

VOLUME XX, 2017

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Experience with Managing Technical Debt in
Scientific Software Development using the
EXA2PRO framework

Nikolaos Nikolaidis1, Dimitrios Zisis1, Apostolos Ampatzoglou1, Alexander Chatzigeorgiou1 and Dimitrios
Soudris2

1Department of Applied Informatics, University of Macedonia, Thessaloniki 54636, Greece
2 School of Electrical and Computer Engineering, National Technical University of Athens, Athens 15780, Greece

Corresponding author: Nikolaos Nikolaidis (e-mail: it14189@uom.edu.gr).

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801015 - EXA2PRO

(https://exa2pro.eu)

ABSTRACT Technical Debt (TD) is a software engineering metaphor that resembles the production of poor-quality code to

going into debt. In particular, a development team that “saves” effort while developing by not removing inefficiencies, has

to “pay-back” with interest, in the form of additional maintenance costs (i.e., fixing bugs, adding features, etc.) due to the

poor maintainability of the developed code. Although maintainability assurance is an established practice in traditional soft-

ware development (lately known as TD management), it has still not attracted the attention of scientific software developers;

i.e., researchers writing code and developing tools for purely research purposes. Nevertheless, based on the literature and

practice, maintainability seems to be ranked as an important key-driver for the development of such applications; since the

effort needed to update the code before the experimentation (e.g., executing a simulation) is common and should not receive

low priority. In this paper, we present the outcome of a 3-year research project on Technical Debt Management (TDM) for

scientific software development. The outcome of the project is a framework (termed: EXA2PRO TDM framework) and an

accompanying platform for assisting scientific software developers in managing the TD of their applications. The framework

is a collection of methods tailored for the mainstream programming languages of scientific software development, which

have been empirically validated through five pilot applications. The majority of the EXA2PRO framework suggestions have

been applied by scientific software developers and eased future maintenance activities.

INDEX TERMS code quality, refactoring, scientific software development, and technical debt

I. INTRODUCTION

Scientific software development refers to the process of

developing software applications for research purposes (e.g.,

simulations, large-scale data analytics, etc.) [1]. The

execution of such applications is so time-consuming that they

are usually executed on High-Performance Computing

(HPC) infrastructures [2]. The long execution time of

scientific software applications can lead to substantial “loss

of resources” if execution of the software fails; rendering

maintenance activities (such as bug-fixing, updating an

algorithm, etc.) of paramount importance both in terms of

correctness and efficiency. We note that maintainability has

been highlighted as comparably important to performance

and scalability in the field of software engineering for

scientific computing, based on a recent secondary study [3].

To assure the maintainability of software systems, in

“traditional” software engineering, the concept of Technical

Debt Management (TDM) has been adopted along the last

decade [4] as a means of highlighting, in monetary terms, the

maintainability problems that should be fixed as well as the

associated effort for fixing them. Technical Debt resembles

the deterioration of maintainability to going into debt: the

effort that a company saves (termed as principal) while

developing a software in a suboptimal maintainability state is

paying interest, in the form of additional effort needed to

maintain the software (compared to the effort that would be

required if the software was of optimal maintainability) [5].

To bridge the two communities (the scientific software

development and the TD community), the EXA2PRO

research project (exa2pro.eu), among other goals, attempts to

mailto:it14189@uom.edu.gr
https://exa2pro.eu/
https://exa2pro.eu/

VOLUME XX, 2017

bring knowledge and best practices from the software

engineering community (which is more knowledgeable in

developing software) to scientific software development

(which urges for applying those practices). To achieve this

goal, the project delivers the EXA2PRO TDM framework,

which tailors TDM methods and tools to fit the scientific

software development domain, e.g., given programming

languages and the imposed run-time constraints—need for

high levels of performance (in terms of time),

interoperability, hardware heterogeneity, etc.

FIGURE 1. EXA2PRO TDM Framework: Bird’s Eye View

In Figure 1, we present the high-level view of the

EXA2PRO TDM framework. In particular, the goal of the

project is to cultivate a culture of TD Prevention, i.e., that new

TD is not introduced into the system. However, this is not

fully feasible in practice [6]. Therefore, if technical debt

prevention does not pay off, some technical debt items will

eventually creep into the system, or they might exist in legacy

code (the code that pre-existed the adoption of the EXA2PRO

TDM framework). By analyzing the code, the framework

will provide developers a list of items (files, procedures, etc.)

that suffer from TD (TD Identification). Since the number of

these items is expected to be quite high, a TD Prioritization

approach that ranks them in terms of urgency to resolve is

required. For EXA2PRO TDM framework, the prioritization

relies on the outcome of two systematic activities, namely TD

Quantification (that assesses the current values of Principal

and Interest) and TD Forecasting (that predicts the future

values of these TD aspects). Next, being supported by the

prioritization process, the software engineers must decide

which TD items (files, procedures, etc.) they should focus on,

and apply targeted refactorings (TD Repayment), gaining

maintainability.

In this paper, we focus on TD identification,

quantification, and repayment. From all the TD identification

approaches in the literature (e.g., static-code analysis, self-

admitted TD, etc.), the one used by EXA2PRO framework

relies on a metric-based approach that flags files and

procedures (or modules in FORTRAN) with extreme metric

scores for the complexity, coupling, and cohesion quality

properties. These files / procedures urge for refactoring, since

they are expected to hinder future maintenance. In addition to

that, we assess the time that would be needed for the manual

resolution of each type of problem, approximating Principal,

1 https://www.cperi.certh.gr/en/
2 https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html

based on the type of problem (TD quantification). In terms

of refactoring these problems (TD repayment), we have

updated an existing approach for the decomposition of Long

Procedures (SEMI [7]), so that it scales for extremely long

artifacts and adapted the Agglomerative Clustering

Technique, proposed by Fokaefs et al. [8] to decompose

Large Files / Modules into more coherent ones. The proposed

refactorings are the Extract Procedure and the Extract File /

Module that are able to improve multiple code qualities:

namely, decrease size, complexity, coupling and increase

cohesion. To validate the EXA2PRO TDM framework, we

have assessed the usefulness of the proposed methods and

tools on five (5) real-world scientific software applications,

from the pilot case providers of EXA2PRO project (i.e.,

CERTH1, Julich2 and CNRS3). In terms of programming

languages, we focus on FORTRAN and C, since these

languages are heavily used in HPC software [3].

The rest of the paper is organized as follows: in Section II

we present background information and related work in terms

of technical debt management and scientific software

development. In Section III, we present in detail the novel

approach for TD identification and quantification; in Section

IV we present an overview of how we adapted the refactoring

approaches; and in Section V we illustrate the provided tool.

In Section VI we provide the empirical results on the usage

of the EXA2PRO TDM framework. Finally, we conclude the

paper and present threats to validity in Section VII.

II. BACKGROUND INFORMATION

A. TECHNICAL DEBT MANAGEMENT

The technical debt (TD) metaphor was introduced in 1992 by

Ward Cunningham [9]. Cunningham used this analogy to

3 https://www.cnrs.fr/

 T issue T issue 2

T issue T issue

https://www.cperi.certh.gr/en/
https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
https://www.cnrs.fr/

VOLUME XX, 2017

emphasize the consequences of shipping “not-quite right”

code (code with inefficiencies) for the first time. The

presence of these inefficiencies hinders future software

maintenance acting as interest that needs to be paid [9]. In the

next decades, this metaphor gained a lot of ground and is

currently considered as an established terminology in both

academia and industry. The primary benefit of the TD

metaphor is that it serves as a channel of communication

between technical and non-technical stakeholders [10].

1) TECHNICAL DEBT CONCEPTS

While applying the metaphor, the software engineering

community has borrowed the concepts of principal and

interest from economics. In the context of TD, Principal is

the effort required from the developers to remove code and

design inefficiencies; thereby, bringing the software closer to

an optimal quality. Although, we acknowledge that the notion

of optimal quality might be utopic for software, for the sake

of applying the metaphor, the community considers as

optimal a hypothetical version of the software system under

consideration, with improved maintainability. On the other

hand, Interest is the extra effort required to maintain the

software, in comparison to the effort that would be needed if

the system was in the optimal state [5].

For the calculation of the TD Principal several automated

tools have been developed, but SonarQube is one of the most

widely used [11]. SonarQube calculates TD Principal by

identifying fragments of code that violate certain predefined

rules and associates these violations (TD issues) with the time

required to resolve them. We note that, since SonarQube

principal calculation relies on micro level coding violation

and does not considers more prolific issues (such as the

violations of design principles, etc.), in this paper we do not

rely on SonarQube for the calculation of principal, but

describe a novel approach—see Section III.

While principal can be calculated in a straightforward

manner when referring to code TD (using static analyzers),

the calculation of TD Interest is far more challenging, as it

assumes the knowledge of an ‘optimal’ system as well as the

difference of the actual system to that optimal. Conejero et al.

[12] found that maintainability is one of the main contributors

of TD Interest and Seaman and Guo [13] established a similar

relationship. These studies paved the way for the usage of

proxies for the estimation of TD Interest. In EXA2PRO, the

calculation of interest relies on the FITTED framework

(Framework for Managing Interest in Technical Debt)

introduced by Ampatzoglou et al. [14]. The calculation of the

TD interest relies on: (a) identifying comparable software

artifacts so as to judge optimality among structurally similar

artifacts, (b) constructing a hypothetical optimal artifact as a

collection of maintainability scores of all similar artifacts; (c)

calculating the distance of the artifact under consideration

from the hypothetical optimal; and (d) monetizing the effort

required to perform a future change, based on the distance

and past maintenance effort on the specific artifact—more

details are provided in [15].

2) TECHNICAL DEBT MANAGEMENT

According to Li et al. [4] the management of TD consists of

eight activities: repayment (i.e., reducing the accumulated

TD), identification (i.e., finding artifacts with excessive TD

values), measurement (i.e., quantifying TD), monitoring (i.e.,

recording and valuation of TD evolution), prioritization (i.e.,

find items that needs to be repaid first), communication (i.e.,

explain TD to stakeholders), prevention (i.e., keep away of

additional TD), representation / documentation (i.e., record

metrics, actions about TD).

According to Eisenberg [6], the complete repayment of TD

is not a realistic goal. In particular, the current literature

supports that it might be profitable to prioritize the repayment

of TD in parts of the code, which are rarely the subject of

maintenance activities [13]. Based on the above, continuous

management of TD is required, so as to consider not only

software quality, but also the effort required to make changes,

and the cost of investment on software improvement [10].

B. SCIENTIFIC SOFTWARE DEVELOPEMENT

A literature review by Heaton and Carver [16] shed light on

how the scientific software development community is using

software engineering practices (we note that the vast majority

of scientific applications are executed in HPC

infrastructures). They found that “Issue Tracking” and

“Version Control Systems” are the most adopted practices,

but there is still room for improvement. Another study found

similar results with validation and testing being the least

adopted ones [17]. Moreover, the literature review of Sletholt

et al. [18] focused on the effect of the agile practices being

used in HPC. The results of this study showed that agile

practices achieve better testing and requirement results.

Based on these studies, there is evidence that HPC developers

care about software technology practices, as they seem to

have a positive impact on the development of software.

To empirically assess the EXA2PRO TDM framework, in

this study, we used five HPC software applications, provided

by three pilot providers of the EXA2PRO project. CERTH

provided two versions of the CO2Capture application, which

is a simulator of the design and control of chemical processes

and materials in CO2 capture. CNRS contributed through the

MetalWalls application, which accurately simulates the

behavior of supercapacitors. Finally, JULICH provided the

LQCD and KKRnano applications, which implement the

functionality of the Grid LQCD library and the core operation

of the density functional theory.

III. EXA2PRO TD IDENTIFICATION / QUANTIFICATION

In this section, we present our approach for identifying

artifacts that suffer from technical debt and quantify their TD

Principal at the design level. Design Debt is calculated as the

amount of money corresponding to the effort required to

resolve design inefficiencies [4]. To quantify Design Debt

Principal, in the EXA2PRO TDM framework, we have

followed a 4-step approach:

VOLUME XX, 2017

1. define a list of design problems to be identified

2. identify items (i.e., files, modules, or procedures) that

suffer from these design problems

3. estimate the time required to fix each design problem

4. sum the time required to fix all identified design

problems, in all items

Each one of the aforementioned steps is detailed in the

upcoming sub-sections. We note that Design Debt Interest

calculation follows without any deviation the FITTED

framework [14]; therefore, we exclude it from this paper.

A. DEFINITION OF DESIGN PROBLEMS

As a starting point for identifying tentative design problems,

to be captured by the EXA2PRO TDM framework, we used

the seminal book on refactorings by Fowler and Beck [19].

After examining the design problems presented in the book,

and by considering the fact that in scientific software

applications, the use of object-orientation is sparse, we

decided to focus on four design problems that can also fit in

the imperative and procedural programming paradigms:

• complex artifacts: the body of some procedures presents

excessive levels of complexity, in terms of decision or

iteration nodes. Such code chunks (and files containing

them) are difficult to understand and maintain [20].

• over-coupled artifacts: some files or modules depend on

an excessive number of external files, since they need

their information to compile. Such files are prone to ripple

effects, i.e., they need retesting every time that a

dependent file changes and are also hard to reuse. This

leads to additional maintenance effort [21].

• large artifacts: some artifacts (modules, files, or

procedures) are of large size (usually in terms of lines of

code). These artifacts (procedures) have more reasons to

change (i.e., due to their additional responsibilities).

These artifacts violate [22] the Single Responsibility

Principle (SRP) [23]; thus, are more probable to undergo

maintenance and produce TD Interest.

We note that the above list is by no means comprehensive;

thus, the captured Design Debt Principal will be a fraction of

the actual one. However, we consider this list as appropriate,

at least as a starting point, since: (a) it captures the most

important (non-object-oriented) properties of software

maintainability [24] and (b) it would not be feasible to capture

all types of design problems in the course of the project.

Summarizing the above, and by considering that artifacts in

non-object-oriented languages are usually files and

procedures, the following design problems need to be treated:

(a) Complex Procedures, (b) Over Coupled Files/Modules;

(c) Large Files/Modules; and (d) Long Procedures.

B. IDENTIFICATION OF DESIGN PROBLEMS

To identify design problems in large code-bases a scalable

approach that can be automated is required. To this end, we

have opted for a metric-based approach for identifying

problems [25], i.e., to calculate the values of suitable metrics

for each type of problem, sort the artifacts (for the case of

EXA2PRO framework: files and procedures) in terms of each

metric, and mark the worse ones, as problematic. The

approach of using metric thresholds as indicators of

problematic artifacts is well-cited in the literature [26]. In the

next subsection, we present the metrics’ selection process, as

well as details on their calculation; while after that, we

present the approach for extracting the metric thresholds and

the actual values that we have retrieved.

C. METRICS SELECTION AND CALCULATION

As a first step towards the application of the proposed

methodology, we need to select the metrics that we will use

for the identification of design problems. This strategy (i.e.,

using metrics to identify design problems) is well-established

in the software engineering literature [27]. Based on the

problems that we have defined in Section III.A and the

quality properties considered for applying a “good design”

paradigm (i.e., low coupling, high cohesion, and low

complexity) [27], the EXA2PRO TDM framework calculates

five metrics:

• cyclomatic complexity (CC) [20]—for identifying

Complex Procedures;

• coupling between files (CBF)—for identifying Over

Coupled Files / Modules;

• lines of code (LOC) [28]—for identifying Large Files /

Modules;

• lack of cohesion of lines (LCOL) [7]—for identifying

Long Procedure; and

• lack of cohesion of procedures (LCOP)—for identifying

Large Files/Modules.

From the above list, three metrics (namely: CC, LOC, and

LCOL) are reused, as they have been proposed in the

literature; whereas the other two are introduced (CBF and

LCOP) as part of this paper. Nevertheless, we need to note

that CBF and LCOP are not developed from scratch, since

they rely on Coupling between Objects (CBO) and Lack of

Cohesion of Methods (LCOM) [22]. In particular: (a) CBF

refers to the number of external dependencies of

files/modules; whereas (b) LCOP refers to the number of

disjoint procedures in terms of variables’ usage. To be able to

calculate the aforementioned metrics, we need to differentiate

between FORTRAN and C, in the sense that they have a

completely different approach for managing the scope of

variables, which directly affects how coupling and cohesion

is perceived/defined in the two languages. The differences in

the calculation of these metrics between the two languages

(e.g., treating global variables) are presented in detail in

Appendix A and Appendix B, respectively.

To summarize the above, in Table I, we provide an

overview of calculated metrics per design problem. For cases

in which more than one metrics are used for identifying the

existence of a specific design problem (i.e., Large Files /

Modules), a union of the artifacts identified by the metrics, is

performed. Finally, we note that modules are applicable only

VOLUME XX, 2017

to FORTRAN 90 and the LCOP metric is not applicable to

FORTRAN 77.

TABLE I: METRICS SELECTION OVERVIEW

Design Problem CC CBF LOC LCOL LCOP

Complex Procedures X

Long Procedures X

Over Coupled Files / Modules X

Large Files / Modules X X

D. THRESHOLDS IDENTIFICATION

Given the fact that the projects of the used code-bases are

highly divergent in terms of size, required complexity, etc.,

we have preferred to set project-specific thresholds, rather

than global ones, noted as more appropriate in the study of

Mori et al. [29]. This decision relies on the fact that regardless

of how ‘good’ or ‘bad’ the quality of a code-base is, the

refactoring budget is limited, and cannot spread to a large (or

the complete) number of artifacts. The thresholds for each

one of the pilot cases (identified at the 10% of worst artifacts,

per metric) are presented in Table II. Similar cut-off

percentiles have been used in other studies aiming at the

derivation of metric thresholds [30]. We note that both

versions of CO2Capture are evaluated using the same

threshold values.

TABLE II: PROJECT-SPECIFIC THRESHOLDS

Project CC CBF LOC LCOL LCOP

LQCD 6 3 30 193 26

KKRnano 1 4 24 2283 36

Metalwalls 7 11 75 1309 1

CO2Capture 2 5 49 1358 78

E. VALUATION OF SOLVING DESIGN PROBLEMS

As a solution to the problems defined in Section III.A, we

propose the application of two well-known refactorings:

Extract Procedure and the Extract File / Module. In

particular, Extract Procedure targets the Long Procedure and

the Complex Procedure design problems by moving a code

fragment to a new method / function and replacing the old

code with a call to the new method. The Extract Procedure

(Method) refactoring is the most common type of refactoring

according to a study of 16,566 identified refactorings in the

version history of 23 projects [31]. On the other hand, the

Extract File / Module refactoring is expected to resolve the

Large File / Module and the Over-Coupled File / Module

design problems by creating a new File / Module and place

the fields and methods for the relevant functionality in it. The

Extract File / Module refactoring (class) in object-oriented

systems is considered as one of the more global ones [32].

To this end, the goal of this subsection is to estimate the time

needed to perform these refactorings, without any tool

support; so as to assess the time that is needed to eliminate

one occurrence of the design problem. To achieve this goal,

we worked on the code-bases of two pilot applications:

Metalwalls (developed in C) and CO2Capture (developed in

FORTRAN). To systemize the process of refactoring effort

valuation, we applied the following process:

• retrieve artifacts that suffer from design problems

• design a solution for solving the problem—record mental

process effort (in minutes)

• apply the solution in the code-base (including re-

testing)—record the actual implementation effort (in

minutes).

• multiply the sum of the two calculated effort values, with

the average salary of the developer (per minute)

We note that (a) the procedures of the 2nd and 3rd steps have

already been performed and only for extreme precision

purposes they should be tailored to the companies’

specifications, and (b) the 4th step is performed based on a

global average of developers’ hourly rate, but it can be

tailored to map any salary cost of specific companies or

countries.

Valuation of Extract Procedure Refactoring. Regarding the

Extract Procedure refactoring, we have manually identified

84 opportunities in the code-base of Metalwalls and 47 on the

code-base of CO2Capture. To explore the time to apply the

extract refactoring procedure, we focus on a single file,

namely the System.F90 file, which includes 21 extract

procedure opportunities. In Table III, we present the effort

required to fix each instance of the long procedures.

TABLE III: TD PRINCIPAL ANALYSIS FOR SYSTEM.F90

Source File Extract Procedure
Time to Resolve

(Minutes)

read_data() open_file() 6

read_header() 8

check_if_value_set() 10

check_all_keywords() 6

validate_values() 8

read_box_parameters() 5

write_box_lengthparameters() 10

validate_array_coordinates_dimensions() 15

read_coordinates() 5

read_ions() 13

read_atoms 9

validate_array_velocities() 7

read_velocities() 8

read_ions_velocities() 6

check_atoms_velocities() 11

read_forces() 16

read_thermostat_parameters() 8

read_electrode_atom_charges() 10

finilize_system_setup() 18

deallocate

_data_arrays()

perform_deallocation() 23

setup_do_output() 24

An example of such a code transformation is presented in

Figure 2: on the top side of the figure, we present the code

before the application of the refactoring, whereas on the

bottom side the source code after. Since this particular piece

VOLUME XX, 2017

of code (on the top) was performing a specific procedure

(reading a data file from the system,) we decided to perform

an Extract Procedure refactoring, by creating a procedure

that reads a data file from the system. Later, we generalized

the use of this procedure to read a file from the system (either

config, or data file) and we transferred it to the

fileunit.F90 source file.

! Open file

call MW_fileunit_get_new_unit(funit)

open(unit=funit, file=datafile, &

 access="SEQUENTIAL", action="READ", &

 position="REWIND", form="FORMATTED", &

 status="OLD", iostat=ierr)

if (ierr /= 0) then

 call MW_errors_open_error("read_data", &

 "configuration.f90", datafile, ierr)

end if

! Open file

call MW_fileunit_open_file(funit, ierr, &

 datafile)

FIGURE 2. Example Application of Extract Procedure Refactoring.

Next, we replicated the aforementioned process in the 47

opportunities of the CO2Capture project. The statistical

analysis (on the complete dataset) for the valuation of TD

Principal for refactoring Long Procedures suggests that on

average, each instance requires 9.89 minutes to be refactored.

The minimum value is 1 minute, the maximum value is 48,

whereas the standard deviation is 8.63. The descriptive

analysis is visualized in the boxplot of Figure 3. The analysis

for rest instances is presented in Appendices C-E.

FIGURE 3. TD Principal for Extract Procedure

Valuation of Extract File / Module Refactoring. Regarding

the Extract File / Module refactoring, we have manually

identified 5 opportunities in the code-base of Metalwalls and

6 on the code-base of CO2Capture. The statistical analysis on

the valuation of TD Principal for refactoring Large Files /

Modules suggests that on average, each instance requires

19.20 minutes to be refactored. The minimum value is 14

minutes, the maximum value is 28, whereas the standard

deviation is 5.54, see Figure 4.

FIGURE 4. TD Principal for Extract File/Module

H. FINAL ASSESSMENT OF DESIGN DEBT PRINCIPAL

The final step of this process is straightforward in the sense

that it corresponds to the calculation of a weighted sum of the

occurrences of each design problem multiplied by the cost to

resolve each problem. To synthesize the results of the two

projects in a common formula, we first examine if there is a

statistically significant difference in the mean time required

to fix each design problem in the two projects. For both cases

(as it is also visually inspected by contrasting the boxplots—

in pairs), the differences in the two projects are not

statistically significant. Therefore, as a remediation time for

each design problem resolution, we use the average value of

the joined dataset from the two projects (9.98 minutes for the

Extract Procedure refactoring and 19.20 for the Extract File /

Module refactoring). To transform the effort required in

minutes to currency (i.e., euros) we use the average monthly

rate of the three pilot case providers (i.e., 39.44 euros per

hour). Thus, Technical Debt Design (TDD) principal can be

calculated as follows (in euros), taking into account that the

cost for applying the Extract Procedure refactoring is 6.56

euros, whereas the cost for applying the Extract File / Module

refactoring is 12.62 euros:

𝑇𝐷𝐷𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 = (#𝑙𝑜𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 + #𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒) ∗ 𝑐𝑜𝑠𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

+ (#𝑙𝑎𝑟𝑔𝑒 𝑓𝑖𝑙𝑒/𝑚𝑜𝑑𝑢𝑙𝑒 + #𝑜𝑣𝑒𝑟𝑐𝑜𝑢𝑝𝑙𝑒 𝑓𝑖𝑙𝑒/𝑚𝑜𝑑𝑢𝑙𝑒)

∗ 𝑐𝑜𝑠𝑡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑓𝑖𝑙𝑒/𝑚𝑜𝑑𝑢𝑙𝑒

= (#𝑙𝑜𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 + #𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑐𝑒) ∗ 6.56

+ (#𝑙𝑎𝑟𝑔𝑒 𝑓𝑖𝑙𝑒/𝑚𝑜𝑑𝑢𝑙𝑒 + #𝑜𝑣𝑒𝑟𝑐𝑜𝑢𝑝𝑙𝑒 𝑓𝑖𝑙𝑒/𝑚𝑜𝑑𝑢𝑙𝑒)

∗ 12.62

IV. EXA2PRO TD REPAYMENT

In this section we present the employed approaches for the

automated identification of Extract Procedure and the

Extract File/Module refactoring opportunities. The two

approaches are tailored versions of the approaches originally

presented by Charalampidou et al. [7] and Fokaefs et al. [8];

thus, they are presented in brief.

Applying the Single Responsibility Principle for Extracting

Procedures. The approach that we use for splitting a long

procedure relies on the Single Responsibility Principle (SRP)

VOLUME XX, 2017

[23], which was inspired by the functional module

decomposition, introduced by De Marco [33]. In particular,

we relied on the way that the SRP has been applied by

Charalampidou et al. [7], for proposing the SRP-based

Extract Method Identification (SEMI) approach. The

approach utilized the relation between fragments of code that

collaborate to complete a functionality, by assessing the

cohesion among them (i.e., using same variable or calling the

same method). Based on the above, SEMI identifies all

possible coherent sets of successive statements, by following

the process shown in Figure 5.

FIGURE 5. Flow chart of Extract Procedure opportunities

Decomposing Files Using an Agglomerative Clustering

Technique. The clustering algorithm that we use for the file /

module decomposition is the agglomerative algorithm, a type

of Hierarchical Clustering. In general, Hierarchical

Clustering seeks to build a hierarchy of clusters and is based

on the core idea of placing entities being more related to

nearby entities than to entities farther away. As such, these

algorithms connect entities to form clusters based on their

distance. A cluster can be described largely by the maximum

distance needed to connect parts of the cluster. The

Agglomerative Clustering algorithm can be outlined as

follows: At the initialization step, it assigns each entity to a

single cluster. In each iteration, it merges the two clusters

with the minimum distance. The algorithm terminates when

all entities are contained in a single cluster. To be able to

decide the actual clusters, we must select a threshold value

for the minimum distance as a cut-off value. The hierarchy of

the clusters is usually represented by a dendro-gram. The

leaves of the tree represent the entities, the root is the final

cluster and the intermediate nodes are the actual clusters. The

height of the tree represents the different levels of the distance

threshold in which two clusters were merged.

There are plenty of methods to select the closest clusters.

We chose the Average Linkage method, in which the distance

between one cluster and another one is considered to be equal

to the average distance from any member of one cluster to

any member of the other cluster. As for the threshold (cut-

off) value for the minimum distance, we do not define a fixed

one, but we apply the agglomerative clustering algorithm for

4 https://github.com/nikosnikolaidis/Exa2Pro-Plugin

a range of threshold values (from 0.1 to 1.0) and we present

the results. We have observed that higher thresholds (ranging

from 0.85 to 1.0) generally produce better results than lower

ones. The distance metric we chose to use is the Jaccard

Distance, which produces decent results in software re-

modularization. To define the Jaccard Distance between two

procedures, we use the notion of entity sets. According to this

notion, the entity set of a procedure contains all procedures

(subroutines & functions) that are invoked by the procedure,

all attributes that are accessed by it and the procedure itself.

Thus, having defined the notion of entity sets, we calculate

the Jaccard Distance between two entity sets A and B.

V. TOOL SUPPORT

The EXA2PRO TDM toolbox is released both as an Eclipse

plugin4 and as a standalone5 application. The main function-

alities of the EXA2PRO TDM toolbox (plugin version) are

presented below.
New-Load-Delete Analysis: The user of the plugin is able to

start a new analysis, load the last analysis, and delete the

analysis of a project. These options are available from the

corresponding toolbar icons and the project popup menu.

FIGURE 6. The extra toolbar icons and menu options.

Metrics View: The Metrics view is a table where all the

calculated metrics (Fan-Out, Cohesion, Cyclomatic

Complexity, and Lines of Code) are presented. In this view,

there are two options to show the file metrics or the

method/function metrics. The user can change the option

through the menu of this view or by using the icons in the

toolbar, for file and method/function metrics respectively.

5 https://github.com/nikosnikolaidis/Exa2Pro

https://github.com/nikosnikolaidis/Exa2Pro-Plugin
https://github.com/nikosnikolaidis/Exa2Pro

VOLUME XX, 2017

FIGURE 7. The Metrics view.

Refactorings View: In the Refactorings view, all files and

methods/functions in need of some kind of refactoring

because of an excessive metric value are displayed. In this

view, there are four different options, one for each metric.

Moreover, the user can start the TD repayment process from

here, one can select a procedure or file / module in order to

start the process of finding specific opportunities for

refactorings.

FIGURE 8. The Refactorings view.

Opportunities View: Once a procedure or file / module from

the refactoring view has been selected and the analysis

process is finished, the Opportunity view is populated with

all the possible refactorings. These refactorings are

opportunities for extracting methods from the designated

lines yielding the shown benefit in terms of method cohesion.

For convenience, if an opportunity is chosen by the user the

specific file opens with the corresponding lines already

selected.

FIGURE 9. The Opportunity view.

In addition to the above, the plugin offers a chart view to

visualise the evolution of metrics, a markers’ view to see the

suggestions as warnings / errors in the Eclipse IDE,

preferences, and help.

VI. EMPIRICAL RESULTS

In this section, we present the results of using the proposed

framework for TDM on the pilot applications of EXA2PRO.

We note that projects CO2Capture-1 and CO2Capture-2 are

different versions of the same project; however, they differ

substantially as the 2nd version adopted several performance

optimizations. For each project we record the following:

• number of identified design problems, TD Principal, and

TD Interest;

• Applied refactoring opportunities;

• assessment of refactoring opportunities in two ways:

conceptual assessment (fitness of refactoring) and TD

assessment (design TD and TD Interest)

The results are organized into three subsections, based on the

steps followed to locate and mitigate inefficiencies.

A. MEASUREMENT AND IDENTIFICATION

The first step for each of the cases refers to the measurement

and identification process as described in Section III. Table

IV depicts the number of Design Debt issues that have been

identified in each case, along with the design-level TD

Principal and TD Interest in monetary terms (euros).

TABLE IV: PROJECTS’ TD IDENTIFICATION

Case
Design Debt

issues
Design TD

TD Inter-

est

CO2Capture-1 51 329.00 664.94

CO2Capture-2 60 447.10 1,694.58

MetalWalls 71 474.80 776.22

LQCD 15 106.99 103.53

KKRnano 93 636.85 685.74

B. APPLIED REFACTORING OPPORTUNITIES

Upon identification, the developer is aware of the artifacts

that suffer from excessive metric scores and constitute

candidates for refactorings application. For each project, we

applied the Extract Procedure and Extract File / Module

refactorings, prioritized based on the metric scores. We note

that due to limitation of resources we have chosen not to fix

all identified issues. In Table V we present the number of

applied refactorings for each project. We should note that the

LQCD project exhibits fewer opportunities as it is much

smaller in size than the rest.

TABLE V: PROJECTS’ APPLIED REFACTORING

Case Extract Procedure Extract File/Module

CO2Capture-1 25 1

CO2Capture-2 39 6

MetalWalls 79 5

LQCD 1 -

KKRnano 7 1

VOLUME XX, 2017

C. ASSESSMENT OF APPLIED REFACTORINGS

After the application of the selected refactorings, we

conducted short interviews with the developers of the

projects (along with a questionnaire) for assessing the

changes. Based on collected data, we were able to assess the

conceptual and structural fitness of our refactorings (i.e., the

extent to which they made sense to the developers). Finally,

we quantitatively analysed the effect of the changes on TD

Interest. Acknowledging that performance is a non-

negotiable priority in scientific software applications, before

proceeding with the presentation of TD results, we note that

the proposed changes have not drastically affected the

performance. The aggregate impact of all applied

refactorings on the performance (percentage change in

execution time) of each project is visible in Table VI. The

changes to the execution time were considered acceptable by

the developers.

TABLE VI: IMPACT OF REFACTORING ON PERFORMANCE

Case Impact

CO2Capture-1 - 0.4%

CO2Capture-2 + 0.5%

MetalWalls - 0.25%

LQCD ~0%

KKRnano -

From the total number of refactoring opportunities identified

in the projects (224), only 9 of them were noted as being not

conceptually correct. For the rest of the unaccepted

refactorings, the developers would prefer the code in its

original form or in an alternative format, without however

stating that the refactoring was flawed. The total accepted

refactorings rate, for adoption in the final source code, is

presented for each project in Table VII.

TABLE VII: PROJECTS’ ADOPTED REFACTORINGS

Case
Adopted Extract

Procedure
Adopted Extract

File/Module

CO2Capture-1 25/25 1/1

CO2Capture-2 36/39 6/6

MetalWalls 61/79 2/5

LQCD 0/1 -

KKRnano 0/7 1/1

In Table VIII, for each project, we present the change of TD

Interest as a percentage. A negative percentage accounts to a

reduction in the metric score (i.e., improvement of quality for

all metrics), while a positive percentage refers to an increase

of the metric score (i.e., a deterioration of quality). Next, we

present a qualitative assessment of the refactoring procedure

through quotes captured during the interviews with

developers.

TABLE VIII: PERCENTAGE OF CHANGE IN METRICS AND TD INTER-

EST DUE TO APPLIED REFACTORINGS

Case CC LCOL LOC CBF LCOP
TD In-
terest

CO2Capture-1 -10.3 -60.9 0.5 0.0 0.0 -19.0

CO2Capture-2 -38.0 -80.7 -10.4 -5.3 -26.1 -21.9

MetalWalls -16.0 -71.4 -0.4 2.0 -75.0 -31.5

LQCD -9.1 -11.0 48.8 -7.1 -10.0 0.5

KKRnano 0.0 -7.2 -4.6 10.0 -0.1 -4.9

CO2Capture. First of all, we should note that during the

interview the developers explicitly mentioned that “This is a

general code base that we use for multiple projects, so these

refactorings are very beneficial”, implying an even greater

impact on the maintainability of the affected systems. The

application of the refactorings led to a reduction in metric

values. The change is more striking for the LCOL metric, but

it is also significant for the CC metric as well as the TD

Interest. The lines of code were slightly increased, as a result

of extracting code to separate procedures, which is reasonable

for this type of refactoring. During the 2nd meeting with the

developers (2nd round of the refactoring process), it became

evident that they were quite interested in the potential of the

applied refactorings, but caution should be exercised so as to

not hurt the performance. As it can be observed in Table VII,

all of the system metrics along with the TD Interest

experienced a significant improvement (decrease). The

decrease was higher in this project since we had the

opportunity of applying more refactorings of both types

(Extract File / Module and Extract Procedure).

MetalWalls. During the interview with the developers of this

application, regarding the refactorings that were accepted, it

was brought up that “These kinds of contributions make

perfect sense and it can be even pushed to the production

code on the spot”. On the other hand, for the refactorings that

were not adopted the developers noted that “Some Extract

File / Modules make less sense because it is more practical

to change only one file (in the future), rather than searching

in multiple ones, but this is more like a habit in the HPC

community”. For this project, we can see a similar

improvement, again due to the large number of the applied

refactorings. A deterioration was observed only for the CBF

metric (by 2%) which is due to Extract Files / Modules

refactorings introducing additional dependencies between

files/modules.

For the LQCD and KKRnano project, the developers have not

accepted the majority of the proposed refactorings because of

their programming style, as they observed that “We wouldn’t

apply these changes as they don’t fit the programming style

of the specific domains”. The LQC application is quite

small (compared to the rest cases) and we were able to apply

only one refactoring. At a first glance, for the corresponding

developer, the recommended refactoring has not been very

appealing, due to the separation of comments in the code.

VOLUME XX, 2017

Regarding the changes to the metrics, all of them have been

improved, apart from LOC which increased because of the

extra lines required to call and initialize the new procedure.

Finally, for KKRnano, almost all metrics have been

improved or remained stable (apart from the value of CBF,

which increased as a result of the introduction of new

files/modules). It is worth mentioning that the TD Interest

presented a non-negligible improvement as well.

VII. CONCLUSION

In this paper we presented a Technical Debt Management

(TDM) framework that supports the quality assurance of

scientific software applications. The paper details:

• a TD quantification at the design level. In particular,

long and non-cohesive files and procedures which are in

need of refactoring are identified through excessive

metric values. Furthermore, the TD principal associated

with each type of design problem has been estimated.

• two refactoring techniques for addressing the

aforementioned design problems. In particular, we

updated the SEMI approach for the decomposition of

Long Procedures and we adapted the Agglomerative

Clustering Technique to decompose Large Files /

Modules into more coherent ones.

• a developed tool (implemented both as a standalone tool

and in the form of an eclipse plugin)

• empirical evidence on the TD Interest benefits that are

obtained by applying TD Repayment.

The exploratory application of the proposed design-level TD

refactorings on five HPC software projects revealed that

maintainability can be substantially improved in scientific

software applications. For example, the refactorings applied

on the studied applications have reduced TD interest by

21.9%, 31.5% and 4.8%, respectively. At the same time, the

application of these refactorings on the performance of the

corresponding applications was rather minimal, ranging from

a 0.4% improvement to a 0.5% deterioration in the execution

time, depending on the refactorings that have been applied.

Thus, there is sufficient evidence to support the claim that

design and code level improvements on the code-base of

scientific software applications can increase their level of

maintainability without harming their performance.

Furthermore, we need to acknowledge that despite the

expected difficulties from the scientific software developers

to understand all the details of the EXA2PRO framework (i.e.

the notion of the TD principal and interest, design problems,

and metrics selection), the simplified version offered through

the tool will ease the adoption of the proposed approach.

Moreover, as interesting future work directions we highlight

the exploitation of other TD identification methods, such as

the presence of self-admitted technical debt (SADT), or

analysis of other types of artifacts (e.g., architectural TD).

Finally, we believe that an additional interesting future work

direction will be the fine-grained assessment of the effect of

the aforementioned refactorings on performance.

REFERENCES

[1] C. K. Birdsall and A. B. Langdon, "Plasma Physics via Com-
puter Simulation", the Adam Hilger Series on Plasma Phys-

ics. Adam Hilger, New York, 99 .

[2] M. Schmidberger and B. Brügge, "Need of Software Engi-
neering Methods for High Performance Computing Applica-

tions", th International Symposium on Parallel and istrib-

uted Compu-ting, Munich, Germany, 25-29 June 20 2.

[3] E.-M. Arvanitou, A. Ampatzoglou, N. Nikolaidis, A.-A.
Tzintzira, A. Ampatzoglou, and A. Chatzigeorgiou, “Investi-

gating Trade-offs between Portability, Performance and

Maintainability in Exascale Systems,” in 2020 6th Euromi-

cro Conference on Software Engineering and Advanced Ap-

plications (SEAA), Aug. 2020, pp. 59–6 .

[4] Z. Li, P. Avgeriou and P. Liang, "A systematic mapping study
on technical debt and its management", Journal of Systems

and Software, vol. 0 , pp. 9 -220, 20 5.

[5] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou and T.
Amanatidis, "Estimating the breaking point for technical

debt," 20 5 IEEE 7th International Workshop on Managing

Technical ebt (MT), Bremen, 20 5, pp. 5 -56, doi:

 0. 09/MT .20 5.7 2625.

[6] R. J. Eisenberg, “A threshold-based approach to technical
debt”, ACM SIGSOFT Software Engineering Notes, 7 (2),

pp. - 6, ACM, 20 2.

[7] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A.
Gkortzis, and P. Avgeriou, “Identifying Extract Method Re-

factoring Opportunities Based on Functional Relevance”,

IEEE Transactions on Software Engineering, (0), pp.

95 -97 , 20 7.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“ ecomposing object-oriented class modules using an ag-

glomerative clustering technique”, In 2009 IEEE Interna-

tional Conference on Software Maintenance, pp. 9 - 0 ,

IEEE, 2009.

[9] W. Cunningham, "The WyCash Portfolio Management Sys-
tem," in Addendum to the proceedings on Object-oriented

programming systems, languages, and applications, pp. 29-

 0, 992.

[10] P. Kruchten, R. L. Nord and I. Ozkaya, "Technical ebt:
From Metaphor to Theory and Practice," in IEEE Software,

vol. 29, no. 6, pp. 8-2 , Nov.- ec. 20 2, doi:

 0. 09/MS.20 2. 67.

[11] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do soft-
ware development teams manage technical debt?–An empir-

ical study”, Journal of Systems and Software, 20, pp. 95-

2 8, 20 6.

[12] J. Conejero et al., "Early evaluation of technical debt impact
on maintainability", Journal of Systems and Software, vol.

 2, pp. 92- , 20 8.

[13] C. Seaman and Y. Guo, "Measuring and monitoring technical
debt", Advances in Computers, Elsevier, 82, pp. 25 - 6,

20 .

[14] Ar. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chat-
zigeorgiou, “A Financial Approach for Managing Interest in

Technical ebt”, International Symposium on Business

Modeling and Software esign (BMS ’ 5), Milan, Italy, 6

– 8 July 20 5.

[15] Ar. Ampatzoglou, N. Mittas, A.A. Tsintzira, A. Ampatzoglou,
E.M. Arvanitou, A. Chatzigeorgiou, P. Avgeriou, and L. An-

gelis, “Exploring the Relation between Technical ebt Prin-

cipal and Interest: An Empirical Approach,” Inf. Softw. Tech-

nol., vol. 28, p. 06 9 , ec. 2020,

VOLUME XX, 2017

[16] . Heaton and J. Carver, "Claims about the use of software
engineering practices in science: A systematic literature re-

view", Information and Software Technology, vol. 67, pp.

207-2 9, 20 5.

[17] R. Farhoodi, v. Garousi, d. Pfahl and j. Sillito, "development
of scientific software: a systematic mapping, a bibliometrics

study, and a paper repository", International Journal of Soft-

ware Engineering and Knowledge Engineering, vol. 2 , no.

0 , pp. 6 -506, 20 .

[18] M. T. Sletholt, J. Hannay, . Pfahl, H. C. Benestad, and H. P.
Langtangen, “A literature review of agile practices and their

effects in scientific software development,” in Proceeding of

the th international workshop on Software engineering for

computational science and engineering - SECSE ’ , 20 .

[19] M. Fowler, K. Beck, J. Brant, W. Opdyk, and . Roberts,
“Refactoring: improving the design of existing code”, ser. In

Addison Wesley object technology series, Addison-Wesley,

 999.

[20] T. McCabe, “A Complexity Measure”, Transactions on Soft-
ware Engineering, 2 (), pp. 08- 20, IEEE, 976.

[21] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P.
Avgeriou, “A method for assessing class change proneness”,

In Proceedings of the 2 st International Conference on Eval-

uation and Assessment in Software Engineering, pp. 86-

 95, 20 7.

[22] S. R. Chidamber and C. F. Kemerer, “A metrics suite for ob-
ject oriented design”, Transactions on Software Engineer-

ing, , 20 (6), pp. 76- 9 , IEEE, 99 .

[23] R.C. Martin, “Agile software development: principles, pat-
terns and practices”, Prentice Hall, New Jersey, 200 .

[24] M. Riaz, E. Mendes, and E. Tempero, "A systematic review
of software maintainability prediction and metrics," rd In-

ternational Symposium on Empirical Software Engineering

and Measurement, pp. 67- 77, IEEE, 2009.

[25] R. Marinescu, “ etection strategies: metrics-based rules for
detecting design flaws”, In Proceedings of the 20th Interna-

tional Conference on Software Maintenance, pp. 50- 59,

IEEE, 200 .

[26] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes,
and H. C. Almeida, “Identifying thresholds for object-ori-

ented software metrics”, Journal of Systems and Software,

85(2), pp. 2 -257, 20 2.

[27] R. Marinescu, “ etection strategies: metrics-based rules for
detecting design flaws,” in 20th IEEE International Confer-

ence on Software Maintenance, 200 . Proceedings., Sep.

200 , pp. 50– 59, doi: 0. 09/ICSM.200 . 57820.

[28] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability”, Journal of Systems and Software, 2 (2),

pp. - 22, Elsevier, 99 .

[29] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo, E.
Cirilo, P. Jamshidi, C. Kastner, “Evaluating domain-specific

metric thresholds: an empirical study,” in Proceedings of the

20 8 International Conference on Technical ebt, New York,

NY, USA, May 20 8, pp. –50.

[30] G. Vale, E. Fernandes, and E. Figueiredo, “On the proposal
and evaluation of a benchmark-based threshold derivation

method,” Softw. Qual. J., vol. 27, no. , pp. 275– 06, Mar.

20 9.

[31] . Cedrim et al., “Understanding the impact of refactoring on
smells: a longitudinal study of 2 software projects,” in Pro-

ceedings of the 20 7 th Joint Meeting on Foundations of

Software Engineering, New York, NY, USA, Aug. 20 7, pp.

 65– 75.

[32] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refac-
tor, and how we know it,” in Proceedings of the st Interna-

tional Conference on Software Engineering, New York, NY,

USA, May 2009, pp. 287–297.

[33] T. e Marco, “Structured Analysis and System Specifica-
tion”, Yourdon Press Computing Series, 979.

