
Library Utilization Metrics for Maven Projects

Maria Kolyda1, Eirini Kostoglou1, Nikolaos Nikolaidis1[0000-0002-7958-9393], Apostolos

Ampatzoglou1[0000-0002-5764-7302], Alexander Chatzigeorgiou1[0000-0002-5381-8418]

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Abstract. In modern software development, usually, reuse takes place by invok-

ing in the codebase, methods that are deployed and imported into projects as 3rd

party libraries. The ease with which one can take benefit of reuse of libraries has

been simplified lately, by platforms such as Maven, Gradle, etc. However, this

convenient choice in many cases leads to an overwhelming number of libraries

being packed in the final executable, even when not needed (e.g., the code that

uses originally invoked a library is removed, or it is dead). In this paper, we pro-

pose 5 metrics that capture the extent to which each library is utilized in the code-

base, providing information to the software engineers on the actual utility of the

library in the final product. To automate the calculation of these metrics we have

developed a corresponding tool that can be used for quality monitoring purposes.

 Video: https://youtu.be/m1N22F5mbHI

 Code Frontend: https://github.com/kostoglou/LibraryUtilization

Code Backend: https://github.com/MariaKolyda/javaLibraryUtilization

 Running Instance: http://195.251.210.147:3005

Keywords: libraries, metrics, maven, library utilization, app evaluation.

1 Introduction

The usage of third-party libraries in software development is a wildly used practice to

speed-up the development process, and in turn reduce costs [7]. This practice only gets

more popular with the rise of easy-to-use build automation tools and library repositories

like Maven, Gradle, NPM, etc. Libraries provide already created and tested functional-

ities, so developers do not need to write code from scratch, but rather find an appropri-

ate library. However, as any other benefit, the reuse of libraries comes with a cost, or

at least with a threat of a cost. Based on the literature, the use of 3rd party libraries is a

living part of software development, in the sense that libraries can be added, upgraded,

or removed along evolution, and similarly does the code around them [17].

The excessive and unnecessary use of third-party libraries can lead to three main

problems: (a) the size of the target system grows larger in size, hurting the performance

and resource utilization of the software; (b) the third party library might bring vulnera-

bilities into the target system; and (c) the external quality of the library cannot be con-

trolled, in the sense that in the majority of the cases, third-party library reuse is black-

box. As examples of excessive and unnecessary use of third-party libraries, the follow-

ing cases can be considered. First, along with evolution, there is a chance that some

https://github.com/kostoglou/LibraryUtilization

2

libraries become unused after some source code update. In other words, either the code

that was invoking a method declared from a library is removed, or it becomes dead

code. However, if the development team does not remove the library from the build

automation system, the library will remain a part of the build process. Therefore, it is

important to keep track of the libraries that are used in the target system, and the extent

of their utilization—in some cases, it might be beneficial to implement something from

scratch, if a very small fraction of a library is utilized. Additionally, as an unnecessary

upgrade of the library, we can consider an upgrade to a newer version of a library that

does not offer any functional or non-functional benefit. Therefore, it is important to

monitor along evolution if the level of library utilization is not decreasing over time—

i.e., importing larger libraries that are not used more.

In this paper, we propose five novel metrics that assess the level of library utilization

in a software project (see Section 3) and develop a tool (presented in Section 4) for

automating their calculation, to boost their adoption in practice. Finally, in Section 5,

we present an initial validation of the tool.

2 Related Work

A lot of information about library reuse and metrics can be found in the literature, thus

we try to present some of those studies in this section. Firstly, Mora et al. [4] [5] pro-

vided a way that compares libraries to help the developers with selecting the most suit-

able each time. To achieve this comparison, they used 9 metrics for each library and

asked a total of 61 developers to evaluate them. They found out that developers are

more interested in metrics related to the popularity, security, and performance of librar-

ies. But this can change a bit depending on the domain of the application under devel-

opment. A similar study was conducted by Vargas et al. [10], where they studied the

factors that influence the selection process of libraries. They asked 115 developers for

feedback on a total of 26 factors, which in turn could be used as metrics. Also, they

grouped these factors into three categories namely: technical, human, and economic.

Finally, similar types of metrics with an emphasis on performance, usability, documen-

tation, and popularity were proposed in other studies as well [1] [8] [9] [12].

Moreover, Washizaki et al. [16] viewed the libraries as black-box reuse and focused

on metrics based on the limited information that can be obtained from outside of the

components without any source code. They defined five metrics and through evaluation

experiments, it was found that these metrics can effectively identify black-box compo-

nents with high reusability. These metrics are: EMI (Existence of Meta-Information),

RCO (Rate of Component Observability), RCC (Rate of Component Customizability),

SCCr (Self-Completeness of Component’s Return Value), and SCCp (Self-Complete-

ness of Component’s Parameter). A similar black-box approach was selected by

Shatnawi et al. [14], where they proposed a model consisting of three metrics. These

metrics are related more to the business side and are the library investment ratio, the

library investment level, and program simplicity.

In contrast to the previously mentioned studies that aim at assessing the quality of

the libraries per se, to aid developers in library selection, in this work, we focus on the

3

target system, and we assess the effectiveness of reuse—i.e., the level to which a library

is utilized in each system. Therefore, even for exactly the same library, the metric scores

would be different for different systems, since the way that the library is used is being

assessed, rather than the library per se.

3 Proposed Metrics

In this section, we present the proposed metrics that can be used to assess the level of

library utilization in a specific project. Most of these metrics rely on the entry points of

a library, used in a specific project, as well as the call-tree that is parsed by invoking

these methods (i.e., the subsequent series of method calls made inside the library to

provide the needed functionality). Similar approaches can be found in other studies that

calculate the call-tree, e.g., for assessing the Technical Debt (TD) of service, based on

the entry points of services (end-points) and the methods that are subsequently invoked

by the API call [11]. To explain the proposed metrics, we provide an illustrative exam-

ple in Figure 1. We should note that each circle represents a class, while the number

inside the circle represents the methods of that class. Finally, the connection between

the classes represents the called methods from one class to another, and the different

colors are used for each call-tree.

Fig. 1. Illustrative example for all metrics

Number of Used Libraries (NUL). The first proposed metric is calculated at the project

level, and as the name implies is the number of the used libraries from one project. In

our example, we can see that Project X used classes only from one library (Library Z).

So, the value of NUL is 1. This number provides an indication of how much the project

depends on third-party code—related to the performance and resource utilization of the

executable.

Percentage of Used Classes Directly (PUCD). To measure the utilization of a library

we proposed the PUCD metric, which calculates the percentage of used classes from a

given project. We should note that for the calculation of this metric, we consider only

the classes that are being used directly from the given target projects. So, in our example

since Project X uses only two classes out of 5, the PUCD is 2/5 or 40%. This metric is

related to the extent to which the quality of the target system might be affected by the

third-party code.

4

Percentage of Used Classes Indirectly (PUCI). To measure the usability of the whole

library, by considering all the classes that are being used, we proposed the PUCI metric.

For the calculation of this metric, we consider all the classes that are being accessed,

even indirectly from the examined project. So, the value of PUCI is 5/5 or 100%, be-

cause in our example all 5 classes are being used. This metric is related to the extent to

which the quality of the target system might be affected by the third-party code. The

same discrimination between direct and indirect dependencies, can be found in tradi-

tional coupling metrics, as well (e.g., TCC and LCC [3]).

Library Direct Utilization Factor (LDUF). To measure the utilization of a library we

proposed the LDUF metric, which calculates the percentage of used methods out of the

total number of methods that the used classes have. We should note that in this metric

we do not consider the indirect methods that are being used. In the given example,

Project X calls in total 3 methods (2 from the first class, and 1 from the second one) of

Library Z, and these classes have 9 methods in total (the first one has 5, and the second

one has 4). So, the value of LDUF is 3/9 or 33.3%. This metric can act as an indicator

of the “worth” of reusing the library, based on its fraction that is reused in practice.

Library Indirect Utilization Factor (LIUF). Finally, we created the LIUF metric,

which considers the indirect utilization of a library. To achieve this, we trace all the

method calls that take place, and we find the number of used methods of each class. In

the same example from Library Z 13 methods are being used out of the total 31 meth-

ods, so the value of LIUF is 13/31 or 41.9%. In more detail, we can see that the red call

tree calls 6 methods, the blue one calls 2 methods, and the green calls 5 methods. Also,

we should note that we do not count more than once a used method. This metric can act

as an indicator of the “worth” of reusing the library, based on the fraction that is reused.

4 Library Utilization Tool

For the calculation of the proposed metrics, we created the Library Utilization tool. This

tool was created as a web application, with a front-end, written in React and a back-end

written in Java and the Spring framework. The web service exposes all the necessary

functionalities through a RESTful API, whereas the web app makes the appropriate

requests and demonstrates the appropriate results and views to the user. We should note

that both the frontend1 and backend2 projects can be found online, along with a video3,

which presents all the functionalities. The main functionalities of the application are

the following: (a) analyze a project, (b) inspect the metrics scores, (c) inspect the call-

tree of a method call, and (d) analyze the history of a project.

Analyze a project. When the users open the web application, they are greeted with the

screen of Figure 2, from where they can start a new analysis. By providing the Git URL

of the project they want to analyze, they can start a new static analysis in the last commit

of the project or get the last already analyzed commit (if any exist). The analysis of a

1 https://github.com/kostoglou/LibraryUtilization
2 https://github.com/MariaKolyda/javaLibraryUtilization
3 https://youtu.be/m1N22F5mbHI

https://github.com/kostoglou/LibraryUtilization
https://github.com/MariaKolyda/javaLibraryUtilization

5

project is time-consuming, especially for big projects with a lot of libraries. To calculate

all the proposed metrics, we must analyze the code of the project and all the libraries

that are being used. To be able to get the code of each library we had to limit our appli-

cation to analyze only Maven project (at least for a first release). Moreover, we had to

analyze the code of the project, to get the used methods of each library, and the code of

each library, to get the call-tree of the methods. To this end, we used the JavaParser

library [15], which is a very well-known parsing library for Java projects. Finally, we

should note that once a project is analyzed it is saved in a database, so in case a user

asks for an already analyzed project the results can be provided almost instantly.

Fig. 2. Analyze Project Screen

Inspect the Metric Scores. Once the project analysis is finished, or the results are re-

trieved from the database, the user is presented with the metric scores (see Figure 3).

The user can see the NUL of the project and for each library the values of the other four

metrics. This feature provides a basic and bird-eye view on the analysis.

Fig. 3. Metrics Results

6

Inspect the call-tree of a method call. By selecting the “Investigate” button for one

library, the user can see all the methods that were used from this library. And by select-

ing one, the user can see the call-tree of that method (see Figure 4). Moreover, a slider

is provided from which the user can specify the number of nodes they want to see for a

given call-tree. The nodes are limited to a max number of 800 since after that the graph

is hard to read and maybe not so useful. This function can be useful for inspecting out

of which method calls, tentatively malicious or low-quality methods are being invoked,

affecting the external behavior of the target system. Through this feature, the engineer

can get a hint of which functionalities might need to be re-written from scratch, in case

of a run-time quality problem.

Fig. 4. Call-Graph Representation

Fig. 5. Evolution Analysis

7

Analyze Project History. The analysis of all the commits of a project is not recom-

mended due to time constraints, and since we do not expect there to be a big change in

every commit from the aspect of library utilization. For this reason, in the historical

analysis, the user should provide the number of commits they want to analyze along

with the Git URL. The commits that are going to be analyzed will be spread out to the

history of the project according to the provided number. Once the historic analysis is

completed, the user is presented with the results like in Figure 5. The users can see the

evolution of NUL in a line chart and a table with all the libraries that were used along

with their commits. Finally, by selecting a specific library they can see the evolution of

the four-remaining metrics. This feature can be interesting for seeing if the level of

library utilization stays constant along evolution, or if the library grows or shrinks, but

no additional features are being exploited.

5 Validation of the Metrics and Tool

To evaluate the proposed metrics and the tool, we have performed an initial exploratory

empirical study, that was designed and reported based on the guidelines of Runeson et

al. for case studies [13].

5.1 Study Design

To study the proposed metrics and tool, with respect to their tentative acceptance in the

industry, in terms of real word systems and the relevance of the idea, we have formu-

lated the following research question: “Does the developed library utilization tool meet

the expectations of the practitioners?”

The validation of the tool was conducted by asking 13 senior software developers, from

5 different companies, to use and evaluate the tool in a 1-day workshop. First, the re-

searchers have presented the tool, as well as the envisioned motivation and usage sce-

narios. Then, the practitioners were given a small task to familiarize themselves with

the tool, and then some extra time to experiment independently. To assess the relevance

and usability of the tool, we provided access to the participants to an online instance of

the web application. They were asked to perform several tasks and interact with the

application, to get hands-on experience. Each of the participants was asked to do the

following: (a) create a new analysis; (b) inspect the results and the call tree; and (c)

inspect the results of the evolution analysis. Then, they were asked to brainstorm on

what they have learned from using the tool in the form of a focus group, using the

whiteboard. The focus group and the discussion were moderated by the researchers.

The workshop closed with the participant filling in a small questionnaire at the end.

The evaluation of the relevance of the metrics and the usability of the tool was per-

formed based on the System Usability Scale (SUS) instrument [2].

8

5.2 Results

The results of the evaluation are presented in Figure 6 based on SUS. We can see that

all of the questions received excellent responses, however the frequency of the appli-

cation usage received a little bit more unfavorable feedback. The participants seem to

understand the main disadvantage of the application, which is the time needed for a

new analysis, but they were not displeased about it. In a Q&A that was followed with

some of the participants, we could see the need for supporting more languages and

library registries. Moreover, as for the frequency of use of the tool, the participants told

us that they do not often add new libraries or change the methods that they use. So, it

is normal to not have to use often a tool like this in their daily routines, but mostly as a

complementary analysis during quality control processes (e.g., before releases or end

of sprints).

Fig. 6. Usability of Proposed Metrics and Tool

6 Conclusions

The development using libraries in software engineering is a widely adopted practice,

but it must be monitored. The usage of many dependencies or wrong ones can lead to

a lot of problems, so several metrics exist to measure some aspects of the libraries. In

this paper, we have introduced five metrics to fill the gap in the utilization aspect of a

library for a given project. We also created a tool for the calculation and presentation

of these metrics, and we provided it as a web application. Industrial validation took

place with 13 developers from 5 companies, to assess the usability of the created tool.

The results showed that the tool is usable and liked by the participants, with the only

concern being the frequency that they would use it.

9

Acknowledgements

Work reported in this paper has received funding from the European Unions Horizon

2020 research and innovation programme under grant agreement No 780572 (project

SDK4ED)

References

1. Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E.: Why do de- velopers

use trivial packages? an empirical case study on npm. In: Proceedings of the 2017 11th joint

meeting on foundations of software engineering. pp. 385–395 (2017)

2. Brooke, J.: Sus: a “quick and dirty’usability. Usability evaluation in industry 189(3), 189–

194 (1996)

3. Charalampidou, S., Arvanitou, E.M., Ampatzoglou, A., Avgeriou, P., Chatzi- georgiou, A.,

Stamelos, I.: Structural quality metrics as indicators of the long method bad smell: An em-

pirical study. In: 2018 44th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). pp. 234–238 (2018). https://doi.org/10.1109/SEAA.2018.00046

4. De la Mora, F.L., Nadi, S.: An empirical study of metric-based comparisons of soft- ware

libraries. In: Proceedings of the 14th International Conference on Predictive Models and

Data Analytics in Software Engineering. pp. 22–31 (2018)

5. De La Mora, F.L., Nadi, S.: Which library should i use? a metric-based compari- son of

software libraries. In: Proceedings of the 40th International Conference on Software Engi-

neering: New Ideas and Emerging Results. pp. 37–40 (2018)

6. Flov ́en, K.F.: State management models impact on run-time performance in single page

applications (2020)

7. Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE trans- actions on

Software Engineering 31(7), 529–536 (2005)

8. Gizas, A., Christodoulou, S., Papatheodorou, T.: Comparative evaluation of javascript

frameworks. In: Proceedings of the 21st International Conference on World Wide Web. pp.

513–514 (2012)

9. Hora, A., Valente, M.T.: apiwave: Keeping track of api popularity and migration. In: 2015

IEEE international conference on software maintenance and evolution (ICSME). pp. 321–

323. IEEE (2015)

10. Larios Vargas, E., Aniche, M., Treude, C., Bruntink, M., Gousios, G.: Selecting third-party

libraries: The practitioners’ perspective. In: Proceedings of the 28th ACM joint meeting on

european software engineering conference and symposium on the foundations of software

engineering. pp. 245–256 (2020)

11. Nikolaidis, N., Ampatzoglou, A., Chatzigeorgiou, A., Tsekeridou, S., Piperidis, A.: Tech-

nical debt in service-oriented software systems. In: International Conference on Product-

Focused Software Process Improvement. pp. 265–281. Springer (2022)

12. Piccioni, M., Furia, C.A., Meyer, B.: An empirical study of api usability. In: 2013

ACM/IEEE International Symposium on Empirical Software Engineering and Measure-

ment. pp. 5–14. IEEE (2013)

13. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case study research in software engineering:

Guidelines and examples. John Wiley & Sons (2012)

14. Shatnawi, M.Q., Hmeidi, I., Shatnawi, A.: Software library investment metrics: a new ap-

proach, issues and recommendations (2017)

https://doi.org/10.1109/SEAA.2018.00046

10

15. Smith, N., Van Bruggen, D., Tomassetti, F.: Javaparser: visited. Leanpub, oct. de 10, 29–40

(2017)

16. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring reusability of

software components. In: Proceedings. 5th International Workshop on enterprise networking

and computing in healthcare industry (IEEE Cat. No. 03EX717). pp. 211–223. IEEE (2004)

17. Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A.,

Chaikalis, T., Deligiannis, I., Sfetsos, P., Stamelos, I.: An empirical study on the reuse of

third-party libraries in open-source soft- ware development. In: Proceedings of the 7th Bal-

kan Conference on In- formatics Conference. BCI ’15, Association for Computing Machin-

ery, New York, NY, USA (2015). https://doi.org/10.1145/2801081.2801087,

https://doi.org/10.1145/2801081.2801087

