTION OVERVIEW

CC CBF LOC LCOL LCOP

Complex Procedures X

Long Procedures X

Over Coupled Files / Modules X

Large Files / Modules X X

Design Problem

D. THRESHOLDS IDENTIFICATION

Given the fact that the projects of the used code-bases are
highly divergent in terms of size, required complexity, etc.,
we have preferred to set project-specific thresholds, rather
than global ones, noted as more appropriate in the study of
Mori et al. [29]. This decision relies on the fact that regardless
of how ‘good’ or ‘bad’ the quality of a code-base is, the
refactoring budget is limited, and cannot spread to a large (or
the complete) number of artifacts. The thresholds for each
one of the pilot cases (identified at the 10% of worst artifacts,
per metric) are presented in Table Il. Similar cut-off
percentiles have been used in other studies aiming at the
derivation of metric thresholds [30]. We note that both
versions of CO.Capture are evaluated using the same
threshold values.

TABLE II: PROJECT-SPECIFIC THRESHOLDS

Project cc CBF LOC LCOL LCOP
LQCD 6 3 30 193 26
KKRnano 1 4 24 2283 36
Metalwalls 7 11 75 1309 1
CO,Capture 2 5 49 1358 78

E. VALUATION OF SOLVING DESIGN PROBLEMS

As a solution to the problems defined in Section I1I.A, we
propose the application of two well-known refactorings:
Extract Procedure and the Extract File / Module. In
particular, Extract Procedure targets the Long Procedure and
the Complex Procedure design problems by moving a code
fragment to a new method / function and replacing the old
code with a call to the new method. The Extract Procedure
(Method) refactoring is the most common type of refactoring
according to a study of 16,566 identified refactorings in the
version history of 23 projects [31]. On the other hand, the
Extract File / Module refactoring is expected to resolve the
Large File / Module and the Over-Coupled File / Module
design problems by creating a new File / Module and place
the fields and methods for the relevant functionality in it. The
Extract File / Module refactoring (class) in object-oriented
systems is considered as one of the more global ones [32].
To this end, the goal of this subsection is to estimate the time
needed to perform these refactorings, without any tool
support; so as to assess the time that is needed to eliminate
one occurrence of the design problem. To achieve this goal,
we worked on the code-bases of two pilot applications:

VOLUME XX, 2017

Metalwalls (developed in C) and CO,Capture (developed in
FORTRAN). To systemize the process of refactoring effort
valuation, we applied the following process:

o retrieve artifacts that suffer from design problems

o design a solution for solving the problem—record mental
process effort (in minutes)

e apply the solution in the code-base (including re-
testing)—record the actual implementation effort (in
minutes).

o multiply the sum of the two calculated effort values, with
the average salary of the developer (per minute)

We note that (a) the procedures of the 2 and 3" steps have

already been performed and only for extreme precision

purposes they should be tailored to the companies’

specifications, and (b) the 4™ step is performed based on a

global average of developers’ hourly rate, but it can be

tailored to map any salary cost of specific companies or
countries.

Valuation of Extract Procedure Refactoring. Regarding the
Extract Procedure refactoring, we have manually identified
84 opportunities in the code-base of Metalwalls and 47 on the
code-base of CO,Capture. To explore the time to apply the
extract refactoring procedure, we focus on a single file,
namely the system.F90 file, which includes 21 extract
procedure opportunities. In Table I1I, we present the effort
required to fix each instance of the long procedures.

TABLE I1I: TD PRINCIPAL ANALYSIS FOR SYSTEM.F90

Time to Resolve

Source File Extract Procedure (Minutes)
read_data() open_file() 6
read_header() 8
check_if_value_set() 10
check_all_keywords() 6
validate_values() 8
read_box_parameters() 5
write_box_lengthparameters() 10
validate_array_coordinates_dimensions() 15
read_coordinates() 5
read_ions() 13
read_atoms 9
validate_array_velocities() 7
read_velocities() 8
read_ions_velocities() 6
check_atoms_velocities() 11
read_forces() 16
read_thermostat_parameters() 8
read_electrode_atom_charges() 10
finilize_system_setup() 18
deallocate perform_deallocation() 23
_data_arrays() setup_do_output() 24

An example of such a code transformation is presented in
Figure 2: on the top side of the figure, we present the code
before the application of the refactoring, whereas on the
bottom side the source code after. Since this particular piece

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

of code (on the top) was performing a specific procedure
(reading a data file from the system,) we decided to perform
an Extract Procedure refactoring, by creating a procedure
that reads a data file from the system. Later, we generalized
the use of this procedure to read a file from the system (either
config, or data file) and we transferred it to the
fileunit.F90 source file.

! Open file

call MW fileunit get new unit (funit)

open (unit=funit, file=datafile, &
access="SEQUENTIAL", action="READ", &
position="REWIND", form="FORMATTED", &
status="0LD", iostat=ierr)

if (ierr /= 0) then
call MW errors_open_error ("read data", &

"configuration.f90", datafile, ierr)

end if

! Open file
call MW fileunit open file(funit, ierr, &

datafile)

FIGURE 2. Example Application of Extract Procedure Refactoring.

Next, we replicated the aforementioned process in the 47
opportunities of the CO.Capture project. The statistical
analysis (on the complete dataset) for the valuation of TD
Principal for refactoring Long Procedures suggests that on
average, each instance requires 9.89 minutes to be refactored.
The minimum value is 1 minute, the maximum value is 48,
whereas the standard deviation is 8.63. The descriptive
analysis is visualized in the boxplot of Figure 3. The analysis
for rest instances is presented in Appendices C-E.

50.00 3

40.00

2
%y

px)

72
30.00 %5

o,

20.00-

10.00

1

T
D Principal for Extract Procedure

FIGURE 3. TD Principal for Extract Procedure

Valuation of Extract File / Module Refactoring. Regarding
the Extract File / Module refactoring, we have manually
identified 5 opportunities in the code-base of Metalwalls and
6 on the code-base of CO,Capture. The statistical analysis on
the valuation of TD Principal for refactoring Large Files /
Modules suggests that on average, each instance requires
19.20 minutes to be refactored. The minimum value is 14
minutes, the maximum value is 28, whereas the standard
deviation is 5.54, see Figure 4.

VOLUME XX, 2017

2500

2250

20,00

15.00

T
O Frincipal for Spit Module

FIGURE 4. TD Principal for Extract File/Module

H. FINAL ASSESSMENT OF DESIGN DEBT PRINCIPAL
The final step of this process is straightforward in the sense
that it corresponds to the calculation of a weighted sum of the
occurrences of each design problem multiplied by the cost to
resolve each problem. To synthesize the results of the two
projects in a common formula, we first examine if there is a
statistically significant difference in the mean time required
to fix each design problem in the two projects. For both cases
(as it is also visually inspected by contrasting the boxplots—
in pairs), the differences in the two projects are not
statistically significant. Therefore, as a remediation time for
each design problem resolution, we use the average value of
the joined dataset from the two projects (9.98 minutes for the
Extract Procedure refactoring and 19.20 for the Extract File /
Module refactoring). To transform the effort required in
minutes to currency (i.e., euros) we use the average monthly
rate of the three pilot case providers (i.e., 39.44 euros per
hour). Thus, Technical Debt Design (TDD) principal can be
calculated as follows (in euros), taking into account that the
cost for applying the Extract Procedure refactoring is 6.56
euros, whereas the cost for applying the Extract File / Module
refactoring is 12.62 euros:

TDDPrincipal = (#lung procedure + #camplex pracedure) * COStextract procedure

+ (#large file/module + #overcauple file/module)

* COStEXfTﬂffﬁze/mudule

= (#lang procedure + #complex proceduce) * 6.56

+ (#large file/module + #avercouple file/madule)
*12.62

IV. EXA2PRO TD REPAYMENT

In this section we present the employed approaches for the
automated identification of Extract Procedure and the
Extract File/Module refactoring opportunities. The two
approaches are tailored versions of the approaches originally
presented by Charalampidou et al. [7] and Fokaefs et al. [8];
thus, they are presented in brief.

Applying the Single Responsibility Principle for Extracting
Procedures. The approach that we use for splitting a long
procedure relies on the Single Responsibility Principle (SRP)

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

[23], which was inspired by the functional module
decomposition, introduced by De Marco [33]. In particular,
we relied on the way that the SRP has been applied by
Charalampidou et al. [7], for proposing the SRP-based
Extract Method Identification (SEMI) approach. The
approach utilized the relation between fragments of code that
collaborate to complete a functionality, by assessing the
cohesion among them (i.e., using same variable or calling the
same method). Based on the above, SEMI identifies all
possible coherent sets of successive statements, by following
the process shown in Figure 5.

! Have all variables |
| been processed? |
:

Ho

Increase .
step ==

Yes

Read the next variable
or procedure call
Get the statements where
the variable / call is used
Add in the list of
candidate refactorings,

both the original and the i
merged clusters

Create clusters of
statements, for which
distance <= size

Remove duplicates

Group and Evaluate

Merge clusters
that overlap

FIGURE 5. Flow chart of Extract Procedure opportunities

Decomposing Files Using an Agglomerative Clustering
Technique. The clustering algorithm that we use for the file /
module decomposition is the agglomerative algorithm, a type
of Hierarchical Clustering. In general, Hierarchical
Clustering seeks to build a hierarchy of clusters and is based
on the core idea of placing entities being more related to
nearby entities than to entities farther away. As such, these
algorithms connect entities to form clusters based on their
distance. A cluster can be described largely by the maximum
distance needed to connect parts of the cluster. The
Agglomerative Clustering algorithm can be outlined as
follows: At the initialization step, it assigns each entity to a
single cluster. In each iteration, it merges the two clusters
with the minimum distance. The algorithm terminates when
all entities are contained in a single cluster. To be able to
decide the actual clusters, we must select a threshold value
for the minimum distance as a cut-off value. The hierarchy of
the clusters is usually represented by a dendro-gram. The
leaves of the tree represent the entities, the root is the final
cluster and the intermediate nodes are the actual clusters. The
height of the tree represents the different levels of the distance
threshold in which two clusters were merged.

There are plenty of methods to select the closest clusters.
We chose the Average Linkage method, in which the distance
between one cluster and another one is considered to be equal
to the average distance from any member of one cluster to
any member of the other cluster. As for the threshold (cut-
off) value for the minimum distance, we do not define a fixed
one, but we apply the agglomerative clustering algorithm for

4 https://github.com/nikosnikolaidis/Exa2Pro-Plugin

VOLUME XX, 2017

a range of threshold values (from 0.1 to 1.0) and we present
the results. We have observed that higher thresholds (ranging
from 0.85 to 1.0) generally produce better results than lower
ones. The distance metric we chose to use is the Jaccard
Distance, which produces decent results in software re-
modularization. To define the Jaccard Distance between two
procedures, we use the notion of entity sets. According to this
notion, the entity set of a procedure contains all procedures
(subroutines & functions) that are invoked by the procedure,
all attributes that are accessed by it and the procedure itself.
Thus, having defined the notion of entity sets, we calculate
the Jaccard Distance between two entity sets A and B.

V. TOOL SUPPORT

The EXA2PRO TDM toolbox is released both as an Eclipse
plugin* and as a standalone® application. The main function-
alities of the EXA2PRO TDM toolbox (plugin version) are
presented below.

New-Load-Delete Analysis: The user of the plugin is able to
start a new analysis, load the last analysis, and delete the
analysis of a project. These options are available from the
corresponding toolbar icons and the project popup menu.

2 eclipse-work
File Edit Seu New >
=~ Go Into

By Project Expl¢ Open in New Window
Show In AltShift=W >

=5 o Show in Local Terminal N

©
et @ Copy e C

Build Project
1 WORLD, &rank);

Clean Project WORLD, &np);
Refresh F5
Close Project

Close Unrelated Project

Build Targets
Index

< Build Configurations

Profiling Tools. > ‘
Run As >

[£ Problems 3
Oitems |
Debug As > Location Type
Profile As >

#0

Description

Restore from Local History.

TD Management > Scan Project Ctrl+6

2 Run C/C++ Code Analysis Load last analysis

=5 metalwalls Team > Delete Analysis

FIGURE 6. The extra toolbar icons and menu options.

Metrics View: The Metrics view is a table where all the
calculated metrics (Fan-Out, Cohesion, Cyclomatic
Complexity, and Lines of Code) are presented. In this view,
there are two options to show the file metrics or the
method/function metrics. The user can change the option
through the menu of this view or by using the icons in the
toolbar, for file and method/function metrics respectively.

5 https://github.com/nikosnikolaidis/Exa2Pro

https://github.com/nikosnikolaidis/Exa2Pro-Plugin
https://github.com/nikosnikolaidis/Exa2Pro

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

B, Metrics 57 | & Refactorings View [Opportunities View =2 & &8 =0
File CEBF Loc LCOP K
main.F30 18 213 NonDefined
algorithms.h 1 26 0

box.h 1 12 0

cg.cpp 1 198 MNonDefined

cg.h 5 68 0

constants.h 1 53 0

coulomb.cpp 1 225 NonDefined
coulamb.h 13 56 0
coulomb_keq0.cpp 1 281 NonDefined
coulomb_keg0.h 8 30 0

coulomb_Ir.cpp 1 820 NonDefined
coulomb_lr.h 10 e "

coulomb_self.cpp 1 ; FeETE

coulomb_self.h 5 |5 Methed/Function Metrics
coulomb_sr.cpp 1 T377 “NonDefined) w

FIGURE 7. The Metrics view.

Refactorings View: In the Refactorings view, all files and
methods/functions in need of some kind of refactoring
because of an excessive metric value are displayed. In this
view, there are four different options, one for each metric.
Moreover, the user can start the TD repayment process from
here, one can select a procedure or file / module in order to
start the process of finding specific opportunities for
refactorings.

B, Metrics | @) Refactorings View 53 | OpportunitiesView [2 B | [EE = O
File CBF

system.F30 19

main F$0 19

configuration.Fo0 19

coulomb.F80 16

coulomb.h 13

electrode_charge.h 13

coulomb_sr.F80 1

= (CBF) Over Coupled File/Modules
=| (LOC) Large Files/Modules
= (LCOP) Large Files/Modules

(CC) Complex Procedures
(LCOL) Long Procedures

RIE

FIGURE 8. The Refactorings view.

Opportunities View: Once a procedure or file / module from
the refactoring view has been selected and the analysis
process is finished, the Opportunity view is populated with
all the possible refactorings. These refactorings are
opportunities for extracting methods from the designated
lines yielding the shown benefit in terms of method cohesion.
For convenience, if an opportunity is chosen by the user the
specific file opens with the corresponding lines already
selected.

‘ Metrics ﬁ Refactorings View l Opportunities View £1 = 0O
Procdure Lines Benefit

read_parameters() 192-221 %37.0

read_parameters() 271-279 334.0

read_parameters() 231-235 216.0

read_parameters() 247-251 216.0

read_parameters() 263-267 216.0

read_parameters() 239-243 214.0

read_parameters() 255-239 214.0

read_parameters() 294-297 164.0

FIGURE 9. The Opportunity view.

In addition to the above, the plugin offers a chart view to
visualise the evolution of metrics, a markers’ view to see the

VOLUME XX, 2017

suggestions as warnings / errors in the Eclipse IDE,
preferences, and help.

VI. EMPIRICAL RESULTS
In this section, we present the results of using the proposed
framework for TDM on the pilot applications of EXA2PRO.
We note that projects CO2Capture-1 and CO2Capture-2 are
different versions of the same project; however, they differ
substantially as the 2™ version adopted several performance
optimizations. For each project we record the following:
e number of identified design problems, TD Principal, and
TD Interest;
Applied refactoring opportunities;
assessment of refactoring opportunities in two ways:
conceptual assessment (fitness of refactoring) and TD
assessment (design TD and TD Interest)

The results are organized into three subsections, based on the
steps followed to locate and mitigate inefficiencies.

A. MEASUREMENT AND IDENTIFICATION

The first step for each of the cases refers to the measurement
and identification process as described in Section IlI. Table
IV depicts the number of Design Debt issues that have been
identified in each case, along with the design-level TD
Principal and TD Interest in monetary terms (euros).

TABLE IV: PROJECTS’ TD IDENTIFICATION

Case Design_ Debt Design TD TD Inter-
issues est

CO,Capture-1 51 329.00 664.94
CO,Capture-2 60 447.10 1,694.58
MetalWalls 71 474.80 776.22
LQCD 15 106.99 103.53
KKRnano 93 636.85 685.74

B. APPLIED REFACTORING OPPORTUNITIES

Upon identification, the developer is aware of the artifacts
that suffer from excessive metric scores and constitute
candidates for refactorings application. For each project, we
applied the Extract Procedure and Extract File / Module
refactorings, prioritized based on the metric scores. We note
that due to limitation of resources we have chosen not to fix
all identified issues. In Table V we present the number of
applied refactorings for each project. We should note that the
LQCD project exhibits fewer opportunities as it is much
smaller in size than the rest.

TABLE V: PROJECTS’ APPLIED REFACTORING

Case Extract Procedure Extract File/Module
CO,Capture-1 25 1
CO,Capture-2 39 6
MetalWalls 79 5
LQCD 1 -
KKRnano 7 1

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

C. ASSESSMENT OF APPLIED REFACTORINGS

After the application of the selected refactorings, we
conducted short interviews with the developers of the
projects (along with a questionnaire) for assessing the
changes. Based on collected data, we were able to assess the
conceptual and structural fitness of our refactorings (i.e., the
extent to which they made sense to the developers). Finally,
we quantitatively analysed the effect of the changes on TD
Interest. Acknowledging that performance is a non-
negotiable priority in scientific software applications, before
proceeding with the presentation of TD results, we note that
the proposed changes have not drastically affected the
performance. The aggregate impact of all applied
refactorings on the performance (percentage change in
execution time) of each project is visible in Table VI. The
changes to the execution time were considered acceptable by
the developers.

TABLE VI: IMPACT OF REFACTORING ON PERFORMANCE

Case Impact
CO,Capture-1 -0.4%
CO,Capture-2 +0.5%
MetalWalls - 0.25%
LQCD ~0%
KKRnano

From the total number of refactoring opportunities identified
in the projects (224), only 9 of them were noted as being not
conceptually correct. For the rest of the unaccepted
refactorings, the developers would prefer the code in its
original form or in an alternative format, without however
stating that the refactoring was flawed. The total accepted
refactorings rate, for adoption in the final source code, is
presented for each project in Table VII.

TABLE VII: PROJECTS’ ADOPTED REFACTORINGS

Adopted Extract ~ Adopted Extract

Case

Procedure File/Module
CO,Capture-1 25/25 11
CO,Capture-2 36/39 6/6
MetalWalls 61/79 2/5
LQCD 0/1
KKRnano 0/7 1/1

In Table VII1, for each project, we present the change of TD
Interest as a percentage. A negative percentage accounts to a
reduction in the metric score (i.e., improvement of quality for
all metrics), while a positive percentage refers to an increase
of the metric score (i.e., a deterioration of quality). Next, we
present a qualitative assessment of the refactoring procedure
through quotes captured during the interviews with
developers.

VOLUME XX, 2017

TABLE VIII: PERCENTAGE OF CHANGE IN METRICS AND TD INTER-
EST DUE TO APPLIED REFACTORINGS

Case CcC LCOL LOC CBF LCOP D In-
terest

CO,Capture-1 -10.3 -60.9 0.5 0.0 0.0 -19.0

CO,Capture-2 -38.0 -80.7 -104 53 -26.1 -21.9

MetalWalls -16.0 -71.4 -0.4 2.0 -75.0 -31.5

LQCD -9.1 -11.0 488 -7.1 -10.0 0.5

KKRnano 0.0 -1.2 -46 10.0 -0.1 -4.9

CO2Capture. First of all, we should note that during the
interview the developers explicitly mentioned that “This is a
general code base that we use for multiple projects, so these
refactorings are very beneficial”, implying an even greater
impact on the maintainability of the affected systems. The
application of the refactorings led to a reduction in metric
values. The change is more striking for the LCOL metric, but
it is also significant for the CC metric as well as the TD
Interest. The lines of code were slightly increased, as a result
of extracting code to separate procedures, which is reasonable
for this type of refactoring. During the 2™ meeting with the
developers (2™ round of the refactoring process), it became
evident that they were quite interested in the potential of the
applied refactorings, but caution should be exercised so as to
not hurt the performance. As it can be observed in Table VII,
all of the system metrics along with the TD Interest
experienced a significant improvement (decrease). The
decrease was higher in this project since we had the
opportunity of applying more refactorings of both types
(Extract File / Module and Extract Procedure).

MetalWalls. During the interview with the developers of this
application, regarding the refactorings that were accepted, it
was brought up that “These kinds of contributions make
perfect sense and it can be even pushed to the production
code on the spot”. On the other hand, for the refactorings that
were not adopted the developers noted that “Some Extract
File / Modules make less sense because it is more practical
to change only one file (in the future), rather than searching
in multiple ones, but this is more like a habit in the HPC
community”. For this project, we can see a similar
improvement, again due to the large number of the applied
refactorings. A deterioration was observed only for the CBF
metric (by 2%) which is due to Extract Files / Modules
refactorings introducing additional dependencies between
files/modules.

For the LQCD and KKRnano project, the developers have not
accepted the majority of the proposed refactorings because of
their programming style, as they observed that “We wouldn ’t
apply these changes as they don't fit the programming style
of the specific domains”. The LQCD application is quite
small (compared to the rest cases) and we were able to apply
only one refactoring. At a first glance, for the corresponding
developer, the recommended refactoring has not been very
appealing, due to the separation of comments in the code.

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Regarding the changes to the metrics, all of them have been
improved, apart from LOC which increased because of the
extra lines required to call and initialize the new procedure.
Finally, for KKRnano, almost all metrics have been
improved or remained stable (apart from the value of CBF,
which increased as a result of the introduction of new
files/modules). It is worth mentioning that the TD Interest
presented a non-negligible improvement as well.

VIl. CONCLUSION

In this paper we presented a Technical Debt Management

(TDM) framework that supports the quality assurance of

scientific software applications. The paper details:

e a TD quantification at the design level. In particular,
long and non-cohesive files and procedures which are in
need of refactoring are identified through excessive
metric values. Furthermore, the TD principal associated
with each type of design problem has been estimated.

e two refactoring techniques for addressing the
aforementioned design problems. In particular, we
updated the SEMI approach for the decomposition of
Long Procedures and we adapted the Agglomerative
Clustering Technique to decompose Large Files /
Modules into more coherent ones.

e adeveloped tool (implemented both as a standalone tool
and in the form of an eclipse plugin)

e empirical evidence on the TD Interest benefits that are
obtained by applying TD Repayment.

The exploratory application of the proposed design-level TD

refactorings on five HPC software projects revealed that

maintainability can be substantially improved in scientific
software applications. For example, the refactorings applied
on the studied applications have reduced TD interest by

21.9%, 31.5% and 4.8%, respectively. At the same time, the

application of these refactorings on the performance of the

corresponding applications was rather minimal, ranging from

a 0.4% improvement to a 0.5% deterioration in the execution

time, depending on the refactorings that have been applied.

Thus, there is sufficient evidence to support the claim that

design and code level improvements on the code-base of

scientific software applications can increase their level of
maintainability ~without harming their performance.

Furthermore, we need to acknowledge that despite the

expected difficulties from the scientific software developers

to understand all the details of the EXA2PRO framework (i.e.

the notion of the TD principal and interest, design problems,

and metrics selection), the simplified version offered through
the tool will ease the adoption of the proposed approach.

Moreover, as interesting future work directions we highlight

the exploitation of other TD identification methods, such as

the presence of self-admitted technical debt (SADT), or
analysis of other types of artifacts (e.g., architectural TD).

Finally, we believe that an additional interesting future work

direction will be the fine-grained assessment of the effect of

the aforementioned refactorings on performance.

VOLUME XX, 2017

REFERENCES

[1] C.K. Birdsall and A. B. Langdon, "Plasma Physics via Com-
puter Simulation", the Adam Hilger Series on Plasma Phys-
ics. Adam Hilger, New York, 1991.

[2] M. Schmidberger and B. Briigge, "Need of Software Engi-
neering Methods for High Performance Computing Applica-
tions", 11th International Symposium on Parallel and Distrib-
uted Compu-ting, Munich, Germany, 25-29 June 2012.

[3] E.-M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A.-A.
Tzintzira, A. Ampatzoglou, and A. Chatzigeorgiou, “Investi-
gating Trade-offs between Portability, Performance and
Maintainability in Exascale Systems,” in 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Ap-
plications (SEAA), Aug. 2020, pp. 59-63.

[4] Z.Li, P. Avgeriou and P. Liang, "A systematic mapping study
on technical debt and its management", Journal of Systems
and Software, vol. 101, pp. 193-220, 2015.

[5] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou and T.
Amanatidis, "Estimating the breaking point for technical
debt," 2015 IEEE 7th International Workshop on Managing
Technical Debt (MTD), Bremen, 2015, pp. 53-56, doi:
10.1109/MTD.2015.7332625.

[6] R. J. Eisenberg, “A threshold-based approach to technical
debt”, ACM SIGSOFT Software Engineering Notes, 37 (2),
pp. 1-6,ACM, 2012.

[7]1 S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.
Gkortzis, and P. Avgeriou, “Identifying Extract Method Re-
factoring Opportunities Based on Functional Relevance”,
IEEE Transactions on Software Engineering, 43 (10), pp.
954-974, 2017.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an ag-
glomerative clustering technique”, In 2009 IEEE Interna-
tional Conference on Software Maintenance, pp. 93-101,
IEEE, 2009.

[9] W. Cunningham, "The WyCash Portfolio Management Sys-
tem," in Addendum to the proceedings on Object-oriented
programming systems, languages, and applications, pp. 29-
30, 1992.

[10] P. Kruchten, R. L. Nord and I. Ozkaya, "Technical Debt:
From Metaphor to Theory and Practice," in IEEE Software,
vol. 29, no. 6, pp. 18-21, Nov.-Dec. 2012, doi:
10.1109/MS.2012.167.

[11] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do soft-
ware development teams manage technical debt?—An empir-
ical study”, Journal of Systems and Software, 120, pp. 195-
218, 2016.

[12] J. Congjero et al., "Early evaluation of technical debt impact
on maintainability", Journal of Systems and Software, vol.
142, pp. 92-114, 2018.

[13] C. Seaman and Y. Guo, "Measuring and monitoring technical
debt", Advances in Computers, Elsevier, 82, pp. 25 - 46,
2011.

[14] Ar. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chat-
zigeorgiou, “A Financial Approach for Managing Interest in
Technical Debt”, International Symposium on Business
Modeling and Software Design (BMSD’15), Milan, Italy, 6
— 8 July 2015.

[15] Ar. Ampatzoglou, N. Mittas, A.A. Tsintzira, A. Ampatzoglou,
E.M. Arvanitou, A. Chatzigeorgiou, P. Avgeriou, and L. An-
gelis, “Exploring the Relation between Technical Debt Prin-
cipal and Interest: An Empirical Approach,” Inf. Softw. Tech-
nol., vol. 128, p. 106391, Dec. 2020,

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

[16] D. Heaton and J. Carver, "Claims about the use of software
engineering practices in science: A systematic literature re-
view", Information and Software Technology, vol. 67, pp.
207-219, 2015.

[17] R. Farhoodi, v. Garousi, d. Pfahl and j. Sillito, "development
of scientific software: a systematic mapping, a bibliometrics
study, and a paper repository", International Journal of Soft-
ware Engineering and Knowledge Engineering, vol. 23, no.
04, pp. 463-506, 2013.

[18] M. T. Sletholt, J. Hannay, D. Pfahl, H. C. Benestad, and H. P.
Langtangen, “A literature review of agile practices and their
effects in scientific software development,” in Proceeding of
the 4th international workshop on Software engineering for
computational science and engineering - SECSE ’11, 2011.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyk, and D. Roberts,
“Refactoring: improving the design of existing code”, ser. In
Addison Wesley object technology series, Addison-Wesley,
1999.

[20] T. McCabe, “A Complexity Measure”, Transactions on Soft-
ware Engineering, 2 (4), pp. 308-320, IEEE, 1976.

[21] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P.
Avgeriou, “A method for assessing class change proneness”,
In Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering, pp. 186-
195,2017.

[22] S. R. Chidamber and C. F. Kemerer, “A metrics suite for ob-
ject oriented design”, Transactions on Software Engineer-
ing,, 20 (6), pp. 476-493, IEEE, 1994.

[23] R.C. Martin, “Agile software development: principles, pat-
terns and practices”, Prentice Hall, New Jersey, 2003.

[24] M. Riaz, E. Mendes, and E. Tempero, "A systematic review
of software maintainability prediction and metrics," 3rd In-
ternational Symposium on Empirical Software Engineering
and Measurement, pp. 367-377, IEEE, 2009.

[25] R. Marinescu, “Detection strategies: metrics-based rules for
detecting design flaws”, In Proceedings of the 20™ Interna-
tional Conference on Software Maintenance, pp. 350-359,
IEEE, 2004.

[26] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes,
and H. C. Almeida, “Identifying thresholds for object-ori-
ented software metrics”, Journal of Systems and Software,
85(2), pp. 244-257,2012.

[27] R. Marinescu, “Detection strategies: metrics-based rules for
detecting design flaws,” in 20th IEEE International Confer-
ence on Software Maintenance, 2004. Proceedings., Sep.
2004, pp. 350-359, doi: 10.1109/ICSM.2004.1357820.

[28] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability”, Journal of Systems and Software, 23 (2),
pp- 111-122, Elsevier, 1993.

[29] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo, E.
Cirilo, P. Jamshidi, C. Kastner, “Evaluating domain-specific
metric thresholds: an empirical study,” in Proceedings of the
2018 International Conference on Technical Debt, New York,
NY, USA, May 2018, pp. 41-50.

[30] G. Vale, E. Fernandes, and E. Figueiredo, “On the proposal
and evaluation of a benchmark-based threshold derivation
method,” Softw. Qual. J., vol. 27, no. 1, pp. 275-306, Mar.
2019.

[31] D. Cedrim et al., “Understanding the impact of refactoring on
smells: a longitudinal study of 23 software projects,” in Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, New York, NY, USA, Aug. 2017, pp.
465-475.

VOLUME XX, 2017

[32] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refac-
tor, and how we know it,” in Proceedings of the 31st Interna-
tional Conference on Software Engineering, New York, NY,
USA, May 2009, pp. 287-297.

[33] T. De Marco, “Structured Analysis and System Specifica-
tion”, Yourdon Press Computing Series, 1979.

