
A Metrics-based Approach for Selecting among Various

Refactoring Candidates

Nikolaos Nikolaidis1, Nikolaos Mittas2, Apostolos Ampatzoglou1, Daniel Feitosa3, Alexander Chatzigeorgiou1

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

2 Department of Chemistry, International Hellenic University, Kavala, Greece

3 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen,

The Netherlands

nnikolaidis@uom.edu.gr, nmittas@chem.ihu.gr, a.ampatzoglou@uom.edu.gr, d.feitosa@rug.nl, achat@uom.edu.gr

Refactoring is the most prominent way of repaying Technical Debt and improving software maintainability. De-

spite the acknowledgement of refactorings as a state-of-practice technique (both by industry and academia), re-

factoring-based quality optimizations are debatable due to three important concerns: (a) the impact of a refactor-

ing on quality is not always positive; (b) the list of available refactoring candidates is usually vast, restricting

developers from applying all suggestions; and (c) there is no empirical evidence on which parameters are related

to positive refactoring impact on quality. To alleviate these concerns, we reuse a benchmark (constructed in a

previous study) of real-world refactorings having either a positive or negative impact on quality; and we explore

the parameters (structural characteristics of classes) affecting the impact of the refactoring. Based on the find-

ings, we propose a metrics-based approach for guiding practitioners on how to prioritize refactoring candidates.

The results of the study suggest that classes with high coupling and large size should be given priority, since they

tend to have a positive impact on technical debt.

Keywords: Technical Debt, Refactoring, Empirical Quantitative Analysis, Interest, Principal

1. Introduction

The Technical Debt (TD) metaphor expresses in monetary terms the effort that a software development team

saves or "borrows", by opting for a “quicker” but “non-optimal” development approach in terms of quality—

implying that consequently, interest will have to be paid. TD Interest expresses the additional effort that teams

will need to pay during software maintenance, because of the presence of inefficiencies, while the cost to resolve

these inefficiencies is called TD Principal. Large amounts of TD Interest are an important concern for software

development teams, as it essentially describes the future cost of ‘sweeping problems under the carpet’ that are

neither evident in the short term and are not easy to quantify or even accurately predict in the future [1]. TD

Management (TDM) is the process that systematically assesses TD, monitors its evolution, and when necessary,

suggests actions for reducing the amount of TD Principal, which in turn, is expected to limit the amount of TD

Interest. Current empirical evidence suggests that following the laws of software evolution [2], TD Principal

usually increases in absolute value as a system grows; however, effective TDM can lead to a reduction of TD

density (TD normalized over the total lines of code), as it is evident in software projects with well-defined quali-

ty assurance processes [3].

According to the literature, there are both re-active and pro-active approaches for TD reduction. On the one

hand, the re-active strategy, which is the most common in industry [4], refers to the application of refactoring to

purposefully eliminate code, design or architectural smells and implementation flaws that may exist. On the oth-

er hand, the pro-active approaches, that seem to be appealing to individual practitioners [5], but are not yet well-

established, yield for the definition of Quality Gates that impose the merging in the main development branch,

only of code that is “cleaner” compared to the average quality in the code base [3]. Other, stricter policies for

quality control impose the “zero-bug” policy in the main branch: allowing only code commits with limited (un-

mailto:nnikolaidis@uom.edu.gr
mailto:achat@uom.edu.gr

2

der a defined threshold) or zero violations against a pre-defined set of rules [6]. In this study, we focus on the re-

active strategy, i.e., the application of refactoring, which despite being well-accepted and recognized as a useful

and practical solution, is haunted by empirical uncertainty, and practical limitations, as outlined in Figure 1, and

discussed below:

Size of the Solution Space: Identifying refactoring candidates can be performed either manually [7] or with tool

support [8, 9, 10]. For the latter case (which is the most prominent in the industry [11]), a practical problem is

that the list of refactoring candidates is usually so long that the developer cannot cope with efficiently processing

it. Thus, there is a need for an approach and a tool implementation that could automatically prioritize the refac-

toring candidates. Uncertainty of Refactoring Impact: Several studies have investigated the impact of refactor-

ings on various aspects of software quality, but the results are contradictory: i.e., identify cases that the refactor-

ing has a positive impact, and others that the refactoring is neutral, or even has a negative impact (see Section 2).

To this end, it is important to provide an approach that can pin-point to refactoring candidates that will have a

positive impact on quality after their application (TD Principal and TD Interest), relying on information availa-

ble before the refactoring. Refactoring Impact Parameters: Given the above, the developers need to apply an

automated prioritization approach, relying on the available pieces of information: (a) the type of the refactoring

(e.g., Extract Method, Extract Class, etc.); and (b) the class or the set of classes that constitute the candidate for

refactoring. According to practitioners [4, 5, 11] refactoring prioritization would be more efficient, based on

“where” the refactoring is applied, given that “design hotspots” (i.e., parts of code with particularly low quality)

should receive more attention. To this end, there is a need for an approach that prioritizes refactoring candi-

dates, based on the characteristics of classes (Refactoring Impact Parameters) that would be involved in the

refactoring process. This need leads to a counter problem: “How does someone aggregate the characteristics of

a group of classes to a unified unit of analysis? In our case: from the class-level to the refactoring candidate-

level”.

Figure 1: Study Motivation and Problem Statement

To alleviate this problem, we provide empirical evidence on which structural metrics (Refactoring Impact Pa-

rameters) can be inspected (after being aggregated to the Refactoring Candidate level) before the application of a

refactoring, to increase the probability of selecting a beneficial refactoring, i.e., having a positive impact in terms

of TD. To achieve this goal, we need to rely on past (historical) data, i.e., cases in which a refactoring had a posi-

tive or a non-positive (neutral or negative) impact on TD. To construct this dataset, we reuse the process pro-

3

posed by Nikolaidis et al. [12], who identified isolated (from other maintenance activities) refactoring applica-

tions, along the history of various software projects, relying on the mechanism of labelling Pull Requests (PRs).

The process for constructing the dataset is presented in detail in Section 4.3. Upon the construction of the da-

taset, we apply a thorough experimental setup via the fitting of Generalized Linear Mixed Models (GLMMs),

using Refactoring Impact Parameters (a set of structural metrics for the classes that are Refactoring Candidates)

as independent variables; whereas as response variable a binary value for the impact of the refactoring (positive

or non-positive) is used. A similar process of using mixed effects models has also been followed in previous

studies on TDM [13], given their appropriateness for the nested nature of data: i.e., Refactoring Candidates are

grouped by the Project they belong to. The rest of the paper is organized as follows: In Section 2 we discuss re-

lated work, while in Section 3 we briefly outline the employed quantification approach, which forms the back-

bone of this quantitative study. The design of our case study is presented in Section 4, along with the corre-

sponding research questions. The results are presented and discussed in Section 5, the implications to both prac-

titioners and researchers are presented in Section 6. We identify threats to the validity of the study in Section 7;

and finally, we conclude the paper in Section 8.

2. Related Work

In this section, we present existing studies and background information for this paper. In Section 2.1, we focus

on the effect of refactorings on software quality. This section aims at showcasing the need for this study, i.e., by

presenting the controversy of empirical findings on the impact of refactorings: some cases positive, others hav-

ing a negative effect. In Section 2.2, we present related work that shares a common study setup, in terms of unit

of analysis. Thus, we present studies that analyze Pull Requests, instead of classes, commits, or projects. Finally,

in Section 2.3, we present directly related work, i.e., studies that aim to estimate the impact that a refactoring

could have on software quality.

2.1 Refactoring and Software Quality

Murphy-Hill et al. [14] investigated the habits of developers in terms of refactoring and found that developers

rarely perform refactoring-related activities. But when a refactoring does take place, the effect on quality is still

uncertain. Various studies have observed positive and negative impacts. Kataoka et al. [15] evaluated the impact

of the “Extract Method” and the “Extract Class” refactoring methods on a software project’s maintainability,

written in C++, using coupling metrics. The results indicate that refactorings magnify system maintainability

from the perspective of code metrics. Stroulia and Kapoor [16] investigated the effect on size and coupling

measures after the application of refactoring and their results show that the average LOC of involved classes and

coupling metrics decreased after refactoring.

On the other hand, Stroggylos and Spinellis [17] inspected the logs in the version control systems of four open-

source software projects to extract the revisions where software refactoring had taken place. The findings reveal

that, despite the expectation that a refactoring improves the quality of the software, the measurements in the ex-

amined systems show the opposite. In particular, the authors observed that code refactoring caused a slight in-

crease in cohesion and coupling related metrics. In another study, Alshayeb [18] concluded that the application

of refactoring does not necessarily improve external quality characteristics, such as adaptability, maintainability,

and comprehensibility. By applying refactoring techniques, as defined by Fowler, on three software systems and

measuring the effect on selected software metrics, vast discrepancies in the effect of refactoring were revealed.

The author concluded that it was not possible to corroborate that software refactoring as a general practice can

improve quality.

Also noteworthy is the study by Wilking et al. [19], who conducted a controlled experiment to investigate how

refactoring affects the conservation and modification of projects. The results of their experiment suggest that

4

there is no direct effect of software refactoring leading to improved maintainability. Most of the findings of the

above studies agree on the limited practical adoption of software refactoring and on a rather mixed effect on the

quality of a project, at least on quality aspects that can be quantified. Moreover, the study of Moser et al. [20]

approached the problem from a perspective closer to the industry. The authors examined whether refactoring

increased productivity as well as code quality. To achieve that, they relied on a small industrial tool which cap-

tures the productivity and the code metrics of each developer. They found out that productivity increases after a

refactoring takes place and that code metrics improve.

Al Omar et al. [21] analyzed a total of 1,245 commits from 3,795 Java projects to capture the effect that the de-

veloper intended to achieve through a refactoring versus the actual effect. To this end, several projects were ana-

lyzed looking for the refactorings that took place with the help of the Refactoring Miner [22] and ReffDiff [23]

tools. Next, they retained only the commits where the corresponding message explicitly specified the exact quali-

ty attribute that was the target. By analyzing the before- and after- state of the code for each commit, it becomes

possible to determine if the developer achieved the desired outcome through the applied refactoring. It was found

out that for the quality attributes of cohesion, coupling, and complexity refactorings were able to capture the

intention of the developer, but for the rest of the metrics the refactoring in the commit had not affected them.

Finally, another study with mixed results was conducted by Bois and Mens [24]. They took a different approach

from the rest of the previous studies, in the sense that they based their analysis on the abstract syntax tree (AST)

representation of source code. They examined the change of the metric values defined on the AST representation

for different types of refactorings like Extract Method, Encapsulate Field, and Pull Up Method. The application

of the examined refactorings showed positive and negative impacts on the studied metrics.

2.2 Pull Requests and Software Quality

In the literature, it is common to explore PRs to find their contributions to the quality of the submitted code or

even their acceptance based on the quality of the new code. This goes to show the importance of studying PRs

since they constitute a cohesive set of commits that makes a specific bug-fix, addition, or maintenance activity of

a given project. Silva et al. [25] analyzed 1,722 PRs and found that 30% of the rejected PRs are due to the pres-

ence of technical debt issues. Also interesting is that the most frequently attributed rejection reason was code

design, which was also identified in the study by Zou et al. [26]. Zou et al analyzed 50,000 PRs from 117 differ-

ent projects to find whether the coding style affects the PRs chances from being eventually merged. This study

found out that the more consistent the added code is to the already existing code base, the higher the probability

of a merging the PRs. Another study analyzed PRs from the perspective of code quality for three projects, name-

ly Spark, Kafka, and React [27]. This study showed that the discussion of technical debt in PRs appears to be

different than in other software artifacts (e.g., code comments, commits, issues, or discussion forums).

Regarding the more general software quality area, Gousios et al. [28] conducted a large-scale survey of 749 par-

ticipants, that act as integrators in many different systems to find out the factors that affect the decision of ac-

cepting or not a PRs. The code quality was the top factor that influenced the decision of the integrators, along

with the testing and the alignment with the project’s overall idea. The main takeaway was that both technical and

social factors play a significant role in the PRs acceptance. The social aspect was found (and confirmed) to be a

very important aspect in other studies as well [29], where the developer was the most important factor that influ-

enced the chances of a PR. Finally, Lenarduzzi et al. [30] analyzed more than 36,000 PRs from a total of 28 Java

projects focusing on whether the quality of the code that is being introduced is related to the acceptance proba-

bility of the PR. In that study, the PMD tool was used to find code quality defects, and it was evident that quality

did not play a key role in the acceptance or rejection of the PRs. However, it seems that certain PMD rules are

indeed considered by the reviewers for the acceptance of new code. Similar results were found in other studies

[31], where the developers’ trustworthiness was more important as well as the code quality and structure.

5

2.3 Estimating the Impact of Refactorings

There is a plethora of tools regarding refactoring recommendations. Kurbatova et al. [64] proposed an approach

to recommend Move Method refactorings that relies on the path-based representation of code, and they used this

to train a machine learning classifier. After some evaluation, it was obvious that this approach can stand against,

or even outperform in some cases, the state of the art tools. In another study, Murphy-Hill et al. [65] stated the

importance of refactoring tools and presented three new ones. These tools could help developers with Extract

Method refactorings by avoiding selection errors and understanding refactoring precondition violations. These

tools were also assessed by their accuracy and their user satisfaction, which was very high. Moreover, approach-

es have been proposed that help developers prioritize and select the most effective or profitable refactorings

[66][67]. Similarly, SEMI, a tool that helps with the prioritization of Extract Method refactorings, uses a ranking

approach, based on the benefits that each refactoring is going to have in the overall cohesion, based on the single

responsibility principle [68].

Chaparro et al. [32] created an approach named RIRE, which can predict the values of some structural metrics

based on the refactoring that is going to take place. RIPE can calculate the impact of 12 different refactoring

operations, on 11 structural metrics. Even though some of the refactoring operations have very good accuracy for

some metrics, in a test case RIPE was only able to perfectly predict 38% of 8,103 metric scores. The evaluation

took place in 15 Java projects and a total of 504 refactorings. A similar study, but on a smaller scale, was con-

ducted by Kataoka et al. [33]. They used only metrics that are related to coupling and refactoring methods that

affect coupling, like Extract Method, Extract Class, and Move Method.

Moreover, Higo et al. [34], created a methodology and tool, which can recommend a refactoring based on its

effect on the quality of the project. In that study, 6 metrics were used from the CK metric suite. To validate the

results a real-world example was used, and the methodology was able to propose a refactoring that was used at

the end. The study by Soetens and Demeyer [35] analyzed the evolution of the complexity of a project. Then, by

extracting the commit that explicitly stated that a refactoring was applied, it was possible to isolate the effect that

it had on complexity. The most important takeaway was that many times the complexity of the project was not

reduced, while at a closer look it was found that complexity was highly correlated with the type of refactoring.

This paper is the first one that goes a step further than related work, which until now examined the effect of re-

factorings on quality or TD. More specifically, we not only highlight the problem of the controversy of empirical

findings, but we also present actionable rules, and guide the practitioners on when to apply a refactoring and

when not. This is an important advancement compared to state-of-the-art, since it moves from exploratory anal-

ysis to an explanatory level, with actionable results.

3. Background Information

3.1 Software Quality

Software quality is an ambiguous term depending on the viewpoints of different stakeholders, being character-

ized as an “elusive target” [69], implying that developing “perfect quality” software is not feasible in practice,

since not all quality parameters can be optimized, either because of the associated cost or due to the inherent

trade-offs among quality attributes. Thus, on the one hand, from the prespective of the developer, quality is relat-

ed to the conformance of software to its specification. On the other hand, from the perspective of the user, quali-

ty is whether the software meets its purpose. In general, software quality is assessed through its inherent charac-

teristics. Several standards have been proposed, but the most popular is ISO/IEC 25010. The first level of this

ISO describes eight quality attributes, i.e., functional suitability, performance/efficiency, compatibility, reliabil-

ity, usability, security, maintainability, and portability, which are further divided into several sub-characteristics.

For instance, software maintainability is decomposed to: modularity, reusability, testability, analyzability, and

6

modifiability. To assess and quantify a quality attribute (of the first or the second level) the development teams

need to define or select a set of metrics, based on the development phase [54], which are going to provide in-

sights for the achieved level of software quality.

3.2 Code (Bad) Smells

The term “code smells” is used to describe parts of code or decisions that are generally associated with bad de-

sign and bad programming practices. Code smells are used to locate the places in software that could benefit

from refactorings and Fowler et al. [70] described 22 possible code smells and their associated refactorings. In

contrast to bugs, smells do not cause a fault in the application but may lead to other negative consequences, im-

pacting software maintenance and evolution. Detection of code smells has become an established method to in-

dicate software design issues that may cause problems for further development and maintenance, and they are

being considered one of the key indicators of TD [71]. SonarQube, which is one of the most frequently used

tools for estimating TD, relies on 273 rules associated with code smells (for Java)—e.g., “Boolean expressions

should not be gratuitous”, “Conditionals should start on new lines”, etc. SonarQube rules that are related to code

smells are linked to code understandability, poorly written code, and coding standards. But there are more rules

related to bugs, vulnerabilities, and security hotspots.

3.3 Technical Debt Quantification

The main pillars of the TD metaphor are Principal and Interest, which are borrowed from economics. TD Princi-

pal is the effort that is required to remove inefficiencies from the current state of a software system to bring it

closer to an “optimal” state [36]. On the other hand, TD Interest refers to the extra development effort that is

required to maintain the software, due to the presence of inefficiencies (TD Principal) [35].

Figure 2: TD Principal and Interest Visualization [37]

In Figure 2, a hypothetical software system is depicted in a maintenance state of “actual”. The actual quality is

usually at some distance from the “optimum” quality: The effort required for the development team to close this

quality gap, represents the TD Principal. The consequence of the existence of the principal is TD Interest, which

represents the additional effort required to maintain the software in the actual state, compared to the effort that

would be required if the system was of optimal quality. In other words, for the introduction of a hypothetical

Feature A to the system, the development team would require less time, if the system had been of an optimal

(or at least ‘better than actual’) quality [37]. The estimation of TD Principal is more straightforward as it is relat-

ed to the identification of pre-defined inefficiencies, while the estimation of TD Interest is more challenging as it

7

involves the anticipation of future changes and the assessment of the additional maintenance effort.

In the last decade or more, numerous TD Principal quantification tools have been proposed that estimate TD

Principal, either in monetary terms or as effort (in time) to repay TD [38]. There have also been numerous stud-

ies about the proposed tools and their accuracy [38, 39, 40]. In this study we rely on SonarQube, which is the

most frequently used tool for estimating TD Principal, according to several studies [38, 41]. SonarQube can cap-

ture the TD Principal by finding the code inefficiencies of the given system and calculate the required time to

resolve the corresponding issues. The platform algorithm was originally based upon an adopted version of the

SQALE method proposed by Letouzey [42], in which a remediation index is obtained for requirements of an

applicable Quality Model. Moreover, SonarQube supports more than 20 programming languages, and it per-

forms static analysis against a specified set of rules. For the Java programming language, that interests us in this

study, SonarQube version 9.7.1 checks for violations against 627 rules. These rules are divided into 4 categories

based on their type, namely bug, vulnerability, code smell, and security hotspot. Finally, apart from the remedia-

tion time of each issue, there is also a severity scale (blocker, critical, major, minor, info).

For TD Interest, the quantification is far more challenging, mainly due to the need to anticipate the future state

of a given system. First, a system can by no means be characterized as optimal, based solely on the optimization

of some structural characteristics. Second, to calculate the TD Interest, the maintenance effort to add a feature in

the actual state and in a hypothetical one, would be needed; the latter cannot be calculated accurately. In our

study, we adopt the FITTED approach [43], which has been proposed and empirically validated in our previous

work [44, 45]. The proposed TD Interest quantification approach is based on historical data, by considering past

effort spent on maintenance activities and using the average number of lines of code added between sequential

releases as a maintenance effort indicator. The derivation of an “optimal” peer for any given class is as follows:

(a) find the 5 closest neighbors (classes of the system) of the class under study, based on structural characteris-

tics—e.g., number of methos, lines of code, number of attributes, etc., (b) based on them we develop an “artifi-

cial” optimum peer (i.e., being characterized by the best metric scores of peers). The distance of the class (in

terms of maintenance-related metrics) determines the additional maintenance effort for that class. The FITTED

methodology estimates the approximate additional maintenance effort for each class which can be turned into

monetary terms by multiplying with an average wage. According to Tsintzira et al. [45] the FITTED TD Interest

quantification approach is correlated at the level of 0.73 to the perception of practitioners in terms of the amount

of additional effort required to maintain an existing industrial system, due to the presence of TD.

4. Case Study Design

4.1 Objectives & Research Questions

The goal of this study is to identify Refactoring Impact Parameters—RIP (i.e., structural characteristics of the

Refactoring Candidates—RC—before the application of the refactoring) that can assess the positive or non-

positive effect of a refactoring on the values of TD Principal and/or TD Interest. By considering that quantifying

the structural characteristics at the level of RC (calculated by aggregating the class-level metrics socres) is not a

trivial problem in the software engineering domain (due to the presence of various aggregation functions), we

decompose the goal on two main research questions:

RQ1: Can the selection of a function to aggregate metric scores (from the class- to the RC-level) affect the abil-

ity to identify the impact of refactoring activities on TD Principal and TD Interest?

When a developer gets a refactoring suggestion, he/she is not expected to change the code of only one file. Thus,

to be able to compare RCs of different sizes (in terms of involved classes), there is a need of aggregating the

metric scores, from the class to the RC level. In the software engineering literature [46], the most used aggrega-

tion functions are Mean, Sum, and Max, each one yielding for a different interpretation. For example, using

8

Sum as an aggregation function takes into consideration the number of classes to be refactored, Max focuses

only on the worst-case scenario: i.e., the worst class among those to be refactored, whereas Mean is not discrim-

inating between large and small RCs, and it does not focus on extreme metric scores. In RQ1 we investigate if

different aggregation functions can lead to different factors that affect the impact of refactoring on TD Principal

and TD Interest.

RQ2: Which Refactoring Impact Parameters (at the level of RC) can affect the impact of the refactoring on TD?

In RQ2, we aim to model the impact of a refactoring on TD Principal and/or Interest, based on the aggregated

metrics scores (RIP) of a RC. In other words, we attempt to identify relations between specific RIPs and positive

impact of refactoring, i.e., “Which metrics should have high/low values so as for the application of RC to have

better chances for a positive impact on TD?”. To answer this question, as comprehensively as possible, we first

examine the effect of RIPs to the impact of applying the RC on TD Principal (RQ2.1), then to the impact on TD

Interest (RQ2.2), and finally to the impact on both—i.e., positive impact on both Principal and Interest (RQ2.3).

4.2 Case Selection and Units of Analysis

The cases of this study are open-source software (OSS) projects that are subject to systematic maintenance, in-

cluding the application of refactoring applications. All of the selected projects can be found in Table 1, along

with some basic characteristics to initially describe the sample. It becomes evident that 10 out of the 15 projects

are part of the Apache ecosystem, since as an OSS development organization, has a reputation for high quality

projects, emphasizing on process and quality improvement, while having long maintained projects. The five re-

maining projects are from other organizations, in an attempt for more generalizable results. To select the most

fitting cases and ensure their homogeneity, but also their diversity, we navigated and selected projects from the

most frequently maintained and popular projects (from the “explore” tab of GitHub), while also have defined the

following criteria:

[C1] The OSS project is written in Java and uses Maven to ensure that the project can be analyzed. We note

that the FITTED tool for calculating TD Interest is available only for Java code, and SonarQube can pro-

vide better results if it is part of the build process (since it takes into account rules based on the exact Java

version that is being used).

[C2] The OSS project is currently under development; thus, is still maintained. This criterion aims at ensuring

that the projects included in the analysis are still undergoing development; therefore, the studied practices

are not outdated; increasing the chances for identifying refactorings.

[C3] The OSS project has more than 250 closed pull requests to have enough data points for each project. The

closed pull requests can be either merged or not, and from the merged ones we do not expect all of them to

be labeled as refactorings. Since we could not find any threshold for the number of PRs in the literature,

we have intuitively set 250 as a threshold, by examining the number of PRs of OSS, as well as to ensure

that we have enough data per project for our analysis.

[C4] The OSS project uses labeling for refactorings in pull requests, which is one of the most important crite-

ria, as our study requires that a PR is labeled as “refactoring” to use it.

The study is a multiple case study, in the sense that from each project, multiple PRs labelled as refactorings

(units of analysis) have been identified. Each applied refactoring (before its application) is considered as an RC

that can be assessed as having a positive or non-positive impact on quality (in terms of TD Principal, TD Interest

or both), by analyzing the project before and after the PR.

9

Table 1. Selected Projects

Project Commits PRs Size (#LOC) Size (# Classes)

antlr/antlr4 9106 1816 98653 1453

Netflix/conductor 3127 1533 74443 578

DataDog/dd-trace-java 10889 4340 171760 3762

apache/dolphinscheduler 7698 6867 150826 2027

apache/doris 9387 11745 403813 3909

apache/druid 12534 9058 1032837 9276

apache/dubbo 6491 5716 191728 2976

apache/incubator-seatunnel 3039 2596 95338 1700

provectus/kafka-ui 1642 1948 48124 353

apache/pinot 9916 8371 432607 4405

apache/pulsar 11396 13243 567649 5532

apache/rocketmq 7993 2901 180792 1823

apache/skywalking 7532 4626 104817 2089

apache/streampipes 10027 554 130938 2344

uima-uimaj 7736 265 372629 2209

4.3 Data Collection

The data collection for this study has been organized around the need to identify the refactorings that have been

applied along software evolution to mine units of analysis. Tools such as Refactoring Miner [22] can identify

past refactoring activities (and have been adopted in previous related work [47]) but are not fitting to the goals of

this study. In particular, the application of a refactoring is not always the main and only intention of a developer

in a commit (e.g., the developer might commit a feature addition, along with a small refactoring), or a refactoring

might be spread in subsequent commits. To create a dataset with changes only aiming at “pure” refactoring (to

avoid construct validity), we rely on information that can be retrieved by studying PRs: an approach that has

already been used in various studies (see Section 2.2) [25][26][27][28][29][30][31]. In large projects that take

full advantage of collaborative development environments, PRs are commonly used to submit groups changes,

serving a common goal. PRs allow to contribute one or more commits for a specific functionality or change,

which then must be reviewed before being merged. Because of the controlling nature of this mechanism, it is

common to allow contributions to the production / main branch, only using PRs and disable the direct commit

(also known as branch protection) [48]. The intention of a PR is usually denoted by attaching labels (like key-

words) to a PR, and these labels can be customized per project and, although optional, there are some common

practices on larger projects as they promote organization [49]. To construct the dataset for this study, we focused

on PRs that are tagged with a label explicitly stating that a refactoring has been performed. This approach will

ensure that our dataset contains changes in files, for which the refactoring was the main change that the develop-

er wanted to achieve. To develop our dataset, we filtered refactoring-related PRs, and then we assessed the code

quality in terms of TD (Principal and Interest), before and after the PR merge—characterizing the refactoring as

having a positive or non-positive impact on TD Principal, on TD Interest, on both. These steps are illustrated in

Figure 3 and can be split into the following phases:

Phase 1: First, we had to extract information from the GitHub repository of each project. The two main pieces of

information that we were interested in were the subset of PRs that we will need to analyze, and the list of the

changed Java files. For the PRs, we retained only the closed PRs that had a specific label, designating that this

10

PR contains a refactoring. So, we used the GitHub API to get all the PRs and filter them accordingly. From the

GitHub API we were also able to retrieve, for each PR that interests us, the previous and merged commit along

with the changed Java file. The main endpoints that were used are the following:

https://api.github.com/repos/<username>/<project>/pulls?state=closed&per_page=100&page=1

https://api.github.com/repos/<username>/<project>/commits/<commit-hash>

The first one retrieves all the closed PRs and the second one retrieves more information about the merged PR

(i.e., the previous commit, and the changed files). To filter and organize our results we created a script that can

be found online1.

Fig. 3. Data Collection Flow

Phase 2: After completing the list of the PRs that concerned refactoring (commits before and after the merge),

we can analyze the code. So, we automated the process by checking out a specific commit each time and starting

the code analysis. As part of the analysis, we calculated TD Principal and TD Interest. For TD Principal, we used

SonarQube [8], whereas for TD Interest we used FITTED [43]. Finally, as RIP, we assessed several maintaina-

bility-related parameters, by calculating 9 structural metrics for the commit before the application of the refac-

toring. The selected metrics (see Table 2) have been indicated by previous studies [50, 51, 52] as the optimal

maintainability predictors. To calculate the metric scores, we used Metrics Calculator2, a well-tested and stable

tool for calculating quality metrics for Java code.

Table 2: Refactoring Impact Parameters

Metric Metric Suite Description

CC McCabe Complexity based on the number of decisions in the source code

WMC Chidamber & Kemerer Weighted methods per class (Number of methods)

DIT Chidamber & Kemerer Depth of inheritance tree

LCOM Chidamber & Kemerer Lack of cohesion in methods (LCOM1)

NOCC Chidamber & Kemerer Number of Class Children

CBO Chidamber & Kemerer Coupling due to Method invocation, inheritance, exception handling,

method parameters, field access is considered

MPC Li & Henry Message-passing coupling (Number of Distinct Methods Called)

SIZE1 Li & Henry Lines of code (LOC)

SIZE2 Li & Henry Number of properties

1 https://github.com/nikosnikolaidis/github-pr-labels-filechanges
2 https://github.com/dimizisis/metrics_calculator

https://api.github.com/repos/antlr/antlr4/pulls?state=closed&per_page=100&page=1
https://github.com/nikosnikolaidis/github-pr-labels-filechanges
https://github.com/dimizisis/metrics_calculator

11

After recording the data, we have developed a dataset, with the following variables. The complete dataset can,

for replication purposes, be found online3.

[V1] TD Principal Before Refactoring

[V2] TD Principal After Refactoring

[V3] Impact of Refactoring on TD Principal (binary)

[V4] TD Interest Before Refactoring

[V5] TD Interest After Refactoring

[V6] Impact of Refactoring on TD Interest (binary)

[V7] Impact of Refactoring on TD (V3 AND V6)

[V8–V32] RIP aggregated by SUM, MEAN, and MAX (9 RIP * 3 aggregation functions) Before Refactoring

4.4 Data Analysis

To answer the RQs posed in this study, a specialized modelling technique belonging to the broad category of

Mixed Effects Models (MEMs) was adopted. MEMs are a general class of inferential statistics methodologies,

that can be grasped as an extension of the traditional Generalized Linear Models (GLMs) allowing the investiga-

tion of two types of effects, called the fixed and the random effects, on a response variable via the building of a

unified single model. MEMs are useful in complicated experimental setups, in which the same units of analysis

are measured multiple times and / or they are naturally grouped into a hierarchical structure. These two types of

experimental designs (repeated measures and hierarchical or nested designs) pose significant barriers to the in-

ferential statistics mechanisms, since in both cases, the assumption of the independence of observations is evi-

dently violated. As the main objective of this study is the investigation of the effect of RIPs on the refactoring

impact, it is essential to take into consideration the nested structure of the experimental setup, since multiple

units of analysis (in our case: RCs) are nested into the same case (in our case: OSS projects), i.e., not being inde-

pendent to each other. Hence, the two-level inherent hierarchy of the collected data and the dependency of the

units of analysis that were grouped into nested factors (RC are nested within OSS Projects) were the main rea-

sons for taking advantage of the robust MEMs rather than other statistical hypothesis testing procedures, since

they provide an advanced mechanism for the incorporation of the so-called random effects and the modeling of

the expected variance at different levels of hierarchy.

With respect to the response variable, the main research pillar focuses on the examination of the effect of RIPs

on the refactoring impact on TD Principal and TD Interest. For this reason, two dichotomous (or binary) varia-

bles, namely [V3] (Eq. 1) and [V6] (Eq. 2) were defined, indicating whether refactoring activities were associat-

ed to a positive or non-positive impact on TD Principal and TD Interest, respectively. The basis for the categori-

zation of refactoring activities into positive and non-positive groups was the quantification of TD Principal [V1,

V2] and TD Interest [V4, V5] before and after the application of the refactoring. At this point, we must empha-

size that due to the qualitative nature of the response variable (i.e., refactoring impact is a dichotomous variable

with two levels (positive/non-positive)), we based the inferential process on a specific type of MEMs, namely

the Generalized Linear Mixed Models (GLMMs) enabling the examination of a binary response through the us-

age of a logit link function. The logit link function 𝑔(∙) = 𝑙𝑜𝑔⁡(𝑝 (1 − 𝑝)⁄) is defined as the natural logarithm of

the odds for success, where 𝑝 is the probability of a successful refactoring activity.

𝑉3 = {
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, if⁡𝑇𝐷⁡𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝐵𝑒𝑓𝑜𝑟𝑒 > 𝑇𝐷⁡𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝐴𝑓𝑡𝑒𝑟

𝑁𝑜𝑛 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, otherwise
 (1)

𝑉6 = {
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, if⁡𝑇𝐷⁡𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐵𝑒𝑓𝑜𝑟𝑒 > 𝑇𝐷⁡𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝐴𝑓𝑡𝑒𝑟

𝑁𝑜𝑛 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, otherwise
 (2)

3 https://users.uom.gr/~a.ampatzoglou/aux_material/refactoring_preds.xlsx

https://users.uom.gr/~a.ampatzoglou/aux_material/refactoring_preds.xlsx

12

Regarding the fixed effects (independent variables) that may affect the outcome of the response variable (refac-

toring impact), we have used 9 predefined quality metrics (Table 2). Since the RIPs were evaluated on a lower

level of hierarchy (class- or file-level) compared to the response variable (RC-level), there is an imperative need

for the aggregation of class-level metrics at the higher level (RC). For this reason, we investigated the effect of

three aggregation mechanisms (Mean, Sum and Max) on the response variable, with a strong focus on providing

directions to practitioners about the most appropriate one for guiding their decision-making (RQ1). Next, we

modeled the probability of an RC having a positive impact on TD Principal (RQ2.1) and TD Interest (RQ2.2) as a

function of the aggregation function (see RQ1) and RIPs (fixed effects). Finally, for RQ2.3, we followed a similar

approach after the creation of a new response variable: [V7], labeling a given RC as positive, if and only if, re-

factorings were successful in terms of decreasing both TD Principal and TD Interest. In RQs, we controlled the

variance decomposition, due to the nested structure of the experimental setup, by the application of MEMs.

5. Results

In this section we present the results of this study, organized by research question. As a first step, we investigat-

ed the distribution for the response and the independent variables to derive meaningful conclusions concerning

the characteristics of the unknown population. The contingency table (Table 3) displays the marginal and joint

distributions of the indicator variables [V3] and [V6] that classify RCs as Non-positive / Positive in terms of TD

Principal (columns) and TD Interest (rows), for a total set of 434 refactoring candidates. The nested rows can be

interpreted as follows: (a) the first nested row shows the absolute frequency of the observations in each intersec-

tion (e.g., 269 corresponds to cases with non-positive effect on both Interest and Principal); (b) the second nested

row corresponds to the percentage on the aforementioned number to the total of the row (e.g., 269 corresponds to

87% of the cases with non-positive impact on Interest); and (c) the third nested row corresponds to the percent-

age of the aforementioned number to the total of the column (e.g., 269 stands to 100% of the cases with non-

positive impact on Principal).

Table 3. Joint Distribution of Refactoring Impact on TD Principal and TD Interest

Principal

Total Non-positive Positive

Interest

Non-positive

269 39 308

87.3% 12.7% 100%

100% 23.6% 71%

Positive

0 126 126

0% 100% 100%

0% 76.4% 29%

Total
269 165 434

62% 38% 100%

The marginal distributions display that in most cases, refactoring resulted in a Non-positive impact on TD Prin-

cipal (row: Total) and TD Interest (column: Total). More importantly, the inspection of the joint distribution re-

veals that the refactoring activities that led to a Non-positive impact on TD Principal (𝑁 = 269), resulted in a

Non-positive impact on TD Interest for most of the cases (87.3%). Furthermore, the Positive impact of refactor-

ing on TD Principal is primarily associated to Positive impact on TD Interest, as well. This result is considered

intuitive in the sense that TD Principal and TD Interest are not orthogonal concepts, but (similarly to economics)

are related [46]. Additionally, the fact that there are cases of RC with Positive impact on TD Principal, but not on

TD Interest (~13% of the sample) can be attributed to the fact that some TD issues identified by SonarQube

(rule-based identification) are unrelated to structural aspects, but rather on styling or conventions conformance

13

[53]. On the other hand, we can observe that all structural improvements captured by the Positive impact on TD

Interest are also reflected on the Positive impact on TD Principal (0% of Positive impact on TD Interest and

Non-positive on TD Principal), validating that SonarQube assesses also structural properties through the rule

violations [53].

Regarding the characteristics of the distributions for the set of RIPs, recorded through metrics, in Table 4, we

summarize their main central tendency and variation measures after the application of each aggregation function

(Mean, Sum, Max). The descriptive statistics, along with the indicative examination of the histograms (Figure 4)

computed by the Sum aggregation function, bring to light the heavily right-skewed distributions for the RIP

scores, accompanied by the presence of extreme outlying points.

Table 4. Descriptive Statistics of Aggregated RIP (Metrics Before Refactoring)

Aggregation Variable M SD Median Min Max

Mean CC 2.46 1.96 2.00 0.00 17.38

WMC 17.25 24.48 10.00 0.00 327.00

DIT 1.22 1.64 0.89 0.00 12.50

LCOM 636.15 2974.31 57.42 0.00 53301.00

MPC 69.12 133.23 32.45 0.00 1940.00

NOCC 1.92 10.90 0.00 0.00 140.00

CBO 10.55 16.14 6.34 0.00 213.00

SIZE1 287.73 458.15 152.82 0.00 5922.00

SIZE2 26.65 35.23 16.00 0.00 424.00

Sum CC 34.66 89.11 6.49 0.00 777.80

WMC 215.22 541.21 42.00 0.00 5656.00

DIT 23.47 85.28 2.00 0.00 930.00

LCOM 6233.75 19880.50 204.50 0.00 160388.00

MPC 838.01 2223.97 124.50 0.00 24955.00

NOCC 16.95 61.39 0.00 0.00 368.00

CBO 150.96 386.01 22.00 0.00 3764.00

SIZE1 3686.05 9191.08 651.50 0.00 86481.00

SIZE2 323.69 805.88 69.00 0.00 8762.00

Max CC 4.95 4.74 3.00 0.00 32.00

WMC 49.50 77.97 19.50 0.00 444.00

DIT 3.24 4.77 1.00 0.00 32.00

LCOM 3957.70 12891.83 136.00 0.00 87735.00

MPC 184.42 354.60 68.00 0.00 2029.00

NOCC 13.64 58.02 0.00 0.00 346.00

CBO 25.55 40.77 11.00 0.00 232.00

SIZE1 905.26 1782.12 305.00 0.00 13434.00

SIZE2 70.85 102.25 31.00 0.00 561.00

14

Fig. 4. Distributions of Refactoring Impact Parameters (Sum aggregation)

5.1 Aggregating the Results from Class to Refactoring Candidate Level (RQ1)

In Table 5, we summarize the overall results derived from the fitting of each GLMM that constitute the basis for

further inferential purposes and decision-making related to RQs. A first interesting remark concerns the perfect

agreement within the experimental findings conducted for the identification of the most appropriate aggregation

function for evaluating a composite metric from class-level to the RC-level in the case of TD Principal. More

specifically, a total number of 7 out of 9 structural metrics presented a statistically significant effect (𝑝 < 0.05)

on the response variable irrespective of the applied aggregation function. In addition, there was noted a perfect

agreement concerning the results related to the identification of RC-level metrics that did not present a statisti-

cally significant effect on refactoring impact on TD Principal. In contrast, the above general finding does not

hold for the experiments regarding TD Interest, since, despite the reasonable high agreement among the three

aggregation functions, inconsistent outcomes for two specific cases are observed. In this regard, the utilization of

the Mean aggregator did not reveal a statistically significant effect on the response variable for the total set of

GLMMs, whereas the Sum and Max aggregation schemas designated the significant effect of CC and DIT on the

refactoring impact on TD Interest. Regarding the uniform positive impact of the refactoring on TD Principal and

Interest, we can observe that MPC can be an important RIP using all aggregation functions, whereas CBO only

when using MAX, and SIZE1 (i.e., lines of code) only when using MAX and MEAN.

Table 5. Results of GLMMs for TD Principal and TD Interest

Variable

Principal Interest Principal & Interest

Mean Sum Max Mean Sum Max Mean Sum Max

CC ✓ ✓ ✓  ✓ ✓   

WMC ✓ ✓ ✓      

DIT     ✓ ✓   

LCOM ✓ ✓ ✓      

MPC ✓ ✓ ✓    ✓ ✓ ✓

NOCC         

CBO ✓ ✓ ✓      ✓

SIZE1 ✓ ✓ ✓    ✓  ✓

SIZE2 ✓ ✓ ✓      

Notes:  non-significant, ✓ significant at 0.05

15

The use of different aggregation functions is an irrelevant factor if the quality assurance team is interested only

in the monitoring of TD Principal. When TD Interest comes into consideration, MAX appears as the optimal

choice in the sense that it is easier to inspect and pin-point more RIPs.

5.2 Factors Affecting the Impact of Refactoring on TD (RQ2)

To gain deeper insights into how the aggregated RIPs may affect the impact of RCs, we performed an

exploratory data analysis through visualization techniques. Due to space limitations, we illustrate the boxplots

and violin plots for the set of metrics aggregated by the Sum function for the experimental setups of both TD

Principal (Figure 5) and TD Interest (Figure 6). The examination of the distributions for the case of TD Principal

provides empirical evidence that most of the RIPs can be considered as important, since they affect the impact of

the refactoring, deserving further investigation. For example, refactorings with a Positive impact were associated

with higher CC, WMC, LCOM, MPC, CBO, SIZE1 and SIZE2 scores compared to refactorings with a Non-

positive impact.

Fig. 5. Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Principal

In contrast, apart from a minority of cases (e.g., CC and DIT metrics), there are no obvious differences in the

shapes of the distributions between the Non-positive and Positive groups representing the impact of refactoring

activities on TD Interest. Moreover, the nature of the association between CC and the impact on TD Interest

seem to be different compared to TD Principal, since refactorings with a Positive impact on TD Interest present

lower CC values compared with refactorings with a Non-positive impact. A possible interpretation for this is the

fact that in TD Interest calculation, metrics scores do not participate as actual values, but as distances from the

scores of neighboring classes. In that sense, a refactoring that lowers the complexity of a class with high CC,

might alter its ‘neighborhood”, comparing them to classes with lower levels of CC. This phenomenon cannot

heavily apply to low CC classes, which cannot significantly deviate from their original score (and change neigh-

borhood). An indicator for this assumption is the fact that the value of CC can change significantly by applying

the ‘Replace Conditional with Polymorphism’, if the number of branches of the conditional statements is high,

leading to a drastic decrease in CC (from the number of branches to zero)—being a sensitive metric [54].

16

Fig. 6. Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Interest

After the identification of the RIPs that presented a statistically significant effect on the refactoring impact on

TD Principal, we proceeded to the parameter estimation for this subset of metrics. Table 6 summarizes the esti-

mated parameters of GLMMs along with their 𝑝 −values for TD Principal. Concerning the interpretation of the

estimated parameters of GLMMs (i.e., row Estimate), the positive sign of an independent variable indicates that

the likelihood of a Positive impact of refactoring increases, as the value of the RIP increases. In other words,

RCs with higher values of RIP scores are more likely to guarantee a beneficial refactoring application. Since

Odds Ratio (OR) in GLMMs provide an intuitively appealing and straightforward interpretation regarding the

effect of changes in a predictor on the response variable, we computed the ORs of each RIP from the fitted mod-

els (Table 6, row OR). In our case, an 𝑂𝑅 > 1 indicates that a positive impact of refactoring activities is more

likely to occur as the RIP score increases. Based on this simple interpretation rule, the total set of seven RIPs

identified as statistically significant predictors seem to positively affect the outcome of a refactoring opportunity

in TD Principal. As an example, an RC whose aggregate CC metric via the Mean aggregation function is twice

as much as the CC metric of another RC, is associated with a change in the odds of a positive refactoring impact

by a factor of 1.48 (or 48% increase). This finding can be considered intuitive and suggests that design hotspots

with low quality (excessive metric scores) in terms of coupling, lack of cohesion, complexity, and size are more

probable to undergo a refactoring leading to a positive effect on TD Principal.

Table 6. GLMMs Estimated Parameters for Significant RIPs (TD Principal)

 Aggregation Model CC WMC LCOM MPC CBO SIZE1 SIZE2

Mean

Estimate 0.392 0.195 0.092 0.194 0.198 0.205 0.194

SE 0.187 0.096 0.041 0.071 0.105 0.075 0.099

OR 1.479 1.215 1.096 1.214 1.219 1.227 1.214

p 0.036 0.041 0.024 0.006 0.049 0.006 0.049

Sum

Estimate 0.122 0.115 0.077 0.119 0.102 0.125 0.118

SE 0.058 0.048 0.030 0.042 0.048 0.044 0.049

OR 1.129 1.121 1.080 1.126 1.107 1.133 1.125

p 0.037 0.017 0.011 0.005 0.033 0.004 0.016

17

 Aggregation Model CC WMC LCOM MPC CBO SIZE1 SIZE2

Max

Estimate 0.353 0.171 0.076 0.178 0.198 0.170 0.184

SE 0.123 0.068 0.032 0.058 0.077 0.058 0.072

OR 1.423 1.186 1.079 1.194 1.219 1.185 1.202

p 0.004 0.012 0.018 0.002 0.010 0.003 0.011

A similar analysis process was followed for the closer examination of the subset of aggregated RC-level RIPs

that presented a significant impact on TD Interest, namely CC and DIT (see Table 7). A first interesting remark

concerns CC, which as explained through the violin charts has a significant effect on the refactoring impact on

both TD Principal and TD Interest, but in an inverse direction. The interpretation for this controversy has already

been discussed before. Regarding, DIT the negative relation to TD Interest is intuitive, in the sense that the lower

the aggregate DIT values are, the lower the use of inheritance. Given the fact that most of the Fowler refactor-

ings [55] yield for the introduction of inheritance to benefit from polymorphism, we can anticipate classes out-

side inheritance trees presenting the largest room for beneficial refactoring application. For example, the esti-

mated ORs (𝑂𝑅 < 1) evaluated by the GLMMs fitted through the usage of the Sum and Max aggregators desig-

nate that RCs whose aggregate DIT score is twice as much as the DIT of another RC, have about 0.20 times less

odds of undergoing a refactoring having a Positive impact on TD Interest.

Table 7. GLMMs Estimated Parameters for Significant RIPs (TD Interest)

 Aggregation Model CC DIT

Sum

Estimate -0.220 -0.231

SE 0.099 0.089

OR 0.8025 0.7937

p 0.026 0.009

Max

Estimate -0.371 -0.415

SE 0.200 0.154

OR 0.6900 0.6603

p 0.046 0.007

Technical Debt: The last part of the experimental setup is related to the identification of RIPs that affect the

probability of an RC having a positive impact on both TD Principal and TD Interest. The results are presented in

Table 8. An interesting finding from this analysis is that the two RIPs that have been identified as significant for

TD Interest have not been qualified as significant for the intersection of TD Principal and TD Interest. A possible

explanation is that high CC increases the chances for a Positive impact on TD Principal but decreases the chanc-

es for a Positive impact on TD Interest. Out of the RIPs that have a significant effect on the impact of the refac-

toring either on TD Principal or TD Interest, MPC, CBO, and SIZE1 appear to be able to affect the impact of the

refactoring on both pillars of TD. For all cases the Estimate is positive, which follows the rationale for the design

hotspots.

Table 8. GLMMs Estimated Parameters for Significant RIPs (TD Principal AND TD Interest)

 Aggregation Model MPC CBO SIZE1

Mean

Estimate 0.192 – 0.194

SE 0.090 – 0.095

OR 1.212 – 1.214

p 0.033 – 0.042

18

 Aggregation Model MPC CBO SIZE1

Sum

Estimate 0.109 – –

SE 0.053 – –

OR 1.115 – –

p 0.040 – –

Max

Estimate 0.162 0.194 0.147

SE 0.073 0.094 0.074

OR 1.176 1.214 1.158

p 0.026 0.039 0.047

RCs involving classes with excessive MPC, CBO, and/or SIZE1 values need to be prioritized against the rest,

since refactoring them can yield improvements in TD Principal and Interest.

6. Implications to Practitioners and Researchers

Implications to Practitioners: In terms of practitioners, based on findings of this study, we propose a

prioritization approach that relies on the “Software Guidebook and Debt Calculator” [56]. We adopt the coloring

schema that is proposed by Eisenberg [56] and we use as metrics the important RIPs. Therefore, we propose the

development of a 2D array: rows correspond to the RCs and as columns to the significant RIPs (MPC, CBO, and

SIZE1 aggregated with the MAX function). Then a 3-step approach takes place:

1. we sort the RCs by each metric, and we color the top-10%.

2.1 assign a RED color to RCs that are colored for all metrics.

2.2 assign an ORANGE color to RCs that are colored for 2 out of 3 metrics.

2.3 assign a YELLOW color to RCs that are colored for 1 out of 3 metrics.

3. we explore the RCs whose metric scores exceed by 2-times the mean score of samples, and for those we

upgrade the coloring assignment (e.g., from ORANGE to RED).

As an example, we demonstrate this process on the Apache Pinot project for a specific commit4. As refactoring

candidates, we used five refactoring opportunities obtained through the Smell Detector Merger [57] tool that

validates the existence of a smell based on the intersection of multiple tools. By following the steps, we

described above, we end up with the coloured RCs shown in Table 9. So, given our proposed strategy the

refactoring that has the highest chance of achieving a greater impact is the Duplicate Code #1 (more details

about each step of this example can be found in Appendix A). We need to note that this study can not answer all

the questions that might be stated in the refactoring process. For inctance: “How many refactorings of this list

MUST I apply?”, since the answer to this question would require additional information, such as the timeframe

and the budget that can be devoted to the refactoring session. However, given the available budget, the team can

opt to apply refactorings, picking from the top of the prioritized list.

Table 9. Example for Process

RC MPC CBO SIZE1

Duplicate Code #1

BaseDistinctAggregateAggregationFunction.java

DistinctCountSmartHLLAggregationFunction.java

35 8 845

4 https://github.com/apache/pinot/commit/7d09489c5b939666c0561b6301c9287ef34ea239

https://github.com/apache/pinot/commit/7d09489c5b939666c0561b6301c9287ef34ea239

19

RC MPC CBO SIZE1

Duplicate Code #2

TextContainsFilterOperator.java

TextMatchFilterOperator.java

8 10 37

God Class

DataBlockBuilder.java

15 8 487

Long Method

InTransformFunction.java

15 7 207

Duplicate Code #3

MinAggregationFunction.java

14 5 240

Implications to Researchers: From this study, we can extract two types of implications to researchers: (a) from a

methodological perspective; and (b) from an outcome perspective. On the one hand (methodological implica-

tions), through this work we have validated that treating software engineering problems as nested ones is both

feasible and fitting, in the sense that an important fraction of mining software repositories studies is extracting

information from multiple projects, and either report the results per project, or cumulatively for the complete

population. Although such approaches are not faulty, the experimental setup of this work explicitly considers the

nesting of units of analysis within different projects and does not “hide” the fact that different projects can be a

confounding factor. In that sense, we champion the experimental setup relying on nested statistical analysis, such

as MEMs. The second methodological implication of this work is related to the use of Pull Requests to extract

information from grouped commits that serve a common goal. We believe that such a data collection approach

can be beneficial for various study setups that currently work on the commit level, which, however, loses the

context of the change that is applied during the commit. The main benefits of working with PRs instead of com-

mits are: (a) a PR has a specific purpose / goal that can be studied by researchers, and this goals is not the subjec-

tive assessment of the research team, but a characterization of the development team based on their expertise;

and (b) the fact that since a PR is a change chunk larger in size than the commit, it has the potential to be related

to more meaningful and impactful changes, which however can still be treated as a unit, since they serve a com-

mon purpose.

On the other hand (outcomes-based implications), our study has validated related works that support that a refac-

toring is not always having a Positive impact on quality [18, 47], confirming the motivation of investigating

RIPs. The findings on the importance of specific RIPs on TD Principal and TD Interest, opens future work direc-

tions in the sense that following up on this explanatory analysis, prediction and classification models can be

built, so that refactoring suggestion tools can prioritize the extracted opportunities. In this direction, we plan to

further work on the current dataset to train and validate such models, and then integrate them in the Smell Detec-

tor Merger [57] to equip it with prioritization functionality. Finally, we aim at an empirical validation on the us-

ability and effectiveness of the proposed approach and tool in an industrial setting. Such a study would be more

relevant if it is conducted as a human study, in which we would validate that the prioritization offered by the tool

would match the “gut feeling” of experienced software architects and quality managers.

7. Threats to Validity

This section discusses potential threats to our study’s validity, as defined in the guidelines of Runeson et al. [58].

Construct Validity. In any study, the measured phenomena might differ from the actual ones, leading to con-

struct validity threats. For the current study involving the notions of TD Principal and Interest threats arise from

20

the tooling employed to assess them. For measuring principal, we relied on SonarQube which is one of the most

frequently used tools [38][41][60]. Yli-Huumo et al. [61] analyzed the practices of 8 development teams and

identified SonarQube as the most used tool for TDM. However, despite its wide acceptance, it focuses only on

code TD ignoring other manifestations of TD such as debt in requirements, architecture, build processes and

tests. We should note that while SonarQube estimates can be configured by modifying the remediation time for

individual TD issues, most research studies have not performed any such configuration [62].

The measurement of TD Interest is far more challenging than the quantification of Principal, primarily because

the assessment of Interest requires the anticipation of future modifications as well as the knowledge of the

maintenance effort for an optimal version of the analyzed system (i.e. one that is debt-free). Both future mainte-

nance activities and the notion of an ideal state of software are unknown. Therefore, TD Interest can only be

assessed through proxies and by making certain assumptions. In this study, we measured TD Interest through the

use of selected software metrics and by assessing the distance of any system class from its best peer. The selec-

tion of metrics was based on empirical evidence in the literature indicating that a combination of metrics can

serve as a reliable maintainability predictor [63]. The model for synthesizing the values in a unified value for TD

Interest relies on solid mathematical calculations, given the assumption that maintenance effort is inversely pro-

portional (linearly) to maintainability. This assumption, although it cannot be validated without a controlled ex-

periment, relies on previous studies [44], [59] and is considered as intuitive by the authors of this paper.

Furthermore, PRs labeled as ‘Refactorings’ have been used as a mechanism for retrieving documented refactor-

ings in the history of a software project. We acknowledge that this approach might have missed undocumented

individual refactoring applications or PRs where refactoring activities are designated using a different label.

Nevertheless, labeled PRs constitute a reliable source for investigating the impact of systematic and intentional

refactoring activities.

External Validity. The external validity of the study may be threatened by the possibility that different projects

using different programming languages or build systems may yield different observations. However, we argue

that the chosen projects, due to their size and complexity, provide a realistic sample of non-trivial, real-world

systems. Furthermore, while the Apache Foundation is a credible organization with diverse projects, their prac-

tices may not fully represent those of other large projects. To address this, one-third of the analyzed projects

comprise non-trivial systems from outside the Apache Foundation. Lastly, it should be noted that the study's

results are not applicable to non-object-oriented systems as properties such as inheritance, coupling, and cohe-

sion, which are used to assess TD, are only applicable to OO software modules.

Reliability. To mitigate potential threats to reliability, our study involved three researchers in data collection and

analysis. Moreover, samples of the analysis output from different steps were manually inspected by two addi-

tional researchers for irregularities and for consistency with the proposed study design. Our results showed no

irregularities, and all output from different steps was consistent with the proposed study design. Finally, we de-

scribed the procedures of the data collection and analysis in as much detail as possible and the used tools are

publicly available.

8. Conclusions

The impact of refactoring activities in software projects can be positive, neutral, or negative, depending on the

context in which the refactoring is applied. In this study, we investigated the impact of refactoring activities on

TD accumulation, focusing on the role of aggregated metrics at the ‘refactoring candidate’ level as predictors of

the refactoring impact. Through descriptive and exploratory analytics, we found that in most cases, an improve-

ment of TD Principal through refactoring is usually associated with an improvement of TD Interest as well. Our

exploratory data analysis through visualization techniques revealed that most of the aggregated RC-level metrics

can be considered as important predictors that may affect the outcome of a refactoring activity, regardless of the

21

aggregation function for TD Principal, whereas the MAX function works better for TD Interest assessment

(RQ1). Furthermore, we identified a subset of aggregated RC-level metrics that presented a statistically signifi-

cant effect on the refactoring impact on TD Principal and TD Interest. By focusing on metrics, the results sug-

gested that RCs involving classes with excessive MPC, CBO, and/or SIZE1 values need to be prioritized against

the rest, since refactoring them can yield improvements in TD Principal and Interest (RQ2). Overall, the results

of our study highlight the importance of considering aggregated RC-level metrics when evaluating the impact of

refactoring activities on TD accumulation. Software developers and project managers can use these findings to

make more informed decisions regarding refactoring activities and prioritize refactoring efforts based on the

most relevant aggregated RC-level metrics.

Data Availability Statement

The dataset generated and analyzed during the current study is available online.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

[1] E. M. Arvanitou, P. Argyriadou, G. Koutsou, A. Ampatzoglou, and A. Chatzigeorgiou, "Quantifying TD

Interest: Are we Getting Closer, or Not Even That?", 48th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA' 22), IEEE Computer Society, August 2020, Gran Canaria, Spain.

[2] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry and W. M. Turski, "Metrics and laws of software

evolution-the nineties view", Proc. 4th Int. Softw. Metrics Symp., pp. 20-32, 1997.

[3] G. Digkas, A. Chatzigeorgiou, A. Ampatzoglou, and P. Avgeriou, “Can Clean New Code Reduce Technical

Debt Density?”, Transactions on Software Engineering, IEEE Computer Society, 2022.

[4] P. Smiari, S. Bibi, A. Ampatzoglou, and E.-M. Arvanitou, “Refactoring embedded software: A study in

healthcare domain,” Inf. Softw. Technol., vol. 143, p. 106760, Mar. 2022.

[5] A. Ampatzoglou, A. A. Tsintzira, E. M. Arvanitou, A. Chatzigeorgiou, I. Stamelos, A. Moga, R. Heb, O.

Matei, N. Tsiridis, D. Kehagias, “Applying the Single Responsibility Principle in Industry: Modularity

Benefits and Trade-offs”, 23rd International Conference on the Evaluation and Assessment in Software En-

gineering (EASE' 19), ACM, Copenhagen, Denmark, 14-17 April 2019.

[6] D. Falessi, B. Rusfso, and K. Mullen, “What if i had no smells?” in 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measurement (ESEM). IEEE, 2017, pp. 78–84.

[7] X. Ge, Q. L. DuBose and E. Murphy-Hill, "Reconciling manual and automatic refactoring," 2012 34th In-

ternational Conference on Software Engineering (ICSE), Zurich, Switzerland, 2012, pp. 211-221.

[8] Campbell, G.A. and Papapetrou, P.P., 2013. SonarQube in action. Manning Publications

[9] N. Tsantalis, T. Chaikalis and A. Chatzigeorgiou, "JDeodorant: Identification and Removal of Type-

Checking Bad Smells," 2008 12th European Conference on Software Maintenance and Reengineering,

Athens, Greece, 2008, pp. 329-331

[10] T. Sharma, P. Mishra, and R. Tiwari, “Designite: a software design quality assessment tool,” 1st Interna-

tional Workshop on Bringing Architectural Design Thinking into Developers’ Daily Activities, New York,

NY, USA, May 2016, pp. 1–4..

[11] J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini, “Industry experiences with

large-scale refactoring,” 30th ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, USA, Nov. 2022, pp. 1544–1554.

[12] N. Nikolaidis, A. Ampatzoglou, A. Chatzigeorgiou, N. Mittas, E. Konstantinidis, and P. Bamidis, "Explor-

https://users.uom.gr/~a.ampatzoglou/aux_material/refactoring_preds.xlsx

22

ing the Effect of Various Maintenance Activities on the Accumulation of TD Principal", 6th International

Conference on Technical Debt (TechDEBT' 23), Melbourne, Australia, May 2023.

[13] N. Nikolaidis, N. Mittas, A. Ampatzoglou, E. M. Arvanitou and A. Chatzigeorgiou, "Assessing TD Macro-

Management: A Nested Modelling Statistical Approach," Transactions on Software Engineering, 2023.

[14] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,” IEEE Transactions

on Software Engineering, vol. 38, no. 1, pp. 5–18, 2011.

[15] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, "A quantitative evaluation of maintainability enhancement

by refactoring," International Conference on Software Maintenance, 2002.pp. 576-585.

[16] E. Stroulia and R. Kapoor. “Metrics of refactoring-based development: An experience report”. In OOIS

2001, pages 113–122. Springer, 2001

[17] K. Stroggylos and D. Spinellis, “Refactoring–does it improve software quality?” in Fifth International

Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007). IEEE, 2007, pp. 10–10.

[18] M. Alshayeb, “Empirical investigation of refactoring effect on software quality”, Information and Software

Technology, Volume 51, Issue 9, 2009, Pages 1319-1326.

[19] D. Wilking, U. F. Kahn, and S. Kowalewski, “An empirical evaluation of refactoring.” e-Informatica, vol.

1, no. 1, pp. 27–42, 2007.

[20] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A Case Study on the Impact of Refactor-

ing on Quality and Productivity in an Agile Team,” in Balancing Agility and Formalism in Software Engi-

neering, B. Meyer, J. R. Nawrocki, and B. Walter, Eds., in Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 2008, pp. 252–266.

[21] E. A. AlOmar, M. W. Mkaouer, A. Ouni and M. Kessentini, "On the Impact of Refactoring on the Rela-

tionship between Quality Attributes and Design Metrics," 2019 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM), Porto de Galinhas, Brazil, 2019, pp. 1-11.

[22] N. Tsantalis, A. Ketkar and D. Dig, "RefactoringMiner 2.0," IEEE Transactions on Software Engineering.

[23] D. Silva and M. T. Valente. Refdiff: detecting refactorings in version histories. 14th International Confer-

ence on Mining Software Repositories, pages 269–279. IEEE Press, 2017

[24] B. Du Bois and T. Mens, “Describing the impact of refactoring on internal program quality,” in Interna-

tional Workshop on Evolution of Large-scale Industrial Software Applications, 2003, pp. 37–48.

[25] M. C. O. Silva, M. T. Valente, and R. Terra, “Does technical debt lead to the rejection of pull requests?,”

ArXiv Prepr. ArXiv160401450, 2016.

[26] W. Zou, J. Xuan, X. Xie, Z. Chen, and B. Xu, “How does code style inconsistency affect pull request inte-

gration? an exploratory study on 117 github projects,” Empir. Softw. Eng., vol. 24, no. 6, 2019.

[27] S. Karmakar, Z. Codabux, and M. Vidoni, “An Experience Report on Technical Debt in Pull Requests:

Challenges and Lessons Learned,” 16th ACM/IEEE International Symposium on Empirical Software Engi-

neering and Measurement, 2022, pp. 295–300.

[28] G. Gousios, A. Zaidman, M. -A. Storey and A. v. Deursen, "Work Practices and Challenges in Pull-Based

Development: The Integrator's Perspective," 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, Florence, Italy, 2015, pp. 358-368.

[29] D. Moreira Soares, M.L. de Lima Júnior, L. Murta, and A. Plastino, 2021. “What factors influence the life-

time of pull requests”. Software: Practice and Experience, 51(6), pp.1173-1193.

[30] V. Lenarduzzi, V. Nikkola, N. Saarimäki, and D. Taibi, “Does code quality affect pull request acceptance?

An empirical study,” J. Syst. Softw., vol. 171, p. 110806, 2021.

[31] F. Calefato, F. Lanubile and N. Novielli, "A Preliminary Analysis on the Effects of Propensity to Trust in

Distributed Software Development," 2017 IEEE 12th International Conference on Global Software Engi-

neering (ICGSE), Buenos Aires, Argentina, 2017, pp. 56-60.

23

[32] O. Chaparro, G. Bavota, A. Marcus and M. D. Penta, "On the Impact of Refactoring Operations on Code

Quality Metrics," 2014 IEEE International Conference on Software Maintenance and Evolution, Victoria,

BC, Canada, 2014, pp. 456-460.

[33] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, "A quantitative evaluation of maintainability enhancement

by refactoring," International Conference on Software Maintenance, 2002. Proceedings., Montreal, QC,

Canada, 2002, pp. 576-585.

[34] Y. Higo, Y. Matsumoto, S. Kusumoto and K. Inoue, "Refactoring Effect Estimation Based on Complexity

Metrics," 19th Australian Conference on Software Engineering (aswec 2008), Perth, WA, Australia, 2008,

pp. 219-228.

[35] Q. D. Soetens and S. Demeyer, "Studying the Effect of Refactorings: A Complexity Metrics Perspective,"

2010 Seventh International Conference on the Quality of Information and Communications Technology,

Porto, Portugal, 2010, pp. 313-318.

[36] Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The financial aspect of managing

technical debt: A systematic literature review,” Inf. Softw. Technol., vol. 64, pp. 52–73, Aug. 2015.

[37] Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou and T. Amanatidis, "Estimating the breaking point for

technical debt," 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD), Bremen,

Germany, 2015, pp. 53-56.

[38] P. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana, T. Besker, A. Chatzigeorgiou, V. Lenarduzzi,

A. Martini, N. Moschou, I. Pigazzini, N. Saarimäki, D. Sas, S. Soares de Toledo, and A. Tsintzira, “An

overview and comparison of technical debt measurement tools,” IEEE Software, 2021.

[39] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its management,” J.

Syst. Softw., vol. 101, pp. 193–220, Mar. 2015.

[40] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, H. Fang, “On the lack of consensus among technical debt

detection tools.” International Conference on Software Engineering (SEIP); 2021:121-130.

[41] N.S.R. Alves, T.S. Mendes, M.G. de Mendonça, R.O. Spínola, F. Shull, Carolyn Seaman. Identification and

management of technical debt: A systematic mapping study. Inf, Softw. Technol., 70 (2016), pp. 100-121.

Elsevier.

[42] J.-L. Letouzey, “The sqale method for evaluating technical debt,” in 2012 Third International Workshop on

Managing Technical Debt (MTD). IEEE, 2012, pp. 31–36

[43] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, “Establishing a framework for manag-

ing interest in technical debt” in 5th International Symposium on Business Modeling and Software Design

(BMSD), Italy, 2015

[44] Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “A

framework for managing interest in technical debt: an industrial validation,” in Proceedings of the 2018 In-

ternational Conference on Technical Debt, 2018, pp. 115–124.

[45] A.-A. Tsintzira, A. Ampatzoglou, O. Matei, A. Ampatzoglou, A. Chatzigeorgiou, and R. Heb, “Technical

debt quantification through metrics: an industrial validation,” in 15th China-Europe International Symposi-

um on software engineering education, 2019.

[46] A. Ampatzoglou, N. Mittas, A. A. Tsintzira, A. Ampatzoglou, E. M. Arvanitou, A. Chatzigeorgiou, P.

Avgeriou, L. Angelis, “Exploring the Relation between Technical Debt Principal and Interest: An Empiri-

cal Approach”, Information and Software Technology, Elsevier, 128, 2020.

[47] N. Nikolaidis, D. Zisis, A. Ampatzoglou, N. Mittas, and A. Chatzigeorgiou, "Using Machine Learning to

Guide the Application of Software Refactorings: A Preliminary Exploration", 6th International Workshop

on Machine Learning Techniques for Software Quality Evolution (Maltesque '22), ACM, 2022.

[48] T. Hastings and K. R. Walcott, "Continuous Verification of Open-Source Components in a World of Weak

24

Links," 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),

Charlotte, NC, USA, 2022, pp. 201-207.

[49] X. Zhang, Y. Yu, G. Gousios and A. Rastogi, "Pull Request Decisions Explained: An Empirical Over-

view," in IEEE Transactions on Software Engineering.

[50] M. Riaz, E. Mendes and E. Tempero, "A systematic review of software maintainability prediction and met-

rics," 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Lake

Buena Vista, FL, USA, 2009, pp. 367-377.

[51] C. Van Koten and A.R. Gray, "An Application of Bayesian Network for Predicting Object-Oriented Soft-

ware Maintainability", Inform Software Tech, 48, 1 (Jan. 2006), pp. 59 - 67.

[52] Y. Zhou and B. Xu, “Predicting the maintainability of open-source software using design metrics,” Wuhan

University Journal of Natural Sciences, vol. 13, no. 1, pp. 14–20, 2008.

[53] D. Falessi, B. Russo and K. Mullen, "What if I Had No Smells?" 2017 ACM/IEEE International Symposi-

um on Empirical Software Engineering and Measurement (ESEM), Toronto, ON, Canada, 2017, pp. 78-84.

[54] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “Software Metrics Fluctuation: A

Prop-erty for Assisting the Metric Selection Process”, Information and Software Technology, Elsevier, 72

(4), pp. 110-124, April 2016.

[55] M. Fowler, K. Beck, “Refactoring: improving the design of existing code”, ser. In Addison Wesley object

technology series, Addison-Wesley, 1999

[56] R. J. Eisenberg, "A threshold-based approach to technical debt", SIGSOFT Software Engineering Notes,

vol. 37, pp. 1-6, 2012.

[57] A. Ichtsis, N. Mittas, A. Ampatzoglou and A. Chatzigeorgiou, "Merging Smell Detec-tors: Evidence on the

Agreement of Multiple Tools," 2022 IEEE/ACM International Conference on Technical Debt (TechDebt),

Pittsburgh, PA, USA, 2022, pp. 61-65.

[58] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software Engineering: Guidelines

and Examples. John Wiley & Sons, 2012

[59] A. Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A. “A Financial Approach for Man-

aging Interest in Technical Debt.”, 2015 International Symposium on Business Modeling and Software De-

sign (BMSD). Springer 2016.

[60] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current state of practice: A survey and mul-

tiple case study in 15 large organizations” Science of Computer Programming, 163, pp. 42-61, 2018.

[61] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage technical

debt?–An empirical study” Journal of Systems and Software, Elsevier, 120, pp. 195-218, 2016.

[62] M. Schnappinger, M.H. Osman, A. Pretschner, and A. Fietzke, “Learning a classifier for prediction of

maintainability based on static analysis tools” Proceedings of the 27th International Conference on Program

Comprehension, IEEE Press, pp. 243-248, 2019.

[63] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software maintainability prediction and met-

rics”, 3rd International Symposium on Empirical Software Engineering and Measurement, IEEE, Florida,

USA, pp. 367-377, 2009.

[64] Kurbatova, Z., Veselov, I., Golubev, Y. and Bryksin, T., 2020, June. Recommendation of move method

refactoring using path-based representation of code. In Proceedings of the IEEE/ACM 42nd International

Conference on Software Engineering Workshops (pp. 315-322).

[65] Murphy-Hill, E. and Black, A.P., 2008, May. Breaking the barriers to successful refactoring: observations

and tools for extract method. In Proceedings of the 30th international conference on Software engineering

(pp. 421-430).

[66] Mavridis, A., Ampatzoglou, A., Stamelos, I., Sfetsos, P. and Deligiannis, I., 2012, September. Selecting

25

refactorings: an option based approach. In 2012 Eighth International Conference on the Quality of Infor-

mation and Communications Technology (pp. 272-277). IEEE.

[67] Meananeatra, P., Rongviriyapanish, S. and Apiwattanapong, T., 2011, May. Using software metrics to se-

lect refactoring for long method bad smell. 8th Electrical Engineering/Electronics, Computer, Telecommu-

nications and Information Technology (ECTI) Association of Thailand-Conference 2011 (pp. 492-495).

IEEE.

[68] Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., Gkortzis, A. and Avgeriou, P., 2016. Identifying

extract method refactoring opportunities based on functional relevance. IEEE Transactions on Software

Engineering, 43(10), pp.954-974.

[69] Kitchenham, B. and Pfleeger, S.L., 1996. Software quality: the elusive target [special issues section]. IEEE

software, 13(1), pp.12-21.

[70] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.Roberts, “Refactoring: Improving the Design of Existing

Code”, Addison-Wesley Professional, 1st Edition. July 1999

[71] N. S. R. Alves, T. S. Mendes, M. G. d. Mendonca, R. O. Spınola, F. Shull, and C. Seaman, “Identification

and management of technical debt: A systematic mapping study,” Information and Software Technology,

vol. 70, pp. 100 – 121, 2016.

