
 1

A comparative study on the effectiveness of patterns

in software libraries and standalone applications

Panagiotis Sfetsos
1
, Apostolos Ampatzoglou

2,3
, Alexander Chatzigeorgiou

4
,

Ignatios Deligiannis
1
,

Ioannis Stamelos

2

1 Department of Information Technology, Technology Educational Institute Thessaloniki, Greece

 2 Department of Informatics, Aristotle University, Thessaloniki, Greece
3 Department of Computer Science, University of Groningen, The Netherlands

4 Department of Applied Informatics, University of Macedonia, Greece

Abstract — The existence of design pattern instances is often

regarded as an indication of elaborate software design, since

patterns have been reported in many studies as techniques

that improve software quality properties. Driven by the

widespread belief that software libraries excel in terms of

design quality compared to standalone applications, this

study investigates first whether this claim is confirmed and

second whether the improved quality can be attributed to

the use of patterns. In particular we examine: (a) whether

libraries exhibit improved design quality in terms of metrics

compared to standalone applications, (b) the intensity of use

of design patterns in the two software categories and (c)

whether there is any correlation of design patterns usage and

design quality at system level. The results of the study

suggest that, some of the quality properties are improved in

library software although no significant difference in the use

of patterns have been observed. Moreover, there is an

important number of GoF design patterns that appears to be

correlated to software quality metrics.

Keywords – Design Patterns; Design Quality; Software

Libraries; Standalone applications

I. INTRODUCTION

Software systems evolve by adding new features and

modifying existing functionality over time. Through

evolution, the underlying structure of software artifacts

gradually degrades, leading to a substantial reduction of

its understandability and maintainability. Refactoring is

considered to be a prominent technique for solving the

abovementioned problem. Software refactoring is a

disciplined process of improving the design/code quality

of existing systems, by changing its internal structure,

without affecting its external behavior [6 and 11].

Another way of addressing the declining quality of

software is to employ design patterns, i.e. well-grounded

solutions to common, recurring problems in software

design. In the mid-90s the Gang-of-Four (GoF) [7],

defined a catalogue of design patterns as “descriptions of

communicating objects and classes that are customized to

solve a general design problem in a particular context”.

These solutions “have developed and evolved over time,

in a succinct and easily applied form". The use of design

patterns can provide reusable solutions and improve

software qualities, such as flexibility, understandability

and maintainability [6 and 7]. In [6], Fowler suggests that

there is a natural and close relation between patterns and

refactorings: patterns describe the design situation where

you want to be, whereas refactorings represent the

possible ways to get there [8]. This statement conforms to

the observation made by the Gang-of-Four: “Our design

patterns capture many of the structures that result from

refactoring. Design patterns thus provide targets for

refactorings [7]”. To this end, Kerievsky introduced the

concept of Refactoring to patterns [8] by expounding the

interplay of design patterns and refactorings, in a detailed

and explanatory way, focusing on the benefits and

liabilities of each refactoring to pattern.

Among software practitioners and researchers there is a

widespread belief that software libraries, which are

accessible through well-defined Application Programming

Interfaces (API) excel in terms of design quality. The

improved quality is usually related to the need for

continuous evolution of libraries calling for high-levels of

flexibility and extendibility without however breaking the

compatibility of clients. Driven by this premise in this

paper we compare the design quality between software

libraries and standalone applications. Moreover, we aim at

quantitatively investigating if possible differences in the

design quality can be attributed to the use of GoF design

patterns. Moreover, we attempt to achieve these goals, by

empirically and quantitatively (using software metrics)

examining differences between software libraries and

standalone applications, with respect to: (a) design

quality, (b) use intensity of GoF design patterns, and (c)

the effect of patterns instances on quality attributes.

The paper is structured in eight sections: Section II

provides an overview of software libraries. Section III

discusses design patterns in relation to quality and

software libraries. In Section IV we describe the case

study design. In Section V we present the results of data

analysis, and discuss them in section VI. Finally, we

present threats to validity in Section VII, and conclusions

and future work in Section VIII.

 2

II. SOFTWARE LIBRARIES / APIS

The design of software libraries is generally believed to

be of a high quality since certain design guidelines have

to be followed, due to the need for continuous evolution.

According to Tulach [14], designing a shared library is a

far more complicated task than building closed

application software because of the numerous clients

depending on the library’s interface. This dependency

necessitates the consideration for backward compatibility

so that evolution is performed in a way that does not

disturb clients. These requirements for an Application

Programming Interface (API) impose a strict design and

development style, making the conformance to design

rules and the use of best practices in software design such

as design patterns, even more important. Consequently,

libraries are characterized by particular properties [14]:

 Evolution is one of the most important aspects to

consider when architecting a library and its

interface.

 The behavior of an API is the most important part of

the API contract: Only if the behavior of a

component remains unchanged, can its users

cluelessly [14] replace versions of the component in

their applications. Clients should have confidence

that functionality will not be compromised by

upgrading to a newer version of the library.

 Programmer productivity can be boosted just by

having a working knowledge of an API and knowing

where to find the appropriate documentation. In

other words, coding can be largely facilitated by

learning a tip of an iceberg. The cornerstone of this

architectural approach is the abstraction that wraps

around every library or framework. This

abstraction—the API— hides all the complexities.

Thus, as Tulach states [14], the more selectively

clueless you are, the more reliable the system is.

These features of libraries focusing on the cluelessness

model allow development teams to concentrate on the

most important aspect of their work: the actual logic of

their own application. In this perspective, the study of

APIs can offer valuable guidance on how to improve the

existing design of any software project. Driven by this

viewpoints we examine the difference between APIs and

standalone systems with respect to the use of design

patterns and the effect that patterns have on the design

quality of the underlying software.

III. DESIGN PATTERNS

According to the definition of refactorings by Mens and

Tourwe, in [9], refactorings aim at improving product

quality of software systems. Thus, a prerequisite for GoF

design patterns to be eligible as refactoring activities is to

prove the hypothesis that pattern application has a

positive effect on system quality. Thus, in section III.A,

we present a brief overview of the literature findings on

the effect of GoF design patterns on software quality. In

addition to that, in section III.B, we present related work

that investigates the use of GoF design patterns in

software libraries and APIs.

A. Design Patterns and Quality

In [1], the authors suggest that the most active field in

pattern research is the investigation of the effect of GoF

design patterns on software quality. Thus, although, in the

original introduction of the GoF pattern catalogue [7],

design patterns have not been linked to specific quality

attributes, researchers tend to believe that they affect it.

However, design pattern are expecting to have a local

effect on software quality, by improving the structure of a

limited amount of classes. Therefore, an interesting and

open research question that arises and which might be

valuable to agile development teams is: does the extensive

use of GoF design patterns can have a system wide effect

on quality?

B. Design Patterns and Software Libraries

The literature that concerns the use and the evaluation of

GoF design patterns on software libraries, is quite limited.

In [10] the author describes the design principles that he

found useful, while developing a real-time imaging

framework in Java. The results suggest that in such a

framework five patterns are applicable, namely Singleton,

Abstract Factory, Observer, Façade and Strategy. Apart

from the exact description of how each design pattern has

been instantiated, the author presents the reusability

benefits that these patterns offered to the framework.

Concerning the effect of GoF design patterns on the

quality of software libraries, Ellis et al. suggest that one of

the most interesting quality attributes to investigate, is

usability, in the sense that in order for APIs to be valuable

to their clients, they should be highly usable [4].

Additionally, in the same study Ellis et al. investigate the

usability that Factory patterns offers to APIs, compared to

the use of constructors, through an experiment. The

results of the study suggest that the time needed to use an

API, based on Factory patterns, is statistically

significantly lower than the time needed to use an API,

based on alternative design solutions [4].

IV. CASE STUDY

In order to compare the effectiveness of GoF design

pattern instances in software libraries and standalone

applications, we performed a case study, i.e. an

observational empirical method that is used for

monitoring projects and activities in a real-life context

[12], on 26 Java open source software (OSS) projects. The

case study of this paper has been designed and is

presented according to the guidelines of Runeson et al.

[12]. In this section, we present: (a) research objectives

 3

and research questions, (b) cases and units of analysis, (c)

data collection methods, and (d) data analysis methods.

Research Objectives & Research Questions: The goal

of this study is to investigate differences among software

libraries and standalone applications in terms of: (a) the

levels of design quality, (b) the use intensity of design

patterns, and (c) the effect of GoF design pattern on

design quality. Intuitively, since software libraries are

expected to be more heavily reused, they are expected to

exhibit better design quality than standalone software, and

more frequently employ established techniques, such as

GoF design patterns, rather than standalone applications.

According to the previously stated goal we extracted and

formulated three research questions that will guide the

case study design and the reporting of the results:

RQ1: Are there differences between software libraries

and standalone applications, in terms of design

quality?

RQ2: Are there differences between software libraries

and standalone applications, in the use intensity of

GoF design patterns?

RQ3: Are there differences between software libraries

and standalone applications, in the effect of GoF

design patterns instances on quality attributes?

Cases and Units of Analysis: To answer the above

mentioned questions we performed a holistic multiple-

case study, where the cases and units of analysis are open

source projects. We note that according to Runeson et al.,

a case study is holistic, if from every case, we extract only

one unit of analysis [12], as opposed to embedded case

studies, in which we extract multiple units of analysis

from one case. As units of analysis we used the 26 OSS

projects explored in [3], for similar reasons. More

specifically, we analyzed 13 open source standalone

applications, and 13 open source software libraries, all

written in java. For pattern detection we used the tool

created by Tsantalis et al. [13].

Data Collection: The dataset that was created after

selecting the cases, consisted of 19 variables, as follows:

[A1] software name

[A2-A12] design pattern use intensity. We recorded one

variable for each type of design pattern that

was explored (Factory Method, Proxy,

Prototype, Adapter, Singleton, Composite,

Decorator, Observer, Template Method, Visitor

and State – Strategy). These variables have

been normalized over the number of classes of

a project, in order to filter out the confounding

factor project size. Thus, the variables are

calculated as the fraction of number of classes,

divided by the number of pattern instances.

Thus, the lower the value is, the more intensive

the use of GoF design patterns is.

[A13-A18] metric scores on design quality. We adopted the

measures on design quality from the QMOOD

suite [2]. Thus, we recorded one variable for

each high-level quality attribute (Functionality,

Effectiveness, Extendibility, Reusability,

Understandability, Flexibility). We note that in

all measures, the higher the metric score is, the

higher the levels of design quality become.

[A19] type of software (standalone/library).

Data Analysis: In the data analysis phase of our case

study we have employed descriptive statistics (mean

values and standard deviation, Spearman correlation),

graphs (3D area charts) and hypothesis testing (Mann

Whitney U-test) [5].

V. RESULTS

In this section we present case study results, organized by

research question. We note, that this section only deals

with presenting results, whereas a discussion of findings

(interpretation of results, and implications for researchers

and for practitioners), will be provided in Section VI.

RQ1: Differences in design quality

Regarding the differences between software libraries and

standalone applications, in terms of design quality, the

descriptive results are presented in Table I. Next, in order

to investigate if the results on our sample can be

generalized to a larger population, we performed a Mann-

Whitney U-test, i.e. a non-parametric test for testing

differences between mean values (see Figure 1).

Fig. 1. Hypothesis testing for RQ2

 4

TABLE I. DESCRIPTIVE STATISTICS FOR RQ1

Quality Attribute Type Mean

Reusability
Library 4.404

Standalone 3.455

Flexibility
Library 0.901

Standalone 0.524

Understandability
Library -4.142

Standalone -3.369

Functionality
Library 2.281

Standalone 1.618

Extendibility
Library 1.243

Standalone 0.476

Effectiveness
Library 0.586

Standalone 0.362

From both Table I and Figure 1, it can be concluded that

there is evidence for a difference in the levels of design

quality among software libraries and standalone

applications for some quality attributes (functionality,

extendibility and effectiveness).

RQ2: Differences in design pattern use intensity

In order to investigate if the aforementioned differences

can be attributed to the use of patterns, we first explore if

there are differences in the use intensity of GoF design

patterns between software libraries and standalone

applications (see Table II).

TABLE II. DESCRIPTIVE STATISTICS FOR RQ2

Pattern Type Mean

Factory Method
Library 69.2583

Standalone 109.7500

Prototype
Library 45.3519

Standalone 82.3611

Singleton
Library 35.0513

Standalone 53.8544

Adapter
Library 17.6733

Standalone 32.9210

Decorator
Library 16.9896

Standalone 236.3125

Proxy
Library 137.0000

Standalone 325.3333

Observer
Library 87.9167

Standalone 212.9714

Template Method
Library 92.6667

Standalone 49.8021

State – Strategy
Library 15.7985

Standalone 21.1458

As it is observed, all design pattern types, except from

Template Method, are more frequently occurring in

software libraries than standalone applications. To

examine whether there are significant differences between

the mean values presented in Table II, we performed a

Mann-Whitney U-test. The results suggested that the only

differences, which are statistically significant at the 0.05

level concern Decorator (sig: 0.01), and at the 0.10 level

concern Adapter (sig: 0.06).

RQ3: Differences in the effect of design patterns on

design quality

Concerning the investigation of differences in the strength

of possible correlations between the number of employed

design pattern instances and the design quality metric

values, with respect to the software type (software library

or standalone application), the results are summarized in

Table III (due to space limitations, in Table III we only

present statistically significant correlations at the 0.05

level). For example, the correlation coefficient for the first

row of Table III implies that the use intensity of the

Adapter pattern has a positive effect on reusability (the

negative sign is due to the fact that the intensity of pattern

use is obtained as the fraction of number of classes,

divided by the number of pattern instances). Moreover,

the effect is stronger for standalone applications.

TABLE III. DESCRIPTIVE STATISTICS FOR RQ3

Pattern:: QA Type

Correlation

Coefficient (sig)

Adapter :: Reusability
Library -0.167 (0.66)

Standalone -0.883 (0.03)

Adapter :: Flexibility
Library -0.467 (0.20)

Standalone -0.883 (0.05)

Adapter :: Understandability
Library 0.200 (0.60)

Standalone 0.733 (0.25)

Adapter :: Functionality
Library -0.250 (0.51)

Standalone -0.867 (0.03)

State-Strategy :: Flexibility
Library -0.663 (0.04)

Standalone -0.697 (0.02)

State-Strategy :: Understandability
Library 0.867 (0.00)

Standalone 0.018 (0.96)

State-Strategy :: Functionality
Library -0.883 (0.00)

Standalone -0.358 (0.31)

Singleton :: Flexibility
Library -0.664 (0.02)

Standalone 0.191 (0.57)

One of the most interesting observations from Table III, is

that actually only three design patterns, namely State-

Strategy, Adapter and Singleton are correlated to design

quality at system level (probably because these are the

most heavily used design patterns and therefore, their

aggregate effect is more evident at system level).

However, the quality attributes, to which these design

patterns have effect on, are in principal not among those

that differ between libraries and standalone applications.

Thus, such differences, at least from the results of this

study, cannot be attributed to the use of design patterns.

However, other interesting findings (although orthogonal

to the original research question), can be derived from the

exploration of the 3D area chart of Figure 2, by

contrasting the differences for libraries and standalone

software systems.

 5

These plots can be interpreted as follows, considering for

example the top right chart concerning the effect of the

Adapter pattern on reusability. As the use of the Adapter

pattern becomes more frequent (the value 20 on the

Adapter axis indicates the occurrence of one Adapter

every 20 classes) in the case of standalone applications,

reusability increases. On the other hand, this observation

is not so evident for libraries.

Fig. 2. Descriptive Graphs for RQ3 (3D Chart Areas)

VI. DISCUSSION

In this section we discuss the results of the case study,

based on the three research questions, and organized

through two different perspectives: (a) interpretation of

results, (b) implications for researchers and practitioners.

A. Interpretation of results

Although the statistical significance is relatively low, the

results weakly confirm the intuition that design libraries

excel both in terms of design quality (i.e. Functionality,

Extendibility, Effectiveness), as well as in terms of the

number of employed design patterns. The fact that the

investigated three qualities exhibit higher values for

libraries is rather reasonable. These measures depend

(positively) on abstraction which is higher for APIs,

negatively on coupling, which for the independent pieces

of functionality in a library is usually low, and positively

on the use of inheritance which by definition is extensive

in libraries. The low statistical significance regarding the

use of patterns can possibly be attributed to the small

number of pattern instances in the examined systems.

The results on the effect of patterns on the design quality

are rather mixed: for example, the effect of the Adapter

design pattern on reusability, flexibility, understandability

and functionality is more intense for standalone

applications despite the lower number of Adapter

instances. On the other hand, the impact of State-Strategy

pattern on understandability and functionality is higher

for libraries. Although no safe explanations can be

derived for these differences, the results imply that

patterns are exploited in a different manner between

software libraries and standalone applications. In any

case, further empirical evidence should be analyzed with

respect to the particular design decisions, which are

responsible for the improved design quality of libraries.

B. Implications to researchers and practitioners

Concerning implications for researchers and practitioners,

the results can be helpful for providing: (a) pointers to

interesting areas for future work, and (b) advices on how

detailed-design decisions could benefit from considering

GoF design patterns, as follows:

 researchers could further investigate the cause of

the observed differences in the instantiation of the

same pattern between software libraries and

standalone applications

 researchers could further investigate the different

effect of GoF design patterns between software

libraries and standalone application, in the class

level, rather than a system-wide level. It is expected

that locally the differences will be more evident

 agile software developers, based on the quality

attributes that they are interested in, can select GoF

design patterns which might have an effect on

system level quality attributes, if they are heavily

applied, e.g. State/Strategy improves flexibility

 the developers of standalone applications should

seek opportunities to apply design patterns more

systematically (at this point they don’t seem to use a

lot pattern instances), by studying design pattern

instantiation in well-known libraries

VII. THREATS TO VALIDITY

In study we classified threats to validity based on [12]

and [15], distinguishing them among four types. In this

section the validity threats are presented, accompanied

with the approaches that we followed to mitigate them.

Threats to construct validity: These threats concern the

design of the study and especially the identification of the

correct measures for the concepts being studied. The case

study was designed and contacted in separate stages,

strictly following the detailed case study protocol and the

approved methodology [12]. We used multiple sources of

evidence, for the data collection process and the QMOOD

metrics suite, which is a proper and empirically validated

metrics suite for Object Oriented Designs. The 26 OSS

projects explored (13 software libraries and 13 standalone

applications) were collected from the most representative

software areas such as Communications, Graphics, Audio

& Video and Business & Enterprise.

 6

Threats to internal validity: These threats concern the

identification of cause-and-effect relationships and the

evidence of causality. In our study, we consider as threats

to internal validity those factors that may cause

interferences regarding the relationships that we are trying

to investigate [15]. As in [3], a threat is concerned with

the extent to which the design quality of the examined

systems has been accurately captured by the selected

metrics. We believe that the QMOOD metrics suite we

chose, predicts well the quality of an OO software design,

minimizing this threat. Another concern is that software

systems from different domains might have fundamental

differences in inherent complexity, affecting the design

and implementation. In our study, the categorization of

software projects and their domains were varied

randomly.

Threats to external validity: As threats to external

validity, we consider those factors that limit the

possibility to generalize the findings beyond the sample of

the study. Obviously, a different set of software projects

could lead to different results. This kind of threat is

always valid in an empirical study when the number of

systems is limited and the criticism is related to possible

differences between the projects that have been selected

for analysis and other kinds of projects.

Threats to reliability: This aspect of validity is

concerned with the extent by which the data and the

analysis are dependent on the particular researchers.

Reliability is demonstrating that the operations of a study,

such as the data collection procedures and analysis, can be

repeated, with the same results. We used a case study

protocol, documenting the procedures that have been

followed, as proposed in [12]. Moreover, we developed a

case study database storing the collected data. With these

operational steps we believe that an external auditor could

in principle repeat the procedures and arrive at the same

findings and conclusions.

VIII.CONCLUSIONS – FUTURE WORK

Design patterns are often regarded as an indication of

elaborate software design, improving several aspects of

quality. Driven by the assumption that software libraries

exhibit improved design quality compared to standalone

application, due to their need for continuous evolution

without disturbing their clients, we performed an

empirical study comparing the two kinds of software. In

particular, we investigated possible differences between

software libraries and standalone applications, with

respect to: (a) their design quality, (b) the use of GoF

design patterns, and (c) the effect of GoF design patterns

instances on quality attributes. The study is based on 26

open source projects, equally divided between libraries

and standalone applications.

According to the results: (a) the functionality,

extendibility and effectiveness of software libraries are

significantly higher than those of standalone applications,

(b) software libraries employ more design pattern

instances than standalone applications, but these results

are weak, and not generalizable to a wider population, and

(c) some pattern instances appear to have the stronger

effects on system-wide quality attributes. The

aforementioned results led us to the identification of

future work directions and interesting lessons learned for

practitioners.

IX. ACKNOWLEDGEMENT

The research work is co-founded by the European Social

Fund and National Resources, ESPA 2007-2013,

EDULLL, “Archimedes III” program.

X. REFERENCES

[1] A. Ampatzoglou, S. Charalampidou and I. Stamelos, “Research
state of the art on GoF design patterns: A mapping study”, Journal

of Systems and Software, Elsevier, 86 (7), pp. 1945-1964, July
2013.

[2] J. Bansiya and C. Davis, “A hierarchical model for object-oriented

design quality assessment”, Transaction on Software Engineering,
IEEE Computer Society, 28 (1), pp. 4–17, January 2002.

[3] A. Chatzigeorgiou and E. Stiakakis. “Benchmarking library and
application software with Data Envelopment Analysis”, Software

Quality Journal, Springer, 19 (3), pp. 553-578, September 2011.

[4] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in API

Design: A Usability Evaluation”, 29th International Conference on
Software Engineering (ICSE' 07), IEEE Computer Society, pp.

302-312, 20 - 26 May 2007.

[5] A. Field, “Discovering Statistics Using SPSS”, SAGE Publications,

2009.

[6] M. Fowler, “Refactoring: Improving the Design of Existing Code”,

Addison Wesley Longman, 1999.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,

Addison Wesley, 1994.

[8] J. Kerievsky. “Refactoring to Patterns”, Addison Wesley, 2004.

[9] T. Mens and T. Tourwe, “A Survey of Software Refactoring”,
Transactions on Software Engineering, IEEE Computer Society, 30

(2), pp. 126–139, 2004.

[10] C. J. Neill, “Leveraging object-orientation for real-time imaging

systems”, Real-Time Imaging, Elsevier, 9 (6), pp. 423–432, June
2003.

[11] W. Opdyke, "Refactoring: A Program Restructuring Aid in

Designing Object-Oriented Application Frameworks," PhD Thesis,

1992.

[12] P. Runeson, M. Host, A. Rainer and B. Regnell, “Case Study

Research in Software Engineering: Guidelines and Examples”,

John Wiley & Sons, 2012.

[13] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis,
“Design pattern detection using similarity scoring”. Transactions
on Software Engineering, IEEE Computer Society, 32 (11), pp.
896-909, November 2006.

[14] J. Tulach, “Practical API Design: Confessions of a Java Framework

Architect”, Apress, 2012.

[15] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A.

Wesslen, “Experimentation in software engineering: An
introduction”, Kluwer, 2000.

