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Abstract—Artificial intelligence (AI) has become increasingly
popular in software development to automate tasks and improve
efficiency. AI has the potential to help while developing or
maintaining software, in the sense that it can produce solutions
out of a textual requirement specification, and understand code
to provide suggestion on how a new requirement could be
implemented. In this paper, we focus on the first scenario. Two
Al-powered tools that have the potential to revolutionize the
way software is developed are OpenAI’s ChatGPT and GitHub’s
Copilot. In this paper, we used LeetCode, a popular platform
for technical interview preparation and personal upskilling (self-
learning), to evaluate the effectiveness of ChatGPT and Copilot
on a set of coding problems, along with ChatGPT’s ability to
correct itself when provided with feedback. The analysis of the
effectiveness can lead to various conclusions, such as on if these
solutions are ready to take over coding roles, and to what extent
several parameters (difficulty and quality requirements) influence
this result. Solutions have been generated for 60 problems using
ChatGPT and Copilot, for the Python programming language.
We investigated the performance of the models, the recurrent
kinds of errors, and the resulting code quality. The evaluation
revealed that ChatGPT and Copilot can be effective tools for
generating code solutions for easy problems while both models
are prone to syntax and semantic errors. Small improvements
are observed for ode quality metrics across iterations, although
the improvement pattern is not consistently monotonic, ques-
tioning ChatGPT’s awareness of the quality of its own solutions.
Nevertheless, the improvement that was found along iterations,
highlights the potential of AI and humans, acting as partners, in
providing the optimal combination. The two models demonstrate
a limited capacity for understanding context. Although Al-
powered coding tools driven by large language models have the
potential to assist developers in their coding tasks, they should
be used with caution and in conjunction with human coding
expertise. Developer intervention is necessary not only to debug
errors but also to ensure high-quality and optimized code.

Index Terms—OpenAl ChatGPT, GitHub Copilot, code quality

I. INTRODUCTION

As artificial intelligence (AI) continues to advance, there
has been a growing interest in the development of Al-powered
tools. Two such tools that have gained significant attention are
GitHub Copilot and OpenAI’s ChatGPT. Copilot is a tool that
can suggest code snippets and completions as developers write

code, while ChatGPT can generate human-like responses to
natural language prompts.

Both tools share the same neural network architecture
created by OpenAl, which enables the understanding of nat-
ural language (Copilot is powered by the Codex model, a
descendant of GPT) and are examples of Large Language
Models (LLMs). One revolutionary aspect of these models
is the use of the Transformer architecture. The self-attention
mechanism in such architectures enables focusing on specific
parts of the input when making predictions. These models
came into the spotlight after the release of Google’s seminal
paper: “Attention Is All You Need” [1].

These tools have the potential to significantly speed up
software development: The GitHub Next team, surveyed 95
developers split into two groups: with and without access
to Copilot.! They observed that Copilot enabled a higher
and faster task completion rate. However, there were also
concerns about the quality of the generated code. As with any
global phenomenon, skepticism has emerged for these models,
regarding their accuracy, bias, insufficient data protection,
ethical use, etc. Public media have also highlighted the risk
of Al affecting jobs; software development being one such
industry.?

To better understand the capabilities and limitations of
these Al models, it is important to evaluate them in real-
world scenarios, or contexts that are resembling real-world
scenarios. To this end, we assess ChatGPT and Copilot using
problems from LeetCode?®, a popular online platform for prac-
ticing kinds of coding problems commonly asked in technical
interviews [2]. LeetCode problems are based on real-world
scenarios in topics such as algorithms and data structures and
cover a wide range of difficulty levels. Despite some criticisms
regarding their divergence from day-to-day coding tasks, these
challenges provide a structured and diverse set of problems,
enabling the evaluation of LLMs in problem-solving scenarios

Uhttps://github.blog/2022-09-07-research-quantifying- github-copilots-imp
act-on-developer-productivity-and-happiness
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commonly encountered in technical interviews. This approach
offers insights into how LLMs might perform in real-world
coding tasks, a crucial aspect of software development.

Moreover, we focus on the Python programming language,
given its widespread popularity and significant representation
in LLM training datasets. This choice allows for an analysis of
the capabilities and limitations of LLMs in a commonly used
programming environment. Since ChatGPT is an interactive
model which stores chat history and can process input pro-
vided by humans to modify its answers, we analyze the extent
to which ChatGPT can improve its code solutions when given
feedback. Finally, we consider for each problem a range of
solutions that are generated in each iteration of the dialogue,
and then we proceed with analyzing these solutions for code
quality and performance metrics.

In summary, this paper presents a comprehensive study on
the application of LLMs in the realm of software development.
The core contribution lies in the exploration and analysis of
the effectiveness and limitations of the investigated models
in generating and improving Python code. More importantly,
the analysis relies on a thorough qualitative assessment of
the generated output. This study not only demonstrates the
practical utility of LLMs in software engineering tasks but also
helps lay the groundwork for future research in this rapidly
evolving field.

The rest of the paper is organized in the following way:
Section II discusses related work; in Section III we present
the design of our study. The results of our study along with
their discussion are reported in Sections IV and V, respectively.
Section VI reports the threats to the validity of our study;
finally, we conclude the paper in Section VII.

II. RELATED WORK

ChatGPT is capable of responding to a wide range of
questions and prompts, which include source code generation
if required. Because of the short time that this model and
tool existed, to the best of our knowledge, their is a limited
amount of studies about ChatGPT in the context of software
development. But in the last months OpenAl just released its
successor, GPT-4 (on March 2023), and other big companies
introduced their own language models # >, so their validation
and study are of vital importance.

A. Copilot

After GitHub Copilot’s first appearance, a number of studies
focusing on the performance of Copilot emerged. Due to the
trending aspect of such technologies, there seems to be an
increasing number of papers from 2022. The main focus of
the existing studies is on the correctness of Copilot, where
either specific code problems are used [3], [4] or professional
programmers are being compared against Copilot [5]. The
results of these studies showed that although Copilot can help
with the performance and the time that a developer needs
to complete a specific task, in most cases its not enough or

“https://blog.google/technology/ai/google-palm-2-ai-large-language-model
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the quality is inferior. In the first study 70% of the solutions
provided by Copilot were only partially correct or entirely
incorrect.

Furthermore, a number of studies focused on the usability
of such models [6], [7]. Developers appear to consume more
time to finish a task that Copilot answered incorrectly, because
they have to understand the generated code first, and then
start debugging. A similar study by Arghavan et al. [8] taking
into account the difficulty of using Copilot, encourages its
use. They authors believe that if correctly used, Copilot can
boost the performance of the developers. Finally, the generated
code’s security was studied by Hammond et al. [9] revealing
that approximately 40% of the generated code can be subject
to vulnerabilities.

B. ChatGPT

For ChatGPT the number of published studies is smaller.
Scoccia [10] studied the developers’ perception of ChatGPT,
taking into account the user experience, the trust in the gener-
ated code, prompt engineering, and the impact of these models
in software development. These four categories appear to be
the main topics that the developers tend to focus on regarding
ChatGPT or similar models. According to Ahmad et al. [11]
ChatGPT could be used to help in the architecture stage of
software design, but more studies are required. Moreover,
another area that ChatGPT can help with, is the domain of
unit testing. Guilherme and Vincenzi [12] used 33 programs
in order to generate unit tests with ChatGPT, and they found
out that the results were very good and in line with dedicated
tools that already exist for unit test generation.

Finally we note that a similar study conducted by Nguyen
and Nadi [13] looked at the correct code suggestions of Copilot
for 33 LeetCode problems in 4 different languages (Python,
Java, JavaScript, C). Our study, even though it focuses only
on Python, examines a larger body of problems, employes the
newer ChatGPT model, and also looks at incorrect solutions,
as well as the quality of the proposed code.

III. CASE STUDY DESIGN

In this section, we present the study design, by providing
information about the research questions, the data collection
process, and the employed statistical analysis. The case study
was designed and reported based on the guidelines provided
by Runeson et al. [14].

A. Research Questions

To study ChatGPT’s and Copilot’s ability to solve coding
problems on LeetCode, we have formulated and set the fol-
lowing research questions:

o RQI1: What is the effectiveness of ChatGPT and Copilot
in solving LeetCode problems in Python?

o RQ2: Can ChatGPT effectively act on feedback to debug
Python code?

¢ RQ3: To what extent can ChatGPT improve the perfor-
mance and quality of Python code?



As mentioned before, we have chosen to focus primarily
on Python due to its widespread popularity and extensive
representation in the training datasets of LLMs. Python’s usage
in diverse fields from web development to data science ensures
a rich variety of code examples and scenarios for analysis.
Also, Python’s syntax and community conventions make it an
ideal candidate for examining the capabilities of LLMs in a
real-world programming context.

In RQI1 we aim to find the effectiveness of the models in
solving LeetCode problems. This will provide some insight in
the ability of ChatGPT and Copilot to write code for close to
real-word problems. To achieve this, we selected a number of
LeetCode problems, fitted them to the models, and used the
proposed solution without any changes.

Since ChatGPT’s main advantage is the “communication”
that one can have with the model, in RQ2 we try to investigate
the ability of the model to correct itself. For that, we allow
ChatGPT to rectify any incorrect solutions with the help of
feedback on errors in the form of stack traces or information
around failed test cases. This choice stems from our desire to
investigate LLMs’ ability to interact with automated feedback
mechanisms, such as compiler errors or test case results. This
approach mirrors real-world development environments where
automation tools often guide code refinement. It also allows
us to reflect on the potential of tools like AutoGPT, facilitating
an automated loop of code improvement before developer
intervention.

Finally, we take the communication with the model one
step further and we ask it to improve the code quality and
performance of its correct solutions in order to understand
its capacity to improve of preexisting code. By following
this design, our study juxtaposes two distinct avenues for
code improvement: automatable mechanisms, represented by
compilers and test cases, and non-automatable mechanisms,
such as common development goals and practices (e.g., overall
quality improvement). This dual approach allows us to assess
the versatility of LLMs in both structured and more fluid,
human-centric coding scenarios.

By investigating these questions, we aim to shed light on the
potential of language models like ChatGPT in enhancing the
coding experience for programmers. Furthermore, the findings
can contribute to the broader understanding of the capabilities
and limitations of LLMs in the context of algorithmic problem-
solving.

B. Case Selection

Objectively assessing the capabilities of language models
to carry out programming tasks is challenging, considering
that they stem from supervised learning and as a result might
perform better in tasks that resemble the dataset on which
they have been trained. To alleviate any bias and test them
on problems with varying degrees of difficulty, we evaluate
the performance of the models on 60 randomly selected
problems from LeetCode, which is a popular online platform
for programming learning and assessment. To reduce any bias
in the problem selection we used the random selector offered

by the platform (namely the option “Pick One”) for each of
the three difficulty categories. Thus we randomly selected 20
problems from each of the categories (Easy, Medium, and
Hard) bringing the total number of problems to 60.
Orthogonal to our efforts to mitigate biases, the choice of
LeetCode can be a subject of debate, particularly concern-
ing its representation of real-world coding scenarios. While
LeetCode primarily prepares developers for coding interviews,
the platform’s challenges encompass a spectrum of problems
that developers frequently encounter. Our rationale is that,
despite their interview-oriented design, these challenges offer
a valuable proxy for gauging LLMs’ effectiveness in typi-
cal development tasks, reflecting a range of complexity and
problem-solving skills pertinent to everyday programming.

C. Data Collection

In order to collect the appropriate data for RQ1, for each
problem, we retrieved its description and prompted each model
(ChatGPT and Copilot). Each prompt followed the following
format:

Write the code that solves the following problem
using the Python programming language.
<problem description from LeetCode>
Sometimes an additional interaction with the model was
needed, in order to specify the parameters of the method
signature. This was necessary to not alter the generated
code. The final model-generated solution was then submitted,
without any alterations, to LeetCode’s submission system. We
recorded the status (i.e., pass or fail) and the message (in case
of failure). We should note that for each problem a new chat
(conversation thread) was used to avoid interference of chat
history from previous problems with new responses.
Regarding RQ2 and RQ3, once again we had to “commu-
nicate” with the AI model, but only with ChatGPT, since
it is the only one that has the ability to keep track of a
specific conversation. In order to collect our data we initiated
a dialogue with the ChatGPT client, as described in the next
figure and explained below.

1) First we ask ChatGPT for a solution to the problem. This
includes providing the problem description as copied
from LeetCode, an instruction specifying that a solution
in Python is to be generated, and a function prototype
that this solution has to follow in order to match the in-
put format required to submit to LeetCode. The solution
generated by ChatGPT will be copied into the LeetCode
console and submitted. If the solution is accepted, we
move to step 3. Else, we move to step 2.

2) LeetCode provides information about the error encoun-
tered with the submitted solution. The stack trace leading
to the error in case of a runtime error, and the failing
testcase in case of wrong answers and time limit ex-
ceeded errors is displayed. We provide ChatGPT the
error details available and ask it to correct its code.
We then copy the revised version of the solution that
ChatGPT provides into the LeetCode console and submit



it again. If the solution is accepted, we move to step
3. Else if step 2 has been repeated 5 times and the
solution still fails, we terminate the dialogue and mark
the problem as failed. Else, we repeat step 2.

3) At this point, we have a solution that is accepted by
LeetCode. We note the runtime and memory perfor-
mance percentile statistics provided by LeetCode on the
accepted solution page. We re-upload the same solution
twice and take note of the performance statistics of
each iteration in order to later calculate the average
values. If this step has already been repeated 5 times,
we terminate the dialogue here. Else, we ask ChatGPT
if it can improve the time and space complexity of
its solution. If it says that no further improvement is
possible, we terminate the dialogue. Else, we upload its
‘improved’ solution to LeetCode. If it is accepted, we
repeat step 3. Else, we terminate the dialogue.

Request to generate an initial
solution to the problem

Solution is correct I Solution is incorrect

Request to improve the time
and space complexity of the
previous (correct) solution

Prompt with error information
requesting to correct the
previous (incorrect) solution
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Fig. 1. Diagram for the dialogue conducted with ChatGPT

Iteration limit reached

Iteration limit reached

Moreover, in order to collect the data for the code quality
and performance metrics, for the RQ3, we had to make some
extra steps. Regarding the code quality metrics the complexity
analyser Lizard [15] was used to automate these calculations.
These metrics primarily capture the visual complexity of the
code, providing an indication of how maintainable or readable
it is rather than how it performs [16]. The metrics that we
used were the following:

1) Cyclomatic Complexity: his is a measure of the number
of linearly independent paths in a program [17]. This
correlates directly to the number of decision points in
the program. Low cyclomatic complexity is considered
an indicator of high code quality

2) Token Count: The total number of operators and
operands in a program.

3) Lines of Code: The number of lines of code in the
function.

Finally, in order to take into account the code performance

we used the following two metrics:

1) Time Complexity: The time taken for the program to
execute is known as its runtime. In our paper, the runtime
can vary for each function depending on the provided
input. LeetCode provides the runtime in milliseconds
for each submitted solution over its set of test cases,

along with the percentile of submissions it outperforms.
However, it is important to note that these numbers can
be unreliable, as indicated by various forums 67 and the
standard deviation in results. To obtain a more accurate
assessment of performance across iterations, we have
manually evaluated the best, average, and worst-case
time complexity of each solution.

2) Space Complexity: The amount of memory used by a
program to store data during execution is called its
memory usage. Similar to runtime, the space usage can
vary for each function depending on the input. LeetCode
also provides the memory usage in megabytes for each
submitted solution over its set of test cases, along with
the percentile of submissions it outperforms. However,
like the runtime metric, these numbers can be unreliable.
To address this, two researchers have manually evaluated
the best, average, and worst-case space complexity of
each solution to better capture the change in perfor-
mance throughout iterations. Disagreements between
researchers were discussed and a consensus was reached.

D. Data Analysis

For RQ1, we employed a combination of quantitative and
qualitative analyses to evaluate the effectiveness of Copilot
and ChatGPT in Python code generation. This includes exam-
ining success rates in code compilation and problem-solving,
complemented by a thematic analysis of the types of errors
and their frequencies.

For RQ2, we first continued our interaction with ChatGPT
and completed the data collection by generating all ‘improved’
solutions for the selected problems. Next, we employed a
similar quantitative and qualitative analysis to reason on the
ChatGPT’s ability to act on non-requests of non-functional
nature.

Finally, for RQ3, after calculating the Cyclomatic Com-
plexity, Token Count, and Lines of Code for each correct
solution (with at least two correct solutions), the data was
analyzed to identify patterns and trends across iterations. Each
problem had between 2 and 6 iterations available for analysis.
The following comparisons were made considering the correct
solutions for each eligible problem:

1) Last versus first value: This metric compares the initial
and eventual correct solution for each problem. There are
three possible scenarios for the eventual solution: when
ChatGPT determines that no further improvement is
possible; when an “improved’ solution no longer satisfies
all the LeetCode test cases, making the last correct
solution the eventual solution; and the last solution
when the iteration limit is reached and the dialogue is
terminated.

2) Best versus first value: This metric compares the initial
and best ranking solutions obtained across all iterations

Sleetcode.com/discuss/general-discussion/136683/different-run-time-wit
h-same-code

7leetcode.com/discuss/general-discussion/556815/leetcode-run-time-mem
ory-usage-discrepancy



for each problem. It is important to note that the initial
solution itself may also be the best. During the initial
data collection, it was observed that in some cases,
subsequent iterations deteriorated in one or more metrics
instead of consistently improving. Therefore, this com-
parison serves as a measure of the maximum potential
improvement.

For Cyclomatic Complexity, Token Count and Lines of
Code, the mean difference in the last-first and best-first value
pairs across solutions is calculated. However, its magnitude
can be hard to interpret, since it represents the difference in
each metric across iterations of solutions without considering
their absolute values, which can be vastly different between
different problems. For example, a change in Cyclomatic
Complexity from 10 to 8 is different from a change from 4
to 2, even though the absolute difference is the same. So,
in addition to calculating the central tendencies, Wilcoxon
Signed-Rank tests are performed to determine whether there
was a statistically significant decrease in the metrics from the
first iteration to the last or best. This nonparametric test is
chosen because we cannot assume a specific distribution for
the data points (the boxplots show certain skews), and the
sample data consists of paired values (metrics from two solu-
tions of the same problem). This way, the values themselves of
these metrics in the selected iterations will be considered rather
than simply their differences. The null hypotheses in context
of each of the metrics assume that the last/best iteration’s
solution is not significantly different from that of the first.
The corresponding alternative hypotheses assume the last/best
iteration’s value for each metric is lower than that of the first.
In the case of Time and Space Complexities, only the average
case is used in this analysis, since the best case occurs in very
few scenarios and the average case, which is the most common
case, is found to largely coincide with the worst case.

IV. RESULTS
A. Effectiveness of ChatGPT and Copilot

In Table I, we present the summary of the performance
for both ChatGPT and Copilot models grouped by problem
difficulty level (easy, medium, hard), programming language,
and error. To provide a more complete and comparative picture
of the evaluation, we visualize the status of each solution in
Fig. 2. A colored circle indicates a correct solution for the
corresponding problem.

The main takeaway message is that both models seem
well-versed in easy problems while ChatGPT seems to be a
bit more capable. Both ChatGPT and Copilot make notably
more Logical errors, than Runtime of Time Limit. It can
be concluded that when the models understand the provided
problem it is very likely that they will provide a correct
solution.

Looking at the errors of the generated code, most were
semantic in nature, rooted in either logical or performance
(Time Limit) issues. But we note that solving such issues does
not imply having a correct solution. In a nutshell, these results

TABLE I
PERFORMANCE OF CHATGPT AND COPILOT

Facet (N) Copilot ChatGPT

correct solutions per problem level

easy (20) 14 (70.0%) 16  (80.0%)

medium (20) 10 (50.0%) 14  (70.0%)

hard (20) 7  (350%) 10 (50.0%)
incorrect solutions per error type

Logical (60) 18  (30.0%) 14 (23.0%)

Runtime (60) 5  (8.0%) 4 (7.0%)

Time Limit (60) 6  (10.0%) 2 (3.0%)

inform the starting point where engineers can progress toward
a reliable and efficient solution. For example, see the problem
statement for Recover the Original Array®:

A 0-indexed array consisting of n positive integers,
was splitted into two by a given integer k.

The main requirement is to recover all three arrays (original
and the two after the split) by getting only the numbers that
existed in all of them. The problem that ChatGPT faced was a
runtime one, i.e., there was a possible division by 0. The first
three lines of the provided solution were the following:

Arrays.sort (nums);
int n = nums.length / 2;
int k (nums [nums. length —1]
— nums[0]) / (2%xn-=2);

When the original array (nums) contains two numbers,
the denominator becomes zero. This shows the importance
runtime issues could play in a given scenario that the model
did not ‘think about’ but a human could have foreseen. We
should note that the comparison between human and machine
is something we did not delve into for this study, but Imai [5]
discusses some early evidence.

B. Act on feedback

After the interaction with ChatGPT, a total of 47 out of
60 problems had at least one correct solution, i.e., seven more
solved problems compared to the the results presented in RQ1.
Table II shows the distribution of what halted the solution
improvement process for each problem solved successfully.
The majority of solutions (31 out of 47) were terminated due
to a wrong answer, indicating a lack of enough reasoning to
establish what is a correct solution. This is further supported
by the seven cases where ChatGPT just kept changing the
code. Still, in nine occasions, ChatGPT claimed to have
reached an optimal solution and refused future improvement.
But given the previous results, there is less credibility to
support reasoning. Overall, this highlights the need for human
oversight in the development process, especially when utilizing
such models for code generation and optimization.

8https://leetcode.com/problems/recover-the-original-array
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Fig. 2. Distribution of problems solved per language and model

Looking at the errors related to all problems, including those
that were successfully solved at some point, we collected a
total of 119 incorrect solutions. In Table III, we show their
distribution according to the same type of errors used in RQI.
The results corroborates that ChatGPT’s main struggle is in
properly composing the logic required to accurately address
the problem statement.

TABLE II
DISTRIBUTION OF THE THREE CASES IN THE IMPROVEMENT PROCESS

Case Frequency

Optimal solution reached 9

Iteration limit reached 7

Termination due to wrong answer 31
TABLE III

DISTRIBUTION OF ERROR TYPES ACROSS ALL THE WRONG SOLUTIONS

Type of error  Frequency

Logical 93
Runtime 14
Time Limit 12

C. Improve performance and quality

1) Code Quality Metrics: From the boxplots in Figure 3,
we can see that the change in values of cyclomatic complexity,
token count and lines of codes of solutions between the first
and the last iterations is distributed in both the positive and
negative range.

In Table IV it can be seen that while the median change in
all three metrics is 0, the mean difference in values between
the first and last iterations is positive for two out of the three
metrics, suggesting an overall increase in token count and lines
of code from the first iteration’s solution to the last’s. The
Best - First iteration difference, by definition, is the first value
of each metric subtracted from the lowest value out of all
iterations, and hence cannot be positive.

The mean magnitude of difference in cyclomatic complexity
and lines of code between the first and best iteration in our
sample data is small but negative, however we observe a large

TABLE IV
MEAN AND MEDIAN FIRST AND LAST OR BEST ITERATIONS ACROSS ALL
PROBLEMS
Metric Best - First difference  Last - Fist difference
Mean Median  Mean Median
Cyclomatic Complexity -0.78 0.00 -0.22 0.00
Token Count -10.47 0.00 1.91 0.00
Lines of Code -1.25 0.00 0.13 0.00
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average decrease of 10.47 lines of code between the first and
best iterations’ solutions.

The null hypotheses assume for each metric that the last/best
iteration’s solution is not significantly different from that of
the first. The corresponding alternative hypotheses assume the
last/best iteration’s value for each metric is lower than that of
the first. The resulting p-values for the tests comparing the first
and last iterations were 0.26, 0.33, and 0.31 for the cyclomatic
complexity, token count and lines of code cases respectively,
each case of which is higher than the significance level.
Consequently, the null hypotheses are not rejected, indicating
no significant decrease in cyclomatic complexity, token count
or lines of code between the number of iterations.

The resulting p-values in the tests comparing the first and
best iterations were less than 0.01 for cyclomatic complexity,
token count and lines of code respectively, which in each

TABLE V
PROPORTION OF PROBLEMS WHERE THE BEST VALUE OF EACH METRIC IS
FOUND IN THE FIRST SOLUTION, LAST SOLUTION OR NEITHER

First is  Last is  Neither  First
Best Best Nor Last is
Best
Cyclomatic Complexity 0.6875 0.7500 0.0625
Token Count 0.5625 0.5313 0.1875
Lines of Code 0.5938 0.6875 0.1250
Average time complexity 0.8438 0.9063 0.0313
Average space complexity 0.9063 0.8750 0.0000

case are below the significance level, indicating that the null
hypothesis is rejected and that there is evidence to support
that the difference in cyclomatic complexity, token count and
lines of code between the first and best solutions is statistically
significant.

2) Performance Metrics: The p-values obtained with the
null hypothesis being that there is no significant difference
between the time or space complexities of the first and
last iterations of solutions are 0.23 and 0.70 respectively,
suggesting that there is not enough evidence to reject the null
hypothesis. The p-values for the alternative hypothesis that the
time and space complexities of the best iteration’s solution
is on a lower order than that of the first are 0.02 and 0.05
respectively, suggesting evidence in support of the alternative
hypothesis.

3) Trends in Improvement: It is evident that the results
differ when considering improvement in the chosen metrics
between the first and last iterations’ solutions, and the first
and best’s. This indicated that for a sizable proportion of
problems, the last solution is not the best, i.e. the improvement
is not monotonic. To further investigate this notion and gather
information on the trends of improvement, the proportion of
problems where the first solution is best, last solution is best
and neither first nor last solution is best was analyzed (see
Table V).

It is observed that in a majority of cases (more than 50%
for all metrics), the first solution’s metric values are identical
to the best solution’s. Also, in a majority of cases (more than
50% for all metrics), the last solution’s metric values coincide
with the best solution’s. There is only a small percentage of
problems (less than 20% for all metrics) where neither the first
nor last solution’s metrics are the best across iterations.

V. IMPLICATIONS

It is not improbable that Al-powered coding assistance
will thrive in the coming years. But to reach a state where
Al-generated solutions can be trusted, further research and
evaluation of outcomes is needed. The fact that most of the
failed solutions are due to logical errors, stresses that software
engineers would still have to intervene to detect and debug the
problem. The key takeaway is that human experience will play
a paramount role in the dawn of this new era.



At least for common and recurring programming tasks,
developers may be relieved and thus focus on validating
solutions and fixing errors in the generated code. And it
seems that this is the direction, at least for the moment, that
GitHub is trying to achieve with the new Copilot X feature
that is rolling out’. Copilot X is going to be the technological
successor of Copilot and is specifically described as a helping
tool. This automation could shift the developer’s focus from
mundane to more complex and creative aspects of software
development. Such a shift holds the promise of efficiency gains
and innovation acceleration.

However, this potential benefit is contingent upon the re-
liability and trustworthiness of the Al-generated code. We
note that no generated code contained syntax errors, i.e., all
generated programs (across both models) are runnable. Thus,
we stress the need for rigorous testing and validation, which
should encompass not only correctness but also other runtime
quality attributes such as performance. Without it, teams may
find themselves at a higher risk of deploying subpar (or plain
incorrect) solutions or even having to spend more time (than
nowadays) on code review. So it is clear, at least for the time
being, that the blind usage of these tools could result in more
errors and require more time in the error resolving phase.

Another observed limitation is that ChatGPT was able to
rectify only a minority of problems with initially incorrect so-
lutions, indicating that it is not very effective at using feedback
around errors to debug snippets of code. However, the average
number of iterations it took to correct the ones that were
eventually fixed was half of the maximum number of iterations
performed, and it is possible that the correction rate could
have been higher if the iteration limit had been increased.
Ultimately, the interactive nature of models like ChatGPT
offers promising avenues for iterative improvement of code.
But, for that, more sophisticated feedback mechanisms need
to be developed.

Moreover, since there are several cases where both the first
and last solution coincide with the best (the proportion is well
above 80% in both time and space complexity, for instance), it
indicates that either there is an increase in metric values in the
iterations in between or that the values remain almost constant
throughout. Considering that the cases where the first solution
is best and where the last solution is best do not necessarily
coincide, there can be both a general increase and a general
decrease in metric values across iterations. In the small fraction
of cases where neither the first nor the last solution is the best,
there is conclusively an initial improvement followed by a
decline in each metric. This raises the question of ChatGPT’s
ability to not only improve upon a previous solution but to
identify the changes as an improvement or deterioration.

Machine-learning models are trained on existing datasets,
and an LLM, in the simplest terms, is a black box that solves
the problem of predicting the next word in a sequence. Thus,
whether or not the attention mechanisms used in LLMs are
capable of identifying ‘positive changes’ (i.e., predicting the

%https://github.com/features/preview/copilot-x

next token that constitutes an improvement) is an open ques-
tion. The continuous improvement and enlargement of LLMs
may help in this regard, but it is also possible that the problem
is more fundamental and requires an adjustment to an LLM’s
architecture particularly tailored to the task of code generation.
In either case, the ability to identify positive changes seems to
play a crucial aspect in the iterative improvement of code, and
further research is needed to determine how to enable LLMs
to do so.

VI. THREATS TO VALIDITY

In this section, we present the construct, reliability, and
external threats of our study according to Runeson et al. [14].

Construct validity refers to the extent to which the phe-
nomenon under study represents what is investigated according
to the research questions. To mitigate this threat, we estab-
lished a research protocol to guide the case study, which
was thoroughly reviewed by three experienced researchers in
the domain of empirical studies. Still, we acknowledge the
challenges in ensuring that our selected metrics accurately
represent the intended constructs. Our effort to mitigate these
threats involves a careful selection of metrics that align with
standard practices in software engineering research, ensuring
that they are objective in the context of evaluating source.

External validity deals with possible threats when gener-
alizing the findings derived from the sample to a broader
population. Firstly, in our study we focused on ChatGPT
(version 3.5) and Copilot, so our results can not be generalized
for all Al coding assistants that exist, or for newer versions of
GhatGPT and Copilot. Secondly, we used 60 problems from
LeetCode in order to test our hypothesis, but there are a total
of 1800 problems in this platform. We acknowledge again
that while LeetCode problems are designed primarily to test
algorithmic thinking and coding proficiency, they often lack
the complexity and multifaceted nature of real-world software
projects. That said, they do provide a valuable framework
for honing fundamental programming skills and algorithmic
efficiency, which are essential in software development. Fi-
nally, we cannot generalize our results to other programming
languages, since we only tested Pyhton, and we expect that a
difference is possible.

Lastly, reliability of the study is related to whether the data
are collected and analyzed in a way that can be replicated. To
minimize potential reliability threats during the data collection
process, we followed specific steps for each problem and we
recorded all the responses. Also, to assure correct data collec-
tion and analysis, three researchers from different institutions
collaborated. Finally, since the data collection and analysis of
the ChatGPT solutions involves multiple steps, we also provide
supplementary material'® with collected and processed data
and results. We note that the material has been anonymized
for the review.

10https://anonymous.4open.science/r/llm-leetcode-data- FF32/



VII. CONCLUSION

Prompting the question “Would you trust a program gener-
ated by ChatGPT?” to itself, the generated response'! points
to the fact that “Machine learning algorithms can be very
effective at solving certain problems, but they also have lim-
itations and can produce errors if not properly designed and
trained.” It then goes on with highlighting that it is important
to “thoroughly test any program and assess its performance
and accuracy before trusting it” and that it is also important
to “consider the potential biases and ethical implications.”

This study joins the efforts for critically assessing the con-
tribution of Al in developing software. In particular, we first
examined GitHub’s Copilot and OpenAI’s ChatGPT ability
to solve 60 random problems from LeetCode, and found
that the latter provided approx. 15% more correct solutions
and that the main cause of errors in both cases is incorrect
logic. Next, given ChatGPT interactive paradigm, we sought
to fix incorrect solutions by proving LeetCode’s feedback and
improve the overall code quality. The results showed that the
improvement in solutions over iterations was not consistently
linear, indicating variability in solution quality. The study,
limited to Python, suggests the need for further research across
different programming languages and more complex coding
challenges, which may also help unlock the power explainable
Al for source code generation.
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