A comparative study on the effectiveness of patterns
In software libraries and standalone applications

Panagiotis Sfetsos', Apostolos Ampatzoglou??, Alexander Chatzigeorgiou®,
Ignatios Deligiannis®, loannis Stamelos®

! Department of Information Technology, Technology Educational Institute Thessaloniki, Greece
2 Department of Informatics, Aristotle University, Thessaloniki, Greece
® Department of Computer Science, University of Groningen, The Netherlands
“ Department of Applied Informatics, University of Macedonia, Greece

Abstract — The existence of design pattern instances is often
regarded as an indication of elaborate software design, since
patterns have been reported in many studies as techniques
that improve software quality properties. Driven by the
widespread belief that software libraries excel in terms of
design quality compared to standalone applications, this
study investigates first whether this claim is confirmed and
second whether the improved quality can be attributed to
the use of patterns. In particular we examine: (a) whether
libraries exhibit improved design quality in terms of metrics
compared to standalone applications, (b) the intensity of use
of design patterns in the two software categories and (c)
whether there is any correlation of design patterns usage and
design quality at system level. The results of the study
suggest that, some of the quality properties are improved in
library software although no significant difference in the use
of patterns have been observed. Moreover, there is an
important number of GoF design patterns that appears to be
correlated to software quality metrics.

Keywords — Design Patterns; Design Quality; Software
Libraries; Standalone applications

I. INTRODUCTION

Software systems evolve by adding new features and
modifying existing functionality over time. Through
evolution, the underlying structure of software artifacts
gradually degrades, leading to a substantial reduction of
its understandability and maintainability. Refactoring is
considered to be a prominent technique for solving the
abovementioned problem. Software refactoring is a
disciplined process of improving the design/code quality
of existing systems, by changing its internal structure,
without affecting its external behavior [6 and 11].

Another way of addressing the declining quality of
software is to employ design patterns, i.e. well-grounded
solutions to common, recurring problems in software
design. In the mid-90s the Gang-of-Four (GoF) [7],
defined a catalogue of design patterns as “descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context”.
These solutions “have developed and evolved over time,
in a succinct and easily applied form". The use of design

patterns can provide reusable solutions and improve
software qualities, such as flexibility, understandability
and maintainability [6 and 7]. In [6], Fowler suggests that
there is a natural and close relation between patterns and
refactorings: patterns describe the design situation where
you want to be, whereas refactorings represent the
possible ways to get there [8]. This statement conforms to
the observation made by the Gang-of-Four: “Our design
patterns capture many of the structures that result from
refactoring. Design patterns thus provide targets for
refactorings [7]”. To this end, Kerievsky introduced the
concept of Refactoring to patterns [8] by expounding the
interplay of design patterns and refactorings, in a detailed
and explanatory way, focusing on the benefits and
liabilities of each refactoring to pattern.

Among software practitioners and researchers there is a
widespread belief that software libraries, which are
accessible through well-defined Application Programming
Interfaces (API) excel in terms of design quality. The
improved quality is usually related to the need for
continuous evolution of libraries calling for high-levels of
flexibility and extendibility without however breaking the
compatibility of clients. Driven by this premise in this
paper we compare the design quality between software
libraries and standalone applications. Moreover, we aim at
quantitatively investigating if possible differences in the
design quality can be attributed to the use of GoF design
patterns. Moreover, we attempt to achieve these goals, by
empirically and quantitatively (using software metrics)
examining differences between software libraries and
standalone applications, with respect to: (a) design
quality, (b) use intensity of GoF design patterns, and (c)
the effect of patterns instances on quality attributes.

The paper is structured in eight sections: Section I
provides an overview of software libraries. Section Il
discusses design patterns in relation to quality and
software libraries. In Section IV we describe the case
study design. In Section V we present the results of data
analysis, and discuss them in section VI. Finally, we
present threats to validity in Section VII, and conclusions
and future work in Section VIII.

Il. SOFTWARE LIBRARIES/ APIS

The design of software libraries is generally believed to
be of a high quality since certain design guidelines have
to be followed, due to the need for continuous evolution.
According to Tulach [14], designing a shared library is a
far more complicated task than building closed
application software because of the numerous clients
depending on the library’s interface. This dependency
necessitates the consideration for backward compatibility
so that evolution is performed in a way that does not
disturb clients. These requirements for an Application
Programming Interface (API) impose a strict design and
development style, making the conformance to design
rules and the use of best practices in software design such
as design patterns, even more important. Consequently,
libraries are characterized by particular properties [14]:

e Evolution is one of the most important aspects to
consider when architecting a library and its
interface.

e The behavior of an API is the most important part of
the APl contract: Only if the behavior of a
component remains unchanged, can its users
cluelessly [14] replace versions of the component in
their applications. Clients should have confidence
that functionality will not be compromised by
upgrading to a newer version of the library.

e Programmer productivity can be boosted just by
having a working knowledge of an APl and knowing
where to find the appropriate documentation. In
other words, coding can be largely facilitated by
learning a tip of an iceberg. The cornerstone of this
architectural approach is the abstraction that wraps
around every library or framework. This
abstraction—the APl— hides all the complexities.
Thus, as Tulach states [14], the more selectively
clueless you are, the more reliable the system is.

These features of libraries focusing on the cluelessness
model allow development teams to concentrate on the
most important aspect of their work: the actual logic of
their own application. In this perspective, the study of
APIs can offer valuable guidance on how to improve the
existing design of any software project. Driven by this
viewpoints we examine the difference between APIs and
standalone systems with respect to the use of design
patterns and the effect that patterns have on the design
quality of the underlying software.

I1l. DESIGN PATTERNS

According to the definition of refactorings by Mens and
Tourwe, in [9], refactorings aim at improving product
quality of software systems. Thus, a prerequisite for GoF
design patterns to be eligible as refactoring activities is to
prove the hypothesis that pattern application has a
positive effect on system quality. Thus, in section I1I.A,

we present a brief overview of the literature findings on
the effect of GoF design patterns on software quality. In
addition to that, in section I11.B, we present related work
that investigates the use of GoF design patterns in
software libraries and APIs.

A. Design Patterns and Quality

In [1], the authors suggest that the most active field in
pattern research is the investigation of the effect of GoF
design patterns on software quality. Thus, although, in the
original introduction of the GoF pattern catalogue [7],
design patterns have not been linked to specific quality
attributes, researchers tend to believe that they affect it.
However, design pattern are expecting to have a local
effect on software quality, by improving the structure of a
limited amount of classes. Therefore, an interesting and
open research question that arises and which might be
valuable to agile development teams is: does the extensive
use of GoF design patterns can have a system wide effect
on quality?

B. Design Patterns and Software Libraries

The literature that concerns the use and the evaluation of
GoF design patterns on software libraries, is quite limited.
In [10] the author describes the design principles that he
found useful, while developing a real-time imaging
framework in Java. The results suggest that in such a
framework five patterns are applicable, namely Singleton,
Abstract Factory, Observer, Facade and Strategy. Apart
from the exact description of how each design pattern has
been instantiated, the author presents the reusability
benefits that these patterns offered to the framework.

Concerning the effect of GoF design patterns on the
quality of software libraries, Ellis et al. suggest that one of
the most interesting quality attributes to investigate, is
usability, in the sense that in order for APIs to be valuable
to their clients, they should be highly usable [4].
Additionally, in the same study Ellis et al. investigate the
usability that Factory patterns offers to APIs, compared to
the use of constructors, through an experiment. The
results of the study suggest that the time needed to use an
APIl, based on Factory patterns, is statistically
significantly lower than the time needed to use an API,
based on alternative design solutions [4].

IV. CASE STUDY

In order to compare the effectiveness of GoF design
pattern instances in software libraries and standalone
applications, we performed a case study, i.e. an
observational empirical method that is used for
monitoring projects and activities in a real-life context
[12], on 26 Java open source software (OSS) projects. The
case study of this paper has been designed and is
presented according to the guidelines of Runeson et al.
[12]. In this section, we present: (a) research objectives

and research questions, (b) cases and units of analysis, (c)
data collection methods, and (d) data analysis methods.

Research Objectives & Research Questions: The goal
of this study is to investigate differences among software
libraries and standalone applications in terms of; (a) the
levels of design quality, (b) the use intensity of design
patterns, and (c) the effect of GoF design pattern on
design quality. Intuitively, since software libraries are
expected to be more heavily reused, they are expected to
exhibit better design quality than standalone software, and
more frequently employ established techniques, such as
GoF design patterns, rather than standalone applications.

According to the previously stated goal we extracted and
formulated three research questions that will guide the
case study design and the reporting of the results:

RQ:: Are there differences between software libraries
and standalone applications, in terms of design
quality?

RQ,: Are there differences between software libraries
and standalone applications, in the use intensity of
GoF design patterns?

RQs: Are there differences between software libraries
and standalone applications, in the effect of GoF
design patterns instances on quality attributes?

Cases and Units of Analysis: To answer the above
mentioned questions we performed a holistic multiple-
case study, where the cases and units of analysis are open
source projects. We note that according to Runeson et al.,
a case study is holistic, if from every case, we extract only
one unit of analysis [12], as opposed to embedded case
studies, in which we extract multiple units of analysis
from one case. As units of analysis we used the 26 OSS
projects explored in [3], for similar reasons. More
specifically, we analyzed 13 open source standalone
applications, and 13 open source software libraries, all
written in java. For pattern detection we used the tool
created by Tsantalis et al. [13].

Data Collection: The dataset that was created after
selecting the cases, consisted of 19 variables, as follows:

[Ad] software name

[Ax-App] design pattern use intensity. We recorded one
variable for each type of design pattern that
was explored (Factory Method, Proxy,
Prototype, Adapter, Singleton, Composite,
Decorator, Observer, Template Method, Visitor
and State — Strategy). These variables have
been normalized over the number of classes of
a project, in order to filter out the confounding
factor project size. Thus, the variables are
calculated as the fraction of number of classes,
divided by the number of pattern instances.
Thus, the lower the value is, the more intensive
the use of GoF design patterns is.

[A13-Asg] metric scores on design quality. We adopted the
measures on design quality from the QMOOD
suite [2]. Thus, we recorded one variable for
each high-level quality attribute (Functionality,
Effectiveness, Extendibility, Reusability,
Understandability, Flexibility). We note that in
all measures, the higher the metric score is, the
higher the levels of design quality become.

[Azo] type of software (standalone/library).

Data Analysis: In the data analysis phase of our case
study we have employed descriptive statistics (mean
values and standard deviation, Spearman correlation),
graphs (3D area charts) and hypothesis testing (Mann
Whitney U-test) [5].

V.RESULTS

In this section we present case study results, organized by
research question. We note, that this section only deals
with presenting results, whereas a discussion of findings
(interpretation of results, and implications for researchers
and for practitioners), will be provided in Section VI.

RQ.: Differences in design quality

Regarding the differences between software libraries and
standalone applications, in terms of design quality, the
descriptive results are presented in Table I. Next, in order
to investigate if the results on our sample can be
generalized to a larger population, we performed a Mann-
Whitney U-test, i.e. a non-parametric test for testing
differences between mean values (see Figure 1).

Null Hypothesis Test Sig. Decision
Independent-)
4 The distribution of Reusability is the SAMPIeS S e
same across categories of type. Whitney U ! hypothesis.
Test
Independent- .
5 The distribution of Flexibility is the ~ pamPIeS (13t etain the
same across categories of type. Whitney U hypothesis.
Test
Independent-
The distribution of Understandability Samples Retain the
3 isthe same across categories of Mann- 113" null
type. Whitney U hypothesis.
Test
Independent-
[PR Samples Reject the
4 The distribution of Functionality is Mann- o141 nuHI

the same across categaories of type. Whitney U hypothesis.
Test
Independent- _
5 The distribution of Extendibility is ~ pame!®S oo Pt
the same across categories of type. Whitney U hypathesis
Test
Independent- :
The distribution of Effectiveness is Samples 1 Reﬁ%t the
b) ; Mann- 002% Tnu
the same across categories of type. Whitney U hypothesis.

Test

Fig. 1. Hypothesis testing for RQ,

TABLE |. DESCRIPTIVE STATISTICS FOR RQ;

Quality Attribute Type Mean
Reusabili Library 4.404
M Standalone 3.455

it Library 0.901
Flexbiliy Standalone 0.524
s Library 4142
Understandability standalone a8
Functionalit Library 2.281
y Standalone 1.618

P Library 1.243
Extendibility standalone Do
Effectiveness Library 0.586
Standalone 0.362

From both Table I and Figure 1, it can be concluded that
there is evidence for a difference in the levels of design
quality among software libraries and standalone
applications for some quality attributes (functionality,
extendibility and effectiveness).

RQ,: Differences in design pattern use intensity

In order to investigate if the aforementioned differences
can be attributed to the use of patterns, we first explore if
there are differences in the use intensity of GoF design
patterns between software libraries and standalone
applications (see Table II).

TABLE Il. DESCRIPTIVE STATISTICS FOR RQ;

Pattern Type Mean
Factory Method Library 69.2583
Standalone 109.7500
Library 45.3519
Prototype Standalone 82.3611
Singleton Library 35.0513
Standalone 53.8544
Library 17.6733
Adapter Standalone 32.9210
Decorator Library 16.9896
Standalone 236.3125
Proxy Library 137.0000
Standalone 325.3333
Observer Library 87.9167
Standalone 212.9714
Library 92.6667
Template Method o, falone 49.8021
Library 15.7985
State - Strategy Standalone 21.1458

As it is observed, all design pattern types, except from
Template Method, are more frequently occurring in
software libraries than standalone applications. To
examine whether there are significant differences between
the mean values presented in Table I, we performed a
Mann-Whitney U-test. The results suggested that the only
differences, which are statistically significant at the 0.05

level concern Decorator (sig: 0.01), and at the 0.10 level
concern Adapter (sig: 0.06).

RQs: Differences in the effect of design patterns on
design quality

Concerning the investigation of differences in the strength
of possible correlations between the number of employed
design pattern instances and the design quality metric
values, with respect to the software type (software library
or standalone application), the results are summarized in
Table Il (due to space limitations, in Table 111 we only
present statistically significant correlations at the 0.05
level). For example, the correlation coefficient for the first
row of Table Il implies that the use intensity of the
Adapter pattern has a positive effect on reusability (the
negative sign is due to the fact that the intensity of pattern
use is obtained as the fraction of number of classes,
divided by the number of pattern instances). Moreover,
the effect is stronger for standalone applications.

TABLE Ill. DESCRIPTIVE STATISTICS FOR RQ3

Correlation

Pattern:: QA Type Coefficient (sig)
Adapter :: Reusabilit Library 0167 (0.66)
pter - y Standalone -0.883 (0.03)
B - Library -0.467 (0.20)
Adapter :: Flexibility Standalone -0.883 (0.05)
B - Library 0.200 (0.60)
Adapter :: Understandability Standalone 0733 (0.25)
Adapter :: Functionali Library -0-250 (051)
pter - v Standalone -0.867 (0.03)
State-Strategy :: Flexibilit Library 0663 (0.04)
oy y Standalone -0.697 (0.02)
. . Library 0.867 (0.00)
State-Strategy :: Understandability Standalone 0.018 (0.96)
State-Strateqv - Functionalit Library -0.883 (0.00)
ate-Strategy - Functionatly Standalone -0.358 (0.31)
. . I Library -0.664 (0.02)
Singleton :: Flexibility Standalone 0.191 (0.57)

One of the most interesting observations from Table I, is
that actually only three design patterns, namely State-
Strategy, Adapter and Singleton are correlated to design
quality at system level (probably because these are the
most heavily used design patterns and therefore, their
aggregate effect is more evident at system level).
However, the quality attributes, to which these design
patterns have effect on, are in principal not among those
that differ between libraries and standalone applications.
Thus, such differences, at least from the results of this
study, cannot be attributed to the use of design patterns.
However, other interesting findings (although orthogonal
to the original research question), can be derived from the
exploration of the 3D area chart of Figure 2, by
contrasting the differences for libraries and standalone
software systems.

These plots can be interpreted as follows, considering for
example the top right chart concerning the effect of the
Adapter pattern on reusability. As the use of the Adapter
pattern becomes more frequent (the value 20 on the
Adapter axis indicates the occurrence of one Adapter
every 20 classes) in the case of standalone applications,
reusability increases. On the other hand, this observation
is not so evident for libraries.

Mean (Flexibility)

(Understandability)

Mean

Seopo eogn 40p0 W00 00
3 ‘State_Strategy

Fig. 2. Descriptive Graphs for RQs (3D Chart Areas)

VI. DISCUSSION

In this section we discuss the results of the case study,
based on the three research questions, and organized
through two different perspectives: (a) interpretation of
results, (b) implications for researchers and practitioners.

A. Interpretation of results

Although the statistical significance is relatively low, the
results weakly confirm the intuition that design libraries
excel both in terms of design quality (i.e. Functionality,
Extendibility, Effectiveness), as well as in terms of the
number of employed design patterns. The fact that the
investigated three qualities exhibit higher values for
libraries is rather reasonable. These measures depend
(positively) on abstraction which is higher for APIs,
negatively on coupling, which for the independent pieces
of functionality in a library is usually low, and positively
on the use of inheritance which by definition is extensive
in libraries. The low statistical significance regarding the
use of patterns can possibly be attributed to the small
number of pattern instances in the examined systems.

The results on the effect of patterns on the design quality
are rather mixed: for example, the effect of the Adapter
design pattern on reusability, flexibility, understandability
and functionality is more intense for standalone
applications despite the lower number of Adapter

instances. On the other hand, the impact of State-Strategy
pattern on understandability and functionality is higher
for libraries. Although no safe explanations can be
derived for these differences, the results imply that
patterns are exploited in a different manner between
software libraries and standalone applications. In any
case, further empirical evidence should be analyzed with
respect to the particular design decisions, which are
responsible for the improved design quality of libraries.

B. Implications to researchers and practitioners

Concerning implications for researchers and practitioners,

the results can be helpful for providing: (a) pointers to

interesting areas for future work, and (b) advices on how
detailed-design decisions could benefit from considering

GoF design patterns, as follows:

e researchers could further investigate the cause of
the observed differences in the instantiation of the
same pattern between software libraries and
standalone applications

e researchers could further investigate the different
effect of GoF design patterns between software
libraries and standalone application, in the class
level, rather than a system-wide level. It is expected
that locally the differences will be more evident

e agile software developers, based on the quality
attributes that they are interested in, can select GoF
design patterns which might have an effect on
system level quality attributes, if they are heavily
applied, e.g. State/Strategy improves flexibility

e the developers of standalone applications should
seek opportunities to apply design patterns more
systematically (at this point they don’t seem to use a
lot pattern instances), by studying design pattern
instantiation in well-known libraries

VII. THREATS TO VALIDITY

In study we classified threats to validity based on [12]
and [15], distinguishing them among four types. In this
section the validity threats are presented, accompanied
with the approaches that we followed to mitigate them.
Threats to construct validity: These threats concern the
design of the study and especially the identification of the
correct measures for the concepts being studied. The case
study was designed and contacted in separate stages,
strictly following the detailed case study protocol and the
approved methodology [12]. We used multiple sources of
evidence, for the data collection process and the QMOOD
metrics suite, which is a proper and empirically validated
metrics suite for Object Oriented Designs. The 26 OSS
projects explored (13 software libraries and 13 standalone
applications) were collected from the most representative
software areas such as Communications, Graphics, Audio
& Video and Business & Enterprise.

Threats to internal validity: These threats concern the
identification of cause-and-effect relationships and the
evidence of causality. In our study, we consider as threats
to internal validity those factors that may cause
interferences regarding the relationships that we are trying
to investigate [15]. As in [3], a threat is concerned with
the extent to which the design quality of the examined
systems has been accurately captured by the selected
metrics. We believe that the QMOOD metrics suite we
chose, predicts well the quality of an OO software design,
minimizing this threat. Another concern is that software
systems from different domains might have fundamental
differences in inherent complexity, affecting the design
and implementation. In our study, the categorization of
software projects and their domains were varied
randomly.

Threats to external validity: As threats to external
validity, we consider those factors that limit the
possibility to generalize the findings beyond the sample of
the study. Obviously, a different set of software projects
could lead to different results. This kind of threat is
always valid in an empirical study when the number of
systems is limited and the criticism is related to possible
differences between the projects that have been selected
for analysis and other kinds of projects.

Threats to reliability: This aspect of validity is
concerned with the extent by which the data and the
analysis are dependent on the particular researchers.
Reliability is demonstrating that the operations of a study,
such as the data collection procedures and analysis, can be
repeated, with the same results. We used a case study
protocol, documenting the procedures that have been
followed, as proposed in [12]. Moreover, we developed a
case study database storing the collected data. With these
operational steps we believe that an external auditor could
in principle repeat the procedures and arrive at the same
findings and conclusions.

VI111.CONCLUSIONS — FUTURE WORK

Design patterns are often regarded as an indication of
elaborate software design, improving several aspects of
quality. Driven by the assumption that software libraries
exhibit improved design quality compared to standalone
application, due to their need for continuous evolution
without disturbing their clients, we performed an
empirical study comparing the two kinds of software. In
particular, we investigated possible differences between
software libraries and standalone applications, with
respect to: (a) their design quality, (b) the use of GoF
design patterns, and (c) the effect of GoF design patterns
instances on quality attributes. The study is based on 26
open source projects, equally divided between libraries
and standalone applications.

According to the results: (a) the functionality,
extendibility and effectiveness of software libraries are
significantly higher than those of standalone applications,
(b) software libraries employ more design pattern
instances than standalone applications, but these results
are weak, and not generalizable to a wider population, and
(c) some pattern instances appear to have the stronger
effects on system-wide quality attributes. The
aforementioned results led us to the identification of
future work directions and interesting lessons learned for
practitioners.

IX. ACKNOWLEDGEMENT

The research work is co-founded by the European Social
Fund and National Resources, ESPA 2007-2013,
EDULLL, “Archimedes III” program.

X. REFERENCES

[1] A. Ampatzoglou, S. Charalampidou and 1. Stamelos, “Research
state of the art on GoF design patterns: A mapping study”, Journal
of Systems and Software, Elsevier, 86 (7), pp. 1945-1964, July
2013.

[2] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment”, Transaction on Software Engineering,
IEEE Computer Society, 28 (1), pp. 4-17, January 2002.

[3] A. Chatzigeorgiou and E. Stiakakis. “Benchmarking library and
application software with Data Envelopment Analysis”, Software
Quality Journal, Springer, 19 (3), pp. 553-578, September 2011.

[4] B. Ellis, J. Stylos and B. Myers, “The Factory Pattern in API
Design: A Usability Evaluation”, 29" International Conference on
Software Engineering (ICSE' 07), IEEE Computer Society, pp.
302-312, 20 - 26 May 2007.

[5] A. Field, “Discovering Statistics Using SPSS”, SAGE Publications,
2009.

[6] M. Fowler, “Refactoring: Improving the Design of Existing Code”,
Addison Wesley Longman, 1999.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison Wesley, 1994.

[8] J.Kerievsky. “Refactoring to Patterns”, Addison Wesley, 2004.

[9] T. Mens and T. Tourwe, “A Survey of Software Refactoring”,
Transactions on Software Engineering, IEEE Computer Society, 30
(2), pp. 126-139, 2004.

[10] C. J. Neill, “Leveraging object-orientation for real-time imaging
systems”, Real-Time Imaging, Elsevier, 9 (6), pp. 423-432, June
2003.

[11] W. Opdyke, "Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks," PhD Thesis,
1992.

[12] P. Runeson, M. Host, A. Rainer and B. Regnell, “Case Study
Research in Software Engineering: Guidelines and Examples”,
John Wiley & Sons, 2012.

[13] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis,
“Design pattern detection using similarity scoring”. Transactions
on Software Engineering, IEEE Computer Society, 32 (11), pp.
896-909, November 2006.

[14] J. Tulach, “Practical API Design: Confessions of a Java Framework
Architect”, Apress, 2012.

[15] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A.
Wesslen, “Experimentation in software engineering: An
introduction”, Kluwer, 2000.

