SmartCLIDE Design Pattern Assistant: A Decision-Tree based Approach

Eleni Polyzoidou', Evangelia Papagiannaki', Nikolaos Nikolaidis', Apostolos Ampatzoglou', Nikolaos Mittas?,
Elvira Maria Arvanitou', Alexander Chatzigeorgiou!, George Manolis?, Evdoxia Manganopoulou?

! Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
2 Onelity, Greece, SMPC
3 Department of Chemistry, International Hellenic University, Kavala, Greece

nnikolaidis@uom.edu.gr, a.ampatzoglou@uom.edu.gr, e.arvanitou@uom.edu.gr, achat@uom.edu.gr, nmittas@chem.ihu.gr

Design patterns are well-known solutions to recurring design problems that are widely adopted in the software
industry, either as formal means of communication or as a way to improve structural quality, enabling proper
software extension. However, the adoption and correct instantiation of patterns is not a trivial task and requires
substantial design experience. Some patterns are conceptually close or present similar design alternatives, lead-
ing novice developers to improper pattern selection, thereby reducing maintainability. Additionally, the mis-
instantiation of a GoF (Gang-of-Four) design pattern, leads to phenomena such as pattern grime or architecture
decay. To alleviate this problem, in this work we propose an approach that can help software engineers to more
easily and safely select the proper design pattern, for a given design problem. The approach relies on decision
trees, which are constructed using domain knowledge, while options are conveyed to software engineers through
an Eclipse Theia plugin. To assess the usefulness and the perceived benefits of the approach, as well as the
usability of the tool support, we have conducted an industrial validation study, using various data collection
methods, such as questionnaires, focus groups, and task analysis. The results of the study suggest that the pro-
posed approach is promising, since it increases the probability of the proper pattern being selected, and various
useful future work suggestions have been obtained by the practitioners.

1. Introduction

Software patterns correspond to established solutions to common software development problems. In the liter-
ature, various types of patterns have been introduced: e.g., Analysis Patterns [1], Architectural Patterns [2], and
Design Patterns [3]. Among these pattern catalogues the most popular is the one introduced by Gamma, Helms,
Johnson, and Vlissides (known as Gang of Four—GoF) to propose design solutions to object-oriented design
problems. The GoF design patterns have been heavily studied in the academic literature, from various point of
views (e.g., effect on quality, applicability, automated detection, etc. [4][5]), but are also considered as a “must-
have” knowledge in the software industry and are part of many software engineering curricula world-wide.
Despite their wide-adoption, using GoF patterns form a skill that is not a trivial one, and the proper application
and instantiation of a pattern cannot be taken for granted, especially by novice software engineers. The main
problems that are faced in the adoption of patterns, are summarized below:

[pl] pattern selection. Selecting the most fitting pattern for every occasion is not always straightforward.
Within the pattern catalogues, some patterns can be considered as alternatives, and the discriminating line
between them in some cases is very thin. For instance, consider the strategy and the Template Method
patterns. Both patterns use polymorphism to capture the different behavior (e.g., gameLoop) of different
types of objects (e.g., Chess and Backgammon), belonging to the same general category (e.g., BoardGames).
For the general case, the aforementioned problem can be efficiently solved with the strategy pattern;
however, in the special case that the different behavior shares the same skeleton / ordering of steps (e.g.,
initializeBoard, checkIfGameIsOver, changeTurn, selectMove), but each step is differently imple-
mented; then, the most fitting pattern is Template, since strategy would have led to duplicated code.

[p2] unnecessary use of patterns. In some cases, it is reported that novice developers are so eager to use a
pattern, that end-up to use patterns in cases when the requirement to be implemented does not match the
pattern goal. At the extreme case, there are reported cases when a developer might be keen to introduce a
pattern without analyzing whether a pattern is needed in the first place. For instance, suppose the case that

mailto:nnikolaidis@uom.edu.gr
mailto:a.ampatzoglou@uom.edu.gr
mailto:e.arvanitou@uom.edu.gr
mailto:achat@uom.edu.gr
mailto:nmittas@chem.ihu.gr

a number of objects needs to be created. The objects belong to some categories and subcategories, but the
creation of the object is trivial and the code that instantiates the objects is not expected to be changed in
the future. The use of Abstract Factory Or Method Factory patterns would be feasible, but probably it
will add needless complexity to the design [6].

[p3] improper instantiation. In some cases, the coding of a GoF design pattern solution is not obvious and
specific details need to be considered. For instance, consider the singleton pattern, which requires the
existence of a self-instance reference to the unique object of the class, a private constructor, and a
static get Instance method that will first check if the single instance has been created: if not, it will create
a new one, if it exists it will return the pre-created self-instance. Such details and deviations from the
standards of object-oriented programming, might not be completely clear to novice software engineers,
leading to coding errors, deviations from the expected pattern instantiation, and inability to exploit the
mechanism of the pattern. For example, in the case of the singleton pattern, the use of a static method is
important to provide a global point of access to the unique instance.

Given the above, in this work, we aim to alleviate the aforementioned problems by proposing an approach and
an accompanying tool that can guide software engineers in GoF pattern selection and instantiation. In particular,
based on expert knowledge we have developed several decision trees that can guide the developer along Q&A
walkthroughs in selecting the most fitting pattern (related to pI), or advising not to use a pattern (related to p2).
To guide software engineers towards using the established instantiation of the pattern, the last step of the ap-
proach performs code generation (related to p3) so as to avoid pattern grime [7]'. In other words, the proposed
approach provides a sequence of questions that when answered by the software engineer, can guide them either
to a fitting pattern for the specific design problem, or to advise them not to use a pattern. Given the fact that
GoF patterns are applied to functional requirements (they are not horizontal to the whole system, e.g., as archi-
tectural patterns are), we anticipate that the software engineer will apply the method (and use the tool) in various
cases of the software design process. More specifically, we anticipate a software engineer to use the tool, when:
(a) he/she has a hint that a pattern might be applicable; or (b) he/she believe that the specific requirement to be
designed will be part of the design hotspot, and urges for an extensible design solution. Finally, we need to note
that the code generation is restricted to the initial pattern instantiation: i.e., class declarations, attributes, and
methods that are required to instantiate the pattern, and not the actual implementation of the functional require-
ment, since that goes beyond the design decision-making phase.

The tool has been developed as part of the SmartCLIDE project?, is released as an Eclipse Theia® extension that
is stored and distributed through Eclipse Research Labs git repositories*. In contrast to static documentation
(such as books and an online sources), we believe that the proposed interactive Q&A approach will be more
helpful, in the sense that: (a) it will provide a just-in-time source of knowledge for the developer, who can
consult it when needed; (b) it will be a starting point to make decisions for developers that are not aware of
patterns, or that are not experts in patterns and do not recall all the required information; (c) it will save time
from searching in documentation and re-write or copy paste material and initial source code solutions from the
web that require a lot of tailoring to fit the context of the specific requirement at hand—Ileading to less errors,
sloppy code, and pattern grime. To evaluate the proposed approach and the accompanying Eclipse Theia plugin,
we have conducted an industrial validation with an SME that is independent to the SmartCLIDE project. The
approach and the tool have been evaluated with respect to their usefulness, perceived benefits, and usability. To
achieve data triangulation and avoid bias, various data collection methods (such as focus groups, task analysis,
questionnaires, etc.) have been used.

! We note that the code generated by the proposed approach follows the original guideline of the GoF book. In that sense it does not cover any pattern
alternatives, or variants [50]. This decision was made to ensure the proper instantiation of the pattern; however, it does not prohibit the developer to
deviate from this.

2 https://www.smartclide.cu/

? Eclipse Theia is the cloud version of the Eclipse IDE: https://theia-ide.org/

* https://github.com/eclipse-researchlabs/smartclide-design-pattern-selection-theia

https://www.smartclide.eu/
https://theia-ide.org/
https://github.com/eclipse-researchlabs/smartclide-design-pattern-selection-theia

2. Related Work — Supporting the Application of Design Patterns

In this section we present existing studies that aim at aiding in the adoption of GoF design patterns in practice,
focusing particularly in the pattern selection process. According to Ampatzoglou et al. [5], “GoF design pattern
application” is the core research sub-topic on patterns. The topic involves research endeavors presenting meth-
ods for identifying systems that need pattern application or methods and tools that automate or assist the selec-
tion and the application of patterns. The research landscape in this direction can be organized into 6 main cate-
gories: (a) design pattern selection; (b) design pattern abstraction; (c) re-engineering to patterns; (d) generative
design patterns; (e) automated code transformation; and (f) pattern-based architecture. Each one of the afore-
mentioned lines of research are described in detail below.

2.1 Design Patterns Selection

The Design Pattern Selection constitutes one of the greater barriers to the application of the design patterns and
the core of the current research. Palma et al. [45] introduce the development of an expert system - Design Pattern
Recommender (DPR) — based on four steps: (a) knowledge acquisition and verification from literature on object-
oriented software design patterns, (b) definition of the conditions of each design pattern and refinement of them
into sub-conditions, (c¢) turning all the sub-conditions into nodes of a tree for each pattern and convert each node
to question, (d) building a Goal-Question-Metric (GQM) model — measurement of the designers’ answers weight
and calculation of every answer’s points. Finally, the points for every pattern are summarized and the pattern
with the most points is suggested. The DPR appears promising, but results have shown that is more efficient
with a few additional features. A more strategic perspective about the design pattern selection solution has given
by Sahly and Sallabi [49]. The aforementioned authors, as first step, classify the user’s levels by Dreyfus model
— Novice, Advanced beginner and Expert. Next step is the identification of the design problem by the user in
order for him/her to obtain the suitable patterns. Later, the retrieval of suitable patterns takes place. The strate-
gies for this step are four — QMP algorithm, QSPQ algorithm, CIK algorithm and QAS algorithm - and executed
subsequently if necessary. The scenario of execution is the following: the user submits a query and QMP algo-

rithm runs. If no appropriate patterns were founded, then QSPQ algorithm is executed. If, again, no appropriate
patterns were founded, then if the user is Expert, CIK algorithm is executed, whereas if the user is Novice or
Advanced beginner, then the QAS algorithm is executed. Finally, if QAS algorithm haven’t found any relevant
results, CIK algorithm is executed. Query-Matching-Pattern (QMP) parses and analyzes the text user's query in
order to find matching between patterns intents and the given query. Query-Similarity-Previous Query (QSPQ)
searches the similarity between the requested query and previous users’ queries to find recommended patterns.
Question-Answer-Session (QAS) is based on a question — answer session. The questions vary accordingly to
the previous answers of the user, weights are calculated for the recommendations and the proposed patterns are
narrowed down. Collaborative-Implicit-knowledge (CIK) retrieves knowledge from communities of users.
When CIK receives a request from the user with the description of the design problem, the request is intercepted
by the observer and the observer sends the query to the database for users interested in the same domain. Sub-
sequently, all suggestions/solutions of the problem presented are sent backwards to the observer and the user.
This approach can assist developers on design pattern selection, by offering them a guide and the wider
knowledge of a community.

Naghur and Hasheminejaddipo [48] use ontology in order to create a knowledge model for design pattern use
cases. The purpose of the ontology model is to support sharing and enable queries to datasets of abstract infor-
mation. The tools that have been used are: (a) a semantic markup language (“OWL”) - for publishing and sharing
the ontologies, (b) a graphical user interface (“Protégé”), (c) a free, open-source Java framework for building
semantic web and linked data (“Jena”) — for managing the ontologies and (d) a query language (“SPARQL”).
The use cases are textual and consists of different sections such as name, actors, precondition, description of the
main scenario, post-conditions, functional requirements, etc. and the the design pattern which solves the use
case. Each use case is processed by Natural Language Processing (NLP). The actions that take place are tokeni-
zation, removal of stop words, word stemming, labeling the words based on their role and, finally, dividing the
use case into its components. When the use cases are in the proper format, the constructed ontology is questioned

using design problems to select the appropriate design pattern. The correctness of the results is 96.55%, much
higher than other approaches. Rahmati et al. [46] proposed an approach that is based on a vector space model
(VSM) and the explicit semantic analysis (ESA); both belong to the best methods of information retrieval. The
ESA is used for determining the similarity between the user input text and definition texts of patterns, after is
indexed on all the Wikipedia papers. There are two ways for finding the similarity: firstly, by comparing the
text input to text from the GoF book and, secondly, by comparing the text input to a set of keywords from the
GoF book by using the “Alchemy API”. For the evaluation of the text, a dictionary (“WordNet”) is used, in
order to extract synonyms of the words in the text. After WordNet has created groups of synonyms, the Term
Frequency-Inverse Document Frequency (TF-IDF) weighting algorithm, which has been improved by the re-
searchers, determines the degree of similarity between the input text and the definition text of each design pat-
tern: vectors of the texts are created according to the weights and the angle is calculated between two vectors,
based on the VSM. The results of the approach show high numbers on precision and recall.

Pavli¢ et al. [44] use ontology for obtaining knowledge on the design patterns and a set of question/answers
pairs that indicate the applicability of design patterns. They, also, present a usability function, which applies the
weights of the expert’s answers and an algorithm, that is used for the selection of design patterns. If the adequate
description of the design problem is considered granted, then the level of usability is calculated and the appro-
priateness of each specific design pattern is determined. The set of the answered questions is also used to deter-
mine the next most relevant question, until the usability of the most appropriate design pattern is dominant over
all the other patterns. Through this approach, information relevant to design patterns can be shared and auto-
matically analyzed. In combination with the Design Pattern Expert (DPEX) tool, the developers were capable
of solving more problems than without the tool. Finally, Naghdipour et al. [48] suggest a more generic approach,
a framework called “DPSA”, which includes the classification of other relative approaches on pattern selection
and the analysis of these, according to certain criteria. The presentation of the patterns starts from the definition
of the targeted group—the most usual is the GoF design patterns. The presentation of the patterns is followed by
the definition of the design problem. The analyzing method contains the comparison between the suggested
pattern(s) by the approach and the design problem. The suggested pattern is the one with the most similarities.

2.2 Design Patterns Abstraction
The Design Patterns Abstraction research topic includes studies suggesting that design patterns are the key to

provide abstraction in software and for adapting software components into existing systems. Bishop [8] presents
how the use of the more abstract features of a programming language can decrease the gap between design
patterns and their implementation. More specifically, they used as examples three design patterns (i.e., Bridge,
Prototype and Iterator). Design patterns presents some of their own abstraction challenges: (a) the traceability
of a design pattern is hard to maintain when programming languages offer poor support for the underlying
patterns; (b) design patterns are used and reused in the design of a software system, but with little or no language
support, developers must implement the patterns again and again in a physical programming language; (c) some
design patterns have several methods with trivial behavior, and without good programming tools, it can be more
complicate to write all this code and maintain it; and (d) using multiple patterns can lead to a large cluster of
mutually dependent classes, which lead to maintainability problems when implemented in a traditional object-
oriented programming language. Keepence and Mannion [9] develop a method that uses design patterns to
model variability. The method starts by analyzing existing user requirements from systems within the family
and identifying discriminants, which is any feature (requirement) that differentiates one system from another.
There are three types for the identification of discriminants: (a) single discriminant, which is a set of mutually
exclusive features, only one of which can be used in a system; (b) multiple discriminant which is set of optional
features that are not mutually exclusive; at least one must be used; and (c) option discriminant which is single
optional features that might or might not be used. The authors tested their method on ESOC’s spacecraft MPSs.
They built a family user-requirement specification by editing and merging the requirement specifications from
three separate MPSs: ISO (a spacecraft that observes stars), ERS-2 (a remote-sensing spacecraft that monitors
the earth’s environment, and Cluster (a multi-spacecraft mission to monitor the earth’s magnetosphere). The

family user-requirement specification had 350 requirements (each MPS requirement specification had about
150 user requirements). Based on the analysis of the MPS family, they produced 20 class diagrams, 15 object-
interaction diagrams, and 100 classes. This model lets developers identify and select desired features and build
new family systems. Additionally, Yau and Dong [10] present an approach to apply design patterns to compo-
nent integration. This approach uses a formal design pattern representation and a design pattern instantiation
technique of automatic generation of component wrapper from design pattern. Design patterns are organized in
a design pattern repository, where patterns are represented precisely using their design pattern representation.
The design pattern representation should be expressive without jeopardizing the abstract feature of design pat-
tern solution. Components and their descriptions can be retrieved from a component repository. The component
description includes component interfaces expressed in IDL and semantics of services provided by components.
After the selection of the design pattern, the pattern has to be instantiated to a concrete solution. Design pattern
instantiation is to generate part of the software design, based on the generic solution in design pattern and ap-
plication-specific pattern instantiation information. Finally, while applying design patterns, the designers should
ensure the consistency between the original design patterns and the instantiated design patterns. The approach
is assessed using an illustration example: to develop a chatting room, which is used for several people in one
group to talk simultaneously.

2.3 Re-Engineering to Patterns

The Re-engineering to Patterns research topic includes studies that propose methods for detecting software
anti-patterns that necessitate re-engineering through design pattern application. Briand et al. [11] present a struc-
tured methodology for semi-automating the detection of areas within a UML design of a software system that
are good candidates for the use of design patterns. This is achieved by the definition of detection rules formalized
using the OCL and using a decision tree model. More specifically, each tree corresponds to a design pattern
(e.g., Decorator) or a group of design patterns when those patterns have strongly related structures and intent
(e.g., Factory Method and Abstract Factory). Decision nodes in a tree denote a question in the process towards
the identification of places in the design where design patterns could be used. When a series of questions have

been answered, the tree leads to a decision where a design pattern is suggested. This corresponds to a path in
the tree, from the root node to a leaf node. Additionally, some of the decisions are semi-automatic and involve
user queries. Moreover, the authors illustrate their methodology using the Factory Method and the Abstract
Factory Design Pattern. The aforementioned methodology has been implemented in a tool namely DPATool
(Design Pattern Analysis Tool). The DPATool consists of three sub-systems: (a) the DPA Eclipse plugin; (b)
the DPA Processing Engine; and (c) the DPA Model. The DPATool is a plugin to the Eclipse platform that
interacts with two other Eclipse plugins, namely the Eclipse UML2 and Eclipse EMF plugins. The tool can be
used by two different types of users. First, expert designers, who can define their own decision trees, for instance
according to their observations of how designers in their organizations develop system. Second, every designer
can be invoked whenever necessary during UML-based development support by Eclipse. To assess the feasibil-
ity of their methodology, they performed a case study of a test driver for an ATM. The ATM test driver has 15
classes with 114 operations and 45 attributes. The UML 2.0 models of the ATM test driver were reverse-engi-
neered from the source code into the Eclipse platform. After processing the UML 2.0 model of the ATM test
driver, the DPATool suggests the usage of a Factory Method pattern. Also, DPATool suggested the use of the
Visitor and the Adapter design patterns. Furthermore, Meyer [12] provide an approach, which supports the
detection of anti-pattern implementations in source-code. More specifically, the approach consists of three main
steps: (a) anti-pattern recognition; (b) transformation; and (c) transformation verification. For the first step, the
approach is based on an extended Abstract Syntax Graph (ASG) representation of a system’s source-code. Anti-
patterns are specified by graph grammar rules, which define as an ASG node structure which has to exist in the
ASG representation and adds an annotation node to indicate the anti-pattern. The approach parses the source-
code into the ASG representation and the anti-pattern rules are applied to the ASG by an inference algorithm.
For the transformation step, the transformation rules are specified as graph grammar rules based on Story Dia-
grams. The software engineer manually examines the candidates identified by the first step and decides which

transformations are to be applied to which candidate, if any. Then, the transformations are executed automati-
cally in the transformed source-code. As the final step, the transformation rules must verify that the rules do not
create forbidden or preserved anti-patterns.

2.4 Generative Design Patterns

Generative Design Patterns correspond to techniques that aim to automatically generate design pattern in-
stances. MacDonald et al. [13] present an approach to generative design patterns, trying to solve three problems:
(a) there are no adequate mechanism to understand the variations in the source-code that spans the family of
solutions and adapt the code for a particular application; (b) it is difficult to construct and edit generative design
patterns; and (c) the lack of a tool independent standard. Their approach is independent of programming lan-
guage and support tools. To validate the approach, they have implemented two tools, CO2P2S (Correct Object-
Oriented Pattern-based Programming System) and MetaCO2P2S to support the process. The process consists
of three steps. First, the software engineer selects an appropriate generative design pattern from a set of sup-
ported patterns. Second, he / she adapts this pattern for their application by providing parameter values. Finally,
the adapted generative pattern is used to create object-oriented framework code for the chosen pattern structure.
In a follow-up study, the same research group [14] presents a design-pattern-based programming system based
on generative design patterns that can support the deferral of design decisions where possible, and automate
changes where necessary. Moreover, a generative design pattern is a parameterized pattern form that is capable
of generating code for different versions of the underlying design pattern. Also, the author categorized the design
decisions into two categories: (a) interface-neutral decisions affecting only the implementation of the structure
of the pattern behind a stable interface; and (b) interface-affecting decisions—affect both the structure of the
pattern and the framework interface to the application code. CO2P3S (Correct Object-Oriented Pattern-based
Parallel Programming System, pronounced “cops”) generates Java frameworks for several common parallel
structures, both shared-memory code using threads and distributed-memory code. The author demonstrated the
capability of the system in the context of a parallel application written with the CO2P3S pattern-based parallel

programming system.

2.5 Automated Code Transformation

The Automated Code Transformation research topic includes studies that propose methodologies for automat-
ically constructing transformations that can be used to apply GoF design patterns. O’ Cinneide and Nixon [15]
present a methodology and tool support, namely DPT (Design Pattern Tool), for the development of design
pattern transformations. The methodology deals with the issues of reuse of existing transformations, preserva-
tion of program behavior and the application of the transformations to existing program code. First, a design
pattern is chosen that will serve as a target for the design pattern transformation under development. Then, the
transformation is decomposed into a sequence of mini-patterns (i.e., a design motif that occurs frequently across
the design pattern catalogues). For each mini-pattern, a corresponding mini-transformation (i.e., an algorithm
that applies the corresponding mini-pattern to the given program entities) is developed. Then, each mini-trans-
formation should be demonstrated as a behavior-preserving. The algorithm that describes the mini-transfor-
mation is expressed as a composition of refactorings. The final design pattern transformation can be defined as
a composition of mini-transformations. The authors used the Factory Method transformation as an illustrative
example. Moreover, the authors present a prototype software tool DPT that can apply these pattern transfor-
mations to a Java program. Finally, they used an example of the application of the Factory Method transfor-
mation to a generic program. The authors applied the methodology to a set of patterns from the GoF catalogue,
and prototyped the transformations. For each pattern, first the method finds a suitable precursor, assessing if a
workable transformation can be built, and determining the mini-transformations that are likely to be used. Then,
the authors assessed the results based on the three categories (excellent, partial, and impractical). The results
suggest that half of the patterns have excellent transformation and 26% of the cases as partial. Moreover, Hsueh
et al. [16] provide an approach for design pattern application and support the design enhancement by model
transformation. For the selection of the pattern for the model transformation, the authors divided the pattern into
six parts: (a) pattern description, (b) functional requirement intent, (c) non-functional requirement intent, (d)

functional requirement structure, (e) non-functional requirement structure, and (f) transformation specification.
For the automating pattern application, Hsueh et al. [16] document the refinement processes of patterns in reg-
ular rules and describe them in formal transformation language. Then, after specifying the transformation spec-
ification, they implement the mapping rules in ATLAS Transformation Language (which is a hybrid of declar-
ative and imperative transformation language based on OMG OCL). For the evaluation of their approach, the
authors performed a case study on a real-world embedded system PVE (Parallel Video Encoder). They define
the Command Pipeline pattern to revise a sequential processing design to a parallel processing design in a gen-
erative TBB code.

2.6 Pattern-based Architectures

Tonella and Antoniol [17] propose an approach for documenting design decisions in real-time, and enables
Pattern-based Architecture through the inference of object-oriented (OO) design patterns from the source-code
or the design. As a first step, the authors have used concept analysis to identify groups of classes sharing com-
mon relations. Next, the selected concepts containing maximal collections of classes having the same relations
among them. The aforementioned concepts seem to be good candidates to represent design patterns inferred
from the source-code or from the design. The number of pattern instances is an indicator of the reuse frequency
of the identified class organization, while the number of involved relations represents the complexity of the
pattern. To evaluate their approach, Tonella and Antoniol [17] performed a case study on C++ applica-
tions. They first examined the methods that owned by the involved classes. The results of their study suggest
that the structural relations among classes led to the extraction of a set of structural design patterns, which could
be improved with non-structural information about class members and method invocations.

3. Background Information

3.1 Design Decisions in Architecture
Software architecture is defined at the beginning of a project and it largely affects the success of development

and maintenance [28]. For this reason, a number of studies have been carried out to support architects in their
decision-making activities. Falessi et al. [29] proposed a systematic way to choose among decision-making
techniques for resolving trade-offs in architecture design. By comparing the top existing techniques for decision-
making, they found out that there is no perfect decision-making technique, but one should choose the best one
that suits his/her needs in each case. To this end, they created a characterization schema that can select one of
15 existing decision-making techniques, with the use of some quality attributes as selection criteria. Similarly,
Shahin et al. [30] listed a lot of existing methodologies and tools and pointed out their differences in order to
help the architects of a given system. Moreover, Kazman et al. [31] introduced the Architecture Tradeoff Anal-
ysis Method (ATAM) to provide a methodology to help architects rationally select the best architecture for their
system in a given state. The ATAM is a robust methodology that provides the tradeoffs of each different option
and can also help better clarify the requirements of the software in an earlier state. Finally, Van Vliet and Tang
[32] pointed out the main issues of software architecture design and how important the earlier correct decision
for a system is, as well as the usefulness of reflective questions during the process of the decision. Another
popular approach in the architecture domain is the scenario-based strategy. Ionita et al. [33] used the Strategic
Scenario-Based Architecting in order to make decisions about the future architecture of a system. With this
approach, there is continuous feedback regarding the future state of the system as the four main steps that were
introduced run continuously in a circle. This methodology was also used in a case study for the selection of
better decisions throughout the course of a project, with very good results. Golfarelli et al. [34] examined many
different tools that are being used for the decision-making process, which have as common denominator the
what-if analysis. The study focuses on the lessons learned by the usage of the what-if analysis and provides a
new methodological framework based on their results.

3.2 Case Study Design Methodologies
The first guidelines for case study design were published by Kitchenham et al. [35], focusing on the use of
quantitative data; being followed by Seaman [36] who published guidelines for qualitative research. In 2000, a

broader set of guidelines on empirical research was published by Kitchenham et al. [37], who suggested guide-
lines for basic research topics: (a) experimental context, (b) experimental design, (c) conduct of the experiment
and Data collection, (d) analysis, (e) presentation of results, and (f) interpretation of results. In a more industry-
driven context, Verner et al. [38] focused on the early phases of a detailed plan design; organizing the case study
guidelines into seven phases: (a) research initiation or pre-planning, (b) administration, (c¢) focus case study or
planning, (d) design case study plan, (e) data collection, (f) data analysis, and (g) reporting. Additionally, they
identified steps within each phase, however the ordering of the steps in each phase do not need always be se-
quential. Finally, Wohlin et al. [39] and Runeson et al., [19] recommended for case studies a five-step process:
(a) case study design—objectives are defined and the case study is planned, (b) preparation for data collection—
procedures and protocols for data collection are defined, (c) collection of data—execution of data collection on
the studied case, (d) analysis of collected data— data analysis procedures are applied to the data, and (e) re-
porting— the study and its conclusions are packaged in feasible formats for reporting.

3.3 Usability Assessment Strategies
Usability is an important software quality, being related to the interaction of a system and a user [42]. The
evaluation methods can be divided into the following categories [42]:

(a) Inspection Methods refer to the case where a group of specialists determine if a given user interface design
follows specific guidelines that are being given to them (e.g., through expert review) [40]. The scope of the
review is defined from the start and a list of issues that are related to the usability of the system, is the result
of it. Its major strength is its low cost for resources; however, it is less reliable than usability testing [41];

(b) Walkthroughs are processes where a specialist is working with the development team, with the aim to find
usability issues. Specialist’s main responsibilities are the preparation of the user profiles, the tasks that are
going to get analyzed by the developers, the questions that he is going to ask for each task and the rules for
each walkthrough. Even though walkthroughs are not considered the most popular evaluation method (due
to preparation need), they are useful since they do not need additional resources (only development team);

(c) Usability Testing is a process where the end-users have to complete a couple of predefined tasks using a
system and the usability specialist records the results with the intent to identify usability issues [40]. In the
assessment of a system using this method, participants are end users, unlike the participants of the inspection
methods [40]. Users are requested to verbalize their thoughts, while performing a task or after the completion
of it, because thinking aloud is a technique that has been used in psychological studies for a long time, and
it helps gather cognitive information [43]. It is believed to be the assessment method which has the most
impact on people. The drawbacks of this method are the time and resources that are required, and they are
only identified easier problems [41]; and

(d) Inquiry Methods are methods that are frequently used, after usability testing, aiming to gather information
about users’ impression of a user interface [42]. Inquiry methods use several data collection methods, such
as surveys, interviews, and focus groups. Surveys is a popular method to collect information with low cost
[41]; interviews are applicable for situations, where there is a need for detailed answers from a small group
of participants; and focus group the open discussion on usability issues, accompanied by task assignments
[41].

3. SmartCLIDE Design Pattern Assistant

3.1 Proposed Approach

The proposed approach for assisting software engineers in selecting GoF patterns is based on binary decision
trees, i.e., sequences of questions that involve binary answers, and gradually exclude irrelevant patterns, or pin-
point to the most fitting ones. The methodology to construct the binary decision trees involved various iterations
among pattern experts from both academia and industry. The steps of the methodology are presented below:

study the definitions and examples of GoF patterns, e.g., from books [3][18] and online sources>*
compile sets of patterns that are alternatives, and a primary reason that leads to the selection of a pattern
review the aforementioned outcomes, by pattern experts from academia and industry partners

group the reasons to use a pattern, with most common reasons being closer to the root of the decision tree
transform the reasons to a Q&A format

AN O o

review the obtained decision trees by pattern experts in four rounds of feedback and update of the decision
tree. In each round after the first, an additional expert was added. The review rounds were terminated when
the additional expert had no supplementary feedback.

Below, we demonstrate how the aforementioned process has been applied for the case of Creational Design
Patterns. We note that for simplicity only the outcomes of reviewed steps are being demonstrated, since inter-
mediate outcomes would only cause disruption to the reader.

Alternatives:
Abstract Factory, Builder, and Factory Method, in the sense that they all are able to handle the
creation of objects from families of products
Singleton and Prototype, these patterns are used when you do not want to create multiple NEW ob-
jects, but reuse one or clone an existing to the new ones

Reasons to Apply:

Abstract Factory: Create New Object, Create Different Types of Products, Families of Products Exist
Factory Method: Create New Object, Create Different Types of Products
Builder: Create New Object, Create Different Types of Products, Product can be Produced in Steps
singleton: Reuse a Unique Object of a Specific Class instead of Creating New
prototype: Create Copies of a Specific Class Objects instead of Creating New

Grouping of Reasons (in Coloring Scheme):
Abstract Factory: Create New Object, Create Different Types of Products, Families of Products Exist
Factory Method: Create New Object, Create Different Types of Products
Builder: Create New Object, Create of Different Types of Products, Product can be Produced in Steps
singleton: Reuse a Unique Object of a Specific Class for the whole project instead of Creating New
prototype: Create Copies of a Specific Class Objects instead of Creating New

The aforementioned grouping leads to a 4-level decision tree. The 1% level, differentiates between the creation
of a new object and the reuse / clone of an existing object (instead of creating a new one)—red vs. blue fonts:
“Do you want to create a NEW object or to reuse an existing one?”. Following the red font criterion, the next
criterion (green fonts) is common for all alternatives (2" level—left part): “Does the product has sub-catego-
ries?”. Thus, if it is not fulfilled by targeted requirement, then NO pattern shall be used. Next, we need to select
for the final level specific criteria (black fonts), we opted to first ask “Can the products be classified to a family
of products?” (3" level—left part), and then “Can a product be created in a series of steps?” (4™ level—left
part). By following blue criterion at the 1% level, we have two distinct questions. We have selected to ask: “Do
you want the object to be cloned or unique?” (2™ level—right part). The aforementioned rationale, is depicted
in Figure 1. A similar way of working has been performed for Structural Design Patterns (see Figure 2) and
Behavioral Design Patterns (see Figure 3). We note that in the decision trees of Figures 1-3, apart from the
aforementioned Q&A, we also have some questions on the class names that will play the role for each pattern.
This part has enabled the code generation for a specific project. The notation for reading Figures 1-3 is as
follows: (a) Green rectangles represent the questions responsible for pattern selection; (b) Blue rectangles rep-
resent questions for gathering code generation information; and (c) Red ovals correspond to outputs of the pro-
cess. The available responses out of each green rectangle are designated on the relative arrows leaving the node.

> https://refactoring.guru/design-patterns
% https://sourcemaking.com/design_patterns

https://refactoring.guru/design-patterns
https://sourcemaking.com/design_patterns

Create new object *ean exis ting one

Do you want the object

to be unique or clone?
UNIQU E CLDNED

(Concrete Products)?
Does the Product has
sub-categories
(Concrete
YES Prototypes)? NO

Figure 1. Decision Tree for the Selection of Creational Design Patterns

Do you need to implementa
function that requires

e

Is any of your objects a composite one (i.e.
comprised of simple objects), which
however needs ta be treated uniformly

along with simple objects? YES

SYBSVS_TEV

==

'

Avre there different layers
that extend the behaviour of

N

Figure 2. Decision Tree for the Selection of Structural Design Patterns

Do you need an Object that
will handle requests for
executing an action? NO

Is the recipient of . .
the request known? Do you need to manage:

YES “an object with different

/ NO states?
Is the receiver part of /
YES

~complex component, :
‘whose internal structure. no Do you need varying
you want to hide? implementations of algorithms,
NO / \jes ‘executed under differnt conditions?
S oo ouneadevrysite
ook seovisch e of he Object to be saved,
‘W sts as. e
o implementation of “undo"”
NO \:ES \
 Are the varying
mplerienialns hased o 8
‘existing Implementations, being Do you need the
extended in different ways? changa of state 1o
/ \ be broadcasted o ... NO
NO \
NO
ol Handle diverse states

through inheritance?
Figure 3. Decision Tree for the Selection of Behavioral Design Patterns

YES

Povared By Viuat Paradgm Cormmunty Edion €

As an initial testing for the proposed approach, and before proceeding to the industrial validation, we have
performed a proof-of-concept analysis, based on well-known open-source projects that have documented their
pattern usage. In particular, similar to our previous work [52], we have explored the instances of design patterns
in JHotDraw 5.1 and explored if the approach would have ended-up in the same results. The outcome of this
analysis is presented in Appendix A.

3.2 Eclipse Theia Extension

To add the created extension in the SmartCLIDE platform, we build a new instance of Eclipse Theia, which is
deployed as a Docker container’. The user is able to open the Design Pattern Assistant extension from the View
menu item, appearing on the left side of the screen (see Figure 4). For this demonstration we use the Apache
commons - io project in a local working instance of the SmartCLIDE platform®. In the right part of the figure,
we can see that the user is given two options: (a) select a pattern from the drop-down menu, if he/she feels
confident on the pattern that will be used (ExPERT-MODE); or (b) use the WIZARD to start the Q&A process
(WIZARDMODE).

un Terminal Help Terminal Help

Ctri+Shift+P

Choosa pattern v

¥ master & ®0A0

¥ master & @0A0
Figure 4. Launching the Theia Extension and Welcome Screen

In the left part of Figure 5, we present the main layout of option-a, i.e., to directly select a pattern. Having
selected a GoF pattern, the software engineer is first reminder of the aim of the pattern, and he/she is guided in
the application of the pattern through a textual example and an accompanying class diagram. In the right part of
Figure 6, we present the way that the Q&A process of pattern selection appears. For both cases, the roles of the
pattern are mapped to either existing classes of the system, or new ones, relying on an autocomplete function-
ality, as presented in the top part of Figure 6. In the bottom part of Figure 6, we can see an example of generated
code for the Factory Method example, presented in Figure 5. For the case of using existing classes, the code of
the pattern is appended in the end of the existing code, whereas for new classes the files are generated and
pushed in the Git repo of the project.

7 https://hub.docker. com/repository/docker/nikosnikolaidis/theia-td-creation-patterns
8 http://195.251.210.147:3232/#/home/project/commons-io

https://hub.docker.com/repository/docker/nikosnikolaidis/theia-td-creation-patterns
http://195.251.210.147:3232/#/home/project/commons-io

File Edit Selecton View Go Run Terminal Help
SMARTCLIDE DESIGN PATTERN SELECTION

Abstract Factory v

Example: C case that vant o deve
furm hairs &) uire belong 1o tw
Foi s developed, beir

Abstract |
Factory

File Edit Selecion View Go Run Terminal Help

SMARTCLIDE DESIGN PATTERN SELECTION

@ ¢ t & Design Pattern and
order lo guide you lo the right design pattern, de

» Factory Method provides

ConcrateProduct Sofa
ConcrateProduct? Chair
Creator FurnitureFactory

Furniture

P master O @040

¥ Abstract Factory lots you produce families of relaled objects without spacifying their concre

types

and Modern

\sible for creating the

Family1

Family2

File Edit Selection View Go Run Terminal Help
SMARTCLIDE DESIGN PATTERN SELECTION

Choose the type of the pattern:

Creational © Structural ® Behavioral ®

Do you want to create a completely new object or to create one by reusing an existing one?
Create new object ® Reuse an existing one @

Give the name of the Product that you want to create
Fumniture

Does the Product has sub-categories (ConcreteProducts)?
Yes® No®

How many sub-categories (ConcreteProducts) exist?

Please give the names of the sub-categories (ConcreteProducts)

Can the Products be classified in a Family?
Yes® No®

Can Product be created as series of steps which is different in every subcategory?
Yes ® No©O

What is the name of the Creator (e.g., Oven) of Product?
FumitureFactory

Factory Method Pattern

2 master & ®@0A0

java

Ln1,Col1 LF UTF-8 Spacesi4 Jwa O B3

File Edil Selecion View Go Run Terminal Help

SOURCE CONTROL: GIT

y & -

CHANGES
java

Chair java
Fumiture java
FumnituroF

Sola java

HEAD COMMIT
unused paramater in test

P masterr O ®0Ao0

Figure 6. Code Generation

java x

Furniturefactor

createFurniture

createfurniture() {

Chair;

Ln1,Col1 LF UTF-8 Spacesid Java O B

4. Industrial Validation

To evaluate the proposed solution, we have performed an industrial validation with a mixed set of novice and
experienced software engineers. In this section we present the industrial validation study protocol, based on the
guidelines of Runeson et al. [19]. In Section 4.1, we set the objectives and research questions, in Section 4.2 the
study setup, whereas in Section 4.3 we present the data collection and analysis approaches to ensure data trian-
gulation and answer the research questions.

4.1 Objectives & Research Questions

The main goal of the SmartCLIDE Design Pattern Assistant is to be: (a) relevant to the software industry; (b)
aid the correct and timely pattern selection; and (c) usable. According to the aforementioned goals we have
derived three research questions (RQ):

RQ:: Is the proposed pattern selection approach industrially relevant?

The first step in ensuring the industrial relevance of a research prototype is the investigation of the current
industrial practices. Before performing the evaluation of the proposed approach and tool, we first need to un-
derstand the current way in which patterns are selected. Next, we can understand and assess if the proposed
approach and tool treat existing limitations and retain the strong points. The benefits and drawbacks of the
SmartCLIDE pattern selection approach will be the main outcomes of answering this research question.

RQ2: What is the effectiveness of the proposed approach in terms of pattern selection?

This research question will focus on the effectiveness of the proposed approach in terms of correctness, timeli-
ness, and usefulness. In particular, we explore if the participants are aided in selecting the intended pattern, in
each mode of the Theia Extension (i.e., EXPERT-MODE and wIZARD-MODE), as well as the time required to com-
plete the tasks. Apart from the quantitative analysis, a qualitative assessment on the correctness, timeliness, and
usefulness of each feature (EXxPERT-MODE, WIZARD-MODE, CODE-GENERATION) has been performed.

RQs: What is the usability of the accompanying tool?

Apart from being relevant and useful in practice, in order for a research prototype to be industry-ready, a key
factor is to be usable. Through this research question, we focus on the usability of the Theia Extension, assessing
its ease of use, learning curve etc. The outcome of this research question is of paramount importance to the
Research & Development team of the SmartCLIDE project for improvement suggestions, as well as the inter-
ested practitioners, since it guarantees to some extent the end-users’ experience.

4.2 Industrial Study Setup
To answer the aforementioned questions, we have performed an embedded single-case study [19] in the software

industry. The case of the study is a European software development company (at the SME level) with Head-
quarters in Germany (Cologne) and a branch in Greece (Thessaloniki), namely: Onelity. Onelity® offers full
custom service or turnkey package solutions on IT projects. The study is embedded, in the sense that inside the
single case (company), more than one unit of analysis have been studied. The units of analysis correspond to
the 15 participants (software engineers and lead software engineers) of the case study. Some demographics of
the participants are presented in Table 1 (the experience is measured in years).

Table 1. Study Demographics

Working Experience 1-2 years 3-6 years 7+ years
Number of participants 6 6 3
Patterns Experience Almost None Some Experts
Number of participants 10 3 2

° https://onelity.com/about-us/

https://onelity.com/about-us/

The study was conducted as a half-day workshop, held at the premises of Onelity. The workshop was organized
as follows: {Part-A} Pre-study questionnaire (10 minutes); {Part-B} A short presentation of how the Theia
Extension works, so as for the participants to get familiar with the tool (20 minutes); {Part-C} The participants
were assigned a first task, using the ExpERT-MODE of the Theia Extension (30 minutes); {Part-D} The partici-
pants were assigned a second task, using the wrzarp-mopE of the Theia Extension (30 minutes); {Part-E} A
focus group was performed with the participants so that a qualitative assessment to be reached (90 minutes);
and {Part-F} Post-study questionnaire (10 minutes).

The focus group duration was intentionally made quite long, so that a long range of topics to be discussed, and
enough time has been given to all participants to make their positioning. In Table 2, we present the task distri-
bution to participants (Parts C and D). The participants are anonymous and are referred to as p1-p15. The dis-
tribution of the participants was random, but some constraints were applied: (a) each participant must take one
task in the ExPERT-MODE and one in the wIzarp-moDE; and (b) the same participant cannot be assigned two tasks
yielding for the use of the same pattern. We note that the tasks are named after the intended pattern to be used
(but this information was hidden from the participants of the industrial study). The tasks and details on the data
collection instruments are provided in Section 4.3.

Table 2. Participants Assignment to Tasks

Participant ID | Task for EXPERT-MODE | Task for WIZARD-MODE
P1 Factory Method Observer
P2 Builder Strategy
P3 Strategy Memento
P4 Memento Command
P5 Command Factory Method
P6 Bridge Observer
P7 Composite Builder
P8 Bridge Composite
P9 Factory Method Memento
P10 Memento Builder
P11 Composite Bridge
P12 Strategy Bridge
P13 Builder Strategy
P14 Bridge Command
P15 Command Factory Method

4.3 Data Collection & Analysis

Data Collection: We collected data through different collection methods, as presented in Table 3 and discussed
below. For all research questions, method triangulation has been applied to increase the validity of the findings.
Method triangulation refers to the technique of mixing more than one method to gather data (e.g., task analysis,
questionnaires, and a focus group) to answer a research question, so as to reduce bias, and raise confidence in
the results.

Table 3. Data Collection Methods per Research Question

Collection Method RQ: RQ: RQ:;
Focus Group X X X
Questionnaire X X
Task Analysis X

Regarding RQ:, we have worked on the data gathered from the focus group. The goal of RQ; was to understand
the state-of-practice in the company regarding pattern selection, and identify the benefits that can be obtained
by using the proposed approach compared to the state-of-practice. In the focus group, we have used four ques-
tions related to RQ, (see below). Also, data from the pre-study questionnaire have been used, related to experi-
ence on patterns and programming experience.

What is your experience with Design Patterns?
How do you choose which Design Patterns to use, or if you will use?

Was the approach and tool helpful? What are the perceived main benefits compared to the state-of-practice?

To answer RQ», i.e., assess effectiveness of the approach, as well as the mode of operations and main features,
we have relied on task analysis and the focus group. As explained in Section 4.2 the participants were given two
tasks to work on using both modes of the Theia extension. Some task examples are presented below:

Factory Method Task: Suppose a bank that offers credit cards to their customers. Assume that they offer 3 types
of credit cards, such as Silver, Gold and Platinum and each card has a different credit limit. You are asked to
implement a system that creates cards of all possible types.

Builder Task: Imagine the case that you want to develop a system that creates menus for a fast-food canteen.
The canteen is famous for their meals because they are at a reasonable price. A typical meal, consists of the
main part (beef burger or vegan burger), the bread (brioche or typical bun), the sauce (cheddar sauce, parmesan
sauce, or BBQ sauce), the sides (French fries, onion rings or sweet potatoes) and the drink (coca cola, beer or
sprite). The customer is free to make any selection of parts within each category. However, the process of mak-
ing them is the same. Moreover, a meal must include items from every category (e.g., you cannot order a burger
without sauce or without a drink). After the order is ready, the cashier pushes the order to the cook.

Bridge Task: Suppose a software system that performs animations of 3D houses’ openings. The house openings
can be: windows, doors, and roof windows. Each house part can be animated with different sprites (open, close,
destroy, change color). For this task you need to create an effective system that limits class combinations and
allows the animation of all house parts, by selecting the proper animation for each possible pair (e.g., open door,
open windows, close roof window, etc.).

Memento Task: In soccer, sometimes after the referee awards a penalty or shows a red card, he/she needs to go
and check the VAR. So, there is a chance that the referee is wrong and the state of the game needs to be restored.
In this case, there must be a system that can restore the state of the game after a misjudged call by the referee.
Your task is to implement a system where it will be possible to restore the actions to a previous state.

Upon the participants completing the tasks, the researchers have recorded the values for the following variables,
so as to serve the quantitative assessment of the proposed approach:

[V1] Task ID

[V2] Theia Extension mode (EXPERT-MODE / WIZARD-MODE)
[V3] Chosen pattern

[V4] Completion Time

[V5] Correctness in Selection

[V6] Correctness in Code Generation (based on mapping)
[V7] Confidence Level for Selection (1-5)

With respect to the qualitative part of the analysis, the following focus group questions have been considered:

Did you find the examples in the ExPERT-MODE helpful to understand the patterns?
Were the questions of the wrzarp-mMopE clear? Was there any ambiguity?

Was Code Generation useful?

Was it straightforward to Map Roles to Classes?

Finally, with respect to the usability of the Theia extension (RQj3), we relied on three focus group questions, as
presented below:

How did you experience the navigability in the tool?
Have you encountered any usability issues?

What improvements would you suggest for better navigation in the Wizard option?

Whereas from a quantitative point of view, we relied on the SUS questionnaire [20], which is a state-of-the-art
method in the user interface design field. SUS is reliable tool for measuring usability. It consists of a 10-item
questionnaire with five response options for respondents; from ‘Strongly agree’ to ‘Strongly disagree’. Origi-
nally created by Brooke [20], it allows UI/UX experts to evaluate a wide variety of products and services, in-

cluding software, mobile, or web applications. The items of evaluation are presented below.

I think that I would like to use this system frequently

I thought this system was too inconsistent

I found the system unnecessarily complex

I felt very confident using the system

I thought the system was easy to use

I found the system very cumbersome to use

I think I would need the support of a technical person
to be able to use this system

I would imagine that most people would learn to use
this system very quickly

I found the various functions in this system were well
integrated

I needed to learn a lot of things before I could get go-
ing with this system

The participant’s scores for each question are converted to a number, added together and then multiplied by 2.5
to convert the original scores of 0-40 to 0-100. Though the scores are 0-100, these are not percentages and
should be considered only in terms of their percentile ranking. Based on the literature, SUS scores higher than
68 are considered above average and anything lower than 68 is below average [20].

Data Analysis: To validate the proposed solution, we have used quantitative analysis for providing a synthesized
overview of the achieved impacts, and qualitative analysis for interpretation of the results. To synthesize quali-
tative and quantitative findings, we have relied on the guidelines provided by Seaman [21]. On the one hand, to
obtain quantitative results, we employed descriptive statistics and basic hypothesis testing. For usability, we
assessed the total SUS score, along with the most common scales for interpretation, in terms of acceptance,
adjective, and grade. On the other hand, to obtain the qualitative assessments, we use the focus group data,
which we have analyzed based on the Qualitative Content Analysis (QCA) technique [22], which is a research
method for the subjective interpretation of the content of text data through the systematic classification process
of coding and identifying themes or patterns. This process involved open coding, creating categories, and ab-
straction. To identify the codes to report, we used the Open-Card Sorting [23] approach. Initially we transcribed
the audio file from the focus group and analyzed it along with the notes we kept during its execution. Then a
lexical analysis took place: in particular, we have counted word frequency, and then searched for synonyms and
removed irrelevant words. Then, we coded the dataset, i.e., categorized all pieces of text that were relevant to a
particular theme of interest, and we grouped together similar codes, creating higher-level categories. The cate-
gories were created during the analysis process by both the fourth and the fifth authors, and were discussed and
grouped together through an iterative process in several meetings of all authors. The reporting is performed by
using codes (frequency table) and participants’ quotes. Based on Seaman [21] qualitative studies can support
quantitative findings by counting the number of units of analysis in which certain keywords occur and then
comparing the counts of different keywords, or comparing the set of cases containing the keyword to those that
do not.

5. Findings / Discussion

In this section, we present the findings of the empirical evaluation of the SmartCLIDE Pattern Selection ap-
proach, organized by research question. Along the discussion features and operation modes are denoted with

bold fonts, codes with capital letters, and quotes in italics. In Table 4 we present the codes that have been
identified along the discussions of the focus group, accompanied by representative quotes and the number of

participants referred to them.

Table 4. Codes of the Qualitative Analysis

CODING

code generation is an integral part of the process does not isolate the two and
allows to do both from the same environment”

Code Quote #

SAVE TIME “Automating some of the straightforward tasks” 13
“The fact that all patterns are together limits searching time”

SOURCE OF KNOWLEDGE “You can learn about patterns and choose the correct one” 8
“Q&A was helpful since it guides inexperienced developers that lack
knowledge to select the right pattern”

STAY ON TRACK “The flow follows the way that a human would think, this helps you stay on | 7
track”

“I had a pattern in mind from the beginning, but the Q&A did not allow me
to go there”

DECISION CONFIDENCE “The Q&A guided me to the solution smoothly, increasing my confidenceon | 6
my choice”

“Although I knew the pattern, the Q& A made me more confident”

FITTING FOR NOVICE USERS | “The tool is useful especially for people with low experience in patterns”

IMPROVE GUI INTERACTION | “Make the UI more interactive in that part, and enable the selection of the role | 4
from the example class diagram, so that the visual information is exploited.”

MINIMUM REQUIRED CODE “It is great if we can avoid copying and pasting from internet, which needsto | 4
be stripped out of useless parts of the example to add the required business
logic”

TERMINOLOGY “The inexperienced developers struggle with the pattern terminology. A tool | 4
like that must hide it”

LOW LEARNING CURVE “The tool is very easy to use ... I could use it without any guidance 4

PATTERN FAMILIARITY “Someone needs to first read on patterns, and then use the tool. In that sense,

I have a lot of reading to do, before using it efficiently”

CORRECTNESS “The mapping of roles to classes can guarantee the preservation of the pattern | 3
rules in the final implementation. It can help in avoiding errors and place the
pattern wrongly”

CODE READABILITY “Code generation can also guide in terms of styling, to impose good readabil- | 2
ity practices, apart from the maintainability benefits”

ISOLATING DESIGN FROM | “It is good that the solution links design decisions with code. The fact that | 2

CONSISTENCY

“...the theme is consistent to the general layout of Theia...”

EXPERIMENTATION

“The tool is also great for experimentation. You can try as many solutions as
you wish, check the code and select which fits you best”

5.1 State-of-Practice and Expected Advancements (RQ;)

The discussion around the state-of-practice for the pattern selection was driven mostly by experienced partici-

pants, that had some familiarity with patterns. Out of the 9 participants that claimed at least medium experience

with patterns, 55% mentioned that when applying a pattern, they do it based on their experience, without having

a look at additional resources (e.g., books, or online sources). One participant mentioned a mixed approach, i.e.,

shortlisting a couple of patterns, based on experience and then check their scope and structure in online re-

sources. The rest 33% always checks online resources and attempts to get knowledge and familiarity from there,

before selecting which pattern to apply.

Upon the experimentation with the tool, the practitioners have identified several advancements that the specific

approach and accompanying tool can bring to their way of working. First, almost all developers (13 out of 15)

mentioned that use of the approach can SAVE TIME from development. This can be achieved in various ways:
(a) through code generation, which can automate some of the straightforward tasks; (b) through the ExpERT-
MopE the developer saves time for selecting the patterns, since all of them are presented together and the navi-
gation among them is easy. Also, the majority of novice pattern users (8 out of 10) mentioned that both ExPERT-
MopE and wrzarp-MODE can act as a SOURCE OF KNOWLEDGE, since the former helps you to learn about
patterns through the examples, the diagrams, and the brief scope; whereas the later can help you learn based on
the key questions that you need to ask to yourself before applying a pattern. Furthermore, some participants (7
out of 15) mentioned that the tool can be useful to STAY ON TRACK, and not get lost in the many alternatives
that exist, as well as within the vast number of resources that exist in the web. For achieving this benefit, a very
important parameter is the fact that the flow of the tool is very close to the human way of thinking. Finally, one
of the most experienced engineers in the company mentioned that the approach and tool can be very useful for
EXPERIMENTATION purposes: “Through the tool, the software engineer can practice some tentative design
solutions, generate the code without any cost, and select which one fits the purpose of the design best. Design
is a try-and-error process in any case”.

The current state-of-practice in pattern selection usually relies on experience and online resources. However,
not all software engineers have enough experience, and the amount of available resource might be confusing.
Given these limitations, the SmartCLIDE pattern selection approach can advance the state-of-practice since it
can aid novice developers in their decisions, train them, act as a learning material, and educate them through a
trial-and-error experimentation in proper decision making.

5.2 Correctness, Timeliness, and Usefulness of the SmartCLIDE Pattern Selection Approach (RQ>)

By quantitatively comparing the correctness of the two modes of operation for SmartCLIDE Pattern Selection
Approach, we can observe that the correct pattern was selected in 60% of the cases for both the ExPERT-MODE
and the wrzarp-mope. However, the mean completion time for the wrzarp-mopE was substantially lower (ap-
proximately 8.5 minutes) compared to the ExpPERT-MODE (17.8 minutes)—this difference has been characterized
as statistically significant based on the results of a paired samples test. This finding has validated the feeling of

the practitioners (see Section 5.1) on SAVING TIME. Additionally, by focusing on the kind of errors in pattern
selection identified in each mode we can observe that for the ExPERT-MODE only two mistakes were alternatives
and the generated code could have led to a proper delivery of functionality (state instead of Memento and Fac-
tory Method instead of Builder), whereas for the wrzarp-mopE all errors have led to code that could be func-
tionally correct (Abstract Factory instead of Factory Method, Builder instead of Abstract Factory, Strat-
egy instead of Bridge, State instead of Bridge, Composite instead of becorator). For instance, when using
the strategy pattern, instead of Bridge, the 2™ problem parameter instead of being placed in a 2" hierarchy
(Bridge), can be placed as an attribute in the only strategy hierarchy. In that case, the polymorphic implemen-
tation of the strategy method will include an i f-statement for handling the 2" problem parameter. Although
this solution is suboptimal, it can still produce working code. Finally, from the task analysis we have observed
that the participants were marginally more confident when using wrzarp-mopE (~4.2 on average) compared to
when using the ExPERT-MODE (~4.0 on average). However, this difference was not statistically significant.

In that sense, we can argue that the wrzarp-mopE helped more the developers to STAY ON TRACK, whereas
the freedom that the ExpPERT-MODE provided, worked better only for the experienced software engineers.

Additionally, to quantitatively assess the perceived usefulness of the main features of the SmartCLIDE pattern
selection approach, we have applied a point system, on the answers of the post-study questionnaire responses.
To aggregate the scores from the 15 participates, we added the value that they assigned (1: not useful at all — 5:
very useful). To improve the readability of the results in Figure 7, we have depicted the total points of each
feature, as a percentage of the 75 total points that would have been awarded to the feature if all participants have
graded it with 5 points.

Code Generation

Mapping of Roles ta Classes

WIZARD-MDOE

EXPERT-MODE

0% 20% 40% 60% 80% 100%
Figure 7. Features Usefulness

Next, we present the results of the qualitative analysis on the response of the participants in the focus group,
related to RQ», so as to supplement and help the interpretation of the aforementioned findings. First, with respect
to the ExPERT-MODE, the developers have found the examples and the class diagrams as very useful, since the
visualization has helped them to understand the pattern, even without extensive prior knowledge (SOURCE OF
KNOWLEDGE). On the other hand, some participants (4 out of 15) mentioned that the tool (to achieve an
industrially-ready solution) must hide the complexity of pattern TERMINOLOGY, since especially junior de-
velopers struggle to understand the notions of the pattern language.

With respect to the wrzarp-mopE, the developers found the questions straightforward and were able to led the
participants to the pattern with confidence (DECISION CONFIDENCE—6 out of 15). However, an interesting
suggestion on the Q&A process was made from a novice software engineer: “It would be great to take no pre-
vious knowledge for granted. For instance, I was not confident even for the type of the pattern that I need to
use: Creational, Behavioral, or Structural”. Also, almost all participants mentioned that this operation mode
was substantially faster (SAVE TIME—13 out of 15), whereas the novice software engineers noted that the
Q&A can guide us more easily that internet. An interesting observation that came out of the focus group, high-
lighting that the approach helps developers to STAY ON TRACK (7 out of 15) was an example of a developer
who picked a wrong pattern (Decorator instead of composite), explained as below: “I remember that I have
seen a similar example in the internet, and I wanted to lead the tool to the pDecorator pattern. But the Q&A
process did not allow me to navigate there, it led me to composite. I was not satisfied that the tool did not gave
me freedom to pick the pattern that I wanted!”"°.

The Code Generation feature was the only one with no negative discussion around it. The main usefulness
discussed for this feature was the SAVED TIME, and that this feature was an integral part of the solution, linking
patterns to code, which is the final outcome of the designing process. Therefore, not ISOLATING DESIGN
FROM CODING (2 out of 15) process and environment. Such options (being in favor of integrating develop-
ment aspects in the IDE) are very popular among developers, and can be identified in other similar studies [24].
Another interesting position was that the integrated code generation will help the developers avoid copying and
pasting solutions from the internet, out of which the irrelevant code would need to be removed. The code that
the code generation provides is the MINIMUM REQUIRED CODE (discussed from 4 out of 15 participants)
on top of which you can develop the business logic around the pattern. Finally, the code generation can be
perceived as a feature that will enable CODE READABILITY, by guiding in terms of styling, best practices.
This can contribute to more readable code, on top of the more maintainable design.

!0 The task was inspired by the example that the participant mentioned, but it was altered by the researchers so as to better fit Composi te rather than
Decorator.

Finally, in terms of Mapping Pattern Roles to Classes a lot of useful feedback has been received, since almost
all participants found it difficult to map roles to classes. However, the mapping step cannot be removed, since
it is a pre-requisite for Code Generation. An interesting suggestion from a senior engineer was to “make the
UI more interactive in that part, and enable the selection of the role from the example class diagram, so that
the visual information is exploited”. Additionally, the participants raised a well-known problem in object-ori-
ented programming, dealing with the difficulty in identifying proper names of the classes, especially in such an
early stage [25]. Also, some participants (4 out of 15) were puzzled to identify which roles correspond to classes,
methods, or attributes, bringing up the TERMINOLOGY problem. On the positive side, the participants recog-
nized that such a mapping can preserve the application of pattern rules contributing towards CORRECTNESS
(3 out of 15 made it explicit) of the implementation, and since the process has a LOW LEARNING CURVE (4
out of 15 made it explicit) it can also educate developers on TERMINOGY issues (SOURCE OF
KNOWLEDGE).

The participants ranked Code Generation as the most useful part of the solution, a fact that underlines their
satisfaction from SAVING TIME. The wrzarp-mopE was slightly more popular, compared to the ExPERT-MODE,
a result that can be attributed to our dataset that involved more junior, compared to experienced software engi-
neers. Finally, the participants have found the use of Mapping of Roles to Classes as very complicated.

5.3 Usability Evaluation (RQ3)

The usability of the SmartCLIDE pattern selection Theia extension has been positively evaluated, with an aver-
age grade B (73.3%), ranging from D (min: 55) to A (max: 90)—see Figure 8. The frequency of D grades was
13%, whereas 40% of the participants evaluated the Theia extension as A-class.

SUS -
System Usability Scale

Acceptable: Not Acceptable Marginal Acceptable

Worst Imaginable r < G xcelle Im. !
Adjective: q Poo OK ood Excellent Best Imaginable

Grade: F D Cc B A

sus score: 0 10 20 30 40 50 60 70 80 90 100

Figure 8. Usability Evaluation Outcome

To study isolated SUS questions, in Figure 9, we present a stacked bar showing the percentage of participants
that provided a specific score for each question, based on the SUS questionnaire. We note that for negative
answers, we have first calculated the points (inversed the response) and then presented the results—e.g., for
statement-1 “I needed to learn a lot of things before I could get going with this system” the orange bar corre-
sponds to score ZERO in the original questionnaire. Based on our findings, the extension seemed very CON-
SISTENT to the users and of LOW COMPLEXITY. One participant vividly described that: “the tool is very
easy to use, the theme is consistent to the general layout of Theia, I could use it without any guidance”. On the
other hand, the most negative evaluations (blue and red bars) have been received with respect to the LEARNING
CURVE and the NEED FOR SUPPORT / MANUAL (long orange and green bars). In particular, some practi-
tioners mentioned that “someone needs to first read on patterns, and then use the tool. In that sense, I have a
lot of reading to do, before using it efficiently”, whereas another mentioned that “a help button is a must have
for modern applications”.

| needed to learn a lot of things before |
could get going with this system

| found the various functions in this
system were well integrated

| would imagine that most people would
learn to use this system very quickly

| think | would need the support of a
technical person to be able to use this
system
I found the system very cumbersome to
use

| thought the system was easy to use

| felt very confident using the system

| found the system unnecessarily
complex

| thought this system was too
inconsistent

| think that | would like to use this
system frequently

0% 20% 40% 60% 80% 100%

m0outof5 m1outofb 2outof 5 m3outof5 m4outofb

Figure 9. Usability Evaluation Outcome

The developed Eclipse Theia extension for aiding in pattern selection has received a positive evaluation in terms
of usability, constituting it acceptable for industrial usage.

6. Limitations and Threats to Validity

The proposed approach and tool support only the GoF patterns, whereas other pattern types exist in the literature.
The decision to focus on the GoF patterns was taken as these patterns are the most popular ones and the primary
means to understand the concept of patterns in software design. If a development team wishes to adopt the
proposed approach and extend the use to a wider set of patterns, the corresponding decision trees can be en-
riched, assuming the required domain knowledge. Furthermore, while the proposed tooling is capable of instan-
tiating the patterns selected by the guided interaction with the user, the tool does not rely on the context of the
target system. In other words, the approach lacks any sophisticated intelligence to infer the patterns that might
be more relevant to the user needs (e.g., as it would be achieved by systems such as GitHub Copilot or ChatGPT).
Additionally, while the introduction of Al to limit the number of questions that have to be answered by the end
user is beyond the scope of this work, we believe that appropriate Machine Learning algorithms could be lever-
aged to recommend potential pattern solutions based on similar code retrieved from repositories. As a final
limitation for this study, we need to note that for systems with large requirements, before the application of the
approach, one might need to fragment the requirement to smaller ones; e.g., from an epic to a user study, or
from a user story to a task. In that sense, the approach might better fit agile development processes that built the
system, upon the development of user stories (where answering the questions of the approach might be more
feasible), rather than using pattern selector on existing (already developed) large systems for maintenance pur-
poses. In any case, this approach cannot be used as the only input for design decision making along the devel-
opment of systems, but it is a useful tool for making decisions during the detailed design of the system.

Regarding the industrial validation of the proposed approach which has been performed in the context of a single
company with the help of 15 engineers, the results unavoidably reflect the environment and practices of the

particular company and the experience and expertise of the selected participants. Consequently, the findings are
subject to generalizability threats; however, since the goal was not to compare the proposed approach against
similar techniques but rather to investigate its potential and weaknesses, we believe that the quantitative and
qualitative analysis shed light into the effectiveness of a pattern selection approach that is based on structured
questions. Nevertheless, further studies on the usability of the corresponding Eclipse Theia plugin could reveal
optimization in the interaction with end users. Considering the part of the qualitative evaluation, respondent bias
should be taken into account. Respondent bias refers to cases where participants do not provide honest responses
usually stemming from the willingness to ‘please’ the researcher with responses they believe are desirable [26].
Qualitative studies of this kind are also threatened by reactivity, referring to the possible influence of the re-
searcher on the studied participants. An enthusiastic researcher might have affected the participants of a focus
group by steering the discussions to a particular stance. While such bias cannot be eliminated, method triangu-
lation has been applied to increase the validity of the findings; thereby reducing the corresponding threats [27].

7. Conclusions

Design Patterns, as general, documented and repeatable solutions to commonly occurring problems in software
design can promote good software development and increase maintainability and extensibility. However, the
application of patterns is not trivial: the choice of the most suitable pattern is not always obvious whereas often
a no-pattern solution is preferable. The correct instantiation of patterns also poses challenges, especially for
design alternatives with marginal differences. To ease the work of software engineers and encourage the con-
sideration of design patterns in everyday software development, we introduce a questionnaire-based approach
relying on decision trees that guides end users in the selection of the proper design pattern. The functionality is
provided through an Eclipse Theia plugin that is capable of generating and integrating the pattern code with the
rest of the codebase. An industrial validation study employing questionnaires, focus groups, and task analysis
was carried out with the help of 15 software engineers. The results suggest that a structured interaction with the
end user increases the probability of selecting the proper design pattern and save development time. Further-
more, a tool that interacts with the users providing examples can act as a source of knowledge and educate
developers on the rather challenging topic of design pattern application. Future research can investigate ways to
increase the usability of the design pattern selection tool and the possibility of leveraging Al techniques for
limiting the number of questions that have to be set to the user for deciding on the most appropriate design
alternative, as well as for providing initial implementation of the functional requirement that corresponds to the
design pattern. Finally, we believe that a validation of the quality improvement that the pattern solution can
bring to the targeted system, would be an interesting extension to this study. A possible positive evaluation,
could further boost the applicability of the proposed solution in industrial settings.

Acknowledgement

This work has received funding from the European Union’s H2020 research and innovation programme, under
grant agreement: 871177 (SmartCLIDE).

References

[1T M. Fowler, “Analysis patterns: Reusable object models”, Addison-Wesley Professional, October 1996.

[2] F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, “Pattern-Oriented Software Architecture”, Wiley
& Sons, West Sussex, UK, 1996.

[3] E.Gamma, R. Helms, R. Johnson, and J. Vlissides, “Design patterns: elements of reusable Object-Oriented software”,
Addison-Wesley Professional, 1995.

[4] B.B. Mayvan, A. Rasoolzadegan, Z. G. Yazdi, “The state of the art on design patterns: A systematic mapping of the
literature”, Journal of Systems and Software, 125, 2017, pp. 93-118,

[5] A.Ampatzoglou, S. Charalampidou, I. Stamelos, “Research state of the art on GoF design patterns: A mapping study”,
Journal of Systems and Software, 86 (7), 2013, pp. 1945-1964.

[6] R. C. Martin, “Agile software development: principles, patterns, and practices”, Prentice Hall PTR, Upper Saddle
River, USA, 2003.

[7] D. Feitosa, P. Avgeriou, A. Ampatzoglou, E. Y. Nakagawa, “The evolution of design pattern grime: An industrial
case study”, International Conference on Product-Focused Software Process Improvement (PROFES ‘17), Springer,
pp. 165-181, 2017.

[8] J. Bishop, “Language features meet design patterns: raising the abstraction bar”, 2 International Workshop on the
role of abstraction in software engineering (ICSE’08), IEEE, pp. 1-7, Leipzig, Germany, 10-18 May 2008.

[9] B. Keepence and M. Mannion, “Using Patterns to Model Variability in Product Families”, IEEE Sofiware, IEEE, 16
(4), pp. 102-108, July 1999.

[10] S.S. Yau and N. Dong, “Integration in Component-Based Software Development Using Design Patterns”, 24 Inter-
national Computer Software and Applications Conference (COMPSAC’00), IEEE, pp.369, Taipei, Taiwan, 25-28
October 2000

[11] L. C. Briand, Y. Labiche and A. Sauve, “Guiding the Application of Design Patterns Based on UML Models”, 22"
International Conference on Software Maintenance, IEEE, pp. 234-243, Philadelphia, Pennsylvania, 24-27 Septem-
ber 2006

[12] M. Meyer, “Pattern-based Reengineering of Software Systems”, 13" Working Conference on Reverse Engineering,
pp-305-306, Benevento, Italy, 23-27 October 2006

[13] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling and K. Tan, “Generative Design Patterns”, 17* I[EEE
International Conference on Automated Software Engineering (ASE ‘02), pp. 23, Edinburgh, UK, 23-27 September
2002

[14] S. MacDonald, K. Tan, J. Schaeffer and D. Szafron, “Deferring Design Pattern Decisions and Automating Structural
Pattern Changes Using a Design-Pattern-Based Programming System”, Transactions on Programming Languages
and Systems, ACM, 31(3), article 9, April 2009.

[15] M. O’ Cinneide and P. Nixon, “Automated software evolution towards design patterns”, 4" International Workshop
on Principles of Software Evolution (ICSE’01), IEEE, pp.162-165, Vienna, Austria, 12-19 May 2001

[16] N.L. Hsueh, P.H. Chu, P.A. Hsiung, M.J. Chuang, W. Chu, C.H. Chang, C.S. Koong and C.H. Shih, “Supporting
Design Enhancement by Pattern-Based Transformation”, 34" Annual Computer Software and Applications Confer-
ence (COMPSAC ‘10), IEEE, pp. 462 — 467, Seoul, Korea, 19-23 July 2010.

[17] P. Tonella and G. Antoniol, “Object Oriented Design Pattern Inference”, Journal of Software Maintenance and Evo-
lution, Wiley, 13 (5), September-October 2001

[18] A. Shalloway and J. Trott, “Design Patterns Explained: A New Perspective on Object Oriented Design”, Addison-
Wesley, 2™ Edition (Software Patterns), 2004.

[19] P. Runeson, M. Host, A. Rainer, and B. Regnell, “Case study research in software engineering: Guidelines and ex-
amples”, Wiley & Sons, West Sussex, UK, 2012.

[20] J. Brooke, J. “System Usability Scale (SUS): A quick-and-dirty method of system evaluation user information”, Tay-
lor & Francis, pp. 189-194, 1996.

[21] C. Seaman, “Qualitative Methods in Empirical Studies of Software Engineering”, IEEE Transactions on Software
Engineering, 25 (4), pp. 557-572, 1999.

[22] S. Elo and H. Kyngés, “The qualitative content analysis process”, Journal of Advanced Nursing, vol. 62, issue 1, pp.
107-115, 2008.

[23] D. Spencer, “Card Sorting: Designing Usable Categories”, Rosenfeld Media, 1** Edition, April 20009.
. aralampidou, A. Ampatzoglou, A. atzigeorgiou, an . Tsiridis, “Integrating traceability within the to
24] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgi d N. Tsiridis, “Integrating bility within the IDE
prevent requirements documentation debt”, 44" Euromicro Conference on Software Engineering and Advanced Ap-
plications (SEAA '18), IEEE, pp. 421-428, 2018.
[25] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate method and class names”, 10" Joint Meeting
on Foundations of Software Engineering (ESEC/FSE ‘15), ACM, pp. 38-49, 2015.

[26] Y. Lincoln, and E. G. Guba, “Naturalistic Inquiry”, Newbury Park, CA: SAGE, 1985.

[27] C. Robson, “Real world research: a resource for social scientists and practitioner-researchers”. Oxford, UK: Black-
well Publisher, 2002.

[28] Falessi, D., Cantone, G. and Kruchten, P., “Do architecture design methods meet architects' needs?”, Working
IEEE/IFIP Conference on Software Architecture (WICSA'07) (pp. 5-5). IEEE, January 2007.

[29] Falessi, D., Cantone, G., Kazman, R. and Kruchten, P., 2011. Decision-making techniques for software architecture
design: A comparative survey. ACM Computing Surveys (CSUR), 43(4), pp.1-28.

[30] Shahin, M., Liang, P. and Khayyambashi, M.R., 2009, September. Architectural design decision: Existing models
and tools. In 2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Soft-
ware Architecture (pp. 293-296). IEEE.

[31] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H. and Carriere, J., 1998, August. The architecture
tradeoff analysis method. 4" IEEE international conference on engineering of complex computer systems (cat. no.
98ex193) (pp. 68-78). IEEE.

[32] Van Vliet, H. and Tang, A., 2016. Decision making in software architecture. Journal of Systems and Software, 117,
pp.638-644.

[33] Ionita, M.T., America, P. and Hammer, D.K., 2005, January. A method for strategic scenario-based architecting. In
Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 312b-312b). IEEE.

[34] Golfarelli, M., Rizzi, S. and Proli, A., 2006, November. Designing what-if analysis: towards a methodology. In Pro-
ceedings of the 9th ACM International Workshop on Data Warehousing and OLAP (pp. 51-58).

[35] B. A. Kitchenham, L., Pickard, and S. L. Pfleeger, "Case studies for method and tool evaluation," IEEE Software”,
12(4), pp. 52-62, July 1995.

[36] C. B. Seaman, “Qualitative methods in empirical studies of software engineering”, IEEE Transactions on Software
Engineering, 25(4):557-572, 1999.

[37] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. Hoaglin, K. El Emam, and J. Rosenberg, “Prelimi-
nary guidelines for empirical research in software engineering”, IEEE Transactions on Software Engineering,
28(8):721-734, 2002.

[38] J. M. Verner, J. Sampson, V. Tosic, N. A. Abu Bakar, and B. A. Kitchenham, “Guidelines for Industrially-Based
Multiple Case Studies in Software Engineering”, 3rd International Conference on Research Challenges in Information
Science, Fez, Morocco, 22-24 April 2009.

[39] C. Wohlin, P., Runeson, M., Host, M. C., Ohlsson, B., Regnell, and A. Wesslén, “Experimentation in Software En-
gineering”, Springer, 2012,

[40] Paz, F. & Pow-Sang, J. (2014). Current Trends in Usability Evaluation Methods: A Systematic Review. Proceedings
- 7th International Conference on Advanced Software Engineering and Its Applications, ASEA 2014.

[41] Dumas, J. S., & Salzman, M. C. (2006). Usability Assessment Methods. Reviews of Human Factors and Ergonomics,
2(1), 109-140.

[42] Gupta, S. (2015). A Comparative study of Usability Evaluation Methods. International Journal of Computer Trends
and Technology. 22. 103-106.

[43] Riihiaho, S, “Usability Testing”. In The Wiley Handbook of Human Computer Interaction, 2018.

[44] L. Pavlic, V. Podgorelec, M. J. C. S. Hericko, and I. Systems, "A question-based design pattern advisement approach,”
vol. 11, no. 2, pp. 645-664, 2014.

[45] F. Palma, H. Farzin, Y.-G. Guéhéneuc, and N. Moha, "Recommendation system for design patterns in software de-
velopment: an DPR overview," In 2012 3rd international workshop on Recommendation Systems for Software Engi-
neering (RSSE), 2012, pp. 1-5: IEEE.

[46] R. Rahmati, A. Rasoolzadegan, and D. T. Dehkordy, "An automated method for selecting GoF design patterns," In
2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), 2019, pp. 345-350: IEEE.

[47] A. Naghdipour and S. M. H. Hasheminejad, "Ontology-based design pattern selection," In 2021 26th international
Computer Conference, Computer Society of Iran (CSICC), 2021, pp. 1-7: IEEE.

[48] A. Naghdipour, S. M. H. Hasheminejad, and M. R. Keyvanpour, "DPSA: A brief review for design pattern selection
approaches," In 2021 26th international Computer Conference, Computer Society of Iran (CSICC), 2021, pp. 1-6:
IEEE.

[49] E. M. Sahly and O. M. Sallabi, "Design pattern selection: A solution strategy method," In 2012 international confer-
ence on computer systems and industrial informatics, 2012, pp. 1-6: IEEE.

[50] A. Ampatzoglou, S. Charalampidou, and 1. Stamelos. 2013. Design pattern alternatives: what to do when a GoF
pattern fails. In Proceedings of the 17" Panhellenic Conference on Informatics (PCI '13). Association for Computing
Machinery, New York, NY, USA, 122-127

[51] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and S. T. Halkidis, "Design Pattern Detection Using Similarity Scor-
ing," in IEEE Transactions on Software Engineering, vol. 32, no. 11, pp. 896-909, Nov. 2006

