Using Machine Learning to Guide the Application of Software
Refactorings: A Preliminary Exploration

Nikolaos Nikolaidis
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece

Dimitrios Zisis
Accenture
Thessaloniki, Greece
zisisndimitris@gmail.com

Apostolos Ampatzoglou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece

nnikolaidis@uom.edu.gr

Nikolaos Mittas
Department of Chemistry
International Hellenic University
Kavala, Greece
nmittas@chem.ihu.gr

a.ampatzoglou@uom.edu.gr

Alexander Chatzigeorgiou
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
achat@uom.edu.gr

ABSTRACT

Refactorings constitute the most direct and comprehensible ap-
proach for addressing software quality issues, stemming directly
from identified code smells. Nevertheless, despite their popularity
in both the research and industrial communities: (a) the effect of a
refactoring is not guaranteed to be successful; and (b) the plethora
of available refactoring opportunities does not allow their compre-
hensive application. Thus, there is a need of guidance, on when to
apply a refactoring opportunity, and when the development team
shall postpone it. The notion of interest, forms one of the major
pillars of the Technical Debt metaphor expressing the additional
maintenance effort that will be required because of the accumulated
debt. To assess the benefits of refactorings and guide when a refac-
toring should take place, we first present the results of an empirical
study assessing and quantifying the impact of various refactorings
on Technical Debt Interest (building a real-world training set) and
use machine learning approaches for guiding the application of fu-
ture refactorings. To estimate interest, we rely on the FITTED
framework, which for each object-oriented class assesses its dis-
tance from the best-quality peer; whereas the refactorings that are
applied throughout the history of a software project are extracted
with the RefactoringMiner tool. The dataset of this study involves
4,166 refactorings applied accriss 26,058 revisions of 10 Apache
projects. The results suggest that the majority of refactorings reduce
Technical Debt interest; however, considering all refactoring appli-
cations, it cannot be claimed that the mean impact differs from zero,
confirming the results of previous studies highlighting mixed ef-
fects from the application of refactorings. To alleviate this problem,
we have built an adequately accurate (~70%) model for the predic-
tion of whether or not a refactoring should take place, in order to
reduce Technical Debt interest.

CCS CONCEPTS

« Software and its engineering—Software creation and manage-
ment—Software post-development issues—Maintaining software

KEYWORDS
Technical Debt, Refactoring, Interest, Software Quality

ACM Reference format:

N. Nikolaidis, D. Zisis, A. Ampatzoglou, N. Mittas, and A. Chatzigeorgiou.
2022. Using Machine Learning to Guide the Application of Software Re-
factorings: A Preliminary Exploration. In Proceedings of ACM 6th edition
of the International Workshop on Machine Learning Techniques for Soft-
ware Quality Evolution (MALTESQUE ‘22). ACM, 6 pages.

1 Introduction

The Technical Debt (TD) metaphor captures the amount of
effort and the associated cost that a development team "bor-
rows", by opting for a “quicker” but “non-optimal” approach
in terms of software quality—implying that interest will
have to be paid. Technical Debt interest expresses the addi-
tional effort that will be spent during later software mainte-
nance tasks, exactly because inefficiencies are present. Inter-
est is of great concern to software development teams as it
essentially describes the future cost of ‘sweeping problems
under the carpet’. Empirical studies have shown that code
TD usually increases as systems grow, but TD density (TD
normalized over the total lines of code) may decrease for
some software projects [1]. In other words, TD can be repaid
and under circumstances it can be reduced.

Generally, there are two approaches for Technical Debt
repayment: The most widely adopted strategy is through the
application of refactorings to purposefully eliminate code,
design or architectural smells and implementation flaws that
may exist. An alternative approach can be followed by
adopting Quality Gates that ensure the introduction of
"cleaner" new code, i.e., new code that has limited or zero
TD issues [2]. While several empirical studies have investi-
gated the impact of refactoring application on various as-
pects of software quality, the results point to mixed conclu-
sions (see Section 2). Thus, an important question is what

mailto:nnikolaidis@uom.edu.gr
mailto:nmittas@chem.ihu.gr
mailto:zisisndimitris@gmail.com
mailto:achat@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr

are the appropriate cases of such refactorings opportunities
to be applied, so as to ensure a positive impact. In related
studies, we have identified none that focuses on TD interest.

In this study, we estimate the amount of interest per file
(relying on the FITTED framework [10]), and subsequently
we investigate the sign and extent of refactorings effect on
TD interest. The first goal of our study is to assess whether
refactorings are an effective way of preventing the increase
of TD interest and to investigate which of the refactorings
have a positive or negative impact on interest. While the sec-
ond goal is to leverage the dataset that will be created, in
order to achieve the first goal, to create a model that can pre-
dict whether a refactoring should take place to positively af-
fect interest. To this end, we analyze 26,058 commits ex-
tracted from 10 open-source projects looking for refactoring
applications through the RefactoringMiner tool. Our analy-
sis is facilitated by a tool that has been developed to identify
the files in each commit which underwent a pure refactoring
(i.e. without any associated maintenance other than refactor-
ing) and calculate the change in the interest of that file for
the pre- and refactoring-commits. Thus, we obtained results
for 4,166 refactoring applications enabling us to study the
average impact of refactoring on interest, but also the impact
per refactoring type. Finally, we used the previous dataset to
create a predictive model by using the random forest learn-
ing method, which enables us to guide practitioners on when
they should apply a refactoring and when postpone it.

The rest of the paper is organized as follows: In Section
2 we discuss related, while in Section 3 we briefly outline
how interest is calculated. The design of our case study is
presented in Section 4 along with the corresponding research
questions. The results are presented and discussed in Section
5. We identify threats to the validity of the study in Section
6 and finally, we conclude in Section 7.

2 Related Work

In this section, we discuss previous studies that investigate
the impact of code refactorings on various aspects of soft-
ware quality. Murphy-Hill et al. [3] investigated the habits
of developers in terms of refactorings. They found that de-
velopers rarely perform refactoring related activities. Strog-
gylos and Spinellis [4] inspected the logs in the version con-
trol systems of four open-source software projects to extract
the revisions where software refactorings had taken place.
The findings reveal that, despite the expectation that the re-
factorings improve the quality of the software, the measure-
ments in the examined systems show the opposite. In partic-
ular, it was observed that the code refactorings caused a
slight increase in cohesion and coupling related metrics.

Kataoka et al. [5] evaluated the impact of the “Extract
Method ” and the “Extract Class ” refactorings on a software
project’s maintainability, written in C++, using coupling
metrics. The results indicate that refactorings magnify sys-
tem maintainability. Bois and Mens [6] proposed formalism
based on abstract syntax tree representation of the source-
code, extended with cross-references to describe the impact

of refactoring on internal program quality. They focused on
three refactoring methods: “Encapsulate Field”, <“Pull up
Method”, and “Extract Method”. In another study, Alshayeb
[7] concluded that the application of refactorings does not
necessarily improve external quality characteristics, such as
adaptability, maintainability and comprehensibility. By ap-
plying refactoring techniques, as defined by Fowler, to three
software systems and measuring the effect on selected soft-
ware metrics, a vast discrepancy in the effect of the refactor-
ings was revealed. The author concluded that it was not pos-
sible to corroborate that software refactorings as a general
practice can improve quality.

Stroulia and Kapoor [8] investigated the effect on size and
coupling measures after the application of refactoring. The
results in Stroulia and Kapoor’s work show that size and
coupling metrics decreased after refactorings. Also notewor-
thy is the study by Wilking et al. [9], who conducted a con-
trolled experiment to investigate how refactorings affect the
conservation and modification of projects. The results of
their experiment proclaim that there is no direct effect of
software refactoring leading to improved maintainability.
The majority of the findings of the above studies agree on
the limited practical adoption of software refactorings and
on a rather mixed effect on the quality of a project, at least
on quality aspects that can be quantified.

3 Technical Debt Interest

To measure code Technical Debt interest, we adopt the FIT-
TED approach [10]. According to the perspective of that
methodology, each artifact but also the system as a whole is
represented by two concepts: the actual artifact and a hypo-
thetical optimum. Being at the optimal level, it takes less ef-
fort to maintain or extend the code. In contrast, at the level
of the actual system, relatively more effort is required for
maintenance and extension. The difference in effort is de-
fined as the Technical Debt Interest—see Figure 1.

Feature A
Fa)
Q
b Y
o Effort.[optimum) o
t |
0 . I
& . [
£ ! |
|
o Effort : |
£ - |
:- Py : | Feature A
| <
o I %
7] | intemst W\
o | i
Actua . Bctua
Effort=|actual)

A 4

Maintenance Effort

Figure 1: FITTED High-Level Rationalle

The proposed interest measurement approach is based on
historic data, by considering past effort spent on mainte-
nance activities and using the average number of lines of

code added between sequential releases as a maintenance ef-
fort indicator. The procedure followed to find the optimum
of aclass is as follows: (a) Find the 5 closest neighbors (clas-
ses of the system) of the class under study, based on quality
characteristics, such as complexity, coupling, size, coher-
ence and inheritance, (b) Having these 5 neighboring classes,
an aggregate function (minimum) is applied for each metric
of the aforementioned quality characteristics. Thus, a theo-
retical optimum peer is obtained for each examined class.

The ratio of the quality of the class under study over the
quality of its optimum peer determines the additional
maintenance effort for that class, by projecting past mainte-
nance effort. Despite its assumptions, the FITTED method-
ology extracts an approximate additional maintenance effort
for each class which can be turned into monetary terms by
multiplying with an average wage. According to Tsintzira et
al. [14] the FITTED-based interest assessment is correlated
at the level of 0.73 to the perception of practitioners in terms
of the amount of additional effort required to maintain an
existing industrial system, due to the presence of TD.

4 Case Study Design

In this section, we present the design of the case study, re-
ported based on the linear-analytic structure [11].

4.1 Research Questions

We study the impact of refactorings on TD interest through

three research questions, formulated as follows:

RQ1: What is the average impact of refactoring application
on TD Interest?

RQ2: What is the impact of each refactoring type on TD In-
terest?

RQs: Can we predict whether or not a refactoring should take
place, based on its foreseen impat on TD interest?

The answer to the RQ1 we will unveil whether refactorings
have a positive or negative effect on the TD interest of the
involved files. A negative effect implies that the metrics
which are being used to assess the distance of the examined
class/ file deteriorate placing the class further away from the
corresponding optimal peer. While refactorings are known
to remove the targeted code smell this often comes at the cost
of side effects, such as increase in the number of lines of
code, methods or classes. For the RQ2 we acknowledges that
refactoring types are quite different in nature and thus might
have diverse impact on the metrics by which TD interest is
assessed. Excluding refactorings which by definition are ex-
pected to have no impact on the measured interest, it be-
comes interesting to classify refactorings based on their pos-
itive or negative impact. Of course, one should by no means
consider a refactoring exhibiting a negative impact on inter-
est as a non-meaningful refactoring. It is known that refac-
torings improve code also by making it more readable and
reusable, qualities which are not necessarily captured by the
employed set of metrics. Finally, regarding RQs, by ac-
knowledging the fact that the application of refactorings

sometimes comes with trade-offs that deteriorate a lot the
quality of the system, we will try to create a model that can
shed some light on this decision-making. In other words,
given the current state of the refactoring-candidate classes,
we predict if the refactoring should be applied, so as to pos-
itively affect (reduce) the Technical Debt interest.

4.2 Cases and Units of Analysis

This study is characterized as a multiple, embedded case
study [11], in which the cases are open-source software
(OSS) projects, while the units of analysis are the files af-
fected by refactoring in individual source code commits (per
project). To retrieve data from high-quality projects that
evolve over a considerable period of time and have high
chances of being the subject of systematic maintenance in-
cluding refactoring applications, we looked into Apache pro-
jects and investigated the projects presented in Table 1. The
selection of projects was based on the following criteria:

e Written in Java and use Maven. This ensures that the
project can be built and can be analyzed by the Refac-
toringMiner to retrieve historically applied refactorings
to answer RQ: and RQ: and build a training / testing set
for RQs.

e Currently under development and thus still maintained.
This criterion aims at ensuring that the projects included
in the analysis are still undergoing development and
therefore the studied practices will not be outdated; in-
creasing the chances for identifying refactorings.

e More than 600 commits. We have included this crite-
rion for similar reasons to the previous one and to be
able to observe longer periods throughout the history of
a project, since refactoring sessions might not be part of
all maintenance periods.

Table 1: Selected Projects

Project # Commits LoC #Classes
Commons-10 3492 36950 440
Commons-Lang 6576 94355 772
Commons-RDF 1303 5990 184
Flume 1832 110747 1465
Giraph 1387 38883 1359
Griffin 638 29544 144
Johnzon 840 5311 601
Maven-Archetype 1266 21357 160
OpenWebBeans 4016 7625 1330
Unomi 2402 28781 748

4.3 Data Collection

To gather the appropriate data for our study, we devised a
collection plan, which is divided into 2 distinct phases as de-
scribed below. Data collection relies on two well-known
tools: Refactoring Minner and FITTED Interest Calculator.

Phase 1: By adopting the FITTED methodology, we meas-
ure the interest of 10 active Apache projects. The measure-
ments concern the whole history of the master’s branch com-
mits, reflecting the production-ready state of the projects. To
isolate the true change in the TD interest of each file due to
a restructuring (that is, by not accounting changes in neigh-
boring classes), we slightly change the procedure followed
in FITTED: Whenever a file containing a refactoring is de-
tected, we do not re-calculate its ‘new’ nearest neighbors,
but retain as neighborhood the state of the classes in the pre-
refactoring commit.

Phase 2: We proceed to the mapping of the changes of the
files per version to the identified refactorings. For this pur-
pose, we use the state-of-the-art tool "RefactoringMiner"
[12], [13] which can detect refactorings applied in the history
of a Java project. We use its API as part of our own tool in
order to receive information about the kind of software re-
factorings that were applied per commit, the files and classes
that were involved, and the exact code ranges that were af-
fected in each of these files due to refactoring application.
Apparently, it cannot be ruled out that some chunks of code
that are not related to refactorings in these files may be pre-
sent and, therefore, may also affect the interest of each file.
That being the case, we introduce the notion of a pure refac-
tored file, a concept that refers to files whose set of changes
is mapped to specific refactoring implementations and only.
Thus, mixed files, that is, files containing refactorings and
other new or modified code as well, are excluded from our
dataset.

We note that from the dataset, we have excluded certain
types of refactorings, such as “Move Class”, “Move & Re-
name Class”, “Extract Attribute”, “Modify Variable Annota-
tion”, “Parameterize Variable”, “Remove Attribute Annota-
tion” and “Remove Parameter”, whose contribution to qual-
ity metrics related to complexity, size, inheritance or cohe-
sion and, thus, to TD interest is expected to be zero. This fact
has also been evaluated experimentally, since the specific
types of refactorings had indeed zero effect on TD interest.
For further reading, the complete dataset is available online’.

4.4 Data Analysis

We relied on descriptive and inferential statistics for the
analysis of data for answering the first 2 RQs, as follows:
The distribution of positive and negative values for the cal-
culated impact on the TD interest of each file affected by a
refactoring is visualized with the use of violin plots. Violin
plots illustrate numeric data distributions for one or more
groups using density curves. The width of each density curve
is proportional to the frequency of data points in each region.
We used a violin plot for RQ, illustrating the distribution of
refactoring impact for all observed refactorings as explained
in subsection 4.3. We also report the percentage of cases in
which a positive, zero, or negative impact was observed (for

1 https://docs.google.com/spreadsheets/d/1PDmWqPts5wB_yaM0GX8ZxKOeb-
dxPKdex/

all refactorings and for each refactoring type). To test
whether the mean of the examined population (refactoring
impact for all units of analysis and impact per refactoring
type) is statistically different from zero, we relied on the one-
sample t-Test. The dataset meets the requirements for apply-
ing this parametric test as: (a) test variables are continuous;
(b) scores on the test variable are independent; and (c) dis-
tributions are normal.

4.5 Model Building

For the creation and testing of the model, we used the
RapidMiner software. As shown in Figure 2, our dataset un-
derwent some changes before we could crate and train our
model. First, we had to filter the non-clean refactoring (as
we already mentioned), and create the “Interest Effect” at-
tribute because in our dataset is present only the Interest
Change in Hours or Monetary terms. The “Interest Effect”
can be “neutral”, “positive”, or “negative” depending on the
Interest Change being equal, less, or greater than zero re-
spectively. Moreover, we selected the “Interest Effect” as the
dependent variable, and the rest of the attributes are: (a) Cy-
clomatic Complexity—CC of the previous revision; (b) ines
of Code—LOC of the previous revision; (c) Coupling Be-
tween Objects—CBO of the previous revision; (d) Lack of
Cohesion of Methods—LCOM of the previous revision; (e)
Interest of the previous revision; (f) Refactoring type; and
(9) Revision count. The Cross Validation is configured to
run 10 folds and the predictive model that was used is the
Random Forest. The selection of quality properties relies on
the most important attributes for assessing software main-
tainability [15][16]—inherently related to TD interest.

Select Attributes Set Role

Tm .;

Cross Validation

nres
n res

) res

Retrieve data
oo #

Figure 2: RapidMiner Process

Generate Attributes,

exa = el
=+
ori [

Filter Examples

exa ‘F, exa)
) >

5 Results and Discussion

Previous studies on the effect of refactoring application on
software quality reached inconclusive results, since the im-
pact varies among studies and among refactorings. This find-
ing is confirmed by the present study from the perspective of
TD interest: the one-sample t-test for the entire set of units
of analysis (i.e. files that underwent a refactoring) yielded

https://docs.google.com/spreadsheets/d/1PDmWqPts5wB_yaM0GX8ZxKOebdxPKdex/
https://docs.google.com/spreadsheets/d/1PDmWqPts5wB_yaM0GX8ZxKOebdxPKdex/

results which are not statistically significant. In other words,
we cannot claim that the mean of our population is statisti-
cally different from the zero value. The same observation
applies to almost all of the refactoring types if the units of
analysis are examined separately.

The violin plot of Fig. 2 illustrates the distribution for the
percentage change of TD interest after the application of a
refactoring, considering all refactorings across all examined
projects. The median and the largest portion of observations
is zero. To shed light into the ratio of refactored files in
which a positive (reduction of TD interest), zero and nega-
tive (increase in TD interest) impact has been observed, we
list the corresponding percentages in Table 2 for the entire
set of observations and in Table 3 for the files affected by
each refactoring. For each subset of observations we denote
the corresponding number of units of analysis (N), which
also highlights the popularity of various refactorings in the
examined projects. In almost all cases, zero impact holds the
lion share explaining the inability to reach conclusive results
from the one-sample t-test. Without considering the results
as statistically significant we note however that the cases
where a refactoring had a positive impact are substantially
more than the cases with a negative impact.

The straightforward implication from the examination of
our findings is that further research is needed so as to estab-
lish evidence on the usefulness of refactorings in general and
the benefit (or harm) from the application of individual re-
factorings. It is known that refactorings incur a trade-off: the
improvement of maintainability usually comes at the cost of
an increase in the number of lines of code, methods or clas-
ses and often an increase in the coupling among classes.
Such side-effects can negatively affect interest thereby lim-
iting or even cancelling any benefit from the improvement
of other qualities such as complexity or cohesion.

Table 3: Percentage of Cases with Positive/Zero/Negative Im-
pact per Refactoring (refactorings with N>10)

100 -

50

-50 -

-100

Refactoring Impact

Figure 2: Distribution of percentage change of TD interest for
all refactorings (Refactoring Impact)

Table 2: Percentage of Cases with Positive/Zero/Negative Im-
pact on Interest

Positive Zero Negative
Impact (%) | Impact (%) | Impact (%)
Refactorings
(N=4166) 27.58 56.72 15.70

Add Attribute Anno- | Add Attribute Modi- Add Class Annota-
tation (N=56) fier (N=111) tion (N=297)
Positive 12.50 | Positive 40.54 | Positive 18.52
Zero 75.00 | Zero 45.05 | Zero 73.40
Negative 12.50 | Negative 14.41 | Negative 8.08

Add Method Annota- | Add Variable Modi- Add Parameter
tion (N=394) fier(N=175) Modifier (N=93)
Positive 19.80 | Positive 52.00 | Positive 46.24
Zero 36.80 | Zero 29.14 | Zero 40.86
Negative 43.40 | Negative 18.86 | Negative 12.90
Add Parameter Add Variable Anno- Change Variable
(N=88) tation (N=14) Type (N=238)
Positive 34.09 | Positive 7.14 | Positive 28.99
Zero 54.55 | Zero 42.86 | Zero 63.03
Negative 11.36 | Negative 50.00 | Negative 7.98
Change Attribute Ac- Change Attribute Change Parameter
cess Modifier (N=63) Type (N=69) Type (N=173)
Positive 38.10 | Positive 23.19 | Positive 26.01
Zero 52.38 | Zero 7391 | Zero 68.79
Negative 9.52 | Negative 2.90 | Negative 5.20
Change Return Type | Change Type Decla- Extract Method
(N=394) ration Kind (N=13) (N=638)
Positive 19.80 | Positive 7.69 | Positive 22.41
Zero 36.80 | Zero 92.31 | Zero 61.76
Negative 43.40 | Negative 0.00 | Negative 15.83
Extract And Move Extract Class Extract Interface
Method (N=330) (N=111) (N=88)
Positive 32.42 | Positive 26.73 | Positive 28.41
Zero 51.82 | Zero 53.15 | Zero 50.00
Negative 15.76 | Negative 20.72 | Negative 21.59
Extract Superclass Extract Subclass Inline Method
(N=128) (N=16 (N=21)
Positive 15.50 | Positive 12.50 | Positive 9.52
Zero 71.09 | Zero 87.50 | Zero 80.95
Negative 16.41 | Negative 0.00 | Negative 9.52
Inline Variable Modify Class Anno- Maglt;}tlimelt :q%c;(ﬁn-
(N=16) tation (N=143) (N=23)
Positive 18.75 | Positive 50.35 | Positive 13.04
Zero 43.75 | Zero 37.06 | Zero 86.96
Negative 37.50 | Negative 12.59 | Negative 0.00
Move Attribute Move And Inline Move And Rename
(N=11) Method (N=17) Method (N=12)
Positive 27.27 | Positive 35.29 | Positive 8.33
Zero 54.55 | Zero 35.29 | Zero 75.00
Negative 18.18 | Negative 29.41 | Negative 16.67
Move Method Remove Attribute Remove Class An-
(N=56) Modifier (N=48) notation (N=184)
Positive 26.79 | Positive 31.25 | Positive 27.72
Zero 64.29 | Zero 60.42 | Zero 64.67
Negative 8.93 | Negative 8.33 | Negative 18.18
Remove Method An- Remove Variable Rename Class
notation (N=55) Modifier (N=21) (N=52)
Positive 21.82 | Positive 61.90 | Positive 67.31
Zero 36.36 | Zero 23.81 | Zero 19.23
Negative 41.82 | Negative 14.29 | Negative 13.46
Rename Method Rename Parameter Replace Anony-
(N=171) (N=27) mous WIt_h Lambda
(N=16)
Positive 26.32 | Positive 18.52 | Positive 31.25
Zero 65.50 | Zero 70.37 | Zero 43.75
Negative 8.19 | Negative 11.11 | Negative 25.00

Regarding the RQs, in Table 3 we present the performance of two
models by using different maximal depth values for the created
trees. It is clear that we could use a model to predict whether or not
a refactoring should be applied, based on the effect that this change
could have on the Technical Debt interest. With respect to prac-
titioners, the application of refactorings is usually driven by
the need to remove a bothersome code smell which hinders
a maintenance task. Nevertheless, development teams could
form a refactoring log, recording the impact of applied re-
factorings. Systematic evidence from past refactorings for a
particular project or domain can guide future maintenance
activities by taking more informed decisions. Along with the
use of the predictive model the practitioners will be able to
have an understanding of the impact that a specific refactor-
ing might have beforehand. Refactorings that systematically
deteriorate code quality can be discouraged by policies or
automated linters.

Table 3: Accuracy and kappa metric for predictive models
Accuracy (%) kappa

Maximal Depth =10 | 65.85 0.1
Maximal Depth =15 | 69.75 0.45

6 Threats to Validity

The present study was conducted on 10 open-source pro-
jects. As a result of the relatively small sample the findings
cannot be generalized to the entire population of open-source
systems nor to industrial projects where more systematic or
different refactoring policies might be followed. While also
being too small of a dataset to have a good and not overfit-
ting predictive model. We plan to mitigate this threat to ex-
ternal validity by conducting a broader study on a larger set
of projects, including both open-source and industrial ones.
The external validity is affected also by the fact that the tar-
get programming language is Java, because Refactoring-
Miner operates on Java source code.

The units of the presented study are individual files at
specific commits. Thus, the granularity of the analysis is lim-
ited to files which underwent a refactoring application. In
other words, this study does not consider cases where a re-
factoring was applied in a file along with other, non-refac-
toring-related maintenance. Although we do not anticipate
that this parameter might have affected the results to a sig-
nificant extent, it poses a threat to the construct validity of
the study. However, figuring out distinct parts in the same
file which are associated with refactorings or other mainte-
nance tasks is a challenging analysis.

7 Conclusions

Refactoring application aims at improving software main-
tainability by removing identified code smells. In this study
we have tested this axiom by investigating the impact of re-
factorings on TD interest, and the ability to create a predic-
tive model to help the developers decide whether a refactor-
ing should take place. More specifically, we identified files
that underwent only refactoring activities in revisions of 10

open-source projects. By quantifying interest through a
methodology that assesses the distance of an examined class
from its closest optimum peer class, we determined the im-
pact of refactorings on average and the impact of individual
refactoring types. The results were inconclusive confirming
previous studies about the mixed effect of refactoring appli-
cations. Nevertheless, the majority of refactorings with a
non-zero effect had a positive impact on TD interest, par-
tially validating the potential of refactorings in repaying TD.
As for the predictive model, even though the dataset could
be considered small, the final models are promising as they
achieve a quite high accuracy.

ACKNOWLEDGMENTS

This work is partially funded by the European Union’s Horizon
2020 Research and Innovation Programme through SmartCLIDE
project under Grant Agreement No. 871177.

REFERENCES

[1] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolution of
technical debt in the apache ecosystem,” in European Conference on Software
Architecture. Springer, 2017, pp. 51-66.

[2] D. Falessi, B. Rusfso, and K. Mullen, “What if i had no smells?” in 2017
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 2017, pp. 78-84.

[3] E.Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know
it,” IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 5-18, 2011.

[4] K. Stroggylos and D. Spinellis, “Refactoring—does it improve software quality?”
in Fifth International Workshop on Software Quality (WoSQ’07: ICSE Work-
shops 2007). IEEE, 2007, pp. 10-10.

[5] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, "A quantitative evaluation of
maintainability enhancement by refactoring," International Conference on Soft-
ware Maintenance, 2002. Proceedings., 2002, pp. 576-585, doi:
10.1109/ICSM.2002.1167822.

[6] B. Du Bois and T. Mens, “Describing the impact of refactoring on internal pro-
gram quality,” in International Workshop on Evolution of Large-scale Industrial
Software Applications, 2003, pp. 3748.

[71 M. Alshayeb, “Empirical investigation of refactoring effect on software quality”,
Information and Software Technology, Volume 51, Issue 9, 2009, Pages 1319-
1326, ISSN 0950-5849, doi: 10.1016/j.infsof.2009.04.002.

[8] E. Stroulia and R. Kapoor. Metrics of refactoring-based development: An expe-
rience report. In OOIS 2001, pages 113-122. Springer, 2001

[9] D. Wilking, U. F. Kahn, and S. Kowalewski, “An empirical evaluation of refac-
toring.” e-Informatica, vol. 1, no. 1, pp. 27-42, 2007.

[10] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampatzoglou, A. Chat-
zigeorgiou and P. Avgeriou, "A Framework for Managing Interest in Technical
Debt: An Industrial Validation," 2018 IEEE/ACM International Conference on
Technical Debt (TechDebt), 2018, pp. 115-124.

[11] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Soft-
ware Engineering: Guidelines and Examples. John Wiley & Sons, 2012.

[12] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian and D. Dig, "Accurate
and Efficient Refactoring Detection in Commit History," 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp. 483-494,
doi: 10.1145/3180155.3180206.

[13] N. Tsantalis, A. Ketkar and D. Dig, "RefactoringMiner 2.0," in IEEE Transac-
tions on Software Engineering, doi: 10.1109/TSE.2020.3007722.

[14] Tsintzira, A. A., Ampatzoglou, Ar., Matei, O., Ampatzoglou, Ap., Chatzigeor-

giou, A., and Heb, R., “Technical Debt Quantification through Metrics: An In-

dustrial Validation”, 15th China-Europe International Symposium on Software

Engineering Education (CEISEE’ 19), IEEE TEMS, Lisbon-Caparica, Portugal,

May 2019.

M. Riaz, E. Mendes and E. Tempero, "A systematic review of software maintain-

ability prediction and metrics," 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, 2009, pp. 367-377, doi:

10.1109/ESEM.2009.5314233.

[16] C. Van Koten and A.R. Gray, “An Application of Bayesian Network for Predict-
ing Object-Oriented Software Maintainability”, Inform Software Tech, 48, 1
(Jan. 2006), pp. 59 — 67.

[15

