A Case Study on the Availability
of Open-Source Components for Game
Development

Maria-Eleni Paschalil(m), Apostolos Ampatzoglouz, Stamatia Bibi>,
Alexander Chatzigeorgiou®, and Toannis Stamelos’

! Department of Computer Science,
Aristotle University of Thessaloniki, Thessaloniki, Greece
{mpaschali, stamelos}@csd. auth. gr
2 Institute of Mathematics and Computer Science,
University of Groningen, Groningen, The Netherlands
a.ampatzoglou@rug. nl
3 Department of Informatics and Telecommunications,
University of Western Macedonia, Kozani, Greece
sbibi@uowm. gr
4 Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece
achat@uom. gr

Abstract. Nowadays the amount of source code that is freely available inside
open-source software repositories offers great reuse opportunities to software
developers. Therefore, it is expected that the implementation of several
requirements can be facilitated by reusing open source software components. In
this paper, we focus on the reuse opportunities that can be offered in one specific
application domain, i.e., game development. In particular, we performed an
embedded multiple case study on approximately 110 open-source games,
exploiting a large-scale repository of OSS components, and investigated:
(a) which game genres can benefit from open source reuse, and (b) what types of
requirements can the available open-source components map to. The results of
the case study suggest that: (a) game genres with complex game logic, e.g., First
Person Shooter, Strategy, Role-Playing, and Sport games offer the most reuse
opportunities, and (b) the most common requirement types that can be devel-
oped by reusing OSS components are related to scenarios and characters.

1 Introduction

The last two decades video games have become one of the most important forms of
entertainment in modern societies, with respect to their social and economic impact.
Specifically, in recent years, and especially among the youth, playing games has
outperformed many other types of entertainment, like listening to music or watching
movies. Additionally, it is reported that the worldwide revenue of the game industry
increased from nearly $11 billion in 2003 to $50 billion in 2007 [13] and is still rising
until now. One of the most important business requirements of successful game series,

© Springer International Publishing Switzerland 2016
G.M. Kapitsaki and E. Santana de Almeida (Eds.): ICSR 2016, LNCS 9679, pp. 149-164, 2016.
DOI: 10.1007/978-3-319-35122-3_11

150 M.-E. Paschali et al.

which is a prerequisite for surviving demanding competition, is the need for continuous
release of newer game versions or patches. Therefore, game development is an intense
process, which requires techniques that will shorten the product time to market and
simultaneously minimize the effort spent for debugging and testing activities [3, 30].

Reuse is a software engineering technique that offers such benefits, since it
increases development productivity [8, 32] and product quality [16, 21]. In addition,
despite the fact that games are usually large and complex software projects with high
individuality, one can identify a variety of common concepts (e.g., maps, weapons,
terrains, etc.), which can enable reuse among games of the same genre. To introduce
reuse into the game development process, several studies have proposed software
architectures that improve the reusability of games (e.g., [15, 18, 28]). The aim of such
architectures is to deliver more stable and extensible software, with enhanced inter-
operability, robustness and scalability.

In most of the cases, solutions that facilitate reuse discuss the utilization of com-
ponentized opportunities (e.g., [12, 34]). In software engineering, components are
typically equivalent to software packages or groups of classes that encapsulate a set of
related and well defined functions [40]. By taking into account the enormous amount
of source code that is available in Open Source Software (OSS) repositories (e.g.,
Sourceforge, Github, etc.), in this paper we perform an exploratory case study to
investigate the opportunity to reuse OSS components in game development. To achieve
this goal, we exploit a large-scale repository of OSS components (namely Percerons')
that at this point offers approximately 3,000 components retrieved from open source
games. The case study aims at investigating the available open source components,
which can be supplied for reuse in the game development community, based on:

(pl) Game genre specificity: By taking into account that software reuse is more
efficient when performed within the same application domain [24], we investi-
gate how many components have been identified for each game genre (e.g.,
sports games, strategy games, RPGs, etc.). It is expected that game genres with
high availability of components, can more easily benefit from OSS reuse. The
game genres that we investigate are extracted from sourceforge.net, i.e., the
source code repository, on which the games have been originally published. The
studied genres are: arcade, board, card, first person shooter, puzzle, role-
playing, sports and strategy games.

(p2) Requirements specificity: Even within a specific game genre, components can be
further classified, based on the requirement that they implement. Such a clas-
sification would provide an even more fine-grained level of specificity, based on
which we can further quantify the supply of components. For instance, a com-
ponent that is related to the scenario of a game, e.g., an inventory of a player in
an RPG, is only reusable in scenarios that involve the management of objects
collected by game characters. To this end, we have manually classified a subset
of the components of the Percerons database in seven categories: scenario,
controls, community, speed, characters, sound, and graphics. The categories
have been retrieved from the work of Ham et al. [22], on gamers’ satisfaction

! http://www.percerons.com.

http://www.percerons.com

A Case Study on the Availability of Open-Source Components 151

factors. The connection between game satisfaction factors and requirements is
discussed in Sect. 2.3.

(p3) Reusability: However, the identification of a software component is only the first
step towards its reuse. The next step is its adaptation to the target system. The
ease of adapting a software component in a new system is quantified through the
reusability quality attribute [1]. Therefore, we investigate if there are statistically
significant differences in the reusability of components, identified in games of
different genres.

The rest of the paper is organized as follows: In Sect. 2 we introduce the concepts
of software reuse and component-based software engineering. Additionally, we pro-
vide background information that is used in this study, i.e., aspects of game engi-
neering and the component extraction algorithm of Percerons. In Sect. 3 we present the
study design in the form of a case study protocol. In Sect. 4 we provide the results,
organized by research question, and discuss them in Sect. 5. In Sect. 6 we discuss the
threats to validity of our study, and in Sect. 6, we conclude the paper.

2 Background Information

2.1 Software Reuse

Software reuse is the process of implementing or updating software systems using
existing software assets [26]. Software reuse according to Baldassaire [8] is a software
engineering technique that, when adopted systematically, can improve and even
guarantee software quality. Additionally, it is suggested that reuse has a positive effect
on productivity and quality [8]. The results of the previous study are verified in [32]
where traditional and reuse-based software productions are compared in an industrial
context. Furthermore, a failure mode model for part-based software reuse was proposed
to improve the reuse processes [16].

Source code reuse is considered to be more intense in OSS development compared
to commercial/closed source software [31]. Heinemann et al. performed an empirical
multiple-case study in 20 popular OSS Java projects and concluded that third party
reuse is common in OSS [23], while Raemaekers et al. [36] pointed out that logging
frameworks (e.g., log4j) are the most frequently reused libraries. Sojer and Henkel [39]
investigated, through a survey among 686 open-source developers, the usage of
existing open-source code for the development of new open-source software. Their
results showed that on average 30% of the offered functionality is based on reuse.

Another type of studies aims at diversifying between white-box and black-box
reuse. According to Heinemann et al. [23] black-box reuse is the predominant form of
reuse. These findings are in accordance with those of Haefliger et al. [21], who con-
cluded that black-box reuse is the dominant form of reuse by analyzing six open source
projects and interviewing their developers. Schwittek and FEicker [38] examined
black-box reuse in OSS web applications resulting that on average this type of
applications reuse 70 libraries, 50% of which come from the Apache Foundation.
White-box reuse has been studied by Frakes et al. and Mockus et al. on 38.7 thousand
OSS projects, by measuring filename overlapping. The results showed that more than

152 M.-E. Paschali et al.

50% of the components are reused in more than one projects [16] and [31]. In general it
seems that identifying application domains [38], requirements specificity [36] and type
of reuse [16, 23, 31] is of great importance in guiding practitioners on where to find
appropriate components of reuse.

2.2 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is an approach that relies on software
reuse. CBSE purpose is twofold: (a) to facilitate the development of reusable com-
ponents that can be used in various independent systems, apart from the one initially
implemented for (i.e. development for reuse), and (b) to exploit reusable components
for the development of new systems (i.e. development with reuse).

In the literature a variety of terms regarding software components can be found, as
the term “component” is considered so generic that is used to denote any software part:
architectural, design, source code, or requirements unit [17], patterns or even methods
and lines of code [14, 40]. In JavaBeans the component is considered to be a class, in
Component Object Model (COM) and CORBA Component Model (CCM) a compo-
nent is an object, whereas in SOFA, PECOS and Pin it is an architectural unit [27].
However, Szyperski [40] distinguishes between classes and components: components
are more abstract than classes and can be considered to be stand-alone service providers
consisting of one or more classes. Components are “fired” during execution and
therefore considered as deployment units, while classes are considered as development
artifacts. Unlike classes, components can be synthesized with different technologies
and can contain elements such as global variables, images, html files, etc.

Component adoption in software reuse may occur in many levels of granularity
from a few lines of code to even a whole system [2]. Franch et al. point out the
importance of the component selection process in software engineering, a fact that
indicates the growing need for establishing software reuse patterns and guidelines [17].
The separation of the components’ interface from the components’ functionality is an
important aspect of a component that may increase its reuse. For this reason according
to [14] the use of design patterns in components analysis and design can be useful in
increasing component cohesion and minimizing component internal coupling.

2.3 Game Engineering

The main requirement of every game is to be entertaining (see [11, 25, 41]) and therefore
gamers’ satisfaction factors are of paramount importance in the game analysis phase.
The first study that investigated the factors from which gamers gain satisfaction was
performed by Ham et al. [22]. The results of the study suggested that game satisfaction
factors are game genre specific. Ham et al. investigated seven satisfaction factors
(Scenario, Graphics, Sound, Game Speed, Game Control, Character and Community)
and several game genres (Role Playing Games - RPG, First Person Shooter - FPS, Sport
Video Games and Computer-Mediated Board Games). The average importance of each
factor, calculated over all game genres, is depicted in Table 1.

A Case Study on the Availability of Open-Source Components 153

Table 1. User satisfaction factors [22]

Id | Factor Importance | Id | Factor Importance
1 | Character 20,0 % 5 | Scenario 11,1 %

2 | Graphics 17,6 % 6 | Sound 10,8 %

3 | Game Control | 16,7 % 7 | Community | 10,1 %

4 | Game Speed |13,7 %

While discussing the results of this paper, we have to note that this study has been
published a decade ago, when the state of practice in game industry was substantially
different. A replication of the aforementioned study has been published in 2014, by
Paschali et al. [33]. In the recent study, the results have been updated: Character
Solidness, Scenario and Sound are highlighted as the most important factors for
gamers’ satisfaction, followed by Game Speed, Game Community, Controls and
Graphics. The fact that the results of the two studies are contradicting is considered
rather intuitive, in the sense that such factors are highly related to the most popular
game genre, and the state of practice in the industry. In this study, we reuse the game
satisfaction factors as types of requirements.

2.4 An Algorithm for Component Identification

In this section we shortly describe the methodology that is used in the study to identify
components from open source games, as proposed by Ampatzoglou et al. [4]. The used
algorithm is based on the identification of reusable sets of classes, by applying a
path-based strong component algorithm [19]. To apply this algorithm a directed graph
is created that depicts the dependencies among the classes of the system and then
depth-first search is performed to identify strongly connected components, in our case:
sets of classes. The algorithm successively provides sets of classes that are as inde-
pendent as possible, grouped together according to the functionality that they offer. In
particular the steps of the applied methodology are the following:

step 1. Create a dynamic two dimensional array where Candidate Components will be
stored in. Each row will store groups of classes that depend on each other. In
row 1 only one class will be stored depending solely on itself. In row two,
couples of classes will be stored that depend on each other, in row three
triplets of classes will be stored presenting dependencies, etc. Each row
number defines the maximum number of classes that can be included in a
Candidate Component. The columns represent the number of possible Can-
didate Components that can be used for each component size. At this step only
the first Component Candidate, of size 1, is created for one class of the system.

step 2. Identify the classes that the participants in the Candidate Components iden-
tified in the previous step are connected to.

step 3. Sort the dependencies according to their number of external dependencies in a
descending order.

154 M.-E. Paschali et al.

step 4. For every dependency create an updated Component Candidate and place it in
the corresponding position in the array according to the number of classes in
the dependency group.

step 5. Return to step 2, for every Component Candidate created in the previous step,
according to the order that they have been added in the array. The process
stops if the maximum number of components is reached or if there are no
external dependencies.

step 6. For every dependency in the list create an updated Component Candidate and
place it in the corresponding position in the data structures.

step 7. For every Component Candidate created in the previous step, following the
order that each candidate was identified, return to step 2. Stop if maximum
number of components is reached or if there are no external dependencies.

For example, by applying the algorithm on the dependency graph of Fig. 1, we
obtain the candidate components presented in Table 2. The intermediate steps on the
application of the algorithm are presented in detail in the original study [4]. We note that
from the candidate components identified by this algorithm, we only investigate those
that are independent of other system classes (i.e., have zero efferent coupling [29]).

A —»B
an
Al A2
/ [Table 2. Extracted components (Example)
|
| Size 1 | A Al A2 A2l B c D
v ‘ Size 2 | AB ALD | AAl AA2 A2A21 | A21LC | AC
D AD1 gt Size 3| AALD | AALB | AA2B AA2A21 | AA2LC | A2A21C | ABC
Size 4 | AALBD | AA2, | AA2A21C

A21,B
Fig. 1. Dependency graph g s | a.a2.a21,

(Example) B.C

3 Case Study Design

In this section, we present the protocol that has been used for guiding the execution of
this case study. The case study has been designed and is reported based on the
guidelines of Runeson et al. [37]. Therefore, in Sect. 3.1 we present the aim of the
study and the research questions in which we decompose it, in Sects. 3.2 and 3.3 we
describe the case selection and the data collection processes, and in Sect. 3.4, we
provide an overview of the data analysis process.

3.1 Research Question

The goal of this case study, based on GQM [10], is to characterize OSS components
with respect to their domain-specificity and reusability from the point of view of

A Case Study on the Availability of Open-Source Components 155

software engineers in the context of game development. To ease the design and
reporting of the case study, we split the aforementioned goal into three research
questions, based on the analysis perspectives (i.e., game genre specificity, requirements
type specificity, and reusability) that we introduced in Sect. 1, as follows:

[RQ.): Which game genres offer the most open source components?

This research question aims at identifying game genres that offer the larger
pool of components. The game genres that are used in this study have been
extracted from sourceforge.net, i.e., the repository from which the OSS
projects have been retrieved. The categorization on sourceforge.net is
performed by the game developers, and therefore is considered accurate. The
analysis will provide an overall view of how many components are found on
average in each game genre.

[RQ): Which are the game requirements to which most open source components

are related?
This question explores the types of requirements for which the most
components are implemented. Requirements are mapped to game satisfaction
factors, as presented in Sect. 2.3 (see [33]). The analysis will provide insight
on the game requirements for which components are more easily accessible,
based on the quantitative analysis.

[RQs]: What is the reusability of open source components for each game genre?
The two quality attributes related to software reuse are functionality and
reusability. These attributes will be analyzed for the components retrieved
across different game genres.

[RQs1]: Is there a difference in the average functionality offered by open source
components for various game genres?

[RQs,]: Is there a difference in the average reusability of open source components
for various game genres?

The results of this research question are expected to provide insights on how easy it
is to reuse one component, upon its identification.

3.2 Case Selection

The case study of this paper is a holistic multiple-case study [37] for RQ; and an
embedded-multiple case study for RQ, and RQs3. The context of the study is OSS game
development, the cases are open source games (for RQ; games are also the units of
analysis), and units of analysis (for RQ, and RQj3) are open source components.

In order to select as many cases as possible for our case study, we exploited a
repository of open source components, namely Percerons (see http://www.percerons.
com). Percerons is a software engineering platform [5] created by one of the authors with
the aim of facilitating empirical research in software engineering, by providing:
(a) indications of componentizable parts of source code, (b) quality assessment, and
(c) design pattern instances. The platform is consistently used for empirical research in

http://www.percerons.com
http://www.percerons.com

156 M.-E. Paschali et al.

the last three empirical software engineering conferences (ESEM’ 13 [6], ESEM’14
[20], and ESEM’ 15 [7, 35]). The identification of units of analysis is performed
automatically, by dumping the complete database of the repository.

In its current state Percerons provides 6.4 million candidate components that
concern 8 application domains. From these candidate components, 1.1 million have
been retrieved from OSS computer games. However, we need to note that the majority
of these components are not completely independent, since the algorithm described in
Sect. 2.4 stores components with efferent coupling less than 10. In our case study as
units of analysis, we consider approximately 3,000 components that are completely
independent and compileable (i.e., efferent coupling equals zero). The average size of
the components that are used as units of analysis is 6.52 classes (standard deviation:
8.92), ranging from single class components to components up to 40 classes.

3.3 Data Collection

In order to answer our research questions for every open source game that we analyzed
we recorded the following variables:

Game Name: The name of the open source game that we analyzed.
Game Genre: The genre of the game—Arcade, Board, Card, FPS, Puzzle, RPG,
Sports and Strategy. We note that some categories that are obtained from Percerons
have been excluded or merged, due to the low number of games that they involved.
For example, Educational games have been removed, Turn-Based and Real-Time
Strategy games have been merged in a common category, named Strategy.

e Number of Components: The number of independent and compileable components
that have been identified for the current game.

Additionally, for each component the following variables have been recorded:

Component ID: A unique identifier for the component.
Game Genre: Derived from the case variables.

e Requirement Type: The type of requirement that the component implements. The
possible classes for this variable are: Scenario, Controls, Community, Speed,
Characters, Sound, and Graphics. We note that since this was a manual process, it
was performed on only a limited number of components. In particular, we explored
100 random components, of various sizes, extracted from different games,
belonging to various game genres.

e Reusability: The reusability, as provided by the Percerons database, is calculated
based on the Quality Model for Object-Oriented Design (QMOOD) [9]. QMOOD
suggests that reusability is calculated as a function of component size in classes,
cohesion, coupling, and public interface. By taking into account: (a) the rigorous
empirical validation of QMOOD by experienced software engineers, and (b) its
popularity in the software engineering literature, we assume that it is a valid model
for quantifying reusability. In any case, we note that at this stage we are not
interested in the actual value of reusability, but only on components ranking.

A Case Study on the Availability of Open-Source Components 157

o Functionality: As a measure of functionality we use Afferent Coupling (AffC), as
proposed by Martin [29]. Afferent coupling counts the number of system classes
that actually invoke any method of the public interface of the component. In that
sense, it is a proxy of the functionality that this component offers to the rest of the
system. Thus, a component that provides high functionality to other system classes
is more probable to be reused than another that only provides limited services, even
in its original system.

3.4 Data Analysis

The data analysis step of this case study includes the calculation of descriptive
statistics, and the application of independent sample t-tests and Analysis of Variance
(ANOVA). Table 3 summarizes the data analysis process that we have applied in this
case study.

In particular for RQ; the number of components retrieved per game genre is pre-
sented along with basic descriptive statistics (i.e., minimum, maximum, and average
number of components per game). Also the standard deviation which is calculated to
quantify the amount of variation in the number of components per game is presented.
Additionally Analysis of Variance is performed to identify whether there are certain
game genres that offer significantly more components. One limitation of ANOVA is the
fact that it identifies differences in the mean value of the testing variable, among
groups, but it does not specify which groups are different. Therefore, the results of
ANOVA are further explored with independent sample t-tests, in order to identify
which game genres (i.e., the grouping variable) are different in terms of the number of
components they offered (i.e., independent variable).

Concerning RQ,, we discuss the frequency with which components implement
various requirement types. The results are presented in the form of a pie chart. The
same descriptive statistics as RQ, are presented for reusability and functionality metrics
with respect to the various game genres, addressing RQs. In that case ANOVA and
independent samples t-test are performed to identify whether different game genres
offer components that present significant differences in reusability and functionality.

Table 3. Data analysis and presentation overview

RQ Variable Analysis
Components / Number of Components * Descriptive statistics (mean, min, max,
Genre Grouping Variable: Game std. dev.)
Genre * Frequencies
+ ANOVA
Components / Number of Components » Frequencies (pie chart)
Requirements Grouping Variable:
Requirement Type
Reusability / Reusability « Descriptive statistics (mean, min, max,
Genre Functionality std. dev.)
Grouping Variable: Game * Frequencies

Genre « ANOVA

158 M.-E. Paschali et al.

4 Results

In this section we present the results of our case study, organized by research question,
and based on the data analysis plan, as presented in Sect. 3.4. Therefore, first we
present the results as obtained by the statistical analysis and then interpret them.

RQI (Availability of Components for Game Genres). Table 4 presents the results that
have been obtained by splitting the dataset by game genre and then calculating basic
descriptive statistics. The results of Table 4 are ranked by the mean value of compo-
nents offered by one game (see column 4). It can be observed that the game genre that
has the highest number of components (see Frequency—column 3) is Board games,
followed by Puzzles. However, we need to underline that these game genres are the
ones with the most games in the dataset (see N—column 2). In terms of average
components per game, we observe that the maximum value exists for FPS and Strategy
games, whereas the least components per game are found in Board, Card and Puzzle
games. Thus, based on this ranking we can claim that the amount of components that
are available for Board and Puzzle games are only due to the number of explored
games, and not due to game-specific characteristics.

To investigate if the aforementioned differences are statistically significant, we first
perform an Analysis of Variance (ANOVA), which suggested that some of the game
genres offers significantly more components per game (F: 3.62, sig: 0.00). Next, in
order to identify which game genres are those that stand out, either positively or
negatively, we performed independent sample t-tests. The results revealed that the
top-2 genres (i.e., FPS and Strategy games) are indeed having more available com-
ponents than the rest game genres. The second group of game genres (i.e., RPG and
Sport games), although offer on average approximately 10 additional components
compared to the other genres, this result is not statistically significant.

A possible explanation of the aforementioned ranking is the level of game logic
complexity of every game genre. For example, Arcade, Puzzle, Card and Board games
have a rather limited game logic (at least compared to the other genres), less impressive
graphics, etc. Therefore, the amount of possible components is limited. On the other
hand, the various characters, scenario objects, etc. offered in FPS, Strategy, Sports
games and RPGs, offer many reuse opportunities.

Table 4. Component per game genre

Genre N | Frequency | Mean | Std. Dev | Min | Max
First Person Shooter (FPS) | 8 |400 50.00 | 36.02 3 199
Strategy 91438 48.67 | 23.71 17 |83
Sports 6212 35.33|27.48 7 |72
RPG 10348 34.80|26.34 9 |76
Arcade 17 | 407 23.9412.19 8 |45
Puzzle 21 | 464 22.10 | 18.39 1 |64
Card 71153 21.86|18.89 5 |59
Board 311|647 20.87 | 18.49 4 180

A Case Study on the Availability of Open-Source Components 159

= Scenario

= Character

= Controls
Graphics

= GameCommunity

= More Than one

Fig. 2. Pie Chart (Frequency of Requirement types)

RQ?2 (Availability of Components for Requirement Types). Concerning RQ,, we dis-
cuss the frequency with which components implement the various requirement types
(see Fig. 2). The results of the pie chart suggest that most of the identified components
are implementing requirements that concern the game Scenarios, followed by Char-
acters. Another interesting finding is that we were not able to identify any component
that is related to game Speed”.

The fact that game speed has not been associated with any component is intuitive in
the sense that speed is a run-time characteristic that cannot be identified with static
source code analysis. In addition, the extensive linkage of components to scenarios and
characters is in accordance to our discussion for RQ; suggesting that most of the
components are found in games with complex game logic.

RQ3 (Reusability of Components for Game Genres). In order to investigate the
reusability of components that are extracted from different game genres, we performed
descriptive statistics, ANOVA, and independent sample t-tests for two testing vari-
ables: component functionality (afferent coupling) and component reusability. In
Table 5, we present descriptive statistics concerning the afferent coupling of compo-
nents extracted from different game genres. The results suggest that RPGs, FPSs, and
Sport games offer components that are more intensively used inside their games. This
fact can be explained by the average size of these games, in the sense that games with
more classes are expected to have more method invocations to the extracted compo-
nents. Another interesting finding is that all differences that are presented in Table 5 are
statistically significant and therefore generalizable to the population, according to the
individual independent sample t-tests. As expected, ANOVA has also revealed a dif-
ference between the groups (F: 46.18, sig: 0.00).

Similarly in Table 6, we present the results on the reusability of components
extracted from different game genres. The descriptive statistics imply that differences
between games genres are rather small in absolute numbers with the only exception of

2 A very small number of classes has been related to sound requirements, but due to its negligible
number has not been included in the pie chart.

160 M.-E. Paschali et al.

Table 5. Component functionality per game genre

Genre N | Mean | Std. Dev. | Min | Max
Arcade 407 | 11.76 | 13.00 0 61
Board 647119.70 | 24.48 0 109
Card 153 128.83|41.70 0 207
First Person Shooter (FPS) | 400 | 38.72 | 49.84 0 234
Puzzle 464 | 15.54119.33 0 70
RPG 348 [43.69 | 86.97 0 337
Sports 212(33.62|39.14 0 148
Strategy 438 124.12 (3597 0 152

Table 6. Reusability per game genre

Genre N | Mean Std. Dev. | Min | Max

Arcade 407 | 3.313 | 2.433 0.375 | 15.633
Board 647 |3.576 | 2.525 0.250 | 22.516
Card 153 13.623 1 2.741 0.333 | 24.025
First Person Shooter (FPS) | 400 | 4.328 | 4.039 -0.385 | 69.250
Puzzle 464 | 3.685 | 2.868 0.119 | 18.517
RPG 348 13.768 | 2.603 0.500 | 17.034
Sports 212 13.681|4.081 0.308 | 66.552
Strategy 43813.550 | 2.727 0.500 | 20.026

FPS games. Additionally, although the results of ANOVA (F: 10.11, sig: 0.00) suggest
the existence of significant differences, the independent sample t-tests revealed that
these are limited to the difference of FPSs with all other game genres. The outcome of
the statistical analysis suggests that differences in the reusability of open source games
are rather small, regardless of game genre.

5 Discussion

The results of this paper revealed that the top-2 genres FPS and Strategy games offer
significantly more components than the rest game genres. In terms of requirements
specificity, most of the identified components are implementing requirements that
concern the game Scenarios, followed by Characters. Concerning component func-
tionality RPGs, FPSs, and Sport games offer components that are more intensively
used inside their games, while in terms of component reusability no significant dif-
ferences between games genres are found with the only exception of FPS games. The
results of this study provide useful information both to researchers and practitioners:

e Guidance on the existence of reuse opportunities for practitioners. Based on the
results of this study, game developers can have indications on the feasibility of
reuse in different game genres.

A Case Study on the Availability of Open-Source Components 161

— FPS game developers can exploit the great reuse opportunities offered by OSS
components. This application domain offers the most components per game that
offer substantial functionality inside games, and are of optimum design-time
reusability.

— Strategy, Sport and Role-Playing game developers can also exploit the large
number of components offered by OSS games, although they have some limi-
tations. For example, RPGs offer the most functional components, of high
structural reusability. However, their availability is lower than that of FPS
games. On the other hand, despite the fact that Sport games that offer a high
number of components, these components are not of optimal reusability or
functionality.

— Game developers of any game genre should consider reuse of OSS components
when implementing requirements related to scenarios and character management.

e Guidance on case selection for researchers. Nowadays, more and more researchers
perform empirical studies on OSS projects. The results of the study can guide
researchers in selecting appropriate game genres to identify as many cases/units of
analysis as possible.

e Future work opportunities for researchers. Some interesting future work direc-
tions are derived from this study: (a) the actual reuse rates of these components in
OSS games can be calculated, (b) the reusability of these components can be tested
by software engineers through experiments, and (c) a process for systematically
reusing these components can be introduced.

6 Threats to Validity

In this section we discuss threats to the validity of our case study, with regard to
construct, reliability and external aspects [37]. Threats to internal validity are not
discussed in this paper, since identifying causal relations was out of the scope of this
study. A possible threat to construct validity is related to the metrics that are used to
answer our research questions and the extracted components. In particular, we have
used QMOOD to measure reusability and Afferent Coupling (AffC) to measure
functionality. Although we acknowledge that if different measures are used, the results
might be slightly altered, we believe that both choices provide adequat assessments of
the corresponding quality attributes. QMOQD, is an established quality model that has
been rigorously validated [9], whereas AffC offers a well-known proxy of functionality,
as explained in Sect. 3.3. Finally, another threat to construct validity is whether the
candidate components are indeed reusable artifacts that can be ported to settings
beyond their own game. We believe that the component selection algorithm, which is
based on an exhaustive search process, provides adequate recall rates, and therefore is
fitting for the purposes of this study. In any case to the best of our knowledge there is
no algorithm that 100% accurately captures all intended components of the original
developers.

162 M.-E. Paschali et al.

With regard to reliability, we consider any possible researchers’ bias, during the
data collection and data analysis process. In particular in the data collection phase, the
only possible bias can be identified in RQ,. To gather data on the types of requirements
that components implement we employed a manual process performed by the first
author. In order to increase the reliability of this process the second and the third author
validated the results. Finally, concerning external validity, a potential threat to gen-
eralization is that if the component extraction algorithm was performed on additional,
or different games, the results might be altered. However we believe that the selected
cases (open source games), offer a large and representative sample of the population.
Additionally, we need to clarify that although, the small amount of cases for RQj; is a
threat to generalization, the manual inspection of additional games was not possible
due to the time consuming nature of the manual inspection.

7 Conclusion

In this paper, we empirically explore an important topic in game development, i.e., the
opportunity to reuse components from existing games. As parameters in this empirical
study we selected two aspects that can affect reusability: the application sub-domain of
the game, namely the game genre, and the requirement specificity that a certain
component may fulfill. To evaluate the relation of the game genre and the requirement
types in games components, approximately 3,000 components were retrieved from over
100 open source games. The results of the study suggested that specific game genres
offer more reuse opportunities than others, and that most components are related to
scenario and characters. Based on these results, we have been able to provide useful
implications for researchers and practitioners. As future work, we plan to replicate the
study with more refined metrics/algorithms and feedback from game developers.
Additionally, we plan to perform an in-depth study of a small number of games where
the actual components that were envisioned for reuse are actually used for this purpose.

References

1. 9126-2001: ISO/IEC, Software engineering - Product quality (Part 1: Quality model),
Geneva, Switzerland (2001)

2. Ajila, S.A., Wu, D.: Empirical study of the effects of open source adoption on software
development economics. J. Syst. Softw. Elsevier 80(9), 1517-1529 (2007)

3. Ampatzoglou, A., Stamelos, I.: Software engineering research for computer games: A
systematic review. Inf. Softw. Technol. Elsevier 52(9), 888-901 (2010)

4. Ampatzoglou, A., Stamelos, 1., Gkortzis, A., Deligiannis, I.: Methodology on extracting
reusable software candidate components from open source games. In: Proceeding of the 16th
International Academic MindTrek Conference, pp. 93-100. ACM, Finland (2012)

5. Ampatzoglou, A., Michou, O., Stamelos, I.: Building and mining a repository of design
pattern instances: Practical and research benefits. Entertainment Comput. Elsevier 4(2),
131-142 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A Case Study on the Availability of Open-Source Components 163

Ampatzoglou, A., Gkortzis, A., Charalampidou, S., Avgeriou, P.: An embedded multiple-case
study on oss design quality assessment across domains. In: 7th International Symposium on
Empirical Software Engineering and Measurement (ESEM 2013), pp. 255-258. ACM/IEEE
Computer Society, Baltimore, USA, 10-11 October 2013

Arvanitou, E.M., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: Introducing a ripple
effect measure: a theoretical and empirical validation. In: 9th International Symposium on
Empirical Software Engineering and Measurement (ESEM 2015), ACM/IEEE Computer
Society, Beijing, China

Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G.: An industrial case study on reuse
oriented development. In: 21st International Conference on Software Maintenance (ICSM
2005), IEEE Computer Society, 283-292, September 2005

Bansiya, J., Davies, C.G.: A hierarchical model for object-oriented design quality
assessment. Trans. Softw. Eng. IEEE Comput. Soc. 28(1), 4-17 (2002)

Basili, V.R., Caldiera, G., Rombach, H.D.: Goal question metric paradigm, Encyclopedia of
Software Engineering, pp. 528-532. John Wiley & Sons, New York (1994)

Callele, D., Neufeld, E., Schneider, K.: Emotional requirements in video games. In: 14th
International Conference on Requirements Engineering, IEEE Computer Society,
Minneapolis, USA,11 — 15 September 2006

Cho, H., Yang, J.S.: Architecture patterns for mobile games product lines. In: Proceedings of
the 2008 International Conference on Advanced Communication Technology (ICACT
2008), pp. 118-122. IEEE Computer Society Korea, 17 — 20 February 2008

Consumer Electronics Association, “Digital America”, published electronically at. http://
WWW.ce.org

Crnkovic, 1., Hnich, B., Johnson, T., Kiziltan, Z.: Specification, implementation, and
deployment of components. Commun. Assoc. Comput. Mach. 45(10), 35-40 (2002)
Folmer, E.: Component based game development — a solution to escalating costs and
expanding deadlines? In: Schmidt, H.-W., Crnkovi¢, 1., Heineman, G.T., Stafford, J.A. (eds.)
CBSE 2007. LNCS, vol. 4608, pp. 66-73. Springer, Heidelberg (2007)

Frakes, W.B., Fox, C.J.: Quality improvement using a software reuse failure modes model.
Trans. Softw. Eng. IEEE Comput. Soc. 22(4), 274-279 (1996)

Franch, X., Carvallo, J.P.: Using quality models in software package selection. Softw. IEEE
Comput. Soc. 20(1), 3441 (2003)

Furini, M.: An architecture to easily produce adventure and movie games for the mobile
scenario. Comput. Entertainment Assoc. Comput. Mach. 6(2), 1-16 (2008)

Gabow, H.N.: Path-based depth-first search for strong and bi-connected components. Inf.
Process. Lett. Elsevier 74(3—4), 107-114 (2000)

Griffith, L., Izurieta, C.: Design pattern decay: the case for class grime. In: 8th International
Symposium on Empirical Software Engineering and Measurement (ESEM 2014),
ACM/IEEE Computer Society, Torino, Italy, 18—-19 September 2014

Haefliger, S., von Krogh, G., Spaeth, S.: Code reuse in open source software. Manage. Sci.
PubsOnline 54(1), 180-193 (2007)

Ham, H., Lee, Y.: An empirical study for quantitative evaluation of game satisfaction. In:
2006 International Conference on Hybrid Information Technology, pp. 724-729. ACM,
November 2006

Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck, M.: On the extent
and nature of software reuse in open source java projects. In: Schmid, K. (ed.) ICSR 2011.
LNCS, vol. 6727, pp. 207-222. Springer, Heidelberg (2011)

Johnson, I., Snook, C., Edmunds, A., Butler, M.: Rigorous development of reusable,
domain-specific components, for complex applications. In: 3rd International Workshop on
Critical Systems Development with UML (CSDUML 2004), Springer (2004)

http://www.ce.org
http://www.ce.org

164

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

M.-E. Paschali et al.

Kasurinen, J., Maglyas, A., Smolander, K.: Is requirements engineering useless in game
development? In: Salinesi, C., Weerd, 1. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 1-16.
Springer, Heidelberg (2014)

Krueger, C.W.: Software reuse. Comput. Surv. ACM 24(2), 131-184 (1992)

Lau, K.K., Wang, Z.: A taxonomy of software component models. In: 31st EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA),
pp- 88-95. IEEE (2005)

Lee, W.P., Liu, L.J., Chiou, J.A.: A component-based framework to rapidly prototype online
chess games for home entertainment. In: Proceedings of the International Conference on
Systems, Man and Cybermetrics (SMC 2006), IEEE Computer Society, Taipei, Taiwan,
pp. 40114016, 8-11 October 2006

Martin, R.C.: Agile software development: principles, patterns and practices. Prentice Hall,
New Jersey (2003)

McShaffry, M.: Game Coding Complete. Paraglyph Press, Arizona, USA (2003)

Mockus, A.: Large-scale code reuse in open source software. In: 1st International Workshop
on Emerging Trends in FLOSS Research and Development (FLOSS 2007), IEEE Computer
Society (2007)

Morisio, M., Romano, D., Stamelos, I.: Quality, productivity, and learning in
framework-based development: an exploratory case study. Trans. Softw. Eng. IEEE
Comput. Soc. 28(9), 876-888 (2002)

Paschali, M.E., Ampatzoglou, A., Chatzigeorgiou, A., Stamelos, I.: Non-functional
requirements that influence gaming experience: A survey on gamers satisfaction factors.
In: 18th Academic MindTREK Conference (MindTREK 2015), ACM, 4—6 November 2014,
Tampere, Finland

Passos, E.B., Weslley, J., Walter, E., Clua, G., Montenegro, A., Murta, L.: Smart
composition of game objects using dependency injection. Comput. Entertainment, Assoc.
Comput. Mach. 7(4), 408-423 (2009)

Reimanis, D.: A research plan to characterize, evaluate, and predict the impacts of behavioral
decay in design patterns. In: 13th International Doctoral Symposium on Empirical Software
Engineering (IDOSE 2015), Beijing, China

Raemaekers, S., van Deursen, A., Visser, J.: An analysis of dependence on third-party
libraries in open source and proprietary systems. In: 6th International Workshop on Software
Quality and Maintainability (SQM 2012), March 2012

Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons, Hoboken (2012)

Schwittek, W., Eicker, S.: A study on third party component reuse in java enterprise open
source software. In: 16th International Symposium on Component-based Software
Engineering (CBSE 2013), pp. 75-80. ACM (2013)

Sojer, M., Henkel, J.: Code Reuse in Open Source Software Development: Quantitative
Evidence, Drivers, and Impediments. J. Assoc. Inf. Syst. 11(12), 868-901 (2010)
Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley International, Massachusetts, USA (1997)

van Lent, M., Swartout, W.: Games: Once more, with Feeling. Comput. IEEE Comput. Soc.
40(8), 98—-100 (2007)

	A Case Study on the Availability of Open-Source Components for Game Development
	Abstract
	1 Introduction
	2 Background Information
	2.1 Software Reuse
	2.2 Component-Based Software Engineering
	2.3 Game Engineering
	2.4 An Algorithm for Component Identification

	3 Case Study Design
	3.1 Research Question
	3.2 Case Selection
	3.3 Data Collection
	3.4 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

