Exploring the Effect of Various Maintenance
Activities on the Accumulation of TD Principal

Abstract—One of the most well-known laws of software evolu-
tion suggests that code quality deteriorates over time. Following
this law, recent empirical studies have brought evidence that
Technical Debt (TD) Principal tends to increase (in absolute
value) as the system grows, since more technical debt issues are
added than resolved over time. To shed light into how technical
debt accumulation occurs in practice, in this paper we explore
specific maintenance activities (i.e., feature addition, bug fixing,
and refactoring) and explore the balance between the technical
debt that they introduce or resolve. To achieve this goal, we rely
on studying Pull Requests (PR), which are the most established
way to contribute code to an open-source project. A Pull Re-
quest is usually comprised by more than one commits, corre-
sponding to a specific development / maintenance activity. In
our study, we categorized Pull Requests, based on their labels,
to find the effect that the different maintenance activities have
on the accumulation of technical debt across evolution. In par-
ticular, we have analysed more than 13.5K pull requests (mined
from 10 OSS projects), by calculating the TD Principal (calcu-
lated through SonarQube) before and after the Pull Requests.
The results of the study suggested that several labels are used
for tagging Pull Requests, out of which the most prevalent ones
are new features, bug fixing, and refactoring. The effect of these
activities on TD Principal accumulation is statistically different,
and: (a) the addition of features tends to increase TD Principal;
(b) refactoring is having an almost consistent positive effect (re-
ducing TD Principal); and (c) bug fixing activity has undecisive
impact on TD Principal. These results are compared to existing
studies, interpreted, and various useful implications for re-
searchers and practitioners have been drawn.
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1. INTRODUCTION

Technical Debt (TD) was introduced, in the early 90s, to cap-
ture the effort (and in turn the cost) that the developers inter-
nally “borrow” (from the company time-budget) when they
adopt “quick and dirty” solutions, downgrading the final prod-
uct in terms of quality, and in particular maintainability [1]. A
key technical debt parameter that needs to be considered when
managing technical debt is the notion of Principal, which is
the number of code inefficiencies that have to be resolved in
order for a given project to be in an optimum state in terms of
maintainability [2]. Ensuring that a project retains an accepta-
ble quality level—e.g., through imposing the use of quality
gates for controlling the amount of introduced TD Principal
[3]—can lead to smoother and more effective development,
reducing the vicious cycles of technical debt accumulation [4].
Nevertheless, in practice, and due to tight development sched-
ule, the quality of software tends to deteriorate along evolution
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[3]; whereas the same applies for TD Principal, in the sense
that TD Principal seems to be increasing in subsequent ver-
sions, even for systems or ecosystems that are well-known for
their levels of quality and software development processes
(e.g., the Apache ecosystem—despite a decrease in some
cases in the TD Principal density metric) [5].

Given the indisputable relation between system growth
and quality erosion, it is important to gain an understanding of
what kind of maintenance activities are more prone to accu-
mulate TD Principal. According to van Vliet [6] maintenance
activities can be mapped to four main categories: (a) activities
that aim at fixing bugs; (b) activities that aim at adding new
features; (c) activities that aim at improving the quality of
code through refactoring; and (d) activities that aim at identi-
fying faults before the end-users. While developing software
in modern collaborative software development environments
(most commonly Git) these types of actions are usually per-
formed in groups of commits, organized in the form of Pull
Requests (PR) [7]. When a developer wants to submit an in-
cremental contribution to a project, he / she is encouraged to
create a Pull Request, grouping all the required changes and
calling for a review of his/her contribution by one of the core
project members. Each Pull Request may consist of one or
more commits, whereas as a whole (by definition) is expected
to provide a homogenous and completed contribution (e.g., a
new functionality, a bug fix, or a code improvement action).
The goal of the Pull Request mechanism is to enable the ho-
listic review of these changes, before their merging to the main
code branch. The project maintainers can accept the Pull Re-
quest to be merged into the project; otherwise, the maintainer
can close the Pull Request or ask for changes. Because of the
safety and collaboration of the overall functionality that the
Pull Requests offers, they are widely used in large projects [8].
On top of this, it is very common for large projects to disable
the incorporation of direct changes to the main branch impos-
ing the use of Pull Requests, through the branch protection
functionality [9]. According to previous studies [ 10], software
projects can be changed through three types of development
activities, which are: (a) addition of new features, (b) bug fix-
ing, and (c) maintenance—which perfectly map the categories
proposed by van Vliet.

In this study, we investigate the different effect that such
maintenance actives can have on the accumulation of TD Prin-
cipal. On the one hand, to record the type of maintenance ac-
tivities, we have used the labels that the developers have pro-
vided to characterize the Pull Request. In this way, we have
assured the mapping of changes and maintenance categories,
since we do not rely on subjective or Al-based approaches
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(that might lack in terms of accuracy)—but on the expert be-
lief of the developer. Furthermore, by studying Pull Requests
instead of commits, we were able to (as much as possible) con-
trol the phenomenon of mixing maintenance activities. In
other words, we were able to capture the changes that a devel-
oper has performed having in mind a specific activity, avoid-
ing individual commits that mix maintenance activities. For
example, concerning refactorings, a reverse engineering ap-
proach with refactoring mining tools would have led to sub-
stantially more commits characterized as refactorings, but for
such commits we cannot be sure that they were not blending
refactoring with adding new functionalities or bug fixing [11].
On the other hand, to record the effect of the change on TD
Principal accumulation, we analysed the project before and
after the merge of a Pull Request through SonarQube. Despite
the divergence of tools in calculating the value of TD Principal
[12], due to the nature of the study: (a) being in need of a
measurement and not an identification approach; and (b) the
use of Java, we were not able to rely on the tools provided by
Tsoukalas et al. [13] or Zozas et al. [ 14] that use the TD bench-
mark. Therefore, we opt to rely on SonarQube, which accord-
ing to Avgeriou et al. [12] is the most popular tool for meas-
uring TD Principal.

The rest of the paper is organized in the following way:
Section II present related work; in Section III we present the
design of our study. The results of our study along with their
discussion are reported in Sections IV and V, respectively.
Section VI reports the threats to the validity of our study; fi-
nally, we conclude the paper in Section VII.

II. RELATED WORK

In this section, we present existing studies and background in-
formation for this research effort. First, we present studies that
are related to pull requests and the quality of the code; second,
we present studies that use the labelling system of pull re-
quests; and finally, studies about the effect of specific devel-
opment activities to the quality of the code or technical debt
evolution.

A. Pull Requests and Code Quality

In the literature, it is common to explore pull requests to con-
nect their contribution or their acceptance with the quality of
the submitted code. Lenarduzzi et al. [15] analysed over 36
thousand pull requests of 28 Java projects focusing on whether
the quality of the code that is being introduced is related to the
acceptance probability of the pull request. In that study, the
PMD tool was used in order to find code quality defects, and
it was evident that quality did not play a key role in the ac-
ceptance or rejection of the pull request. However, it seems
that certain PMD rules are indeed considered by the reviewers
for the acceptance of new code. Similar results were found in
other studies [16], where the developers’ trustworthiness was
more important as well as the code quality and structure. Gou-
sios et al. [17] in a large-scale survey of 749 people, that act
as integrators in many different systems, found out the factors
that affect the decision of accepting or not a pull request. The
code quality was the top factor that influenced the decision of
the integrators, along with the testing and the alignment with
the project’s overall idea. The main takeaway was that both
technical and social factors play a significant role in the pull
request acceptance. The social aspect was found (and con-
firmed) to be a very important aspect in other studies as well
[18], where the developer was the most important factor that
influenced the chances of a pull requests.

On the aspect of technical debt, Silva et al. [19] by analys-
ing 1.722 pull requests, found out that 30% of the rejected pull
requests are due to the presence of technical debt issues. It is
also noteworthy that the most frequently attributed reason was
code design, which was also identified in the study by Zou et
al. [20], who analysed 50.000 pull requests from 117 projects
in order to find if the coding style affects the pull request
chances of being eventually merged. The study revealed that
there the more consistent the added code is to the already ex-
isting code base, the higher the probability of a merging the
pull request. Another study on three projects, namely Spark,
Kafka, and React, analysing pull requests from the perspective
of code quality [21] showed that there the discussion of tech-
nical debt in pull requests appears to be different than in other
software artifacts (e.g., code comments, commits, issues, or
discussion forums).

B. Labeling of Pull Requests

Even though we know that the structural characteristics of the
pull request are very important for the acceptance [18] as well
as the collaboration of the developers [7], limited research fo-
cused on the concept of labels for pull requests. Yu et al. [22]
found out that developers are not actively using labelling in
their pull requests; however, the authors noted that this trend
might be changing over time. To overcome this issue, the au-
thors developed an automatic way to label pull requests offer-
ing a precision of 60%. Moreover, in a study with 10 open
source software projects Pooput et al. [23] analysed the pull
request characteristics in order to find the factors that are re-
lated to their rejection. They found out that the pull request
labelling is very important and closely related to the rejection
of pull request.

C. Development Activities Effect on Quality

The effect of some development activities on the quality and
more specifically to the technical debt has been studied by Za-
bardast et al. [10]. They analysed 2.286 commits from one
project in order to see how Refactoring, Bug Fixing, and New
Development affect technical debt. They found out that tech-
nical debt is added more often when new features are being
added to the project, and it seems to be reduced with commits
that are related to fixing bugs. Finally, Refactoring can be both
good and bad, which is a pattern that we can see in many other
studies [24]. We should note that the categorization was done
with the commit messages while the refactoring was found us-
ing the Refactoring Miner tool. Finally, another similar study
but more dedicated to the Refactoring was done by Maldo-
nado et al. [25]. They examined 5.733 removals of self-admit-
ted technical debt (SATD) in order to find relations with bugs,
improvements, and refactorings. They found out that the
SATD is introduced to track future bugs and areas of the code
that will need improvements. But the most important takea-
way is that the removal of SATD takes place when they are
fixing bugs or adding new features. And the removal of SATD
it rarely takes place as part of refactorings.

D. Evolution of Technical Debt

On the concept of evolution of a software system there have
been numerous studies, most of them concluding that the qual-
ity of the system deteriorates over time [26]. As for the evolu-
tion of technical debt, Digkas et al. [27] studied the weekly
changes of 66 projects for a period of 5 years. They found out
that, in absolute values, TD Principal increased over time. On
the other hand, normalized TD (TD divided over lines of
code), termed TD density, decreased over time for most of the



projects. On another study by Digkas et al. [28], the authors
focused on the relation between technical debt density and the
characteristics of new code. In particular, they studied 27 pro-
jects and analysed 57K commits, finding out that clean code
(i.e., the practice of introducing new code that has better qual-
ity than the already existing code base) can be a very effective
way to reduce technical debt density. Tan et al. [29] studied
the evolution of 44 Python projects with a total of over 60K
commits, and almost 43K of fixed issues. They found out that
half of the technical debt is short term, in the sense that is be-
ing repaid in less than two months from its introduction. An-
other takeaway message of this work, was that the repayment
was concentrated in testing, complexity, and duplication re-
moval, categories in which the majority of issues were swiftly
resolved.

Molnar and Motogna [30] studied the evolution of three
Java projects over a total of 110 releases. In order to capture
the amount of technical debt along with other metrics, they
used SonarQube. They found out that there was a correlation
of technical debt with the number of lines that was being
added in each version. They also found that 20% of the total
issue types, generated 80% of the total technical debt (adher-
ing to the well-known Pareto principle), with consistent find-
ings for almost all projects. Peters and Zaidman [31] studied
the lifespans of some code smells in 8 open-source projects.
For this reason, they created a tool namely SACSEA, and used
it in order to identify a variety of well-known code smells:
God Class, Feature Envy, Data Class, Message Chain Class,
and Long Parameter List. The results suggested that the num-
ber of code smells increases over time, and that even though
developers are aware of them chose not to act. But this is not
always true, as easier to resolve code smells are fixed more
often.

A similar study was carried out by Tufano et al. [32],
where the evolution of five code smells was studied. They
found out that artifacts with more code smells tend to attract
more smells during their evolution, resembling a rich-gets-
richer phenomenon Also new code smells are introduced
when software engineers implement new features or when
they extend the functionality of the existing ones. Finally, a
large-scale study by Bavota and Russo [33] with 159 projects
took place in order to investigate the evolution of self-admit-
ted technical debt. In this study 600K commits and 2 billion
comments were used. They found out that self-admitted tech-
nical debt is mostly represented by code with 30%, while de-
fect and requirement debt have 20% each. Regarding the evo-
lution of the software, the authors suggested that TD is con-
tinuously increasing and that when it is resolved it takes about
100 commits to do so.

III. CASE STUDY DESIGN

In this section, we present the study design, by providing in-
formation about the research questions, the datasets that we
used, and the employed statistical analysis. The case study was
designed and reported based on the guidelines provided by
Runeson et al. [34].

A. Research Questions

To study the effect of various maintenance activities, docu-
mented in pull requests, on the accumulation of TD Principal,
we have formulated and set the following research questions:

RQ1: What kind of labels are being used to characterize pull
requests?

RQ2: What is the effect of each maintenance activity to the
amount of TD Principal?

In recent years, the use of Pull Requests to apply changes in
software systems is currently becoming more and more popu-
lar. However, the information provided along with Pull Re-
quests and more specifically the labels that the developers use
for their characterization, yield for further improvement and
standardization. In RQ1, we investigate the current status of
Pull Request labelling. In particular, we explore what labels
usually stand for (how do they characterize the changes), as
well as, how often they do describe maintenance activities. For
RQ2, we focus on the three most known maintenance activi-
ties (see Section I), and we investigate their effect on TD Prin-
cipal accumulation. This will allow us to confirm or reject the
hypothesis that refactoring activities generally improve qual-
ity aspects, functionality addition tends to reduce quality (es-
pecially if it is performed under a tight schedule), and explore
the effect of bug fixing on technical debt for which no specific
assumptions can be made. To achieve this goal, we explore:
(a) the effect of software evolution on TD Principal accumu-
lation—without differentiating among maintenance activity
types; (b) the effect of maintenance types; and (¢) the interac-
tion of the two factors: software evolution and maintenance
activities (see Section III.D for more details on the analysis
process).

B. Cases and Units of Analysis

Our study is characterized as a multiple, embedded case study
[34], where the cases are open-source software projects, and
the units of analysis are all the merged Pull Requests of each
project. The reason for selecting open-source software pro-
jects is the vast amount of open data and the popularity of
adopting the mechanism of Pull Requests for contributing to
the project. The ten projects that we have investigated in this
paper can be found in Table 1.

TABLE I. DATASET DEMOGRAPHICS

Pull Size

Project Commits Requests | (Classes)
antlr/antlr4 8,934 1,380 1,453
Netflix/conductor 3,059 1,476 578
DataDog/dd-trace-java 10,329 4,001 3,762
apache/dolphinscheduler 7,608 6,713 2,027
apache/incubator-seatunnel 2,779 2,297 1,700
apache/inlong 3,064 3,323 3,792
provectus/kafka-ui 1,566 1,821 353
apache/rocketmq 7,734 2,691 1,823
apache/skywalking 7,459 4,539 2,089
spring-projects/spring- 13,086 2125 | 5362
security ’ ’ ’

The selection of projects was based on the following criteria:

e The main programming language is Java, so as to not risk
having different results, due to language specific fea-
tures—we opt for Java since it is the most commonly ana-
lysed language in technical debt literature, so that results
are comparable to previous work.

e The project is still under development to ensure that the
development practices are not outdated. So, the developers



are actively use pull requests and it is most likely that they
are also use labelling.

o The project has more than 1,000 closed pull requests, to
have enough data points for each project. The closed pull
requests can be either merged or not, and from the merged
ones we do not expect all of them to be labelled. So, in this
way, we make sure that we have enough data per project
for our analysis.

o The project actively uses labelling in pull requests, which
is one of the most important criteria, as our maintenance
activity categorization is based on them.

C. Data Collection

To gather the appropriate data, i.e., retrieve the pull requests,
assess the code quality of the involved code through So-
narQube and carry out the appropriate statistical analysis, we
developed a software solution to automate the process. In Fig-
ure 1, we present the overall functionality of the developed
solution. Our complete dataset can be found online!, as well
as the source code of the data collection software?.

Github Project

O

Pull Requests

19

Fllter

sonarqube \
Fig. 1. Data collection process

The data collection process can be split in the following two
phases:

Pull Requests Identification. First, we had to extract the pull
requests that we were going to analyse. We focused our study
on pull requests from GitHub projects that were closed. For
this reason, we used the GitHub API to get the pull requests
that were closed, merged, and that contained at least one label.
Figure 2 represents the pull request that we try to capture from
the GitHub API. Moreover, for each pull request that satisfies
our constraints we want to get the code before and after the
merge of the pull request. This is vital to be able to calculate
the TD Principal before and after each pull request.

feare G =

Fig. 2. Pull Request of Interest

Technical Debt Analysis. After having the complete list of the
pull requests with the commits before and after their merge,
we are able to analyse the code. So, we automated the process
by checking out in a specific commit each time and starting
the code analysis. For the code analysis, we used the So-
narQube which is a very well-known tool for TD Principal
calculation [35]. Finally, after the technical debt analysis is
finished, we have a dataset with pull request and the TD Prin-
cipal value before and after the merge.

D. Data Analysis

To answer RQ1, we catalogue the text of the labels that are
attached to Pull Requests. In some case text processing for la-
bels has been made (e.g., splitting to stopping characters—
backslash or colon). The analysis is mostly descriptive, em-
ploying simple visualization methods. To understand the pur-
pose of the label as well as their meaning in the context of each
project, we consult the descriptions that the project provides.
The main goal of the analysis was to explore: (a) how labels
are structured and what they do describe; (b) the most frequent
labels; and (c) the number of labels that are usually used to
characterize a Pull Request.

For answering RQ2, by taking into consideration the ex-
perimental design of the study (i.e., embedded case study), we
used the Linear Mixed Effects Models (LMEM) [36]. More
specifically, in our setup, Pull Requests were collected from
different projects and for this reason, there is a need for taking
into account the fact that they may share common characteris-
tics. To this regard, our preference to LMEM rather than other
traditional statistical approaches (e.g., ANOVA—Analysis of
Variance) is due to the ability of this branch of statistical ap-
proaches to handle the nested nature of data (i.e., the Pull Re-
quests are nested within projects).

Mixed Effect Models in a Nutshell

Mixed Effects Models are used for cases that multiple factors
might affect a single phenomenon. Drawing an analogy to
medicine, consider the case that three different medical treat-
ments are applied for decreasing fever, and we want to check
which one is the most efficient one. To achieve this, one usu-
ally applies a repeated measures design (e.g., a pre- post-anal-
ysis), where the fever is measured before and after intaking
the medical treatment. However, apart from the TREAT-
MENT, in this scenario, an additional factor is 7IME (in the
sense that fever might decrease even without any medication).
To explore both parameters you need to construct a model by
considering TIME and TREATMENT (as fixed main effects),
and a model considering the main effects along with the inter-
action of both TIMEXTREATMENT (mixed effect) on the re-
sponse.

Given the above, in the context of this research, we explore
the effect of SOFTWARE EVOLUTION (mapped to TIME)
and MAINTENANCE ACTIVITY (mapped to TREATMENT)
on TD PRINCIPAL (mapped to fever). We note that the goal
of our experimental setup is to study the effect of several
maintenance activities on TD Principal: the factor Software
Evolution, corresponds to the effect of Pull Requests, without
discriminating among Maintenance Activity types. In tradi-
tional statistics (not considering the nested modelling of this
design), this analysis would suggest if there are differences
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between types; whereas the second leg of the analysis would
unveil which types are different.

To achieve this goal, we created a categorical variable
(Maintenance Activity) consisting of three categories (namely:
feature, bug, and refactoring), which correspond to Pull Re-
quest types, based on their labels. We should note that the la-
bels are stated in the same or almost the same way as our cat-
egories. More specifically, only labels that we categorize in
the refactoring category can be named differently, but if we
dig deeper into their description inside each project, we can
see that they are associated with refactoring. In Table II we
present the exact label of each project, that we have used so as
to categorize it as a development activity.

TABLEII. PULL REQUEST CATEGORIZATION BASED ON LABELS

Project Feature Bug Refactoring
antlr/antlr4 type:feature type:bug type:cleanup

. . . type: mainte-
Netflix/conductor type: feature | type: bug nance
DataDog/dd-trace- - bug refactoring
java
apache/dolphinsched Feature bug chore
uler
apache/incubator- Feature bug Chore
seatunnel
apache/inlong type/feature type/bug -
provectus/kafka-ui type/feature type/bug type/refactoring

type/new
apache/rocketmq feature type/bug type/code style
apache/skywalking feature bug chore
spring-
projects/spring- - type: bug -
security
IV. RESULTS

In this section, we present the results of our analysis, orga-
nized by research question. We note that in this section, we
just present the raw results, which we interpret and discuss in
Section V.

A. Pull Request Labels Analysis

As a first step in answering RQ1, we present some descriptive
statistics on the labels, per project. Each project has its own
labels, but the overall usage is uniform. As it can be observed
from Table III, the number of labels that each project has, and
their categories are at a similar level of magnitude. It is very
common for a project to group some labels under the same
category. For example, to group the labels for each affected
component, development teams might use the terms: “mod-
ule”, “component”, or “comp” prefix in the label name. For
example, one can observe labels, such as: “module/control-
ler”, “module/container”, “module/admin”, etc. This catego-
rization is very popular and 9 (out of 10) projects that we have

analysed, follow this notation.

TABLE III. PROJECT’S PULL REQUEST LABELS CHARACTERISTICS

Project No. Labels No. Groups Groups
apache/incubator- 50 0 )
seatunnel
apache/inlong 22 2 f;;relponent,
provectus/kafka-ui 41 4 ;?;Izs:t’t;;gpe’
module, pro-
apache/rocketmq 44 3 aress, type,
apache/skywalking 60 1 complexity
spring- .
projects/spring- 52 4 tfor,em, status,
security yP

Project No. Labels No. Groups Groups

antlt/antlr4 46 4 comp, status,
target, type

Netflix/conductor 25 1 type

DataDog/ dd-trace- 61 1 dev

java

apache/dolphinsched .

uler 80 1 priority

Another interesting observation is that it is quite common
for a Pull Request to be characterized with more than one la-
bels. The reason behind this is quite straightforward since a
developer can label a Pull Request based on: (a) its status—
e.g., triage, status, etc.; (b) the component (or components)
that it affects—e.g., controller admin, etc.; (c) the type of the
change—e.g., bug, refactoring, etc. In Figure 3, we visualize
the frequency distribution of the number of labels that are used
for the characterization of the analysed Pull Requests. The re-
sults suggest that that the vast majority of the identified Pull
Requests have up to three labels and the average number of
labels is 1.7 per Pull Request.
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Fig. 3. Number of labels in Pull Requests
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Fig. 4. Popularity of Pull Requests Groups

In Figure 4, we, graphically, depict the popularity of each
group. Based on the results, we can observe that the most
frequent kind of information is the “WHERE” information,




as captured by the comp, the component, the module, the in,
and the target labels (cumulatively summing up to 51%),
followed by information on “WHAT” as captured by the type
label (28%). Given the fact that information captured by the
“WHERE” labels are application specific, in Figure 5, we dig
further in the “WHAT” information, presenting the frequency
of the most popular types of maintenance actions. Based on
the findings, in order to focus on the targeted maintenance
activities, we need to neglect the types: emhancement,
improve, and documentation. On one hand, enhancement
and improvement could reflect to both quality and/or
functionality enhancement: therefore, it would be risky to
include them. On the other hand, although documentation
most probably refers to quality improvement it cannot be
treated as a refactoring. In that sense, for RQ» we focus on the
top-3 labels, based on popularity that are clearly mapped to
maintenance activities.

jira
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important
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task
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dependencies
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documentation
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bug
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Fig. 5. Popularity of Maintenance Type Labels

B. Effect of Software Evolution and Maintenance Types on
TD Principal Accumulation

As a first step in answering RQz, we first explore the fre-
quency of the effect (positive, neutral, negative) of each
maintenance activity type on TD Principal. In Figure 6, we
present the percentage of cases that a specific maintenance
type produced positive or negative effects. From Figure 6, we

can observe that around 62% of the total Pull Requests do not
impact TD Principal since they either do not introduce or re-
duce technical debt issues or they introduce / remove an equal
amount. By cross-comparing the first row of the stacked bar-
chart with the next ones, we can observe that New Features
are having an almost doubled-up chance of increasing TD
Principal, Refactorings have the highest chances of reducing
TD Principal, whereas for Bug Fixing, we can observe the
highest percentage of neutral cases.

All

Refactoring

Bug Fixing

New Feature

0% 20% 40% 60% 80% 100%

W Negative M Neutral Positive

Fig. 6. PR Impact Count for each Maintenance Type

Next, proceeding to LMEM analysis, Table IV provides a
summary of the exploratory analysis for the combination of
the levels for the two examined factors. As we can observe, on
average Bug Fixing and the addition of New Features in-
crease the amount of Pull Requests Principal in minutes (even
marginally), whereas, Refactoring reduces it. As explained in
Section II1.D, we fitted two LMEMs, to investigate if there is
a statistically significant interaction effect of the two exam-
ined factors on Pull Requests Principal. The former model (or
the full model) contains the main fixed effects of Software
Evolution and Maintenance Activity and their interaction
(Software Evolution xMaintenance Activity), whereas the sec-
ond model incorporates only the main effects without their in-
teraction term. At this point, we need to mention that models
were fitted on the logarithmic transformation of the response
in order to satisfy the assumption of homogeneity of variance
means.

These two models were tested against each other through
the Wald test, whereas the model presenting the lowest Akaike
Information Criterion (AIC) value was, finally, selected for
any further analysis. Indeed, the comparison of the two
LMEMs indicated a statistically significant interaction effect
(p = 0.002) and for this reason, the full model with the inter-
action term was chosen, since it presented lower AIC3 value
(AIC = —13347) compared to the model without the interac-
tion term (AIC = —13339). As far the final fitted model con-
cerns, Table V summarizes the Analysis of Variance
(ANOVA) findings. We have to note that due to the existence
of a statistically significant interaction term, emphasis needs
to be given on understanding the changes of 7D Principal
caused by Software Evolution, based on the type of Mainte-
nance Activity.

3 Akaike Information Criterion: expresses how well the corresponding
model fits the data - a lower AIC value indicates better fitting



Software Evolution

TABLE IV. DESCRIPTIVE STATISTICS

Maintenance Activity | Software Evolution N Mean SD Median Minimum Maximum
Bug Fixing After 2380 | 32,643.51 | 21569.99 26548.0 52 191261
Before 2380 | 32,572.23 | 21380.83 26564.5 52 191208
New Feature After 1247 | 36,495.92 | 19692.69 30169.0 2230 89138
Before 1247 | 36,437.65 | 19646.78 30136.0 2230 88550
Refactoring After 740 | 34,197.39 | 26259.09 31479.5 2303 89809
Before 740 | 34,315.53 | 26378.01 31479.5 2303 89809
TABLE V. ANOVA RESULTS FROM LMEM V. DISCUSSION
Den- .
Factor or | DF Fvalue | povalue A. Recap and Interpretation of Results
Maintenance The main findings of this work can be summarized as follows:
Activity 2 | 43558 | 7135 <0.001 (a) the labels assigned to Pull Requests can provide useful in-
Software Evolution 1 | 43640 | 0237 0627 put for evolution analysis, in the sense that the used labels can
. characterize both the type of maintenance / development ac-
Maintenance .. .
Activity x Software 2 | 43640 6.066 0,002 tivity, as well as the affected part of the system; (b) adding
Evolution new features to the software usually increases the amount of

Having concluded that both factors are important, we
proceeded to post-hoc contrasts analysis in order to examine
the effect of each maintenance activity to the accumulation of
TD Principal. The results presented in Table VI indicate that
there was noted a statistically significant difference on the
mean values of 7D Principal only for the two types of pull
requests: Addition of a New Feature and Refactoring, before
and after the merge of a Pull Request. Additionally, a
noteworthy finding can be derived from the sign of the
estimated mean difference. The positive sign for Addition of
New Feature activity indicates an increase in 7D Principal,
whereas the opposite is the case for the Refactoring activity.
The findings are also graphically displayed in Figure 7, where
the blue bars represent the 95% confidence intervals for the
estimated mean differences.

TABLE VI. POST-HOC CONTRASTS

Maintenance Software Esti-
Activity Evolution mate SE z )
Bug Fixing After-Before 0.005 0.0006 1.010 | 0.313
New Feature After-Before 0.002 0.0008 1.983 0.047
Refactoring After-Before -0.003 0.001 -2.762 | 0.006
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Fig. 7. Difference of Mean Values Accompanied by 95% Cls

TD Principal; (¢) refactoring tends to reduce the amount of TD
Principal; (d) bug fixing seems to be neutral in terms of
changes to the TD Principal amount. Below, each of these
findings is discussed in more detail.

Pull Requests Label appear to be a promising way to control
development and evolution analysis studies, in the sense that:
(a) they characterise accurately the activity that has been per-
formed; and (b) they group commits to larger chunks of evo-
lution that serve a common goal. The fact that the analysis
pointed out to various similarities in terms of Pull Requests’
groups and labels suggest a homogeneity across different pro-
jects; an observation that further strengthens the belief that
they can be extremely useful for future studies (see Section
V.B). Also, the fact that some Pull Request labels can be
mapped in a one-to-one manner to well-established mainte-
nance activities, also seems to enable a more straightforward
analysis of the evolution.

TD Principal Accumulation and Adding New Features: The
fact that adding a new feature in the code bases has proven to
be the costliest (in terms of TD Principal) maintenance activity
is well-anticipated. This can be explained by the fact that add-
ing a new feature (in contrast to bug fixing and refactoring)
usually ends up to adding additional lines of code in the code-
base [10]. These additional lines are more probable to intro-
duce new technical debt issues (violate additional rules of So-
narQube) compared to fixing a bug (usually smaller incre-
ments/deletions from the code) or dedicated refactoring ses-
sions.

TD Principal Accumulation and Refactoring: This study has
provided evidence that performing a refactoring is the mainte-
nance activity type that is most probable (in terms of fre-
quency) and the most efficient (in terms of value) way to re-
duce TD Principal. This study, opposes several previous ones
that were suggesting that the effect of refactorings is undeci-
sive [24]. The most probable reason for this differentiation
comes from the study setup that uses Pull Requests instead of
commits. Using a Pull Request as a unit of analysis: (a) safe-
guards that a refactoring is not mixed with other types of
maintenance; and (b) might point to refactoring sessions, un-
der which in various commits more than one refactorings take
place, increasing the chances of capturing and resolving tech-
nical debt issue violations.



TD Principal Accumulation and Bug Fixing: The results of
this work were unable to produce solid evidence on the effect
of bug fixing on technical debt accumulation. This finding
might emerge from the fact that functional bug fixing is usu-
ally unrelated to maintainability. In the literature it has been
made clear that bugs or defects are not accounted as TD Prin-
cipal (in the sense that they do not produce technical debt In-
terest) [37]; although, still relevant to technical debt manage-
ment (since they are one of the main factors for TD Interest
probability—i.e., the reason to change a high-TD Principal
class). Our results comply with this view, in the sense that re-
solving a bug, usually does not affect the value of TD Princi-
pal.

Software Evolution and TD Principal Accumulation: One of
the key statements that motivated this work was that TD Prin-
cipal tends to increase along software evolution [27]. Alt-
hough this statement seems to contradict the main findings of
this work (one type of maintenance reduces technical debt, the
other is neutral, and only one increase technical debt), through
a deeper analysis we can observe that the statement is actually
confirmed. In particular, by considering not only the effect,
but also the frequency of the labels we can observe that Pull
Requests that have a negative effect on TD Principal sum-up
to 26%, whereas the Pull Requests that have a positive effect
account to 13%. In that sense, we can claim that the cumula-
tive effect of New Feature Pull Requests is higher than the cu-
mulative effect of Refactoring Pull Requests, leading to an
overall quality deterioration (increase in the absolute value of
TD Principal).

B. Implications to Researchers

Based on the findings of this work, we can provide some use-
ful research implications, as well as, some interesting future
work directions. First, the decision to use Pull Requests as a
unit of analysis has proven to be a promising alternative to
studying software evolution, in the sense that Pull Request in
contrast to commits are: (a) providing chunks of revisions that
serve a common goal—providing the ability to study specific
types of activities or components; and (b) stand at a higher
level of granularity—providing (or at least expected) to pro-
vide more homogenous results that are not so sensitive as
commit level analysis. Based on this, we believe that the fol-
lowing interesting research opportunities can be further ex-
plored:

o study software evolution at the level of Pull Request, rather
than at commit level, and contrast the results—validate or
contradict the current beliefs on software evolution in larger
but more cohesive software changes;

e employ Pull Request labels for enabling tracing require-
ments to source code implementations;

o study technical debt accumulation in specific components
(or modules), and contrast it to the centrality of the compo-
nent in terms of how many Pull Requests they are involved
into.

Additionally, the use of LMEM as the employed statisti-
cal analysis method, opens new directions in terms of how em-
pirical methods are used in software engineering, in the sense
that the vast majority of experimental setups are nested. In
terms of analysis, we also suggest a replication of this work to
study the effect of software evolution on technical debt accu-
mulation, using multiple timestamps (repeated measures in-
stead of a pre- post- analysis). Moreover, a replication of the
study concerning technical debt Interest, on top of the TD

Principal analysis would also be beneficial, and would expand
the body of knowledge on technical debt evolution.

Finally, the results of this work, in terms of the effect of
maintenance types on technical debt accumulation, open up
several interesting research directions. The fact that for both
refactoring and addition of new features, we have identified
cases that the Pull Request has positive or negative effect, ren-
ders further investigation highly interesting. In particular, we
believe that machine learning, deep learning, or explainable
Al models can be used for identifying the characteristics of
systems, whose maintenance is beneficial. For example, we
plan to isolate the refactoring units of analysis and provide
guidance (either as thresholds or rules) on when (based on the
structural characteristics of classes to be refactored) a refac-
toring should be applied, and when it can be neglected. The
extracted models will offer a deeper understanding of the phe-
nomenon, but also will result in a very useful and practical
solution (tool), since refactoring opportunities (repayment)
prioritization is a key-problem in technical debt management.
Also, we plan to explore the bug-fixing Pull Requests and in-
vestigate the long-term effect that they have on the technical
debt interest probability of the involved artifacts (classes and
components).

C. Implications to Practitioners

The findings of this study also provide some useful implica-
tions to practitioners. First, based on the findings and the
knowledge that can be extracted from Pull Requests, we en-
courage developers to use the Pull Requests mechanisms for
contributing to projects and use appropriate labels for charac-
terization of the contribution. In addition to this, we encourage
the use of the hierarchical (two-level) labels in the form of
group:label so that information is well-organized. Finally,
we encourage organizations to promote the use of a common
and standardized scheme for Pull Requests characterization,
to avoid a large and diverse number of labels. In terms of
maintenance activities, we promote the organization of refac-
toring sessions, organized under Pull Requests, that lead to
substantial improvements in maintainability. Also, since it
seems that the addition of new features is the activity that is
mostly responsible for the accumulation of technical debt, we
encourage the use of quality gates, especially for the cases of
adding new features.

VI. THREATS TO VALIDITY

In this section, we present and discuss construct, reliability,
external, and internal threats to the validity of this study [34].
Construct validity reflects to what extent the phenomenon un-
der study really represents what is investigated according to
the research questions. The reliability of the case study is re-
lated to whether the data is collected and the analysis is con-
ducted in a way that can be replicated with the same results.
External validity deals with possible threats while generaliz-
ing the findings derived from the sample to a broader popula-
tion. Finally, internal validity is related to identification of
confounding factors, i.e., factors other than the independent
variables that might influence the value of the dependent var-
iable.

A. Construct Validity

In our study, construct validity is related to the accuracy of TD
Principal quantification. In this work, TD Principal is quanti-
fied through SonarQube. SonarQube is the most frequently
used tool for measuring TD Principal [12], both in research
and practice. Although SonarQube is an established tool, it



focuses on code and partially to design technical debt, neglect-
ing other types of technical debt, like architecture, require-
ments debt, etc. According to Martini et al. [38], currently in
industry static analysers (such as SonarQube) are used to ana-
lyse the source code in search of technical debt. Only in few
cases out of the respondents in their survey (15 companies)
practitioners built their own metrics tools for checking (lan-
guage-specific) rules or patterns that can warn the developers
of the presence of technical debt. In a similar discussion, Yli-
Huumo et al. [39] discuss SonarQube as the mostly used tool
for technical debt managementin the eight development teams
that they have involved in their case study. Despite the identi-
fied limitations, especially at the level of Architectural Tech-
nical Debt (ATD), SonarQube is considered as extremely use-
ful for code technical debt identification, monitoring, meas-
urement and prioritization. Additionally, although SonarQube
could be configured to provide more accurate results (e.g.,
change remediation times), such a practice is not prominent in
the literature, where researchers do not perform any re-config-
uration of the tool [40].

Finally, when examining the effect of software evolution
on technical debt accumulation, we performed a pre- post-
analysis on two timestamps. Although this decision was the
most fitting one for the current study design, to draw safer
conclusions on the effect of evolution on technical debt accu-
mulation a repeated measurement strategy on multiple
timepoints would be more informative.

B. Reliability

To mitigate threats to reliability, two different researchers
were involved in the data collection and one double-checked
the results of the other. Furthermore, one researcher double-
checked the results of the data analysis performed by another
researcher. All primitive data, as well as the results, can be
reproduced by using the tools mentioned in Section III, and
followed the specified research protocol and analysis—see
Section III, as well.

C. External Validity

Concerning external validity, we have identified two possible
threats to the validity of our results. Firstly, all the investigated
systems are written in Java and there is a possibility that the
results would be different for other programming languages.

Secondly, this study was conducted on 10 open-source
projects, which cannot be considered a big sample (consider-
ing the size of the population). The pull requests that we ana-
lysed are 13,790. As a result, we cannot generalize our find-
ings to all open-source projects, and even more to industrial
ones. The main reason was the time-consuming process of the
analysis with SonarQube. For example, if each analysis takes
4 minutes, for 27,580 (2 analyses for each pull request) we
needed 76 days. We plan to mitigate this threat by conducting
a broader study with more open-source projects. As for the
execution time, the main limitation lies on our dependency to
SonarQube, which falls outside our control. However, we plan
to add more metrics and data regarding each analysis, in order
to take full advantage of the SonarQube result.

D. Internal Validity

The usual confounding factor (reason for internal validity
threats) in this kind of studies is related to a possible lack of
control on the categorization of the type of maintenance activ-
ities (i.e., mixing types so that before and after values are af-
fected by additional parameters rather than the studied one).

In this study, the labels of each Pull Request have been added
by the developers, but we cannot be certain that only the de-
velopment activity expressed in the label took place. To miti-
gate this threat, we selected large-scale, well-known projects
that are expected to use Pull Requests in a consistent manner.
Moreover, in the ten selected projects, the reviewers, which
check the code before the merge, also assess and change if
needed the applied labels—as stated in projects’ documenta-
tion.

VII. CONCLUSIONS

In this study, we focused on exploring the effect that three ma-
jor types of development activity have on TD Principal. The
examined development actions were related to the addition of
new features, bug fixing, and refactoring activities. For our
dataset we focused on 10 open-source projects from GitHub,
using their pull requests as units of analysis. We analysed each
pull request before and after its merging in the codebase, and
we used their labels in order to classify them to a development
activity.

The results of our study shows that the usage of pull re-
quest labelling is quite extended, at least for the studied pro-
jects. It is clear that labelling pull requests helps in the devel-
opment and collaboration of developers. It is also evident that
the number of labels that exist in the projects is quite large and
that labels are also grouped. A key finding was that Pull Re-
quests associated with refactoring activities present higher
chances of having a positive effect on TD Principal. On the
other hand, the addition of new software features appears to
frequently increase the amount of TD Principal. Bug fixing, in
general, seems to be neutral in terms of changes to TD Princi-
pal.
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