
Noname manuscript No.
(will be inserted by the editor)

SDK4ED - A Platform for building Energy Efficient,
Dependable, and Maintainable Embedded Software

Miltiadis Siavvas* · Dimitrios Tsoukalas ·
Charalambos Marantos · Lazaros
Papadopoulos · Christos Lamprakos ·
Oliviu Matei · Christos Strydis ·
Muhammad Ali Siddiqi · Philippe
Chrobocinski · Katarzyna Filus · Joanna
Domańska ·
Paris Avgeriou · Apostolos Ampatzoglou ·
Dimitrios Soudris ·
Alexander Chatzigeorgiou ·
Erol Gelenbe · Dionysios Kehagias ·
Dimitrios Tzovaras

Received: date / Accepted: date

Miltiadis Siavvas
Centre for Research and Technology Hellas, Thessaloniki, Greece
*Corresponding Author
E-mail: siavvasm@iti.gr

Dimitrios Tsoukalas
Centre for Research and Technology Hellas, Thessaloniki, Greece
E-mail: tsoukj@iti.gr

Charalampos Marantos
School of Electrical and Computer Engineering, National Technical University of Athens,
Athens, Greece
E-mail: hmarantos@microlab.ntua.gr

Lazaros Papadopoulos
School of Electrical and Computer Engineering, National Technical University of Athens
E-mail: lpapadop@microlab.ntua.gr

Christos Lamprakos
School of Electrical and Computer Engineering, National Technical University of Athens
E-mail: cplamprakos@microlab.ntua.gr

Oliviu Matei
R&D Department, Holisun SRL, Baia Mare, Romania
E-mail: oliviu.matei@holisun.com

Christos Strydis
Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
E-mail: c.strydis@erasmusmc.nl

Muhammad Ali Siddiqi
Neuroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
E-mail: m.siddiqi@erasmusmc.nl

Philippe Chrobocinski
AIRBUS Defence and Space, France

2 Miltiadis Siavvas* et al.

Abstract Developing embedded software applications is a challenging task, chiefly
due to the limitations that are imposed by the hardware devices or platforms on
which they operate, as well as due to the heterogeneous non-functional require-
ments that they need to exhibit. Modern embedded systems need to be energy
efficient and dependable, whereas their maintenance costs should be minimized,
in order to ensure the success and longevity of their application. Being able to
build embedded software that satisfies the imposed hardware limitations, while
maintaining high quality with respect to critical non-functional requirements is
a difficult task that requires proper assistance. To this end, in the present pa-
per, we present the SDK4ED Platform, which facilitates the development of em-
bedded software that exhibits high quality with respect to important quality at-
tributes, with a main focus on energy consumption, dependability, and maintain-
ability. This is achieved through the provision of state-of-the-art and novel quality
attribute-specific monitoring and optimization mechanisms, as well as through a
novel fuzzy multi-criteria decision-making mechanism for facilitating the selection
of code refactorings, which is based on trade-off analysis among the three main
attributes of choice. Novel forecasting techniques are also proposed to further sup-
port decision making during the development of embedded software. The useful-
ness, practicality, and industrial relevance of the SDK4ED platform were evaluated

E-mail: philippe.chrobocinski@airbus.com

Katarzyna Filus
Institute of Theoretical & Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
E-mail: kfilus@iitis.pl

Joanna Domańska
Institute of Theoretical & Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
E-mail: joanna@iitis.pl

Paris Avgeriou
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University
of Groningen, Groningen, The Netherlands
E-mail: p.avgeriou@rug.nl

Apostolos Ampatzoglou
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
E-mail: a.ampatzoglou@uom.edu.gr

Dimitrios Soudris
School of Electrical and Computer Engineering, National Technical University of Athens,
Greece
E-mail: dsoudris@microlab.ntua.gr

Alexander Chatzigeorgiou
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
E-mail: achat@uom.edu.gr

Erol Gelenbe
Institute of Theoretical & Applied Informatics, Polish Academy of Sciences, Gliwice, Poland
E-mail: seg@iitis.pl

Dionysios Kehagias
Centre for Research and Technology Hellas, Thessaloniki, Greece
E-mail: diok@iti.gr

Dimitrios Tzovaras
Centre for Research and Technology Hellas, Thessaloniki, Greece
E-mail: dimitrios.tzovaras@iti.gr

3

in a real-world setting, through three use cases on actual commercial embedded
software applications stemming from the airborne, automotive, and healthcare do-
mains, as well as through an industrial study. To the best of our knowledge, this is
the first quality analysis platform that focuses on multiple quality criteria, which
also takes into account their trade-offs to facilitate code refactoring selection.

Keywords Embedded Software · Software Quality Evaluation · Energy
Consumption · Dependability · Maintainability · Trade-off Analysis

1 Introduction

The increased utilization of embedded systems in our daily lives, which can be
attributed mainly to the rising popularity and utilization of IoT systems that is
observed recently (e.g., Smart Home, Smart Driving, etc.), has led to an increase
in the production of software applications that are meant for embedded devices.
The development of embedded software is a challenging task, chiefly due to the
limitations in the available resources (e.g., available memory, energy capacity, etc.)
that are imposed by the hardware platforms on which the software runs, as well
as due to the often-conflicting non-functional requirements that it has to satisfy.
For instance, embedded software applications need to be energy efficient, since
embedded devices are normally battery dependent, as well as highly dependable,
due to their high interconnectivity and accessibility through the Internet, while
their maintenance costs should be kept as low as possible in order to ensure their
longevity.

An important means for improving non-functional requirements during soft-
ware development is code refactoring, which is the process of altering the source
code of a software application in order to improve the target non-functional re-
quirement while preserving its original functionality. However, it has been observed
in the literature that a code refactoring that is employed for improving a specific
quality attribute may have a negative impact on other critical quality aspects of
the system (Holzmann 2017; Mohammed et al. 2016). Nevertheless, it is difficult,
if not impossible, for a developer to estimate the impact that their code changes
may have on various critical quality aspects, as well as to simultaneously satisfy
the limitations imposed by the hardware platforms, as it requires experience and
relevant expertise. Hence, there is a strong need for mechanisms able to assist
developers in monitoring and optimizing critical quality attributes of embedded
software, as well as in determining the impact that their code changes may have
on critical quality attributes, in order to make more informed decisions.

Several quality attribute-specific methods, techniques, and mechanisms have
been proposed over the years for quantifying various quality aspects of software,
as well as for suggesting code changes that could improve those quality aspects.
However, existing approaches face specific challenges that must be addressed. For
instance, various dynamic energy indicators have been proposed and are widely
used for measuring the energy efficiency of embedded systems, as well as the opti-
mizations that could be employed for reducing their energy footprint (Eder et al.
2017; Zheng et al. 2016, 2017). However, there are no indicators able to estimate
the energy-hungry hotspots of a given software, nor an approach that could a pri-
ori estimate the energy consumption of a given application in various hardware

4 Miltiadis Siavvas* et al.

architectures without requiring its actual execution, which would be highly useful
during the development of low-energy applications. With respect to maintainabil-
ity, the Technical Debt metaphor (Cunningham 1993) is the de facto standard
for its quantification. However, current literature lacks approaches able to assess
the maintainability of the new code that is added to a system, or to effectively
prioritize maintainability-enhancing code refactorings. Finally, with respect to de-
pendability, although optimization solutions exist (Mohammed et al. 2016), no
effective and well-accepted indicators have been proposed in the literature so far.

Apart from the aforementioned challenges, the major problem of existing qual-
ity monitoring and optimization mechanisms is that they focus exclusively on
a specific quality attribute. No mechanism (or platform) exists in the literature
that provides quantitative indicators and improving capabilities for multiple non-
functional requirements, especially for the case of embedded software. In addition
to this, none of the existing quality attribute-specific monitoring and optimiza-
tion mechanisms provide information on the potential impact that the proposed
optimizations (i.e., code refactorings) may have on other critical quality attributes.

To this end, in order to address the aforementioned challenges, as part of
the SDK4ED EU H2020 Project1, we introduce the SDK4ED platform, which
aims at facilitating the development of high quality embedded software, focusing
mainly on the aspects of energy consumption, dependability (i.e., security and re-
liability), and maintainability. In particular, it provides solutions for monitoring
and optimizing the three targeted quality attributes individually, both by utiliz-
ing state-of-the-art concepts, such as Technical Debt, and by introducing novel
quality attribute-specific models and approaches. The SDK4ED platform, in an
attempt to support decision making during the development cycle, also introduces
advanced forecasting models able to provide projections for the future evolution
of the quality attributes that the platform supports, helping in that way project
managers better prioritize their testing and fortification efforts. Finally, a novel
fuzzy multi-criteria decision-making technique is provided, which facilitates the se-
lection of the best subset of code refactorings that should be applied to the source
code of an embedded software application, i.e., those refactorings that improve a
quality attribute of choice, without affecting (at least significantly) the other at-
tributes, based on trade-off analysis among the often-conflicting criteria of energy
consumption, dependability, and maintainability. This mechanism enables devel-
opers to make more informed decisions with respect to the code transformations
that can be applied, reducing the possibility of unintentionally introducing new
issues to other quality attributes.

The SDK4ED Platform was evaluated in a real world-setting, through three
case studies, which were based on embedded software actively developed by three
companies, coming from the automotive, healthcare, and airborne domains. In
particular, the SDK4ED platform was utilized by the developers of these com-
panies in order to monitor and improve specific quality attributes (among those
supported by the platform) that they considered more critical for their applica-
tions. A broader industrial study was also conducted, in order to further evaluate
the usefulness, practicality, and industrial relevance of the platform, as well as the
potential financial benefits that it may provide in practice.

1 https://sdk4ed.eu/

5

The SDK4ED Platform has been implemented in the form of a service-oriented
platform, which can be deployed locally on the premises of an interested party.
In addition, the novel mechanisms of the SDK4ED platform have been imple-
mented as independent microservices, which are separately deployable and acces-
sible through their dedicated REST API, enabling, in that way, their potential
future integration into third-party applications. To the best of our knowledge, this
is the first quality analysis platform that not only focuses on multiple quality at-
tributes, but also takes into account the interdependencies among these quality
attributes through trade-off analysis for facilitating code refactoring selection.

The purpose of the present paper is to provide a complete overview of the
SDK4ED platform and the novel features that it provides for monitoring and
optimizing the energy consumption, the dependability, and the maintainability of
embedded software products. This is also the first paper that presents the results
of the qualitative evaluation of the proposed platform and its novel features on
a real-world setting through its application on three use cases coming from the
automotive, healthcare, and airborne domains.

The rest of the paper is structured as follows: Section 2 discusses the vision of
the SDK4ED project, whereas Section 3 provides an overview of the related work
focusing mainly on the main challenges that the SDK4ED platform attempts to
address. Section 4 provides an overview of the SDK4ED platform, along with
a detailed description of the state-of-the-art and novel features that it exhibits,
whereas in Section 5 a description of the technical implementation of the platform
is given, along with information about its installation and utilization. Section 6
presents the evaluation of the SDK4ED platform in a real-world setting through
three use cases with real companies and through an industrial study, whereas
Section 7 provides some observations and lessons learned from the qualitative
evaluation. Finally, Section 8 concludes the paper and provides directions for future
work.

2 The Vision of the SDK4ED Project

The implementation of embedded applications requires horizontal expertise on
both software and hardware aspects, and therefore the close collaboration be-
tween software and hardware engineers. The vision of the SDK4ED project is to
bring together the software and hardware communities, by encapsulating the re-
quired expertise that each group lacks. In particular, software engineers operate
chiefly on the application layer focusing on writing code to satisfy the desired func-
tionalities of the system. Although they are aware of application-level challenges
(e.g., functional correctness, user satisfaction, etc.), they usually lack knowledge
and expertise with respect to the underlying hardware on which the application
is running, leading to hardware-related overheads (e.g., energy consumption or
performance degradation), which could have been avoided if they knew how to
avoid these issues or even utilize hardware features in a proper way. On the other
hand, hardware engineers operate at lower levels of the application stack, focusing
on the effective utilization of the available hardware resources. However, due to
their lack of software expertise, optimizations that they apply on the code for im-
proving resource utilization (e.g., optimizing memory hierarchy utilization, using
acceleration units etc.), may affect important high-level quality attributes, such as

6 Miltiadis Siavvas* et al.

the understandability and, in turn, the maintainability of the source code, which
is a critical aspect for the longevity of the broader application.

Fig. 1 The vision of the SDK4ED Project.

To this end, the SDK4ED platform attempts to bridge the gap between these
two communities. In particular, the main goal of the platform is to allow the soft-
ware and hardware engineers to focus on their activities, encapsulating all the
required expertise that they lack, which is provided to the stakeholders in the
form of actionable recommendations. For instance, a software developer can focus
on the implementation of a specific feature without thinking about the under-
lying hardware, and the SDK4ED platform could inform him about the energy
consumption, without the need of executing the code on the targeted devices to
measure energy, that would increase the development time and cost. Also, in case
their code is causing excessive energy consumption, the platform could provide
information about why this is happening or how they could avoid it. Similarly,
a hardware engineer could focus on applying energy and performance optimiza-
tions on the system, and the SDK4ED platform could inform them on the impact
that their changes would have on the maintainability of the system, along with
recommendations on how to reduce this impact. Hence, the SDK4ED platform
could act as a link between the software and hardware knowledge, and facilitate
the collaboration of software and hardware experts in the context of embedded
systems in which this collaboration is necessary.

3 Related Work and Advances

The SDK4ED platform aims at facilitating the development of high-quality em-
bedded software. This is achieved through the provision of novel mechanisms for
enabling the independent monitoring and optimization of the energy consumption,
dependability, and maintainability of embedded software, as well as through a de-
cision support mechanism that considers the interplay among these three quality
attributes for facilitating more informed code refactorings selection. In the present
section, we provide the related work focusing mainly on the main challenges that

7

the SDK4ED Platform attempts to address and the advancements beyond the
state-of-the-art that it provides, both for the individual quality attributes and for
the unified consideration of software quality.

Energy Monitoring and Optimization: With respect to Energy Consump-
tion, existing works vary significantly, based on the level at which the energy effi-
ciency is treated. A large number of studies aimed at estimating energy consump-
tion either by using hardware-specific performance/energy models (Eder et al.
2017) or by performing dynamic instrumentation to collect profiling features that
feed machine learning models (Zheng et al. 2016, 2017). The impact of system calls
on energy efficiency is also studied extensively (Aggarwal et al. 2015), while en-
ergy savings are usually achieved by focusing on data structure selection (Manotas
et al. 2016).

The importance of designing a software development tool that offers continuous
energy consumption monitoring and suggests optimizations is a challenging task
that is also emphasized in recent survey studies (Georgiou et al. 2019). Pinto et al.
(Pinto and Castor 2017), also, highlights software developers’ lack of knowledge.
According to this study, 50% of the participated developers could not improve
energy in their applications.

Existing tools are also based on a variety of different approaches from estima-
tion models and performance counters to direct measurements through hardware
energy sensors. Running Average Power Limit (RAPL) (David et al. 2010) is a
dynamic tool, supported by specific Intel architectures, which estimates power con-
sumption from the CPU’s performance counters. Jalen (Noureddine et al. 2015) is
a popular tool in the Java community that estimates energy by analyzing JVM and
the executed Java instructions. Mature and well-structured monitoring tools tar-
get Android Smartphones e.g. Android Energy Profiler, Anandroid, GreenScaler,
Trepn. PEEK (Hönig et al. 2014) makes energy monitoring on the function level,
by simply searching on a set of alternative power mode configurations, compiler
flags, and libraries. SEEP (Hönig et al. 2012) makes coarse-grain estimations based
on symbolic execution and SEEDS (Manotas et al. 2014) tries to make simple data
structures optimizations.

Some approaches try to offer cross-device solutions based on simple machine
learning algorithms (Bazzaz et al. 2013). However, they target only specific micro-
controllers and instruction sets. More recent works that provide increased accu-
racy, utilize machine learning techniques (Zheng et al. 2016, 2017). However, they
are based on dynamic instrumentation, imposing problems with regard to being
integrated into a Software Development Toolbox. More specifically, they need ap-
plication execution, adding also a large time overhead. In addition, they require a
lot of manual actions by developers (e.g. adding annotations). Another category of
tools used by practitioners to help them improve energy efficiency includes system
emulators like Gem5 (Binkert et al. 2011; Lowe-Power et al. 2020). However, using
emulators like Gem5 is extremely slow and also requires special knowledge from
the users.

Embedded systems practitioners usually perform exhaustive design space ex-
ploration to select proper microarchitectural configurations (e.g., regarding the
cache memory) in order to save energy (Wang et al. 2011; Reddy and Petrov 2010).
Dynamic Voltage and Frequency Scaling is also used in CPU-based systems, lead-
ing to trade-offs between power and performance that enable energy consumption
management (Awan and Petters 2011). Optimizing energy consumption is usually

8 Miltiadis Siavvas* et al.

the goal of studies that use custom SoCs, DSPs, or propose application-specific
hardware designs. Also, the modern heterogeneous embedded devices, that include
FPGA or GPU units on the same chip, offer acceleration capabilities that can also
lead to significant energy savings (Llamocca et al. 2011; Fowers et al. 2012). One
could argue that as the years go by, the burden of programming this type of
devices falls more on libraries. For example, in machine learning applications, li-
braries such as Tensorflow, Pytorch, etc. offer the choice of using GPUs or TPUs
easily from the Python code level. However, software developers still need advice
about how and when to use all these features, as well as the configurations they
need to make. An important motivation for the SDK4ED Energy Toolbox, is the
lack of tools to assist developers in deciding upon using the heterogeneity capabili-
ties of modern embedded devices to save energy. The few existing tools of deciding
upon acceleration, focus only on speed-up prediction and target general purpose
systems (CPU-GPGPU) (Wang et al. 2017; Lee et al. 2015; Ardalani et al. 2015),
without supporting the prediction of energy savings.

SDK4ED Energy Toolbox offers three key features: (i) identification of energy
consumption hot-spots and monitoring of energy indicators using dynamic instru-
mentation, (ii) cross-device energy consumption estimation solely based on static
analysis, and (iii) identification of energy optimization opportunities, with the
most significant being the estimation of energy consumption gains by utilizing ac-
celerators (e.g., GPU). Although the proposed solution partially relies on existing
tools, it also introduces new individual components that aim to offer advancements
beyond the state-of-the-art. SDK4ED offers energy consumption estimation and
optimization suggestions without the need of executing the code on the targeted de-
vices (cross-device), lowering the barrier of access of embedded systems hardware
and energy sensors for software engineers. By analysing the code on the backend
(programmer’s workstation or a host server), SDK4ED estimates the potential en-
ergy consumption of applications across various embedded devices, eliminating the
need for access to those devices. While executing the code and measuring energy
directly on targeted devices yields the most accurate results, not all hardware
alternatives are accessible and such processes may require sophisticated equip-
ment (e.g., special sensors) or expertise, increasing development time and costs.
While the monitoring components, integrated into SDK4ED, report energy indica-
tors and suggest optimizations based on code execution on the SDK4ED platform
backend, the static analysis estimation component facilitates energy consumption
estimation without requiring code execution, even on the SDK4ED backend. The
developer, through static analysis, can get an early estimation of the energy con-
sumption of their source code from the very early stages of the development, even
when no working version of their application is available. Later on, when a work-
ing version is available, they can utilize the energy estimators that require actual
execution of the source code, in order to gain better and more accurate results
with respect to energy consumption. In addition, no accurate hardware model-
ing is required and the proposed solution is extensible in the sense that it allows
users to add estimation models for other devices easily. Finally, the acceleration
prediction tool, integrated in SDK4ED, focuses on the estimation of the potential
energy savings by using performance-related machine learning features, extending
the relevant State-of-the-Art approaches.

Maintainability Monitoring and Optimization: As far as Maintainabil-
ity is concerned, the Technical Debt (TD) metaphor has recently become the de

9

facto standard for its quantification (Cunningham 1993). TD draws an analogy
to the concepts of Principal and Interest from loans in classical economics. In the
context of software maintenance, TD Principal expresses the time (or effort) that
is required for fixing all the maintainability-related issues that reside in the source
code of an application and is widely used as the main indicator of code or de-
sign quality (Li et al. 2015) (Ampatzoglou et al. 2015). On the other hand, TD
Interest quantifies the additional cost (or effort) that needs to be paid for future
maintenance, exactly because issues have not been resolved early enough during
the development process and thus hinder the addition of new features or the fixing
of errors (Seaman and Guo 2011). TD interest probability is the risk for an arti-
fact that exhibits TD issues to undergo maintenance, thereby incurring additional
maintenance costs (i.e., interest) (Ampatzoglou et al. 2018). In essence, the TD
metaphor expresses in monetary terms, the consequences of ’sweeping problems
under the carpet’ in software development.

The impact of TD on the productivity and cost of software development and
maintenance is tremendous: An empirical study surveying 43 developers about
wasted time revealed that developers waste, on average, 23% of their time due to
the presence of TD and that developers are frequently forced to introduce new TD
(Besker et al. 2019). Another study showed that, if not repaid promptly, TD can
even lead to a completely unmaintainable software (technical bankruptcy) (Surya-
narayana et al. 2014). Results from the InsighTD family of surveys with researchers
from eight countries indicate that the effects of TD which are more likely to be felt
in software projects are quality issues and planning and management issues (such
as delivery delay and need for rework) (Rios et al. 2019). Various types of TD exist
depending on the software lifecycle phase in which it is incurred and the artifacts
in which it resides, including code, design, architectural, documentation, test, and
build debt (Brown et al. 2010). Nevertheless, code TD is the most studied type
of technical debt in the literature and the most supported type of TD by existing
tools for TD management (Fontana et al. 2016).

Several commercial tools and research prototypes have been released to mea-
sure TD through static analysis (Avgeriou et al. 2021). SonarQube is by far the
most popular tool based on its popularity in the literature and the Web. Existing
tools quantify the level of maintainability (i.e., TD principal), but very few tools
focus on the consequence of these issues (i.e., TD interest) (Amanatidis et al. 2020),
thereby weakening the use of TD as a means for convincing managers about the
extra maintenance costs (interest) and the probability of additional maintenance
(interest probability) and arguing about repaying TD.

The SDK4ED Platform supports all aforementioned TD concepts, namely prin-
cipal, interest, and interest probability. It relies on SonarQube for the quantifica-
tion of principal and introduces novel approaches for assessing interest and interest
probability. Through the prioritization mechanisms that it offers, as well as visual-
izations targeting the concepts that matter most to software practitioners, it sup-
ports various activities of TD Management such as identification, quantification,
ranking, and resolution of TD issues. Furthermore, the TD toolbox of SDK4ED
supports not only the repayment of existing TD in software projects but also the
prevention of TD by assessing the quality of new code that is to be committed
against the quality of past versions. Finally, through the forecasting toolbox, it is
also feasible to predict the anticipated evolution of TD at the level of individual
software modules or at the level of the entire software project.

10 Miltiadis Siavvas* et al.

Dependability Monitoring and Optimization: With respect to Security,
which is an important facet of Dependability, current literature lacks a well-
accepted and reliable method for its quantification (Morrison et al. 2018; Ansar
et al. 2018; Sentilles et al. 2018). Although several static and dynamic techniques
have been proposed over the years for detecting security issues and suggesting
security optimizations (Mohammed et al. 2016), which provide useful information
that could be leveraged for the derivation of quantitative security measures, no
meaningful indicators have been proposed so far (Morrison et al. 2018). Existing
approaches are either subjective and unreliable (e.g., (Lai 2010; Alshammari et al.
2011; Medeiros et al. 2018)), as they are based on questionable parameters de-
fined arbitrarily by the authors, or they are relatively reliable, but they are not
operational, and therefore they cannot be used in practice (Colombo et al. 2012;
Xu et al. 2013; Zafar et al. 2015; Dayanandan and Kalimuthu 2018). To fill this
gap, the SDK4ED platform introduced a hierarchical security assessment model
(SAM), which is able to provide a quantitative expression of the security of em-
bedded software, based mainly on security information statically retrieved from
the source code (Siavvas et al. 2021). The proposed security model is sufficiently
reliable as it is in line with international quality and security standards (e.g.,
ISO/IEC 25010 (ISO/IEC 2011) and ISO/IEC 27001 (ISO/IEC 2013)) and its
parameters are defined based on data and expert knowledge retrieved from well-
accepted sources of information like the Common Weakness Enumeration (CWE).
It is also practical as it is operationalized in the form of a web service, which is
either directly invokable or accessible through the SDK4ED platform.

Building secure embedded software, apart from quantitative security indica-
tors, also requires mechanisms able to highlight software components (i.e., classes,
methods, etc.) that require attention from a security viewpoint. Vulnerability pre-
diction models, which are machine learning models that are able to detect poten-
tially vulnerable software components, are suitable for this task. Several vulnera-
bility prediction models have been proposed over the years, with text mining-based
models to demonstrate the best predictive performance (Scandariato et al. 2014;
Dam et al. 2018; Li et al. 2018; Zhou et al. 2019; Hanif and Maffeis 2022; Kim
et al. 2022; Hanif and Maffeis 2022). Software metrics have also shown promising
results (Chowdhury and Zulkernine 2011; Shin et al. 2011; Zagane et al. 2020).
Hence, the SDK4ED platform proposes novel vulnerability prediction models that
combine both text features and software metrics and utilize Random Neural Net-
works as a bonding model for building hybrid models that combine both types of
features (Filus et al. 2021b,a). Very limited attempts can be found in the literature
that combine both text features and software metrics, whereas it is the first time
that Random Neural Networks were used for vulnerability prediction purposes.

For optimizing the Reliability of embedded software, which is another impor-
tant facet of dependability, the checkpoint and restart (CR) (Egwutuoha et al.
2013; Arora 2017; Shahzad et al. 2018) mechanism is widely used in practice, es-
pecially in High-Performance Computing (HPC) systems (Elnozahy et al. 2002;
Takizawa et al. 2011; Losada et al. 2016; Rodríguez et al. 2010; Hursey et al. 2007;
Moody et al. 2010), in which reliable execution is a critical concern. In the CR
mechanism snapshots of the program (i.e., checkpoints) are periodically generated,
and in case of a failure the execution restarts from the most recent checkpoint (in-
stead from the beginning), avoiding in that way excessive re-executions. However,
the CR mechanism is known to introduce significant overheads in the execution

11

of the program, which have been found to be affected by the checkpoint inter-
val, i.e., the interval between two consecutive checkpoints. Although several CR
libraries and tools have been proposed over the years, none of them provide rec-
ommendations for the selection of the inter-checkpoint interval. To this end, the
SDK4ED platform introduces novel mathematical models for modeling a program
with and without the presence of checkpointing, as well as for computing the
optimum checkpoint interval, i.e., the interval that minimizes the checkpointing-
induced overheads (Siavvas and Gelenbe 2019a,b; Gelenbe et al. 2020; Gelenbe
and Siavvas 2021).

Quality Attribute Forecasting: Existing quality attribute-specific monitor-
ing mechanisms provide quantitative indicators for determining the current status
of a given software application with respect to an important non-functional re-
quirement. Apart from its current status however, estimating the future evolution
of critical quality attributes of a given application is also important for making
more informed decisions during its development. For instance, if the Technical
Debt of an application is expected to increase significantly in the near future,
immediate TD repayment activities may be employed in order to prevent the ac-
cumulation of TD, and, in turn, minimize the risk of reaching the point at which
the application becomes unmaintainable (i.e., the breaking point (Chatzigeorgiou
et al. 2015)). Despite the apparent importance of forecasting the evolution of qual-
ity attributes, no relevant attempts could be found in the literature. To this end,
the SDK4ED Platform introduced novel models for forecasting the evolution of a
quality attribute of choice based on both time series and machine learning tech-
niques, focusing mainly on the aspect of TD, as the evolution of TD is important
for the success and longevity of an application, due to its relation to maintenance
costs (Tsoukalas et al. 2019, 2020). The novel TD-specific forecasting models have
been successfully extended and applied for the cases of energy consumption and
dependability (particularly, security) as well.

Trade-off Analysis: As can be seen by the above analysis, the quality mon-
itoring and optimization models that have been proposed so far focus exclusively
on a specific quality attribute (i.e., non-functional requirement). These models are
able to provide quantitative indicators of a specific quality attribute (e.g., energy
consumption, maintainability, etc.), and suggest optimizations that are meant to
improve the quality attribute of choice. To the best of our knowledge, and despite
the fact that there is empirical evidence for the conflicting nature of critical non-
functional requirements, no model, technique, or mechanism exists in the literature
that also reports an estimate of the potential impact that its suggested optimiza-
tions may have on critical quality attributes other than the target quality attribute
that it attempts to optimize. The most relevant solution is the Quamoco quality
platform (Wagner et al. 2015). This platform enables the user to define their own
quality models, giving them the opportunity to define multiple quality attributes
and determine how they can be quantified through static analysis. However, the
platform does not support runtime quality attributes like energy consumption,
which is important for embedded systems. In addition to this, it does not report
and account for the interplay (i.e., trade-offs) among different quality criteria, and
the impact of code refactorings on the critical quality attributes. Finally, Quamoco
is not operational in the form of a tool and it seems to have become obsolete.

The SDK4ED platform attempts to address the aforementioned challenges by
providing support both for design-time (e.g., maintainability) and runtime (e.g.,

12 Miltiadis Siavvas* et al.

energy consumption) quality attributes, through the integration of state-of-the-art
monitoring and optimization mechanisms in a unified manner. It also accounts for
the interplay among the often-conflicting quality attributes of energy consumption,
dependability, and maintainability, by conducting trade-off analysis among these
quality aspects, in an attempt to assist code refactoring selection. In particular,
a novel mechanism is proposed that computes the impact of code refactorings on
these three quality attributes, in order to assist developers in selecting the best
subset of code refactorings according to their needs, e.g., those code refactorings
that will improve a specific quality attribute, without affecting (at least signifi-
cantly) the other quality attribute of choice (Lamprakos et al. 2022). To the best
of our knowledge, no mechanism or platform exists in the literature that facilitates
code refactoring selection by reporting the impacts of suggested optimizations (i.e.,
code refactorings) on multiple critical non-functional requirements. In addition to
this, no quality platform exists that provides support for multiple design-time and
runtime quality attributes, especially for the case of embedded software.

An overview of the SDK4ED platform and its core functionalities has been
provided in (Marantos et al. 2022c). However, in (Marantos et al. 2022c) the main
functionalities were not described in detail, whereas no emphasis on the actual
evaluation of the platform was given. In the present paper, a detailed description
of the SDK4ED platform is provided, giving a complete overview of the novel
features that it provides, allowing the reader to gain a deeper understanding of the
proposed novelties. In addition to this, the present paper gives specific emphasis
on the qualitative evaluation of the SDK4ED Platform on a real-world setting
through its application on three use cases from the automotive, healthcare, and
airborne domain. It also demonstrates the main conclusions and lessons learnt that
were derived from the three years of the project.

4 Innovations of the SDK4ED Platform

The purpose of the SDK4ED platform is to facilitate the production of high-quality
embedded software, focusing mainly on the quality aspects of energy efficiency,
dependability, and maintainability. It achieves this by providing both state-of-the-
art and novel quality attribute-specific monitoring and optimization mechanisms,
as well as through the provision of a novel mechanism for assisting the selection of
the code refactorings that should be applied to the source code of the embedded
software. Code refactorings selection is based on their impact on the three quality
attributes of interest, which is computed through trade-off analysis that is based
on fuzzy multi-criteria decision making techniques. The high-level overview of the
SDK4ED platform is illustrated in Figure 2.

As can be seen by Figure 2, the SDK4ED platform consists of five different com-
ponents, i.e., toolboxes, namely the Energy Toolbox, the Maintainability Toolbox,
the Dependability Toolbox, the Forecasting Toolbox, and the Decision Support
Toolbox. The first three components, as their name indicates, provide solutions
for monitoring and optimizing the energy consumption, the maintainability, and
the dependability of embedded software respectively. The Forecasting Toolbox is
responsible for providing projections of the future evolution of the three quality
attributes that the SDK4ED platform focuses on. The last toolbox is responsible
for supporting decision-making with respect to the selection of appropriate code

13

Fig. 2 The high-level overview of the SDK4ED Platform.

refactorings to be implemented in the code, based on their impact on energy con-
sumption, maintainability, and dependability, which is determined through trade-
off analysis among these often-conflicting quality attributes. As shown in Figure
2, the Decision Support Toolbox depends on the outputs of the other four mod-
ules, acting like a bonding model among the various novelties provided by each
toolbox. The SDK4ED platform is able to analyze software applications that are
written in C, C++, and Java programming languages, which are highly popular in
embedded software development. In the rest of the present section, each one of the
aforementioned components is described, putting emphasis on the novel concepts
that the SDK4ED platform introduces.

4.1 Energy Toolbox

The SDK4ED Energy optimization methodology consists of two parts. The first
one (Consumption Analysis) is responsible for analyzing the application source
code in terms of energy consumption either by monitoring energy consumption in-
dicators and identifying the most energy-consuming parts of the code (hotspots),
where developers should focus, or by estimating the energy consumption of indi-
vidual application code blocks if executed on a number of devices (cross-device)
through static analysis. The second component (Optimization Suggestions) aims
on suggesting source code transformations that will potentially reduce the energy

14 Miltiadis Siavvas* et al.

consumption of an identified hotspot. The flow of the SDK4ED Energy Toolbox
methodology is depicted in Figure 3 and is presented in detail in the following
paragraphs.

Propose optimization

Evaluate optimization

Consumption Analysis

Energy Optimization Suggestions

Data flow-

related

Concurrency

- related

Proposed

indicators

Profiling application

Energy Indicators / Hotspots Monitor

Dynamic

instrumentation

Estimation model

Energy gains by offloading on accelerators

Reporting Hot-

spots and Energy

indicators’ values

Select

platform

Application Source code

New

Optimization

Suggestion

Tool

Parsing

source

code

Application initialization

Select optimization

Assembly Features

extraction

Estimation

model

Platform

dataset

Cross-device Energy Estimation

Static Analysis

4.1.1 4.1.2

4.1.3

Fig. 3 Energy Support Toolbox flow

4.1.1 Energy Indicators and Hotspots identification (Dynamic analysis)

The analysis flow starts with the Application Initialization, which includes both re-
trieving information about the targeted source files by the user and building/run-
ning the application. Then it proceeds to Parsing source code. In this step, by
generating the Abstract Syntax tree (AST) of the application using CLANG2, for
and while code blocks are identified in the application source code.

The first step of the dynamic analysis is Profiling, which is supported by tools
that perform dynamic instrumentation, Valgrind3 (Cachegrind and Callgrind) as
well as Linux Perf4. The generated output of the application profiling is recorded
in log files that are processed returning the Hot-spots and the Energy Indicators.

We selected energy consumption indicators that can be monitored by using
tools that are mature, active, and widely used by the embedded systems commu-
nity. Their selection is also based on the following three criteria:

– The values of the selected indicators should be directly related to the source
code of the application. In other words, source code refactorings should have a

2 https://clang.llvm.org/
3 https://valgrind.org/
4 https://perf.wiki.kernel.org/

15

Table 1 Selected Energy Indicators

Indicators (supported) Indicators (to be added)
CPU related
CPU cycles Ratio of CPU stalls
Instructions
Branch miss ratio
Memory related
Memory accesses # Page faults
I-cache miss ratio # Heap memory blocks lost
D-cache miss ratio
Multi-threading related
Data races Lock contention

Lock order violation
Acceleration specific indicators
Instruction level parallelism
Memory/control/integer/mul/div/fp operations
Number of cold misses
Branch divergence
Memory stride

direct impact on their values. Energy indicators that are mainly controlled by
the operating system or by the hardware architecture-level techniques are not
selected.

– There exist source-to-source optimizations that may improve their values. The
values of the indicators monitored by the energy consumption toolbox are
expected to indicate source-to-source optimizations of energy consumption.
Therefore, indicators for which no optimization has been proposed in the lit-
erature are not selected.

– A subset of these indicators shows the efficiency of assigning the execution of
a part of CPU source code on an accelerator. We selected indicators that can
be used to estimate the energy gains of offloading a piece of application source
code on an accelerator (Acceleration specific indicators).

The selected energy consumption indicators are presented in Table 1, highlight-
ing the metrics currently supported by the SDK4ED platform and the metrics that
will be monitored in future versions.

Energy Hotspots identification Procedure: In the context of the SDK4ED En-
ergy Toolbox, an energy hotspot is defined as a block of CPU source code, in which
a significant number of CPU cycles are spent, compared to the application’s total.
Each identified hotspot is considered a candidate place to check for energy-related
optimizations. The application is dynamically analyzed to monitor CPU cycles,
by leveraging a widely used dynamic binary instrumentation profiler: Callgrind by
the Valgrind suite. By combining the information generated by the dynamic anal-
ysis (i.e., Callgrind output) and the statements identified by the AST processing,
the number of CPU cycles spent in each statement is calculated. The code blocks
in which the number of CPU cycles spent is above a threshold (1% of the total
applications cycles) are considered hotspots. For each hotspot, the corresponding
values of energy indicators such as CPU cycles and cache misses are provided.
All this information is forwarded to the next component, which is responsible for
suggesting suitable optimizations.

16 Miltiadis Siavvas* et al.

Table 2 List of static analysis features

Static Analysis Feature
Estimated throughput (by LLVM-mca)
Number of instructions
Number of LOAD instructions
Number of STORE instructions
Number of OP (operations) instructions
Number of class 1 instructions (add, sub, shift, mul)
Number of class 2 instructions (conv, arrays, div)
OP, LOAD and STORE instructions order

4.1.2 Energy Consumption Estimation (through Static Analysis)

The alternative static analysis approach comes as a mitigation of the constraints of
the aforementioned dynamic analysis that adds a large time overhead and requires
the execution of the programs under analysis. The static analysis mechanism aims
to make the SDK4ED Energy estimation component easier to use and more similar
to the components of the rest of the SDK4ED toolboxes, namely the Maintain-
ability and the Dependability Toolboxes (see Section 4.2 and Section 4.3).

The first part of this component uses the code blocks identifier from the
Hotspot identification step (described in Section 4.1). Due to the fact that only
the source code is analyzed (without dynamic information), the static analysis fo-
cuses on code blocks (e.g., loop bodies, function bodies, etc.) and does not contain
iterations, branches, or calls. Then, the object file (generated by the compiler) is
analyzed for Extracting Features: information to be used as input to an energy
Estimation Model. The SDK4ED Energy Toolbox uses features that model the
application’s behavior and computational requirements that energy consumption
based on the application’s assembly and the output of the LLVM-mca tool anal-
ysis. Assembly instructions are also categorized, based on their energy. We made
this choice because the proposed solution aims to be cross-device, supporting a
wide range of architectures and instruction sets. The selected features are pre-
sented in Table 2. With regard to the order of the assembly instructions (the last
feature presented in Table 2), a simple sliding window approach was employed.
To extract order features, the window runs through the assembly instructions of
the application and each combination of the basic instruction categories (LOAD,
STORE, and OP) corresponds to a new feature (Marantos et al. 2021) resulting in
27 new features. Of course, not only the type of instructions, but also the registers
being used and the location of the accessed data affect the consumption. However,
the goal of the presented approach is not to achieve the maximum accuracy but
to offer flexibility and wide applicability (cross-device).

The most important part of the SDK4ED energy estimation is the model. The
procedure of selecting the best model is rather straightforward: We compare the
accuracy of using alternative models expressed to make predictions on a subset
of the dataset. We used the Nvidia Tegra TX1 platform, which incorporates an
integrated ARM-Cortex A57 processor and a built-in energy sensor (INA 3221).
Figure 4 shows the accuracy of the most suitable models. For each model, the Mean
Absolute Error between the actual values and the predicted values is presented.
According to these results, we conclude that the Orthogonal Matching Pursuit
model makes better predictions. The error refers to the execution of just one loop

17

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

1.40E-07

M
e
a
n
 P

re
d

ic
ti

o
n
 A

b
so

lu
te

 E
rr

o
r

(J
)

Fig. 4 Alternative static analysis based energy estimation models comparison

iteration, as the presented process estimates the basic block execution energy,
without using any dynamic information such as the number of iterations.

4.1.3 Energy Optimizations

The energy toolbox apart from providing means for monitoring and estimating the
energy consumption of embedded applications and identifying energy hotspots, it
also provides recommendations for optimizing energy consumption. In particular,
it suggests three categories of optimizations (Select optimization step in Figure 3),
namely: (i) Data-flow optimizations, (ii) Concurrency-related optimizations, and
(iii) Acceleration optimizations. These categories are described in the rest of this
section. An additional type of optimization is (iv) Select platform, which refers
to selecting a less energy consuming platform based on the energy estimations
provided by SDK4ED toolbox (described in Section 4.1.2).

a. Data-flow optimizations: The first category of energy optimization tech-
niques, at the application level, aims to improve the memory hierarchy utilization
(Catthoor et al. 2002). Since the energy consumed by memory references depends
on whether the access hits or misses in the cache memory, we can claim that
the cache behavior is very important for optimizing energy/performance. Typical
examples of these techniques are the loop transformations (Table 3) that aim to
improve the cache performance, by improving data locality and reducing the over-
head of the loops, which are often the most computationally intensive parts of an
application. Furthermore, due to the fact that each memory access has a cost in
terms of energy and performance, this kind of transformation aims also to improve
memory utilization and reduce memory allocation and the number of memory ac-
cesses. Data-flow optimizations are proposed in the case that the hotspot under
analysis includes nested loops that have a number of cache misses that is beyond
a threshold (3%).

b. Concurrency-related optimizations: Concurrency (i.e., multiple threads si-
multaneously accessing the same data) often imposes significant challenges. As
modern embedded systems typically integrate multiple cores, embedded develop-
ers are facing challenges imposed by concurrency. Misuse of available methods for
protecting data from corruption may lead to significant losses in terms of perfor-
mance and energy (Fowers et al. 2012). A typical example is the deadlock bug,

18 Miltiadis Siavvas* et al.

Table 3 Indicative loop transformations for improving energy

Before After
Loop Merge:

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
//do something... //do something...

} //do something else..
for (i=0; i<N; i++) { }

//do something else...
}
Loop Interchange:

for (j=0; j<N; j++) { for (i=0; i<N; i++) {
for (i=0; i<N; i++) { for (j=0; j<N; j++) {

sum += a[i][j]; sum += a[i][j];
} }

} }
Loop Tiling:

for (i=0; i<MAX; i++) { for (i=0; i<MAX; i+=BLOCKSIZE) {
for (j=0; j<MAX; j++) { for (j=0; j<MAX; j+=BLOCKSIZE) {

A[i][j] = A[i][j] + B[i][j]; for (ii=i; ii<i+BLOCKSIZE; ii++) {
} for (jj=j; jj<j+BLOCKSIZE; jj++) {

} A[ii][jj] = A[ii][jj] + B[ii][jj];
}

}
}

}

which occurs when two or more threads expect the release of a resource held by
the other thread. In this case, no thread can make progress, and the application
stalls. The solution to this problem is the proper use of locking mechanisms to
avoid deadlocks. Another example is the lock contention: multiple CPU cores stall
for a significant amount of time as they constantly try to acquire a resource held
by another thread (often called “polling”). Thus, the cores consume energy without
making actual progress. One solution is the use of another locking mechanism, that
may reduce contention (e.g. locking with a back-off policy, in which the core makes
each new attempt to acquire the held resource periodically instead of constantly).

The SDK4ED energy toolbox reports Data races in the application source code:
Data races (also known as “race conditions”) occur when the order of accesses on
shared data is not deterministic and the computation may give different results in
each execution. The application may generate incorrect results, which apparently
result in energy losses. The solution that eliminates data races and is suggested
to developers is the proper use of locks so that the access to the shared resources
will be deterministic.

c. Energy gains by offloading on accelerators: A massive improvement of per-
formance and reduction of energy consumption can be achieved by using accel-
erators (Fowers et al. 2012) (Marantos et al. 2022b). Nowadays, a plethora of
heterogeneous embedded computing architectures provides increased performance
at limited energy consumption. A complementary infrastructure, which is part of
modern heterogeneous System-on-Chip (SoC) embedded devices usually includes
both CPU and GPU or CPU and FPGA. Offloading computationally intensive

19

parts of an application to the acceleration unit cannot be considered a trivial task,
due to the large number of source code refactorings that have to be performed
manually. Depending on the kind of accelerator different tools and programming
or hardware description languages have to be used in a proper way.

The role of the Energy Toolbox is to provide acceleration gains prediction for
identified hotspots. This analysis component is based on a Dynamic instrumen-
tation approach. We decided to use estimation models based on metrics resulting
from the profiling tools, after investigating which of the metrics are suitable for
predicting energy gains by acceleration (Marantos et al. 2022b). To identify these
features, we used the stepAIC method that identifies an optimal set of features by
selectively adding and removing features in each step and using regression meth-
ods to evaluate the importance of each one. The resulting features are acceleration
specific indicators presented in Table 1. Similar features are also used in the lit-
erature ((Ardalani et al. 2015) (Wang et al. 2017)) for estimating the potential
speedup of using General Purpose GPUs (GPGPUs).

The values of the acceleration-specific indicators are forwarded to the classi-
fication Estimation model. This classification process aims at assisting developers
to decide if it is worth developing GPU code for the hotspots for which energy
consumption gains are predicted. In order to select a proper classification model,
we applied k-fold cross-validation techniques to test the estimation accuracy of
alternative models. Figure 5 summarizes and quantifies the accuracy level of the
investigated methods. As it can be observed, the three most accurate models are
the Random Forests, the Bagged Trees, and the Gradient Boosting. Their per-
formance can be further improved by using an Ensemble Voting Method that
combines their results, reaching a final accuracy level of 85%. For building the
dataset we combined an equal number of synthetic benchmarks and real-world ap-
plications (i.e. non-synthetic and taken from existing benchmark suites) to reduce
the danger of over-fitting caused by a small dataset size that could lead to biased
results (Marantos et al. 2022b).

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Classification Method

Ensemble Method

85%

Fig. 5 Comparing alternative models for predicting energy gains class

20 Miltiadis Siavvas* et al.

4.2 Maintainability Toolbox

The Maintainability Toolbox provides support for all aspects of Technical Debt
Management (TDM), namely: identification, quantification, and repayment. We
remind that Technical Debt as a metaphor in software engineering expresses, in
monetary terms, the consequences of not addressing existing software inefficiencies
(TD Principal) leading to increased effort and costs during future maintenance
(TD Interest). Next we describe the major axes along which the maintainability
of a given software system is analyzed through the SDK4ED Platform.

4.2.1 TD Analysis of Existing Code

The pillars of TD theory are two concepts borrowed from economics: principal
and interest. On the one hand, Principal corresponds to the effort that needs to
be spent so as to refactor the existing system to an optimal one with respect to
structural quality and maintainability. In practical terms, principal refers to the
effort that is needed to mitigate all rule violations that have been identified by a
static analysis tool like SonarQube. On the other hand, interest corresponds to the
additional costs that occur along with maintenance, due to poor software quality.

For TD Principal quantification there is an abundance of available tools (Avge-
riou et al. 2021) (e.g., SonarQube, CAST, Squore, etc.). In the context of SDK4ED,
we have opted to use SonarQube, since it is the most commonly used tool in the
industry and academia and is open-source, avoiding the dependence of SDK4ED
on closed-source software (Avgeriou et al. 2021). TD Principal is estimated by
identifying code smells and calculating the sum of the time required to remediate
all of them.

The quantification of TD Interest is far more challenging, as it entails the
anticipation of future maintenance activities as well as the estimation of the effort
that would be spent on maintaining an ’optimal’ version of a given system. For the
quantification of TD Interest, we relied on the FITTED framework (Chatzigeorgiou
et al. 2015) (Ampatzoglou et al. 2018). The central idea behind the calculation of
TD interest is that for any given system that has an actual implementation, we can
assume that there exists a hypothetical optimal state. We obtain an approximation
of the optimal state for any given software module by identifying its peers (i.e.,
other modules that have similar characteristics, such as size) and calculating the
best values for a selected set of metrics. The hypothetical peer exhibiting the best
metric values plays the role of the "optimal" implementation.

Maintaining the optimal system would require less effort than maintaining the
actual system, while maintenance effort is assumed to be inversely related to the
maintainability of the system. Thus, the maintenance effort for the optimal system
(which we seek to assess), can be estimated as the product of the maintenance effort
for the actual system and the ratio of the maintainability of the actual over the
maintainability of the optimal system. Based on its definition, TD Interest can be
calculated using the difference between the actual and the optimal effort, where
the effort for the actual system is calculated as the average past maintenance
load (lines of code changed, per version). Principal and Interest are graphically
depicted in Figure 6 assuming a feature A that has to be added in the actual and
(hypothetical) optimal system.

21

Fig. 6 TD Principal and Interest (Chatzigeorgiou et al. 2015)

Beyond TD Principal and Interest, the SDK4ED maintainability toolbox sup-
ports the quantification of TD Interest Probability which refers to the probability
of software modules to undergo maintenance. Interest probability is highly rele-
vant to maintenance prioritization, since the urgency to resolve a code or design
inefficiency depends on whether the corresponding piece of code is going to be
frequently changed or not. TD Interest Probability is calculated by considering
the number of commits in which an artifact has changed and the probability of an
artifact to change due to ripple effects propagated from other artifacts.

Finally, the TD analysis of an existing codebase in SDK4ED entails the calcu-
lation of the TD Breaking Point (Chatzigeorgiou et al. 2015). During the evolution
of software systems, the accumulated debt in the form of interest can in some cases
quickly sum up to an amount that at some point, exceeds the effort that was origi-
nally required to repay the initial amount of TD. The number of versions that will
elapse until the Breaking Point occurs is obtained through the ratio of Principal
over Interest. Anticipating how late the breaking point is expected to come can
inform decision making with respect to investments in improving software quality.

4.2.2 TD Analysis of New Code

To eliminate the TD phenomenon there are two general strategies: the first is to
adopt an after-the-fact approach, that is, to address the existence of problems after
their identification. Problems can manifest themselves in many complementary
forms such as code or design smells, excessive metric values, lack of design patterns,
anti-patterns, violations of heuristics, etc. This approach will be discussed in the
next subsection.

The second approach is to ensure that new software artifacts are problem-free
in the first place, that is, when code is committed to a repository. Even if ’new

22 Miltiadis Siavvas* et al.

code’ is not entirely TD-free, consistently adding new code whose Technical Debt
is lower than the system average can lead to a gradual improvement of quality. A
key concept in the assessment of TD for ’new code’ is TD density. We relied on
the notion of TDdensity because absolute measures of TD (such as the number
of identified rule violations) usually increase monotonically with the addition of
code. TDdensity is simply obtained as the ratio of TD identified in a piece of code,
over the corresponding lines of code.

The Maintainability Toolbox of SDK4ED contains all the necessary function-
ality to (a) clone a git repository (from a user-provided URL), (b) checkout code
through the history of the commits, (c) measure TD for each revision with the help
of SonarQube, (d) detect the specific issues that incur TD, (e) detect the changes
(at the method-level) from one revision to the other (added, modified, and deleted
methods), (f) measure how these method-level changes affect the TDdensity of
the project along evolution, and (g) perform quality gate analysis between any
given planned commit (e.g., a commit residing in a development branch, which
is to be merged to the production code branch), to detect if the “new” code con-
tributes positively or negatively to the project. The platform’s front-end visualizes
the TDdensity of the code that is to be integrated into the projects against the
TDdensity of the codebase, allowing the developer to grasp whether the new code
is of better, equal or lower quality.

An insight into how the quality of new code can affect the overall system quality
along its evolution is depicted in Figure 7. The plot illustrates the evolution of the
system’s TDdensity for project CommonsIO5 (black dots) and the corresponding
trend line, depicting a gradually increasing quality (black line declines over time).
Blue dots correspond to the revisions, in which the TDdensity of new methods
was better (lower), while red dots indicate the cases where the TDdensity of new
methods was worse (higher) than that of the host system. As it can be observed,
for the vast majority of revisions, the TDdensity of new methods is lower than
that of the host system and in many cases the new code is entirely TD-free (see
blue dots along the x-axis). Consequently, one can argue, that the ’cleanness’ of
new code was the key driver for the improvement in the systems’ quality.

4.2.3 Refactorings to address TD

The most popular strategy for repaying TD is the identification of code smells and
the subsequent application of refactorings to remove these smells (Fowler 1999).
While various code smell detectors exist (Tsantalis et al. 2018) it is impractical to
remove all smells in a software system. Therefore, it is imperative to perform some
sort of refactoring prioritization by focusing on pieces of code that suffer from
severe symptoms of low maintainability and at the same time are often subjected
to maintenance.

The Maintainability Toolbox, since it is built on top of SonarQube, is able
to detect and report all the code smells, along with their corresponding refac-
toring opportunities, which are officially supported by SonarQube. In particular,
SDK4ED offers the possibility to explore various refactoring opportunities, by get-
ting indications on the severity of code smells, as retrieved by SonarQube and by
retrieving the smells that have the higher probability of producing interest in an

5 https://github.com/apache/commons-io.git

23

Fig. 7 Impact of new code quality on system’s TDdensity (adapted from (Digkas et al. 2022)

upcoming version of the system. As an example, the user is informed that the
“Methods Should not be Empty” smell occurs in 31% of the classes in the project,
and these files have on average 5% probability to change. By combining these
probabilities, the total urgency to resolve these smells’ instances is calculated.

In addition to the refactoring opportunities identified through SonarQube,
SDK4ED supports two types of refactorings which can have a large impact on
system quality. The first one aims at the identification of long methods which
are good candidates for applying the extract method refactoring. The identifica-
tion of extract method refactoring opportunities relies on the Single Responsibility
Principle (SRP). The proposed SRP-based Extract Method Identification (SEMI)
approach recognizes fragments of code that collaborate for providing function-
ality by calculating the cohesion between pairs of statements, as presented by
(Charalampidou et al. 2017). The approach is particularly efficient for identifying
functionally related statements within very long methods (e.g. methods with 500
or 1000 lines of code). Second, SDK4ED supports a package-level re-organization
method, that ensures conformance to the low coupling and high cohesion principle.
In particular, through the application of a genetic algorithm that suggests Move
Class refactorings (i.e., the move of classes from one package to another, or to new
packages), system modularity can be optimized. The application of the SRP prin-
ciple at the package level to recommend Move Class refactorings is facilitated by
the computation of two metrics, namely the average afferent coupling of packages
(i.e. the number of outgoing dependencies of a package to other packages) and co-
hesion among package Classes which assesses how closely two classes that belong
to the same package collaborate with each other, introduced by (Ampatzoglou
et al. 2019).

It should be noted that Long Method smells, which can be resolved by ex-
tracting methods from the method’s body, and packages exhibiting high coupling
and low cohesion, which can be mitigated by moving classes to other packages,
are two non-trivial, yet frequently occurring problems in software development.

24 Miltiadis Siavvas* et al.

SonarQube and other Technical Debt management toolboxes do not identify such
inefficiencies, as their detection goes beyond the mere violation of rules.

4.3 Dependability Toolbox

The Dependability Toolbox is responsible for providing solutions for monitoring
and optimizing the dependability of embedded software applications. In particu-
lar, the SDK4ED platform focuses on the aspects of security and reliability, which
constitute two important facets of dependability, according to Sommerville (Som-
merville 1995). During the course of the SDK4ED project, novel mechanisms have
been developed and important challenges have been addressed with respect to
these two dependability aspects, which are described briefly in the rest of this
section.

4.3.1 Software Security

Quantitative Security Assessment
Being able to quantify the security level of an embedded software application dur-
ing its development is critical, since it is commonly believed in the literature that
“you cannot control something that you cannot measure” (DeMarco 1986). How-
ever, no well-established model for providing quantitative assessment of software
security is available on the market, even though the existence of quantitative se-
curity indicators is considered highly important for secure software development
(Morrison et al. 2018). Although a small number of evaluation methodologies and
models have been proposed recently, they are either unreliable (i.e., based on ques-
tionable parameters) or impractical (i.e., non operational) (Lai 2010; Xu et al.
2013; Colombo et al. 2012), preventing them from being adopted in practice.

To this end, as part of the Dependability Toolbox of the SDK4ED platform, we
provide a novel hierarchical security assessment model (SAM) (Siavvas et al. 2021)
for evaluating the internal security level of software applications in a quantitative
manner, based on low-level indicators retrieved from their source code through
static analysis. The model aggregates the low-level indicators based on a set of
parameters (i.e., thresholds and weights) in order to compute a high-level security
score, i.e., the Security Index, which reflects the internal security level of the
analyzed software, based on the ISO/IEC 25010 (ISO/IEC 2011) international
standard.

The model, following the guidelines of ISO/IEC 25010 (ISO/IEC 2011), and
based on a set of thresholds and weights, systematically aggregates these low-
level indicators in order to produce a high-level security score, i.e., the Security
Index, which reflects the internal security level of the analyzed software. For better
understanding, the high-level overview of the proposed model is illustrated in
Figure 8.

As can be seen by Figure 8, the proposed model hierarchically decomposes
the notion of security into a set of security characteristics (e.g., Confidentiality,
Integrity, and Availability), which are further decomposed into a set of security
properties (e.g., Null Pointer, Buffer Overflow, etc.). Those properties are more
tangible and can be quantified directly from the source code through static anal-
ysis. The security properties that are supported by the SDK4ED Dependability

25

Fig. 8 The Security Assessment Model (SAM) of the SDK4ED Dependability Toolbox.

Toolbox for each one of the supported programming languages are reported in
Table 4. The security properties are, in fact, groups of closely-related static anal-
ysis alerts (i.e., vulnerability categories). For instance, the Null Pointer property
contains issues that are related to null pointer dereferences. For measuring the se-
curity properties, the static analysis vulnerability density (SAVD) metric (Walden
et al. 2009) is utilized, which corresponds to the number of static analysis alerts
that belong to this property, per thousand lines of code. In brief, the proposed
model applies static analysis in order to compute the SAVDs of the selected se-
curity properties, and through several levels of normalization and aggregation (as
shown in Figure 8), computes the Security Index of the analyzed application, which
reflects its internal security level.

Table 4 The security properties (i.e., vulnerability categories) that are supported by the
proposed security assessment model (SAM), along with the programming language for which
support is provided by the SDK4ED platform.

Vulnerability Cat-
egory Description Programming

Language

Null Pointer This security property provides rules the viola-
tion of which are indicators of null pointer deref-
erence. A null pointer dereference can cause a
program to crash or behave unpredictably.

Java, C, C++

Assignment This security property provides rules for vali-
dating the secure variable assignment and dec-
laration. For example, local variables should be
initialized and declared as final, otherwise they
may be targets for injecting malicious payloads.

Java, C, C++

Exception Handling This security property provides rules for validat-
ing whether exceptions are handled properly by
the software progam. If an exception is not prop-
erly handled, it may lead to important security-
related issues, including system crash, exposure
of sensitive information, and repudiation issues.

Java, C, C++

26 Miltiadis Siavvas* et al.

Table 4 – continued from previous page
Vulnerability Cat-
egory Description Programming

Language
Resource Handling This security property provides rules for vali-

dating the proper handling of the system’s re-
sources. Improper resource handling may have
important consequences to the security of the
system, potentially leading to degradation or
even denial of service.

Java, C, C++

Logging This security property provides rules for validat-
ing the proper utilization of the logging mech-
anism. Improper logging can lead to important
security-relate issues, such us omission of impor-
tant security incidents and disclosure of sensi-
tive information.

Java

Misused Functional-
ity This security property provides rules for validat-

ing the correct utilization of functionalities that
are provided by popular APIs.

Java, C, C++

Synchronization This security property provides rules the viola-
tion of which indicate the existence of synchro-
nization issues. Such issues include deadlocks
and race conditions, which may lead to impor-
tant security issues, including denial of service,
unauthorized access, etc.

Java, C, C++

Overflow This security property provides rules for check-
ing the existence of buffer overflows. A buffer
overflow is mainly caused by accessing the con-
tents of a buffer, without previously checking its
size. Buffer overflows are exploited by malicious
individuals mainly for performing remote code
execution, which is a critical security breach.

C, C++

I/O Issues This security property provides rules for check-
ing whether the I/O functions that are provided
by C and C++ programming languages are used
in a secure way.

C, C++

String Issues This security property provides rules for check-
ing whether there are instances of misusage of
C-style strings. A notable example of such type
of issues is the usage of the strcpy() method in
C/C++ programs, which is known to be inse-
cure and needs to be avoided.

C, C++

Dead Code This security property provides rules for check-
ing whether instances of unreachable code, un-
used functions, and unused variables exist in the
source code of the analyzed application.

C, C++

To enhance the practicality of the model, it has been implemented as a web
service that is accessible through the SDK4ED platform. The parameters of the
model (i.e., its thresholds and weights) were carefully derived in order to enhance
the reliability of the produced model. More specifically, the thresholds were derived
through the application of benchmarking techniques on a dataset of 100 real-world
and widely-used software products, which were retrieved from the Maven Repos-
itory. The weights of the model were derived based on a multi-criteria decision-
making techniques (e.g., (Saaty 2008)) so as to reflect the knowledge expressed by
the Common Weakness Enumeration (CWE)6.

The evaluation of the model was based on a set of 150 open-source software
projects, as well as on the test cases provided by the well-knwon OWASP Bench-
mark7. The proposed model is the only model that was built and evaluated on
such a large pool of data (i.e., 250 real-world software applications, comprising

6 https://cwe.mitre.org/
7 https://owasp.org/www-project-benchmark/

27

approximately 20 million lines of code), whereas no other practical security model
is available on the market or in the literature that can be used in practice (Siavvas
et al. 2021).

The Security Assessment Model (SAM), apart from the high-level quantitative
security indicators, also enables the identification of low-level security problems
that a program may have. In fact, the transparency and hierarchical structure of
the proposed model enables root-cause analysis, allowing the developers to pin-
point problematic aspects of the analyzed application that must be optimized.
In particular, the developers can start from the Security Index, and, following a
top-down inspection approach, they can detect those Security Characteristics and
Security Properties that received the lowest score by the model. Hence, the de-
velopers can start their refactoring activities by fixing the static analysis alerts
that correspond to a Security Property with a low score, instead of fixing them
in an arbitrary manner. The toolbox also provides details about the alerts that
are identified, including their location in the source code, their severity, and their
type, along with external links with further information and potential fixes.

Vulnerability Prediction
The purpose of vulnerability prediction is to identify security hotspots that reside
in software applications, i.e., software components (e.g., methods, classes, etc.)
that are likely to contain vulnerabilities. This is achieved mainly through the con-
struction of vulnerability prediction models (VPMs), which are machine learning
(ML) models that judge whether a given software component is likely to contain
a vulnerability or not, by searching for vulnerable patterns in its source code.
The vast majority of the VPMs that have been proposed in the literature so far
are based either on text mining (i.e., lexical analysis of the source code) or soft-
ware metrics. However, none of the existing models have demonstrated a sufficient
balance among accuracy, practicality, and performance.

To this end, as part of the Dependability Toolbox of the SDK4ED platform, we
propose novel vulnerability prediction models, based on Deep Learning (DL), text
mining, and software metrics (Filus et al. 2021b). More specifically, with respect
to text mining, we considered the Bag of Words (BoW) approach as the main
way to represent the source code in a numerical manner. According to the BoW
approach, the source code of a specific component is represented by a vector,
which contains each token (i.e., keyword) retrieved from the source code of the
component, along with its corresponding frequency (i.e., number of its occurrences
inside the source code of the component). With respect to software metrics, popular
metrics including complexity, coupling, and cohesion were considered, since they
have been found to be closely related to the existence of vulnerabilities in software
(Shin et al. 2011; Chowdhury and Zulkernine 2011).

The high-level overview of the proposed VPMs is illustrated in Figure 9. As can
be seen by Figure 9, text mining and static analysis are employed in order to de-
rive the BoW and the software metrics of a given software component (i.e., class).
A Convolution Neural Network (CNN) is used in order to generate more mean-
ingful features from the BoW of the component. The Random Neural Network
(Gelenbe 1989), a spiked Neural Network that mimics human brain function, is
used as a bonding model for combining both software metrics and the new features
acquired after processing the BoW with the CNN model. The produced models
were able to detect vulnerable components with sufficient accuracy, whereas the

28 Miltiadis Siavvas* et al.

Fig. 9 The high-level overview of the Vulnerability Prediction Models (VPMs) of the SDK4ED
Dependability Toolbox.

lightweight nature of the RNN lead to better performance compared to its coun-
terparts, rendering it an attractive alternative. In addition to this, to the best of
our knowledge, this is one of the very few attempts in combining software metrics
with text features for building vulnerability prediction models.

The identification of security hotspots is highly useful for developing more
secure software. It allows developers and project managers better prioritize their
testing and fortification efforts, by allocating limited test resources to high-risk
(i.e., potentially vulnerable) areas. For instance, more exhaustive code reviewing
and dynamic testing can be applied to the potentially vulnerable components, in
order to increase the probability of detecting and removing actual vulnerabilities.

4.3.2 Software Reliability

Reliability is a critical aspect for long-running software applications, especially
for time- and energy-critical embedded software applications, since failures may
lead to the re-execution of a large number of operations, inducing, in that way,
significant overheads with respect to execution time and energy consumption. In
order to avoid excessive re-executions and enhance the reliability of the program,
the Checkpoint and Restart (CR) mechanism is widely used, which periodically
keeps a safe copy of the program’s execution state (i.e., a checkpoint), and uses it
to restart the program in case of a failure.

Among the existing CR mechanisms, the application-level CR (ALCR) is the
most efficient, as it leaves the smallest memory footprint, since it allows devel-
opers to define explicitly what data to be stored in each checkpoint. Although
several ALCR libraries have been proposed over the years, which facilitate the
insertion of checkpoints in long loops since they are considered the main source of
failure-related re-executions, none of them provides suggestions for the selection
of the intercheckpoint interval, i.e., the interval between two successive check-
points. However, the arbitrary selection of the checkpoint interval may negatively
affect the performance and the energy consumption of the application, due to the
accumulation of checkpointing-induced overheads, which is critical for embedded
systems.

To this end, as part of the Dependability Toolbox, the SDK4ED platform in-
troduces novel mathematical models for modelling the overheads induced both

29

by failures and by the CR mechanism itself, and for computing the optimum in-
tercheckpoint interval, i.e., the interval between two successive checkpoints that
achieves a satisfactory balance among reliability, energy consumption, and perfor-
mance (Siavvas and Gelenbe 2019b,a; Gelenbe et al. 2020; Gelenbe and Siavvas
2021). In particular, starting from first principles, we develop a mathematical
model to estimate the average execution time and energy consumption of a pro-
gram with a long loop that operates in the presence of failures, with and without
the adoption of application-level checkpointing. This model is used to compute
the checkpoint interval that minimizes execution time, energy consumption, or a
combination of those two parameters, based on user preference. The analysis led
to a closed-form expression of the optimum checkpoint interval, which is given by
the following formula:

y∗ = − 1

ln a
[W (

B −A

e.A
) + 1] (1)

In the above equation, y∗ is the optimum number of instructions that should
be executed between two successive checkpoints, which leads to the minimization
of the overall cost (expressed in terms of execution time and/or energy consump-
tion). The parameter a corresponds to the success rate of an instruction, i.e., the
probability of an instruction to be executed without failure. The W () function is
the well-known Lambert w function (Lambert 1758; Euler 1783). The A and B
parameters are cost parameters that are given by the following formulas:

B = B0 +
B1Y

2
(2)

A = b0 +
c+ b1
1− a

(3)

In the equations above, Bo corresponds to the initialization cost of establishing
a checkpoint, whereas B1 is the cost of generating a checkpoint. In addition, b0
corresponds to the cost of re-initializing the program from the most recent check-
point after a failure occurs, whereas b1 is the cost of having to empty the memory
from the failed instructions. Finally, c corresponds to the average cost of a given
instruction of the program.

As already mentioned, the y∗ is the checkpoint interval that minimizes the
overall execution cost. We used the generic term cost in the description of the
formula, since the above formula can be used either for minimizing the execution
time of a program or its energy consumption. It can be also used, as explained
later, for minimizing a cost function that combines both quality parameters. This
is expressed in the above equations through two parameters α and β that are used
for the computation of the B0, B1, b0, b1, and c costs. In particular, these costs
are computed as follows:

B0 = αBc
0 + βBe

0 , (4)
B1 = αBc

1 + βBe
1 , (5)

b0 = αbc0 + βbe0, (6)
b1 = αbc1 + βbe1, (7)
c = αcc + βce (8)

30 Miltiadis Siavvas* et al.

The e exponent in the equations corresponds to the energy cost factor, whereas
the c corresponds to the execution time cost factor. For instance, c is the cost of a
given instruction. cc corresponds to the average execution time of a given instruc-
tion, whereas ce corresponds to the average energy consumption of a given instruc-
tion. These parameters are determined at the beginning, based on the hardware
characteristics of the embedded platform (e.g., CPU architecture, power supply,
etc.). It should be also noted that when a combination of the two parameters (i.e.,
execution time and energy consumption) is desired, the values should be expressed
in a “per unit” manner, in order to get rid of the computation units.

The α and β parameters are used in equations (4)-(8) to define the importance
of energy consumption or execution time for the calculation of the optimum check-
point interval through equation (1). In particular, if α = 0 and β = 1, exclusive
focus is given to execution time, and (1) computes the checkpoint interval that
minimizes exclusively the execution time of the application. This is important for
time-critical applications, which need to provide their results in a specific time
frame, and therefore the performance is their major concern. Similarly, if α = 1
and β = 0, exclusive focus is given to energy, and (1) computes the checkpoint
interval that minimizes the energy consumption of the application. This is im-
portant for energy-critical applications, which need to operate with the minimum
energy footprint. Finally, if α ̸= 0 and β ̸= 0, then y∗ is the value that achieves a
balance among execution time and energy consumption, as expressed by the user
through these parameters. This is important, as it allows the model to be adapted
to the specific needs of an application.

4.4 Forecasting Toolbox

The main objective of the Forecasting Toolbox is to predict the future evolution
of the three main quality attributes that are monitored by the SDK4ED platform,
which are the Maintainability (in fact, TD), the Energy Consumption, and the
Dependability of embedded software. The high-level overview of the Forecasting
Toolbox is illustrated in Figure 10. The Forecasting Toolbox, as shown in Figure
10 provides three core functionalities, which are implemented as individual web
services. A description of these services is provided below:

– TD Forecaster: The goal of this service is to forecast the TD Principal of a given
embedded software product. More specifically, it predicts the future evolution
of the total remediation effort (measured in minutes) that is required in order to
fix all the code-level TD issues (e.g., code smells, bugs, code duplication, etc.)
of an embedded software application, up to a desired point in time (selected
by the user).

– Energy Forecaster: The goal of this service is to forecast the Energy Con-
sumption of a given software product. More specifically, it predicts the future
evolution of the total energy consumption (measured in Joules) of a given
embedded software application, up to a future point specified by the user.

– Dependability Forecaster: This service is responsible for generating Security
forecasts for a given software application. More specifically, it predicts the
future evolution of the Security Index (see Sect. 4.3.1) of a given embedded
software application, up to a desired point in time (selected by the user).

31

Fig. 10 The high-level overview of the Forecasting Toolbox

Towards building a solid basis for the Forecasting Toolbox realization, the suit-
ability of various dedicated time series was investigated (Tsoukalas et al. 2019),
whereas advanced machine-learning (ML) models have been introduced as part
of the business logic of the toolbox (Tsoukalas et al. 2023), following the over-
all concept described in Tsoukalas et al. (Tsoukalas et al. 2020). For short-term
forecasting, the time series models have demonstrated satisfactory forecasting per-
formance up to 8 commits ahead, with the ARIMA model demonstrating the best
results (Tsoukalas et al. 2019). For mid- and long-term forecasting, more advanced
ML models were examined, including the Linear Regression, the Support Vector
Regression, and the Random Forest (Tsoukalas et al. 2020, 2023). Our analysis led
to the observation that non-linear ML models (such as Random Forest) are capable
of capturing the future evolution of the three quality attributes supported by the
SDK4ED platform (i.e., maintainability, energy consumption, and dependability)
up to 40 commits ahead.

Advanced feature selection techniques were employed in order to select the
best subset of indicators to be used for building less complex, but equally accurate
forecasting models of the three quality attributes of choice. Several indicators were
selected including code smells for Maintainability, Cache Misses for Energy Con-
sumption, and null pointer dereferences for Dependability, among others. These
indicators are produced by the three individual toolboxes, namely the Maintain-
ability, the Energy, and the Dependability toolboxes, and constitute the required
input for the corresponding forecasting models for providing their forecasts (see
Figure 10).

To sum up, the Forecasting Toolbox integrates within its business logic various
novel time series and ML forecasting models, built based on the results (i.e., moni-
tored indicators) of the three core SDK4ED modules (see Figure 2). Depending on
the forecasting horizon and the targeted quality attribute, it allows for the remote
invocation of the most appropriate ones in order to provide meaningful forecasts
to the front-end of the SDK4ED dashboard.

4.5 Decision Support Toolbox

The final toolbox of the SDK4ED Platform is the Decision Support Toolbox.
Its goal is to support developers’ decision making by ranking and sorting the

32 Miltiadis Siavvas* et al.

alternative suggestions from the rest of the SDK4ED Toolboxes. Through the
Decision Support Toolbox output, the developer eventually chooses from the list
of suggestions that the SDK4ED Platform makes to improve TD, energy, and
dependability of the target application.

Each of the main three toolboxes analysis is individual, meaning that it does
take into consideration other qualities. However, the final user of the SDK4ED
Platform needs to evaluate all the suggestions (i.e., proposed refactorings) univer-
sally. Therefore, the proposed refactorings should include information about their
impact on the rest of the aspects (energy, technical debt, and/or dependability).
This information builds the ’design space’ of the decision making and its produc-
tion cannot be considered as trivial, as the three qualities are extremely dissimilar
(particularly taking energy into consideration). As a result, it is very difficult to
provide fine-grained estimations of a refactoring’s impact without actually apply-
ing it and making a new analysis. Another requirement is to provide a solution
that is as project- and platform-agnostic as possible.

The Decision Support flow is depicted schematically in Figure 11. After gather-
ing all suggested optimizations from the rest of the toolboxes, we use an empirical
model in order to form the design space. More specifically, after querying each of
the proposed refactorings to the Decision Support database, the returned design
space is analyzed by a Multiple Criteria Decision Making (MCDM) algorithm (Guo
and Zhao 2017) (Lamprakos et al. 2022).

Software Project

Query Energy toolbox

suggestions

Query Maintainability

toolbox suggestions

Query Security toolbox

suggestions

MCDM

Design Space

Refactoring Energy

Impact

Maintainability

Impact

Security Impact

Refactoring

Ranking no.

Energy Impact Maintainability

Impact

Security Impact Decision Value

1

2

…

Final Code Changes Ranking

User Preferences

Fig. 11 Decision Support Toolbox flow

More specifically, as can be seen by Figure 11, for a given software project the
refactorings that are proposed by the three toolboxes of the SDK4ED platform
are initially retrieved and their impact on the three quality attributes of choice
is determined based on a Look-up Table (LUT) that was devised in Lamprakos
et al. (2022). The Decision Support Toolbox also takes as input the current values
of the three quality attributes, namely maintainability, dependability, and energy

33

consumption, along with their projected values (as reported by the Forecasting
Toolbox) and computes a ’future-to-current ratio’ for each quality. These ratios
represent the projected changes in quality metrics over time and are used to scale
the Energy, Technical Debt, and Dependability components of each refactoring’s
impact. Subsequently, the user declares the relative importance of each one of
the three quality attributes that are supported by the SDK4ED platform for the
selected software project, and a trade-off analysis is performed based on a Multi-
criteria Decision Making (MCDM) mechanism. The output of the Decision Support
Toolbox is a list of those refactorings that better satisfy the requirements that were
set by the user (i.e., the relative importance of the selected quality attributes of
choice for the selected software project) and a detailed report of the impact that
each refactoring has on each one of the three quality attributes that are supported
by the SDK4ED platform. In that way, the user can have a better understanding
of how each one of the suggested refactorings will affect the overall quality of the
software project, allowing them to decide which refactorings to be applied to the
selected software projects and which not.

5 Implementation of the SDK4ED Platform

The SDK4ED platform has been implemented in the form of a service-based plat-
form based on Microservices Architecture. The reasoning behind our decision to
opt for a service-based solution is the increased visibility that a service-based
platform offers, the high accessibility by multiple users through local or wide area
network, and the overall ease of use, as it enables the central installation of the
platform avoiding in that way the tedious part of manually installing and configur-
ing the tool for each user. The platform can be installed locally on the premises of
an interested company and be accessible only through its private network or even
over the Internet. For improving the end-user experience, a front-end, i.e., a ded-
icated user-friendly Graphical User Interface (GUI), the SDK4ED Dashboard, is
also provided. In Figure 12, the Home Page of the SDK4ED Platform is illustrated.

The front-end of the SDK4ED platform, i.e., the SDK4ED Dashboard, was
implemented utilizing cutting-edge technologies, in order to be up to date and
ensure its longevity. In particular, it has been implemented in JavaScript, utilizing
the React.js framework, which is one of the most popular frameworks for build-
ing cloud-based applications, in conjunction with MD-Bootstrap, ASP.NET Core,
and PostgreSQL. Through the SDK4ED Dashboard, the user may define a new
software project that they would like to analyze by providing its Git URL (which
can be from any popular online Git Repositories, including GitHub, GitLab, and
Bitbucket), perform a central analysis or analyze the project using features from
specific toolboxes that are more interesting to them, and view the results of the
analysis and potential recommendations in a visual form, by navigating to the
pages of the toolboxes from the top menu (see Figure 12). Hence, the GUI acts
as an interface between the user and the novel features of the SDK4ED platform
that are provided by its toolboxes (see Section 4), which reside at the back-end of
the platform.

The back-end of the SDK4ED platform consists of the five toolboxes, which
are illustrated in Figure 2 and have been thoroughly described in Section 4. These
toolboxes have been implemented as individual microservices, utilizing the Docker

34 Miltiadis Siavvas* et al.

Fig. 12 The home page of the SDK4ED Dashboard.

Engine8 for their deployment. In particular, each one of the toolboxes offers its
novel features in the form of web services that are invokable through dedicated
REST APIs, which are built as individual Docker Images that are deployed as
independent Docker Containers. The reasoning behind the decision of building
the toolboxes in the form of dockerized microservices is threefold. Firstly, from
a development viewpoint, dockerized microservices enable the individual develop-
ment of the toolboxes utilizing highly diverse programming languages, technolo-
gies, and frameworks, which can then be integrated directly into a unified platform,
allowing different development teams with different backgrounds and expertise ef-
fectively collaborate. Secondly, from an exploitation viewpoint, each toolbox is a
self-contained application that can be separately utilized or exploited. This enables
an interested party to utilize only those components from the SDK4ED platform
that they consider more valuable or interesting. Finally, the microservice approach
enhances the reliability of the final solution, since the independent nature of the
microservices enables the SDK4ED platform to continue its operation normally,
even when one or more toolboxes are unavailable.

The novel features of the SDK4ED Platform can be utilized either through its
dedicated GUI or by directly invoking the web services provided by its toolboxes. In
order to facilitate potential users in setting up and utilizing the SDK4ED platform,
a dedicated wiki page is available online9.

Comment on the extensibility of the SDK4ED Platform: As already
stated, the SDK4ED platform provides mechanisms (i.e., toolboxes) for analyzing
and optimizing the quality of embedded software products, focusing specifically
on three important quality attributes, namely maintainability, dependability, and
energy efficiency, whereas it supports the analysis of applications written in three
programming languages, namely Java, C, and C++, which are widely used in em-
bedded systems. The decision to focus on these quality attributes and program-
ming languages was based on the requirements that were elicited at the beginning

8 https://www.docker.com/
9 https://gitlab.seis.iti.gr/sdk4ed-wiki/wiki-home/-/wikis/home

35

of the SDK4ED project based both on the proposal document and the additional
requirements that were expressed by the actual users of the platform, i.e., the use
case providers, through a formal requirements elicitation approach that was carried
out at the beginning of the project (Sas and Avgeriou 2020). In addition to this,
the configurability of the platform, i.e., its ability to be configured in order for the
user to (i) select specific analysis to be executed for a given application, and (ii)
configure each analysis (toolbox) in order to better meet the specific needs of the
application was a requirement that was also expressed by the industrial partners
during the requirements elicitation phase and integrated into the final platform.

It is true that, apart from the three quality attributes and programming lan-
guages that are already covered by the SDK4ED platform, additional quality at-
tributes (e.g., scalability) could be relevant to different types of embedded appli-
cations, whereas other programming languages (e.g., Python) are also utilized for
their implementation. Therefore, it would be valuable for the SDK4ED platform to
be customizable and extensible, allowing the easy integration of new toolboxes that
provide analysis for other quality attributes and programming languages. However,
since the extensibility and customizability of the platform was not a functional
requirement defined during the requirements elicitation phase, no streamlined ap-
proach is currently provided for extending the platform, in a sense that no dedi-
cated Application Programming Interface (API) or a formal integration approach
is provided.

Despite this, the decision to adopt the Microservice-oriented Architectural De-
sign Pattern for the design of the SDK4ED platform, significantly contributes
towards its future extensibility. In particular, the back-end of the SDK4ED plat-
form, instead of being a monolithic application, is a combination of standalone
microservices implemented and deployed as independent Docker Containers. Each
one of these microservices (i.e., toolboxes) is written in its own programming lan-
guage and exposes its functionalities through its own RESTfull API (i.e., through
GET/POST requests). Hence, should someone wishes to integrate a new toolbox
(e.g., for analyzing a new quality attribute or provide support for another pro-
gramming language), they would have to follow the following steps and satisfy
their corresponding requirements:

1. Step 1 - Microservice Implementation: The toolbox needs to be imple-
mented as an individual microservice. The developers are free to implement
their toolbox in any programming language they prefer and with any frame-
work(s) they desire. The only requirement is to enable the toolbox to internally
perform a dedicated analysis of the selected software project and generate a re-
port with the results of their analysis in a machine-readable format (preferably
JSON). The toolbox must be implemented as an independent Docker Image
and deployed as a standalone Docker Container.

2. Step 2 - RESTfull API Implementation: The toolbox must expose its
features through a web-based API, preferably a REST API. The developers
are free to implement as many endpoints as they consider necessary. As a
minimum, the toolbox must provide an endpoint for initiating the analysis of
a given software project that resides on an online version control and hosting
platform (e.g., GitHub, GitLab, BitBucket, etc.) and a second endpoint for
retrieving the results of the latest analysis of a desired software project. The

36 Miltiadis Siavvas* et al.

existence of a database for storing the analysis results is highly-recommended,
but not required.

3. Step 3 - Integration with the SDK4ED Dashboard (GUI): A new web
page needs to be included in the SDK4ED Dashboard, which will communicate
with the REST API of the newly added toolbox. The developers are free to
customize the dedicated web page for their toolbox however they wish, adding
any visual elements they consider necessary. As a minimum, the SDK4ED
Dashboard must invoke the endpoint for triggering the analysis of a given
software project and the endpoint for retrieving the analysis results in order
to present them on the web page. Details on how to install and update the
SDK4ED Dashboard can be found on the wiki page of the SDK4ED.

Hence, from the above description it is clear that in case that a third-party de-
veloper has a toolbox that performs software analysis similar to the analyses per-
formed by the SDK4ED toolboxes and is already web-based, the integration of the
third-party component to the SDK4ED framework is a matter of containerization
of the toolbox and implementation of a dedicated web page on the SDK4ED Dash-
board that communicates with the toolbox. Since most of the software analysis
tools that are implemented nowadays are usually web-based (e.g., SonarQube),
the integration of a wide range of tools is potentially feasible, without much ef-
fort, as it will be reduced to the (i) containerization of their toolbox, and (ii) the
implementation of a dedicated web page on the SDK4ED GUI.

Although the extensibility/customizability of the SDK4ED platform is not
seamless at the moment, it should be noted that in the future we are planning
to streamline the process of integrating a new third-party toolbox to the SDK4ED
platform through the implementation of a formal integration pipeline and the
provision of relevant detailed guidelines and step-by-step-tutorials on the process.

6 Evaluation

6.1 Use Case Demonstration

The major challenge of the SDK4ED platform is to provide practical solutions that
can actually help project managers and developers build high-quality embedded
software applications. Hence, the usefulness and practicality of the SDK4ED plat-
form were evaluated in a real-world setting through three use cases on real-world
commercial embedded software applications that are actively developed and main-
tained by the industrial partners (i.e., pilot providers) of the SDK4ED project.
These applications come from three different application domains, particularly
from the automotive, airborne, and healthcare domains. For reasons of privacy,
the exact names of the applications that were utilized for the purposes of the use
cases, as well as those of the involved industries, are not disclosed.

With respect to the evaluation setup, a unified approach was adopted for each
one of the use cases. The SDK4ED Platform was deployed to the premises of the
involved industries by their developers, based on detailed instructions that are pro-
vided on the SDK4ED Wiki page10. To ensure the correct setup and configuration
of the platform, assistance by the actual developers of the SDK4ED platform was

10 https://gitlab.seis.iti.gr/sdk4ed-wiki/wiki-home/-/wikis/home

37

also provided when it was considered necessary. Since a common requirement that
was expressed by all the pilot providers at the requirements definition phase of
the project was the platform to be highly configurable, and particularly to allow
the user to focus only on specific quality attributes (as not all of them are equally
important for each company and/or application) (Sas and Avgeriou 2020), as de-
scribed in Section 5, the final platform enables the users to select only a subset
of the monitoring and optimization mechanisms to be executed. Hence, each pi-
lot provider initially declared the quality attributes that are more important for
their application so that the analysis could focus mainly on them, and the rest to
be treated supplementarily. The pilot providers used actively the SDK4ED plat-
form for the course of around 1 and ½ years, and by the end of the project they
provided feedback with respect to the usefulness and practicality of the SDK4ED
platform. Their feedback and evaluation results were reported in dedicated project
deliverables (SDK4ED 2019a,b,c,d).

It should be noted that in the present use cases emphasis is given on the
qualitative analysis of the SDK4ED platform. The quantitative evaluation of the
novel features of the SDK4ED platform is not enough for measuring its potential
success, as, although a specific feature may be correct and accurate, it may not
provide any practical value to the end user. In fact, the correctness, accuracy, and
reliability of the various novel features that have been proposed as part of the
SDK4ED project and have been integrated into the final produced platform have
extensively been studied and reported in their own scientific publications11. Hence,
this is out of the scope of the present paper, which attempts to complete for the
first time the overall analysis of the SDK4ED platform, by providing a qualitative
evaluation of its novel features, through actual utilization by real companies that
develop embedded software.

6.1.1 Automotive Use Case

For the automotive use case, an embedded software application that is running
on Android-based Augmented Reality (AR) glasses (mainly smart glasses, such as
Epson Moverio, Microsoft Hololens, etc.) was utilized, which enables remote main-
tenance and support of automotives by bi-directional audio and video streaming.
In particular, its purpose is to connect an engineer or technician who is operating
on-site, with engineers at the support center, in order to assist them with inter-
active support. The wearer of the glasses can stream to a desktop/mobile device
what she/he sees, whereas they can also receive audio guidance from the other
side. Since the application is running on smart glasses the technician has their
hands free so that they can work on the maintenance activities in the meantime.
Apart from audio/video communication, the application allows the end users to
exchange media files, like drawings, manuals, schemas, and images with technical
specifications. The application is a mid-size application that is written in Java
programming language, as it runs on devices with Android OS.

The subject embedded software application faces a lot of challenges with re-
spect to real-time operation, with the most critical being its performance, as the
latency of the communication should be kept at a minimum level in order to ensure
seamless and effective communication. Hence, its development is guided by this

11 https://sdk4ed.eu/documents/

38 Miltiadis Siavvas* et al.

factor, and thus, its developers focus on source code changes and updates that
maintain efficient real-time operation. However, the code changes that they make
may affect the maintainability, and, in turn, the longevity of their application. Be-
fore the SDK4ED project, the company did not use any means of measuring the
design-time quality of the subject application (and their applications in general).
Hence, within the context of the project the company has been mainly interested
in the technical debt monitoring and optimization features that are provided by
the SDK4ED platform, in order to assess whether it can provide them with mean-
ingful insights about the maintainability of their application, and in turn whether
this information should be incorporated into their development process.

Maintainability: The subject application was analyzed with the TD moni-
toring and optimization features that are available by the SDK4ED platform, over
the course of the 1 and ½ years. In fact, four major versions of the subject appli-
cations were analyzed using the SDK4ED platform. The results of the analysis, as
illustrated by the SDK4ED Dashboard, are depicted in Figure 13.

Fig. 13 The evolution of the Technical Debt aspects of the automotive embedded software
application.

Figure 13 illustrates the evolution of four important TD aspects, namely TD
principal, TD interest, Cumulative TD Interest, and the Breaking Point, over the
four major releases of the application. As can be seen by Figure 13, the overall
TD Principal is constantly increasing, starting from a value of 750 minutes (which
translates into 487.5 Euros in maintenance costs) to a value of 984 minutes (which
translates into 639.6 Euros in maintenance costs) in the latest version. As already
stated, the TD Principal actually denotes the total time (and, in turn, money)
that a company needs to spend in order to remove all the maintainability issues
(i.e., TD liabilities) that reside in the source code. The same trend is observed in
the Cumulative TD Interest, which increases from the value of 0 to a value of 241
in the latest version. In fact, according to the developers, the continuous increase
of TD principal and the cumulative interest are expected, since the codebase of
the application is becoming larger.

On the positive side, with respect to the TD Interest, which quantifies the ad-
ditional costs that are introduced by not fixing the maintainability issues promptly
(i.e., close to their introduction to the system), a declining trend is observed from
the 2nd version and beyond, as can be seen by Figure 13. This can be attributed

39

to the fact that the development team (as they reported in (SDK4ED 2019c))
actually applied source code quality enhancements through code refactorings, in
order to keep maintenance costs at low levels. This also justifies the slow increase
observed in the Cumulative TD Interest, as well as the relatively large value of
the Breaking Point. In fact, the Breaking Point indicates the version at which the
application will be considered unmaintainable, i.e., the point in time at which the
Cumulative TD Interest will become higher than the TD Principal. In the studied
application, the Breaking Point was found to be 22. This means that, given the
current conditions, in version 22, the cumulative interest will be higher than the
corresponding principal, and the application will become unmaintainable. Nev-
ertheless, since the project is currently in version 4 (based on the analysis), the
breaking point lies well ahead in the future. However, the continuous monitoring
practices on quality control and TD repayment strategies will push the breaking
point even further in time.

The SDK4ED platform, apart from quantitative indicators of important TD
aspects, also provides information that could be utilized for optimizing the main-
tainability of the application, by reporting potential TD items that need to be
repaid (i.e., fixed), and potential components that may accumulate TD and need
to be refactored. For instance, as can be seen by Figure 14, for the analyzed em-
bedded software application, the SDK4ED Platform provides for each artifact (i.e.,
package or class), important information about their TD. For each artifact, the
exact TD items are also reported (on user click), along with information on how
to fix them. This information is very useful for the development team in order to
decide where to focus their refactoring activities.

Artifact TD-minutes TD-currency Bugs Vulnerabilities Duplications Code Smells

com/holisun/arassistance 34 26 0 0 0 8

com/holisun/arassistance/SplashActiv

ity

34 26 0 0 0 8

com/holisun/arassistance/adapters 38 29 0 1 0 7

com/holisun/arassistance/OnlineUser

sAdapter

6 5 0 0 0 3

com/holisun/arassistance/ChatAdapt

er

22 17 0 0 0 4

com/holisun/arassistance/Document

RecyclerViewAdapter

10 8 0 1 0 0

com/holisun/arassistance/models 24 18 0 0 0 6

com/holisun/arassistance/ChatModel 5 4 0 0 0 1

com/holisun/arassistance/OnlineUser

Model

19 15 0 0 0 5

com/holisun/arassistance/services 115 88 0 1 0 18

Artifact TD-minutes TD-currency Bugs Vulnerabilities Duplications Code Smells

Fig. 14 The TD indicators of the artifacts of the automotive embedded software

It should be noted that within the context of the present use case, an empirical
study was performed (Tsintzira et al. 2019), in order to examine whether the

40 Miltiadis Siavvas* et al.

Table 5 The scores of the security properties of the latest version of the automotive embedded
application

Property Score
Resource handling 80%
Assignment 85%
Exception handling 80%
Misused functionality 72%
Synchronization 20%
Null pointer 85%

SDK4ED platform accurately captures TD aspects, i.e., whether the TD aspects
reported by the SDK4ED platform are in line with those perceived by practitioners.
To this end, several software components from the studied embedded software
application were ranked based on their TD Principal, TD Interest, and TD Interest
Probability, which were reported either by the SDK4ED platform or by the opinion
of practitioners that work for the company. The two rankings were compared using
the Spearman rank correlation coefficient, and a statistically significant positive
correlation between these rankings was observed. This provides confidence that
the TD apsects that are computed by the SDK4ED platform are in line with those
expressed by the practitioners, and therefore can be reliable used for quantifying
TD of embedded systems.

Although the Maintainability was the main focus of the present use case, the
features of the SDK4ED platform for monitoring and optimizing the dependability
and energy consumption of the selected embedded software application were also
employed. This was done in order to ensure that the other critical quality attributes
of the embedded application are also kept in a satisfactory level and no important
issues can be detected. For reasons of brevity, and since they are not the main
attributes of interest, a summary of their results is provided in this section. For
the detailed results we refer the reader to the associated project report, which is
publicly available (SDK4ED 2019c).

Dependability: With respect to software security, the Security Index of the
studied application was found to be 72%, which is relatively high, indicating that
no critical vulnerabilities can be found in the system. The Security Index was
found to be around 72% across all the four studied versions of the application,
whereas the scores of the Security Characteristics of Confidentiality, Availability,
and Integrity were found to be above 70%, indicating that the code changes that
were performed for either adding new features, or for reducing the maintenance
costs did not affect its overall security level. The scores of the latest version of the
low-level Security Properties that were computed by the model are presented in
Table 5. As can be seen by Table 5, all the properties receive a high score (i.e., above
70%), with the only exception of the properties of Logging and Synchronization
that were found to be 40% and 20% respectively.

However, after inspecting the detailed results the development team identified
that the low score in the Logging property is caused by the fact that they do
not utilize a formal logging library (like the Log4j), but a custom logging system,
whereas the low score in the Synchronization issue was caused by the excessive
use of Threads, which is, however, inevitable, due to the strong need of the appli-
cation to ensure real-time communication with the lowest possible latency. None
of those issues were considered critical, which is also in line with the model as

41

their low score did not affect the overall Security Index significantly. However,
the development team, based on this feedback declared that in the future they
will reconsider the adoption of a popular logging mechanism and will examine the
security implications of the utilization of threads.

Energy Consumption: Finally, an energy analysis of the final version of the
selected embedded software application was conducted using the Energy Toolbox,
in order to ensure that the energy consumption of the final version of the ap-
plication (after adding new features and reducing maintenance costs) is within
acceptable levels. The energy analysis results, as reported by the Energy Toolbox,
are presented in Table 6.

Table 6 The energy analysis of the latest version of the automotive embedded application

Memory
(bytes)

CPU
Load (%)

CPU
Freq
(kHz)

Context
Switches
(#)

Test Case
Duration
(sec)

System
Calls (#)

Total
Energy
(Joules)

1733098 49.95 1374600 23604 5.93 278 12.39

In Table 6, several energy-related indicators are provided. The energy con-
sumption of the final version of the application was found to be 12.39 Joules,
which is well below the maximum acceptable level that was set by the develop-
ment team, which is 20 Joules. Hence, although the energy consumption analysis
was not the main focus of the company, being available on the platform, allowed
the development team quickly determine whether the energy footprint of the final
version of the application is within the acceptable levels.

6.1.2 Airborne Use Case

For the airborne use case, an embedded software application that is operating
on Unmanned Aerial Vehicles (UAV) (i.e., drones) was utilized. The selected em-
bedded software application is responsible for the piloting of a Vertical Take-Off
Landing (VTOL) drone. More specifically, the application contains algorithms for
remote and autonomous piloting of the drone, obstacle avoidance, navigation, and
route planning. Algorithms for improving autonomy capacity are also provided.
The application is running on a commercial off-the-self flying platform and has
been implemented recently by an industrial partner of the SDK4ED project, which
is a leading industry in aircraft production, defense, and aerospace. The applica-
tion is a small-sized embedded software application, which has been implemented
in C++ programming language.

The aforementioned embedded software application faces a lot of challenges
with respect to real-time operation, with the most critical being energy consump-
tion. The drone on which the application is running is operating on batteries and
therefore is characterized by limited energy capacity. In fact, these batteries can
support a flight of 30 minutes with only the engine running and no active pay-
load consuming power. Any additional item like sensors or computing power will
reduce drastically the flight time and thus the mission time. It is therefore of ut-
most importance that the embedded software is optimized, so as to use minimum
energy.

42 Miltiadis Siavvas* et al.

Hence, the major quality attribute that the airborne industry would like to
monitor and optimize through the SDK4ED platform is the energy consumption
of the selected application, as it is critical for the duration and success of a drone
mission. To this end, emphasis was given to the features provided by the En-
ergy Toolbox of the SDK4ED platform. However, similarly to the other use cases,
additional features were also used supplementarily, in order to ensure that no crit-
ical issues with respect to other critical quality attributes reside in the analyzed
embedded application.

Energy Consumption: Initially, the Energy Consumption Estimation mech-
anism of the Energy Toolbox was utilized, which provides static estimations of the
expected energy consumption of the analyzed embedded software applications on
different hardware platforms. The results of the analysis of the selected airborne
embedded software application are illustrated in Figure 15.

Energy

Estim.

(J)

Time

Estim.

(ms)

Ins Loads Stores Func

tion

0.908 38.83 781804 186042 59311 main

0.1664 1.324 110441 12247 5110 confi

gure

0.0095 0.088 11671 1628 576 init

0.0068 0.063 9650 1115 445 load

0.0043 0.060 10650 1219 525 load

0.0039 0.059 5998 862 313 start

Total Time in ARM Cortex A57 (Nvidia Jetson TX1) (ms)

Total Time in ARM Cortex A72 (Raspberry Pi 4) (ms)

Total Time in Intel i5 4210u (ms)

Total Time in ARM Cortex MO+ (Arduino Nano 33) (ms)

Total Energy in ARM Cortex A57 (Jetson TX1) (Joules)

Total Energy in ARM Cortex A72 (RPi 4) (Joules)

Total Energy in Intel i5 4210u (Joules)

Total Energy in ARM Cortex MO+ (Nano 33) (Joules)

38.83

79.716

25.718

2133.46

0.908

PLATFORM GRANULARITY

Fig. 15 The estimated energy consumption of the airborne embedded application on various
hardware platforms

As can be seen by Figure 15, a detailed table is provided by the SDK4ED
platform, which reports the estimated time and energy consumption of each func-
tion of the analyzed application, as well as of its loops (which are usually time
and energy-consuming parts of the source code). In addition to this, the expected
total execution time and energy consumption of the overall application for various
hardware platforms are also reported. This allows developers to have a fast esti-
mation of the expected performance and energy consumption of their application
on various platforms, as well as to detect potential time-consuming and energy-
hungry functions and loops, early enough in the development, even prior to having
an executable version of the application, which is necessary for actual performance
and energy measurements.

Figure 15 also shows the final energy estimation results for running the air-
borne embedded software application on different devices. Comparing the energy
estimation of Nvidia Tegra TX1 with energy consumption retrieved from an inte-
grated energy sensor in the actual device, we conclude that the Energy Toolbox
estimation accuracy can be considered acceptable for the airborne use case. More

43

precisely, the actual energy consumption is around 1.4 Joules, while the Energy
Toolbox estimates 0.908 Joules using only Static code analysis. Based on develop-
ers’ feedback on these results, the SDK4ED Energy toolbox offers good assistance
in the application development phase, as it provides a quick estimation of En-
ergy Consumption without needing to implement the application on the actual
hardware.

Apart from the static energy estimations, the Consumption Analysis mecha-
nism of the Energy Toolbox was also employed, in order to measure the actual
energy consumption of the application on the selected hardware platform, as well
as for the identification of the energy hotspots, i.e., those code parts that con-
sumed a lot of energy. Figure 16 presents the results of the Consumption Analysis
component of the SDK4ED Energy toolbox for the analysis of the Airborne pilot
use case.

Total CPU

Cycles

Total Ratio of

Branch misses

Total Data

Races

Total I Cache

Miss Rate

Total I Cache

Miss Rate

Total Memory

Accesses

GRANULARITY

Energy Hot-spots

Energy Hot-spots

Data Cache L1

Line

Start

Line

End

CPU

Cycles

Source

File

138 141 2% configsection.cpp

142 157 6% configmap.cpp

15 52 16% iniparser.cpp

54 57 4% iniparser.cpp

59 65 4% iniparser.cpp

67 74 8% iniparser.cpp

13 78 8% com_loader.cpp

80 133 1% com_loader.cpp

135 176 1% com_loader.cpp

178 246 2% com_loader.cpp

21 56 17% conffileparser.cpp

58 67 22% conffileparser.cpp

69 89 22% conffileparser.cpp

746 757 1% Message.cpp

104 115 1% timer.cpp

117 123 1% timer.cpp

23 105 45% kameleoncore.cpp

215 325 54% main.cpp

Fig. 16 The energy hotspots (i.e., functions and loops) of the airborne embedded application
along with the reported energy indicators

The values of Energy indicators characterize the application’s Energy Con-
sumption, helping to further explore the characteristics of the program that con-
sume more energy. The total number of Memory accesses is 249456. Most of the
memory operations concern the initialization of the application. The data cache
misses rate is 5.24%. These are mainly cold misses at the beginning of the appli-
cation that do not lead to any cache-blocking optimization. In addition, the use
case includes a small number of loops. According to the hotspot analysis, most of

44 Miltiadis Siavvas* et al.

the Energy is consumed in the main function and more specifically in a while loop,
waiting for the user to give input.

The results are in line with the previously extracted static estimations. This
shows that the static estimators can be utilized during the development for having
some quick estimations of the expected energy consumption, whereas the dynamic
estimations can be used afterwards, prior to the release of the application in order
to verify the actual values.

Dependability: Reliability is also a critical parameter for drone applications.
In order to enhance the reliability of the drone operation, the Checkpoint and
Restart (CR) mechanism is utilized by the selected drone application. Since the
drone application is an energy-critical application, and checkpoints are known to
introduce overheads with respect to energy consumption, the Dependability Tool-
box of the SDK4ED platform was utilized for selecting the optimum checkpoint
interval, i.e., the interval that minimizes energy consumption. The results of the
analysis are illustrated in Figure 17.

Fig. 17 The optimum checkpoint interval that minimizes the energy consumption of the
airborne embedded software application

As can be seen by Figure 17, the checkpoint interval should be set to 14, in
order to minimize the energy consumption of the application. This means that if we
want to ensure that the energy consumption of the source code of the airborne use
case is not affected by the checkpointing mechanism, we need to take a checkpoint
every 14 iterations of the overall loop. The developers found this analysis useful
and utilized this tool in order to set the checkpoint interval of the application. The
utilization of the CR mechanisms with the selected checkpointing interval did not
have an observable impact on the duration of the flight, indicating that the energy
overhead of the CR mechanism is reduced to its minimum level.

With respect to the security level of the drone application, the Dependability
Toolbox reported very high scores. In particular, the Security Index of the overall
application was found to be 86%, which is very high. In addition to this, the
security scores of the characteristics of Confidentiality, Integrity, and Availability
were all found to be above 85%, indicating that the application highly satisfies
these three critical security requirements. Finally, the security scores of the security
properties that are reported by the security model, were found to be above 88%,

45

with the only exception of the Exception Handling property which received a
low score of 22%. However, after a close inspection by the development team, the
reported exception handling issues were not critical enough for causing harm to the
system, which was also reflected by the security model, as it did not significantly
affect the overall security index.

It should be noted that the development team of the airborne application is
following a secure software development lifecycle (SSDLC) for the construction
of drone applications, including the application used in the present use case, and
therefore no important issues were expected to be found by the security monitors
of the Dependability Toolbox. Indeed, the Dependability Toolbox assigned a really
high security score to the analyzed drone application. This provides confidence for
the reliability and accuracy of the proposed security monitors, as they were able
to reflect the real case.

Maintainability: Finally, the TD Toolbox was utilized in order to compute
the TD of the application and detect whether critical maintainability issues may
reside in the source code of the drone application. The TD evolution analysis was
out of interest for the airborne use case, since the application is recently developed,
and therefore no sufficient number of versions/releases have been developed so far.
The results of the TD analysis of the latest version of the airborne application are
presented in Figure 18.

Principal Project Summary

Interest Project Summary

TD IN MINUTES TD IN CURRENCY BUGS

VULNERABILITIES CODE SMELLS DUPLICATIONS

BREAKING POINT (version) TOTAL INTEREST (€) INTEREST PROBABILITY (%)

INTEREST PROBABILITY RANKING (%)MAINTAINABILITY RANKING (%)

278770 185846.67 0

0 35094 31902

47.00 5968.79 12.37

0.40 0.40

Fig. 18 The summary of the TD Principal and Interest of the airborne embedded software
application

As can be seen by Figure 18, the TD principal was found to be approx. 193 days,
which is only due to code smells and code duplications. No critical TD liabilities
were detected in the application, which would require immediate care. Despite the
fact that TD interest amount is quite large, the Breaking point is assessed at 47
versions from the current release, probably due to the very low amount of interest
probability (approximately 12%). The scarce maintenance of the system renders
TDM not the top priority for this pilot case.

A TD analysis of the artifacts of the analyzed drone application revealed that
the vast majority of the artifacts have small TD Interest. Although no critical TD

46 Miltiadis Siavvas* et al.

liabilities were detected by the TD toolbox, specific suggestions for improvements
were provided. In particular, through the artifact analysis, highly complex artifacts
were identified and reported to the development team. In addition to this, design-
level and code-level optimizations were also proposed. More specifically, the TD
toolbox identified several code parts that could be extracted and implemented in
the form of individual methods (i.e., exact method refactoring), as well as best
on the TD New Code analysis (see Section 4.2.2), the TD Toolbox suggests the
developers to “document Public APIs, in order to be used by customers” and use
“Method names that comply to conventions”, as they were the most frequent TD
liabilities found in the system. The development team is planning to fix these issues
steadily throughout the lifecycle of the applications since they were not observed
to be critical that require immediate fix.

6.1.3 Healthcare Use Case

For the healthcare use case, we opted for an embedded software application that is
running on implantable medical devices (IMD), developed by an industrial partner
of the SDK4ED consortium. In particular, the selected software application is
operating on an implantable neurosimulator that is used for seizure detection. The
application includes functionality for receiving data from (ECoG/EEG) sensors
periodically, performing FIR filtering, and deciding whether a seizure is detected
or not in order to apply electrical stimulus via GPIO to suppress it. It is a small-
sized application, due to the limited memory available in the implantable devices,
which is written in C programming language.

Contrary to the previous use case, the healthcare application is a special case,
since Implantable Medical Devices (IMDs) belong to a class of highly life-critical,
resource-constrained, deeply embedded systems. These applications face significant
challenges with respect to critical non-functional requirements, whereas any com-
promise may have devastating consequences to the safety of the end-user (health
complications or even death). Energy efficiency is highly critical for IMD applica-
tions, as their long-term operation (for years or even a decade) should be ensured,
due to the fact that battery replacement is not possible without surgery. The reli-
ability and security of these applications are also of utmost importance, since the
exploitation of a single vulnerability or an unexpected failure, may put in danger
the safety of the patient. Finally, due to the high maintenance costs of healthcare
applications in general, their maintainability is also a concern for the development
teams.

Hence, the development team of the subject healthcare application was inter-
ested in monitoring and optimizing horizontally all three quality attributes that
the SDK4ED platform supports, namely the energy efficiency, the dependability
(i.e., security and reliability), and the maintainability of their application. To this
end, they actively utilized all the toolboxes of the SDK4ED platform during the
development of the application, including the decision-support mechanism that
computes the impacts of the proposed refactorings on the targeted quality at-
tributes. In fact, this was the only use case that declared the need for achieving a
trade-off among all three quality attributes, which was important for us to judge
the usefulness of the code refactoring impact calculator based on trade-off analy-
sis. In the rest of this section, the most notable results of the application of the
various toolboxes on the selected IMD application are presented.

47

Energy Consumption: The first version (v1.3) of the IMD application, ana-
lyzed by the SDK4ED Energy Toolbox, is an emulator of all the IMD components,
which was running on a Linux PC. Figure 19 presents the resulted Energy indi-
cators, while Figure 20 shows the estimated energy and the identified hotspots.
These results show that the application has a relatively small number of Memory
accesses (1546270). Most of the cache misses refer to the application initialization.
The presented data races are caused by the use of I/O C libraries (printf, scanf)
and the identified hotspots include locks waiting for the rest of the application’s
threads while one hotspot corresponds to a loop statement. It is worth mentioning
that the toolbox proposes this loop as a candidate block for acceleration because
due to its large instruction parallelism, which is combined with a few control op-
erations while the most of the operations are memory accesses (not to the same
address). However the small number of iterations would lead to more delays in
data transmission, so acceleration was not applied.

Fig. 19 The SDK4ED Energy Indicators of the healthcare embedded software application

PLATFORM GRANULARITY

Energy

Estim.

(J)

Time

Estim.

(ms)

Ins Loads Stor

es

Source

File

Start

Line

End

Line

5.5e-6 1.5e-3 2829 1000 411 imdcode.c 202 206

3.4e-7 6.9e-5 237 53 85 misty1.c 207 211

1.0e-7 3.2e-5 65 20 5 misty1.c 203 205

3.8e-8 2.5e-5 31 12 4 imdcode.c 343 344

1.2e-8 1.9e-5 13 6 3 imdcode.c 598 599

8.2e-9 1.9e-5 13 6 3 imdcode.c 621 622

4.3e-9 1.7e-5 20 5 2 imdcode.c 612 613

Total Time in ARM Cortex A57 (Nvidia Jetson TX1) (ms)

Total Time in ARM Cortex A72 (Raspberry Pi 4) (ms)

Total Time in Intel i5 4210u (ms)

Total Time in ARM Cortex MO+ (Arduino Nano 33) (ms)

Total Energy in ARM Cortex A57 (Jetson TX1) (Joules)

Total Energy in ARM Cortex A72 (RPi 4) (Joules)

Total Energy in Intel i5 4210u (Joules)

Total Energy in ARM Cortex MO+ (Nano 33) (Joules)

Fig. 20 The SDK4ED Energy Consumpion Estimation and Hotspots Identification results of
the healthcare embedded software application

48 Miltiadis Siavvas* et al.

The next versions of the use case, which were running on the actual hardware
devices, were analyzed using the static analysis energy estimation component of
the SDK4ED Energy toolbox. As mentioned in Section 4.1, this component was
designed to give an easy and fast way to estimate the energy. Also, using this
component we are able of comparing the use of different platforms. According
to the results presented in Figure 20, selecting the microprocessor ARM Cortex
M0+ leads to a more energy-efficient solution (of course with a penalty on the
execution time). The energy savings compared to using the more complex ARM
Cortex A57 can reach up to 98%. The user of course, as mentioned in 4.1, can add
more platforms by following the relevant guidelines.

The Energy Toolbox can also report the estimations for all the application
versions by retrieving the previous analysis results from the database. Figure 21
shows the estimated energy for each application version. The estimated energy
is always lower for using ARM Cortex M0+. An increase observed around the
middle of the project’s history is due to the addition of a new cryptographic
function. The function was replaced in the next version by a special peripheral.
As a result, the CPU energy was reduced by 95%. It is worth mentioning that the
Energy toolbox only analyses software and thus it does not include the energy of
hardware peripherals (Marantos et al. 2022a).

Fig. 21 The evolution of the energy consumption of the healthcare embedded software appli-
cation over its versions

Maintainability: Three main TD facets are utilized in order to assess the
maintainability of the healthcare application, namely the TD Principal, the TD
Interest, and the TD Interest Probability. In the IMD application, the value of the
TD Principal was characterized by significant variation across the various source
code files of the application. The ’reader.cpp’ file had the highest TD Principal,
demanding $302 to fix 29 identified code smells. The TD Interest of the ’reader.cpp’
file was found to be $9.68, which reflects the additional cost of maintaining this
file, due to not fixing the identified issues at first place. Finally, the TD Interest

49

Fig. 22 Evolution of Breaking Point for the healthcare embedded software application

Probability of the aformentioned file was also found to be really high (i.e., 0.8),
indicating that the file is changing frequently during the development of the IMD
application, which renders it a potential source of TD accumulation. All these
indicators are valuable for informing the development team about a specific source
code file that poses a risk in the maintainability (and the associated maintenance
costs) of the broader application, allowing them to make informed decisions on
how and when to repay its TD.

The Maintainability toolbox of the SDK4ED platform can also report source
code files, which are characterized by relatively high TD Principal, but low TD
Interest and/or interest probability. These files should be assigned a lower priority
for refactoring and fortification activities, since their low TD Interest and change
frequency do not impose the same risk to the overall maintainability of the IMD
application, compared to the risk imposed by frequently changing files, especially of
files with high interest. Hence, the Maintainability Toolbox enables the developers
to prioritize their TD repayment activities by focusing on more critical (from a
TD viewpoint) files in a given time frame, and subsequently moving to the less
critical ones. The evolution of the Breaking Point is of high interest for the IMD
application (Fig. 22). The Breaking Point corresponds to the point in time at which
the application becomes unmaintainable, i.e., the accumulated TD Interest of the
application becomes higher than its TD Principal. As can be seen by Figure 22,
the breaking point of the IMD application lies for most of the analyzed versions
20 versions ahead, while its value reaches 40 for the last version, indicating a
rather healthy status from a maintainability viewpoint. Hence, based on the above
analysis, although the IMD application contains TD liabilities (e.g., code smells),
its overall quality can be considered high, not indicating the need for immediate TD
repayment activities to be carried out. The development team is not expected to
face unbearable maintenance costs in the projected future. This was very helpful
for the development team of the IMD application, as it allowed them to focus
on other critical aspects of their application, including energy and dependability,
without losing time in fixing maintainability-related issues, as they were not found
to impose any critical risk.

Finally, a separate TD analysis of the medical and security components of the
IMD applications was performed (Siddiqi et al. 2021), in an attempt to examine
whether the security-related features that are added in the application have an
impact on the overall maintenance cost of the broader system. The analysis led

50 Miltiadis Siavvas* et al.

Fig. 23 The evolution of the TD Principal of the two main components (i.e., the medical and
security components) of the healthcare embedded software application

to the observation that the TD Principal of the medical part of the IMD appli-
cation remains stable over time, as opposed to the TD Principal of the security
component, which follows an upward trend. Hence, the TD Principal of the overall
IMD application follows the evolution of the TD Principal of the security com-
ponent (see Fig. 23). This indicates that the inclusion of security features that
are meant to strengthen the resilience of the IMD application against malicious
attacks, are expected to significantly affect its maintainability, and therefore a
sufficient trade-off between security and maintainability should be achieved. Such
analysis initiated a research line within the company considering the security costs
in the IMD domain, urging for more cost-efficient solutions at the software level.

Dependability: The IMD application was initially evaluated with the Depend-
ability Toolbox of the SDK4ED platform, in order to assess its overall security
level. In Figure 24, the results of the analysis that was performed by the security
model of the Dependability Toolbox are illustrated. As can be seen by Figure 24,
the Security Index of the IMD application is very high (i.e., 93%), and the scores
of the three Security Characteristics of the model (i.e., Confidentiality, Integrity,
and Availability) were found to be above 85%. With respect to the low-level Secu-
rity Properties that are provided by the security model, almost all of them were
found to have a really high score (above 94%). The only property that received a
low score (i.e., 36%) is the Dead Code property, but this property is not equally

51

Fig. 24 The security assessment results of the healthcare embedded software application

Fig. 25 Vulnerability Prediction Results for the healthcare application use case

critical to the other properties of the model, which is also reflected by the fact
that the overall Security Index was not affected significantly.

In Figure 25, a heatmap is provided, which demonstrates the analysis results of
the vulnerability prediction models of the Dependability Toolbox. In the presented
heatmap, the rectangles correspond to the various source code files of the analyzed
application and the color of the rectangle denotes how likely it is for the associ-
ated file to contain vulnerabilities. From Figure 25, it can be seen that the IMD
application has three security hotspots, which are the abc.c, the spi_interface.c,
and the spi_interface_sisc.c files, as they exhibit a high vulnerability score (i.e.,
above 0.8 in all three cases). Therefore, the development team can focus their
security-related testing and fortification activities on these three source code files,
increasing the chances of finding actual vulnerabilities.

The evolution of the security index over the nine major releases (i.e., versions)
of the IMD application is also illustrated in Figure 26. As can be seen by this
Figure 26, the Security Index is very high in all versions ranging between 93%

52 Miltiadis Siavvas* et al.

and 96%. It should be noted that prior to the release of each version, the source
code of the application was evaluated utilizing the Security Assessment Model
and the Vulnerability Prediction mechanisms of the Dependability Toolbox, and
any detected critical security issues were fixed. During this process, two critical
buffer overflow vulnerabilities were detected by the Dependability Toolbox, one
before the third and another one before the seventh release of the application.
The development team verified that those issues were actual vulnerabilities and
corrected them before releasing their version on their Git repository. Therefore,
the Dependability Toolbox enabled the prompt identification and elimination of
vulnerabilities prior to the release of the application, which is a highly desirable
aspect of security evaluation mechanisms, which acts as a success criterion in the
literature (Mohammed et al. 2016).

Fig. 26 The Security Index of the main releases of the healthcare embedded software appli-
cation. Relevant TD indicators are also illustrated (Siddiqi et al. 2021).

Regarding the reliability of the IMD application, the Optimum Checkpoint
Interval Recommendation (OCIR) mechanism was utilized, in order to select the
optimum checkpoint interval for computational loops that reside in the source code
of the IMD application. Figure 27 shows the results of the OCIR mechanism for
the most computational loop of the healthcare use case. According to the OCIR
mechanism, as shown in Figure 27, in order to minimize the execution time of the
application a checkpoint should be established every 200 loop iterations, whereas a
checkpoint should be generated every 30 loop iterations, if the goal is to minimize
the energy consumption of the application.

Forecasting: The results of TD (i.e., Maintainability) forecasting for a fore-
casting horizon of 10 commits are illustrated in Figure 28. The green line corre-
sponds to the actual evolution of the TD Principal of the IMD application until
its latest commit, whereas the red line corresponds to the projected evolution of
the TD Principal for the next 10 commits, as computed by the forecasting models.
As shown in Figure 28, although the current value of the TD Principal of the IMD
application is 5 days (which reflects the days that are required by the development
team for fixing the underlying TD issues), this is expected to increase in 10 com-
mits from now to the value of 8 days, which corresponds to an increase of 67%. his
information helped the developers allocate the resources needed to quickly repay

53

Fig. 27 Calculation of the optimum checkpoint interval that minimizes the execution time
(left) and the energy consumption (right) of the healthcare embedded software application.

Fig. 28 TD Forecasting Results for the healthcare embedded software application

TD. In fact, these results are in line with the results of the TD analysis performed
by the Maintainability Toolbox (and presented in Section 4.2), since, despite the
fact that the TD Principal of the IMD application is expected to increase, the
projected value of its TD is not considered to be concerning. With respect to the
energy consumption and dependability, a slight increase is expected to be observed
for the former, whereas no big changes are expected for the latter (i.e., the overall
Security Index is expected to remain relatively stable).

Decision Support: The output of the SDK4ED Decision Support toolbox
analysis for the Healthcare use case is depicted in Figure 29. A total value (right
plot) is assigned to each of the refactorings proposed by the rest of the toolboxes.
This value can be broken down into individual impacts (left plot) that the refac-
toring is expected to have, if implemented, on each of the three targeted quality
attributes. Positive-signed values denote quality improvement. For instance, as
shown in Figure 29. deciding to fix issues that belong to the "Resource Handling"
category, will improve the Security and Energy Efficiency of the IMD application,
whereas it is not expected to have any impact on its Technical Debt. Similarly, a
decision to fix issues that belong to the "Overflow" category are expected to im-
prove the security level of the IMD application, but it will have a negative impact
to its maintainability and energy consumption, mainly due to the additional checks
that need to be added to the source code, which lead to additional operations to
be executed on the CPU and more complex source code. The user’s preferences

54 Miltiadis Siavvas* et al.

drive the magnitude of each impact value. For example, if the user selects Energy
as more important than TD, the colored bars on the left plot are expected to have
bigger blue segments and smaller black segments than in the opposite scenario,
where technical debt is declared as more significant one.

Fig. 29 The results of the Decision Support toolbox for the healthcare embedded software
application

6.2 Industrial Study

Apart from the use cases that were presented in Section 6.1, whose main goal
was to verify the usefulness and practicality of the SDK4ED platform in a real-
world industrial setting, an empirical industrial study was also conducted, in order
to verify whether the SDK4ED platform is relevant to the embedded software
industry and can help in reducing the development cost of such applications. In
fact, in an attempt to complement the feedback received by the industrial partners
through the actual utilization of the platform via the three use cases (Section 6.1),
questions with respect to the industrial relevance and usability of the platform
(with emphasis on the TD toolbox, which measures the financial impacts) were
also included.

More specifically, an embedded multiple case study was conducted, based on
participants coming from the industrial partners of the SDK4ED consortium. In
total, the study comprised 15 units of analysis (i.e., participants), coming from
four companies, which are the three providers of the automotive, airborne, and
healthcare use cases that were presented in detail in Section 6.1, and a fourth
company that builds software applications for IoT systems, which is also part of
the consortium. Similarly to Section 6.1, the companies are anonymized due to an
NDA, but in Table 7, some information about them is provided.

The participants were given access to the platform for a 30-day trial period,
during which they have been asked to involve the platform in their development
routines (using the source code of their industrial projects), in the way that they
perceive as most beneficial. An 1-day workshop was conducted at the beginning
of this study, in order to present the platform to the participants and provide
them with initial training. Upon the completion of the trial, we proceeded to data
collection. Data collection comprised two methods, namely two survey sessions

55

Table 7 Participant companies demographics

ID Application Domain Country Participants Size
C1 Airborne France 3 Large enterprise
C2 Internet of Things Sweden 4 Small-medium Enterprise
C3 Automotive Romania 6 Small-medium Enterprise
C4 Medical Applications Netherlands 2 Small-medium Enterprise

and four focus groups. The purpose of the survey sessions and the focus groups
was to evaluate the potential cost reduction that can be achieved by the platform
and its industrial relevance, as well as the overall usefulness of the platform.

The surveys were based on online questionnaires that were shared with the
participants who provided their responses in a 5 Likert-scale format. It should be
noted that for evaluating the usability of the platform the relevant questionnaire
was structured based on the System Usability Scale (SUS) (Brooke et al. 1996)
approach. With respect to the focus groups, four focus groups were performed, one
for each company. Each focus group was intended to last for 45 minutes (with each
company - 3 hours in total); and was conducted using a teleconferencing platform.

For analyzing the results of the surveys and the focus groups, both quantitative
and qualitative analysis were performed, based on the guidelines provided by Sea-
man (Seaman 1999). To obtain the quantitative results, we used the data obtained
by the two surveys, by summing the scores assigned by all participants to a spe-
cific question, and used bar charts for their visualization. For usability, the total
SUS score was provided, along with the most common scales for interpretation, in
terms of acceptance, adjective, and grade. To obtain the qualitative assessments,
the data from the focus groups were analyzed based on the quantitative content
analysis (QCA) technique (Elo and Kyngäs 2008), which involved open coding, cre-
ating categories, and abstraction, and were visualized through alluvial diagrams.
For more information about the overall qualitative and quantitative evaluation
process, we refer the reader to (Ampatzoglou et al. 2022).

The results of the study led to some interesting observations. First of all, the
results indicate that all the features provided by the SDK4ED platform for TD
management, are expected to lead to development cost savings, especially with
respect to future maintenance, as all of the relevant features received a score
higher than 83%, with the New Code Analysis Quality Control to be the most
promising one, having a sore close to 95%. With respect to the overall usability
of the platform, the average score received by the participants was 76.8% and its
average grade is B. Hence, the SDK4ED platform received a positive evaluation in
terms of usability, rendering it acceptable for industrial usage. The focus groups
revealed that, among the various features provided by the platform, the features
that assist developers in writing cleaner new code are the most welcomed ones,
as they allow them to keep the maintenance costs at specific levels. In addition
to this, according to the participants, the monetization of the assessments is the
most beneficial feature, as it enables them to understand the current and future
development costs that they may face.

56 Miltiadis Siavvas* et al.

7 Discussion

In the present section, we attempt to summarize the main observations that we
made with respect to the usefulness and practicality of the SDK4ED platform, by
analyzing the use cases that were described in Section 6.1, as well as by considering
the outcomes of the embedded industrial study presented in Section 6.2. It should
be noted that for the derivation of the main observations that are presented in
the present section, the evaluation reports that were delivered by the end of the
SDK4ED project by the use case providers (reporting their experience with the
SDK4ED platform along with their overall assessment (SDK4ED 2019a,b,c,d)),
were also taken into account.

Application developers were able to easily monitor the quality at-
tribute(s) of choice of their embedded software applications in a quan-
titative way frequently during the overall development cycle, thanks to
the provided monitors.

In the automotive use case, the development team was able to monitor the
evolution of the maintainability of their application, which was the main quality
attribute of interest, over its four major releases. The maintainability was measured
using the Technical Debt (TD) metaphor, and particularly the aspects of TD
Principal, TD Interest, and TD Interest Probability. The monetization of their
values enabled them to have an estimation of their maintenance costs, whereas
the breaking point allowed them to understand whether their application is at risk
of becoming unmaintainable in the future. The benefits of the monetization of the
TD assessment were also highlighted by the participants of the industrial study
that was presented in Section 6.2. In addition to this, the activities that were
undertaken by the development team for reducing the maintenance costs between
successive versions, were reflected with a drop in the overall computed TD interest.
According to their evaluation reports, the SDK4ED platform was able to capture
the TD concepts accurately. More specifically, as they report: “the indicators for
principal and interest seem to be (at least) strongly correlated to our perception
on principal”, and “we are very eager to exploit the SDK4ED TD dashboard as
part of our quality assurance processes, since it seems to be accurately reflecting
our own perspective on software quality assessment.” (SDK4ED 2019c).

Similarly, in the airborne use case, the developers were able to retrieve static
estimations of the energy consumption of their application (which was the most
critical attribute) during the design time, allowing them to gain a fast overview
of the expected energy consumption and the expected energy-hungry hotspots
(i.e., functions and loops). The runtime monitors enabled them to measure the
actual energy of the application during its operation, and therefore to verify the
accuracy of the static estimations. Notably, the development team reported in
their evaluation document (SDK4ED 2019a) that “the indicators provide a good
approximation of the reality”.

Finally, in the healthcare use case in which all the three studied quality at-
tributes were equally important and required monitoring, the Technical Debt indi-
cators allowed the developers to monitor the evolution of their maintenance costs,
both of the overall application and of its subparts (i.e., medical and security sub-
components), whereas the dependability toolbox enabled them to ensure that the
security level of the various versions where high. The energy monitors (both static
and dynamic) allowed them to monitor the energy consumption of the application

57

on different hardware platforms. The analysis of their application through the
SDK4ED platform revealed that the security-related code of an IMD application
is costlier with respect both to its development and maintenance, compared to the
medical/core code of the application, and that it will dominate the cost in the
future. More specifically, according to their reports (SDK4ED 2019b; Siddiqi et al.
2021), the SDK4ED platform allowed them to understand that “security-code TD
amasses faster and will eventually overtake medical-code TD”, and therefore ”IMD
economic viability will, thus, only be ensured if security-development efforts are
allocated significant resources within the next decade”.

Application developers were able to retrieve meaningful optimization
suggestions from the SDK4ED Platform, which led them in improving
the quality of their embedded software.

For instance, in the automotive use case, the development team identified crit-
ical TD liabilities that required their attention and took into account the re-
ported code refactorings. According to the company, a dedicated quality manager
was hired, who utilize the TD monitoring and optimization functionalities of the
SDK4ED platform on a frequent basis, and assigned refactoring activities to the
development team, based on the suggested optimizations. In the healthcare use
case, the application of the security model of the dependability toolbox frequently
during the development of the application led to the identification and elimina-
tion of two critical buffer overflow vulnerabilities prior to two major releases of
the application. This allowed developers to eliminate critical security issues from
their application at design-time, and maintain the security level of their applica-
tion very high among all its versions (as shown in Figure 26). In the airborne use
case, by utilizing the energy toolbox, the development team verified that they were
able to detect energy-hungry functions and loops that reside in their application
and that they were not aware of. They also verified that the most energy-hungry
hotspots will be rewritten in order to reduce their energy footprint. In addition,
the development team found really useful the optimum checkpoint interval recom-
mendation mechanism of the dependability toolbox, as it allowed them to select
the checkpoint interval that minimizes energy footprint.

The SDK4ED platform is highly configurable allowing its adaptation
to custom user needs, as well as to highly diverse application domains.

As described in Section 5, the platform enables the execution of a central anal-
ysis of a given application, in which all the mechanisms of the SDK4ED platform
are executed. However, the platform gives the opportunity to the end-user to per-
form custom analysis, i.e., to select only those features that are more interesting
or relevant to their applications. For instance, in the automotive use case, pri-
mary emphasis was given on the maintainability of the application, in order to see
the evolution of TD aspects of the application (e.g., TD Principal, TD Interest,
etc.), as well as to detect TD liabilities that require repayment. In the airborne
use case, specific emphasis was given on the energy consumption and reliability of
the application, utilizing mainly the static and dynamic monitors of the Energy
Toolbox, and the optimum checkpoint recommendation system of the Depend-
ability toolbox. On the contrary, in the healthcare use case, since all three quality
attributes were considered equally important by the development team, all the
features of the SDK4ED platform were actively utilized during the development
of the application.

58 Miltiadis Siavvas* et al.

Hence, the platform is highly configurable allowing end users to cherry peak
those components that they consider relevant and interesting, enabling the analysis
to adapt to custom user needs and application domains. Finally, its successful
application on different use cases stemming from different domains and developed
by different development teams further supports its ability to adapt to custom
needs and domains. The high configurability and adaptability of the platform, and
mainly the ability to focus on a desired set of quality attributes, was one of the
main functional requirements that were expressed by all the industrial partners of
the SDK4ED consortium, during the requirements definition phase of the platform
(Sas and Avgeriou 2020).

At this point it should be stated that with the term highly configurable we refer
to the ability of the SDK4ED platform to be properly configured (through proper
modifications of its settings and/or parameters - without the need for source code
interventions) in order for the performed analyses to be tailored to specific user
needs, applications, and application domains. In particular, the SDK4ED platform
enables the user to select specific types of analysis to be executed for a given
application with proper configuration, as well as to declare which quality attributes
are more important for a given application (among maintainability, dependability,
and energy efficiency) in order to retrieve more tailored recommendations. Hence,
the term highly configurable does not cover (or imply) the potential customizability
and extensibility of the SDK4ED platform through a formal approach for the
streamlined addition of third-party toolboxes, which could support the analysis of
additional quality attributes or other programming languages. Although the later
is highly interesting and a valuable feature, emphasis was given on the former, as
it was expressed as one of the main desired requirements of the SDK4ED project
during the Requirements Elicitation phase that was carried out at the beginning of
the project with the industrial partners (i.e, use case providers) (Sas and Avgeriou
2020). The potential extensibility and customizability of the SDK4ED platform is
an interesting direction for future work and a valuable feature that is planned to
be included in future updates of the platform.

The SDK4ED platform is user-friendly, useful, and relevant to the
embedded software industry, reducing development costs of embedded
software.

All the use case providers, according to the evaluation reports that they de-
livered by the end of the project (SDK4ED 2019a,b,c,d), found the SDK4ED
platform user-friendly and easy to use. More specifically, all of them stated that
“the final platform is very intuitive and user friendly”, whereas its “learning curve
is reasonable and the tool can be adopted in a very easy way” (SDK4ED 2019d).
They also found the mechanisms provided by the platform very relevant and use-
ful and expressed their will to include the platform as part of their development
process. In particular, the automotive use case provider has already incorporated
the SDK4ED platform as part of their development and quality assurance pro-
cess. They have hired a quality assurance (QA) manager who is in charge of TD,
who regularly consults the SDK4ED tool in her daily routine, placing special em-
phasis on the suggestions provided by the tool. Her main responsibilities are: (i)
monitor the TD, (ii) suggest code improvements, and (iii) reduce the number of
code smells, and, in turn, the value of the overall TD of the applications under
development. In the future, they are also planning to incorporate the dependabil-
ity toolbox into their workflow. In the same sense, the healthcare and airborne

59

use case providers have expressed their plans to incorporate the energy estimators
and the security checks (which are more important for their applications) that are
provided by the Energy and Dependability Toolbox respectively in their quality
assurances processes (SDK4ED 2019a,b).

Finally, the 15 participants of the industrial study that was presented in Sec-
tion 6.2, evaluated positively the usability of the SDK4ED platform, assigning an
average SUS score of 78.6%, which corresponds to an average rank of B. This in-
dicates that they found the platform useful and relevant to their industrial needs.
Also, specific features like the monetization of the assessments, the identification
of hotspots, and the assistance in producing cleaner new code were marked as
the most beneficial and relevant features of the platform, which provides further
confidence for the industrial relevance of the solutions that are provided by the
SDK4ED platform.

8 Conclusion

The development of embedded software applications is a difficult task mainly due
to the limitations that are imposed by the hardware platforms on which they op-
erate, as well as by the often-conflicting non-functional requirements (i.e., quality
criteria) that they need to satisfy. The SDK4ED platform, which is the outcome
of an EU-funded research project, aims at facilitating the development of high-
quality embedded software, focusing mainly on the quality attributes of energy ef-
ficiency, dependability, and maintainability. The platform provides novel solutions
for monitoring and optimizing these three quality attributes of embedded software
individually. It also provides novel solutions for facilitating decision-making during
the development of embedded software, through advanced forecasting techniques
that predict the future evolution of the three quality attributes of interest, and a
novel fuzzy multi-criteria decision-making technique for computing the impact of
code refactorings on critical quality attributes, based on trade-off analysis among
them.

In the present paper, we provided an overview of the SDK4ED platform, along
with a description of the main novel features that it encapsulates. We also demon-
strated the usefulness and practicality of the platform through three use cases
based on real-world embedded software applications coming from the automotive,
airborne, and healthcare domains. The results of an industrial study were also
presented. According to the qualitative analysis, the SDK4ED platform is highly
user-friendly and provides solutions that are useful and with industrial relevance.
According to the use cases, the development teams were able to monitor effec-
tively the quality attributes of choice and retrieve useful recommendations for
quality improvement. All the involved industrial partners expressed their desire to
include the SDK4ED platform (or at least parts of it) in their actual development
and quality evaluation processes, whereas one of the industrial partners of the
SDK4ED consortium, has already hired a dedicated quality assurance (QA) man-
ager, who consults the SDK4ED platform in a frequent basis in order to monitor
and optimize the quality of the embedded software applications that are produced
by the company. Another interesting observation, which can be also considered a
benefit, is that the high-configurability and adaptability of the platform enables
it to be adapted to custom user needs and application domains. To the best of

60 Miltiadis Siavvas* et al.

our knowledge, this is the only quality evaluation platform that encapsulates novel
monitoring and optimization mechanisms for multiple quality attributes, as well
as that considers the interplay among different often-conflicting quality attributes
of interest. In the future, we are planning to enhance and encourage the further ex-
tensibility of the SDK4ED platform with new third-party features and toolboxes,
in order to support the evaluation of additional quality attributes. as well as the
analysis of other programming languages. In particular, we foresee to provide a for-
mal integration pipeline along with detailed guidelines and step-by-step tutorials
on how a new third-party toolbox can be integrated to the SDK4ED platform.

9 Acknowledgments

This work is partially funded by the European Union’s Horizon 2020 Research
and Innovation Programme through SDK4ED project under Grant Agreement
No. 780572.

Declarations

Authors’ Contributions

Conceptualization: Miltiadis Siavvas, Dimitrios Tsoukalas, Charalampos Maran-
tos, Dimitrios Soudris, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, Erol
Gelenbe, Dimitrios Tzovaras; Methodology: Miltiadis Siavvas, Dimitrios Tsoukalas,
Alexandros Chatzigeorgiou, Dimitrios Soudris, Lazaros Papadopoulos; Formal anal-
ysis and investigation: Miltiadis Siavvas, Dimitrios Tsoukalas, Oliviu Matei, Chris-
tos Strydis, Paris Avgeriou, Muhammad Ali Siddiqi, Philippe Chrobocinski, Katarzyna
Filus, Joanna Domańska; Writing - original draft preparation: Miltiadis Siavvas;
Writing - review and editing: Miltiadis Siavvas, Dimitrios Tsoukalas, Alexander
Chatzigeorgiou, Erol Gelenbe, Dimitrios Soudris, Dimitrios Tzovaras; Funding ac-
quisition: Dionysios Kehagias; Resources: Dionysios Kehagias; Supervision: Mil-
tiadis Siavvas, Alexander Chatzigeorgiou, Dimitrios Soudris, Erol Gelenbe, Dim-
itrios Tzovaras.

Funding

This work is partially funded by the European Union’s Horizon 2020 Research
and Innovation Programme through SDK4ED project under Grant Agreement
No. 780572.

Competing Interests

The authors have no competing interests as defined by Springer, or other interests
that might be perceived to influence the results and/or discussion reported in this
paper.

61

References

Aggarwal K, Hindle A, Stroulia E (2015) Greenadvisor: A tool for analyzing the impact of
software evolution on energy consumption. In: 2015 IEEE international conference on
software maintenance and evolution (ICSME), IEEE, pp 311–320

Alshammari B, Fidge C, Corney D (2011) A Hierarchical Security Assessment Model for
Object-Oriented Programs. 2011 11th International Conference on Quality Software
(1):218–227, DOI 10.1109/QSIC.2011.31

Amanatidis T, Mittas N, Moschou A, Chatzigeorgiou A, Ampatzoglou A, Angelis L (2020)
Evaluating the agreement among technical debt measurement tools: building an empirical
benchmark of technical debt liabilities. Empirical Software Engineering 25:4161–4204

Ampatzoglou A, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2015) The financial as-
pect of managing technical debt: A systematic literature review. Information and
Software Technology 64:52–73, DOI https://doi.org/10.1016/j.infsof.2015.04.001, URL
https://www.sciencedirect.com/science/article/pii/S0950584915000762

Ampatzoglou A, Michailidis A, Sarikyriakidis C, Ampatzoglou A, Chatzigeorgiou A, Avgeriou
P (2018) A framework for managing interest in technical debt: An industrial validation.
In: 2018 IEEE/ACM International Conference on Technical Debt (TechDebt), pp 115–124

Ampatzoglou A, Tsintzira AA, Arvanitou EM, Chatzigeorgiou A, Stamelos I, Moga A, Heb
R, Matei O, Tsiridis N, Kehagias D (2019) Applying the single responsibility principle in
industry: Modularity benefits and trade-offs. In: Proceedings of the 23rd International Con-
ference on Evaluation and Assessment in Software Engineering, Association for Computing
Machinery, New York, NY, USA, EASE ’19, p 347–352, DOI 10.1145/3319008.3320125,
URL https://doi.org/10.1145/3319008.3320125

Ampatzoglou A, Chatzigeorgiou A, Arvanitou EM, Bibi S (2022) Sdk4ed: A platform for
technical debt management. Software: Practice and Experience

Ansar SA, Alka, Khan RA (2018) A phase-wise review of software security metrics. In: Net-
working Communication and Data Knowledge Engineering

Ardalani N, Lestourgeon C, Sankaralingam K, Zhu X (2015) Cross-architecture performance
prediction (xapp) using cpu code to predict gpu performance. In: Proceedings of the 48th
International Symposium on Microarchitecture, ACM, pp 725–737

Arora R (2017) ITALC : Interactive Tool for Application - Level Checkpointing. Proceedings
of the Fourth International Workshop on HPC User Support Tools

Avgeriou PC, Taibi D, Ampatzoglou A, Arcelli Fontana F, Besker T, Chatzigeorgiou A, Lenar-
duzzi V, Martini A, Moschou A, Pigazzini I, Saarimaki N, Sas DD, de Toledo SS, Tsintzira
AA (2021) An overview and comparison of technical debt measurement tools. IEEE Soft-
ware 38(3):61–71, DOI 10.1109/MS.2020.3024958

Awan MA, Petters SM (2011) Enhanced race-to-halt: A leakage-aware energy management
approach for dynamic priority systems. In: 2011 23rd Euromicro Conference on Real-Time
Systems, IEEE, pp 92–101

Bazzaz M, Salehi M, Ejlali A (2013) An accurate instruction-level energy estimation model
and tool for embedded systems. IEEE transactions on instrumentation and measurement
62(7):1927–1934

Besker T, Martini A, Bosch J (2019) Software developer productivity loss due to technical
debt—a replication and extension study examining developers’ development work. Journal
of Systems and Software 156:41–61, DOI https://doi.org/10.1016/j.jss.2019.06.004, URL
https://www.sciencedirect.com/science/article/pii/S0164121219301335

Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR,
Krishna T, Sardashti S, et al. (2011) The gem5 simulator. ACM SIGARCH computer
architecture news 39(2):1–7

Brooke J, et al. (1996) Sus-a quick and dirty usability scale. Usability evaluation in industry
189(194):4–7

Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, Lim E, MacCormack A,
Nord R, Ozkaya I, Sangwan R, Seaman C, Sullivan K, Zazworka N (2010) Manag-
ing technical debt in software-reliant systems. In: Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research, Association for Computing Machin-
ery, New York, NY, USA, FoSER ’10, p 47–52, DOI 10.1145/1882362.1882373, URL
https://doi.org/10.1145/1882362.1882373

Catthoor F, Danckaert K, Brockmeyer E, Kulkarni K, Kjeldsberg PG, Van Achteren T, Omnes
T (2002) Data access and storage management for embedded programmable processors.

62 Miltiadis Siavvas* et al.

Springer Science & Business Media
Charalampidou S, Ampatzoglou A, Chatzigeorgiou A, Gkortzis A, Avgeriou P (2017) Identify-

ing extract method refactoring opportunities based on functional relevance. IEEE Trans-
actions on Software Engineering 43(10):954–974, DOI 10.1109/TSE.2016.2645572

Chatzigeorgiou A, Ampatzoglou A, Ampatzoglou A, Amanatidis T (2015) Esti-
mating the breaking point for technical debt. In: 2015 IEEE 7th Interna-
tional Workshop on Managing Technical Debt (MTD), IEEE Computer Soci-
ety, Los Alamitos, CA, USA, pp 53–56, DOI 10.1109/MTD.2015.7332625, URL
https://doi.ieeecomputersociety.org/10.1109/MTD.2015.7332625

Chowdhury I, Zulkernine M (2011) Using complexity, coupling, and cohesion met-
rics as early indicators of vulnerabilities. Journal of Systems Architecture DOI
10.1016/j.sysarc.2010.06.003, URL http://www.mendeley.com/research/using-complexity-
coupling-cohesion-metrics-early-indicators-vulnerabilities

Colombo RT, Pessôa MS, Guerra AC, Filho AB, Gomes CC (2012) Prioritization of software
security intangible attributes. ACM SIGSOFT Software Engineering Notes 37(6):1, DOI
10.1145/2382756.2382781, URL http://dl.acm.org/citation.cfm?doid=2382756.2382781

Cunningham W (1993) The wycash portfolio management system. ACM SIGPLAN OOPS
Messenger 4(2):29–30

Dam HK, Tran T, Pham T, Ng SW, Grundy J, Ghose A (2018) Automatic feature learning for
predicting vulnerable software components. IEEE Transactions on Software Engineering
47(1):67–85

David H, Gorbatov E, Hanebutte UR, Khanna R, Le C (2010) Rapl: Memory power estimation
and capping. In: Proceedings of the 16th ACM/IEEE international symposium on Low
power electronics and design, pp 189–194

Dayanandan U, Kalimuthu V (2018) Software architectural quality assessment model for secu-
rity analysis using fuzzy analytical hierarchy process (fahp) method. 3D Research 9(3):31,
DOI 10.1007/s13319-018-0183-x, URL https://doi.org/10.1007/s13319-018-0183-x

DeMarco T (1986) Controlling Software Projects: Management, Measurement, and Estimates.
Prentice Hall PTR, Upper Saddle River, NJ, USA

Digkas G, Chatzigeorgiou A, Ampatzoglou A, Avgeriou P (2022) Can clean new code reduce
technical debt density? IEEE Transactions on Software Engineering 48(05):1705–1721,
DOI 10.1109/TSE.2020.3032557

Eder K, Gallagher JP, Fagas G, Gammaitoni L, Paul D (2017) Energy-aware software engi-
neering. ICT-energy concepts for energy efficiency and sustainability pp 103–127

Egwutuoha IP, Levy D, Selic B, Chen S (2013) A survey of fault tolerance mechanisms and
checkpoint/restart implementations for high performance computing systems. Journal of
Supercomputing 65(3):1302–1326, DOI 10.1007/s11227-013-0884-0

Elnozahy EN, Alvisi L, Wang YM, Johnson DB (2002) A Survey of Rollback-recovery
Protocols in Message-passing Systems. ACM Comput Surveys 34(3):375–408, DOI
10.1145/568522.568525, URL http://doi.acm.org/10.1145/568522.568525

Elo S, Kyngäs H (2008) The qualitative content analysis process. Journal of advanced nursing
62(1):107–115

Euler L (1783) De serie lambertina plurimisque eius insignibus proprietatibus. Acta Academiae
scientiarum imperialis petropolitanae pp 29–51

Filus K, Boryszko P, Domańska J, Siavvas M, Gelenbe E (2021a) Efficient feature selection for
static analysis vulnerability prediction. Sensors 21(4):1133

Filus K, Siavvas M, Domańska J, Gelenbe E (2021b) The random neural network as a bonding
model for software vulnerability prediction. In: Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems: 28th International Symposium, MASCOTS
2020, Nice, France, November 17–19, 2020, Revised Selected Papers 28, Springer, pp 102–
116

Fontana FA, Roveda R, Zanoni M (2016) Technical debt indexes provided by tools: A prelim-
inary discussion. In: 2016 IEEE 8th International Workshop on Managing Technical Debt
(MTD), pp 28–31, DOI 10.1109/MTD.2016.11

Fowers J, Brown G, Cooke P, Stitt G (2012) A performance and energy comparison of fpgas,
gpus, and multicores for sliding-window applications. In: Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, pp 47–56

Fowler M (1999) Refactoring: Improving the Design of Existing Code. Addison-Wesley Long-
man Publishing Co., Inc., USA

63

Gelenbe E (1989) Random neural networks with negative and positive signals and product
form solution. Neural computation 1(4):502–510

Gelenbe E, Siavvas M (2021) Minimizing energy and computation in long-running software.
Applied Sciences 11(3):1169

Gelenbe E, Boryszko P, Siavvas M, Domanska J (2020) Optimum checkpoints for time and
energy. In: 2020 28th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), IEEE, pp 1–8

Georgiou S, Rizou S, Spinellis D (2019) Software development lifecycle for energy efficiency:
techniques and tools. ACM Computing Surveys (CSUR) 52(4):1–33

Guo S, Zhao H (2017) Fuzzy best-worst multi-criteria decision-making method and its appli-
cations. Knowledge-Based Systems 121:23–31

Hanif H, Maffeis S (2022) Vulberta: Simplified source code pre-training for vulnerability de-
tection. In: 2022 International Joint Conference on Neural Networks (IJCNN), IEEE, pp
1–8

Holzmann GJ (2017) The Value of Doubt. IEEE Software 34(1):106–109, DOI
10.1109/MS.2017.19

Hönig T, Eibel C, Kapitza R, Schröder-Preikschat W (2012) Seep: exploiting symbolic execu-
tion for energy-aware programming. ACM SIGOPS Operating Systems Review 45(3):58–62

Hönig T, Janker H, Eibel C, Mihelic O, Kapitza R (2014) Proactive energy-aware programming
with {PEEK}. In: 2014 Conference on Timely Results in Operating Systems ({TRIOS}
14)

Hursey J, Squyres JM, Mattox TI, Lumsdaine A (2007) The Design and Implementation of
Checkpoint / Restart Process Fault Tolerance for Open MPI. Architecture

ISO/IEC (2011) ISO/IEC 25010 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models.
ISO/IEC

ISO/IEC (2013) ISO/IEC 27001:2013(en) Information technology — Security techniques —
Information security management systems — Requirements. Tech. rep.

Kim S, Choi J, Ahmed ME, Nepal S, Kim H (2022) Vuldebert: A vulnerability detection system
using bert. In: 2022 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp 69–74, DOI 10.1109/ISSREW55968.2022.00042

Lai ST (2010) An analyzer-based software security measurement model for enhancing software
system security. Proceedings - 2010 2nd WRI World Congress on Software Engineering
DOI 10.1109/WCSE.2010.104

Lambert JH (1758) Observationes variae in mathesin puram. Acta Helvetica 3(1):128–168
Lamprakos CP, Marantos C, Siavvas M, Papadopoulos L, Tsintzira AA, Ampatzoglou A,

Chatzigeorgiou A, Kehagias D, Soudris D (2022) Translating quality-driven code change
selection to an instance of multiple-criteria decision making. Information and Software
Technology 145:106851

Lee S, Meredith JS, Vetter JS (2015) Compass: A framework for automated performance
modeling and prediction. In: Proceedings of the 29th ACM on International Conference
on Supercomputing, pp 405–414

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on
technical debt and its management. Journal of Systems and Soft-
ware 101:193–220, DOI https://doi.org/10.1016/j.jss.2014.12.027, URL
https://www.sciencedirect.com/science/article/pii/S0164121214002854

Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y (2018) Vuldeepecker: A deep
learning-based system for vulnerability detection. arXiv preprint arXiv:180101681

Llamocca D, Carranza C, Pattichis M (2011) Separable fir filtering in fpga and gpu imple-
mentations: Energy, performance, and accuracy considerations. In: 2011 21st International
Conference on Field Programmable Logic and Applications, IEEE, pp 363–368

Losada N, Martín MJ, Rodríguez G, Gonzalez P (2016) Portable application-level checkpoint-
ing for hybrid MPI-OpenMP applications. Procedia Computer Science 80:19–29, DOI
10.1016/j.procs.2016.05.294

Lowe-Power J, Ahmad AM, Akram A, Alian M, Amslinger R, Andreozzi M, Armejach A,
Asmussen N, Beckmann B, Bharadwaj S, et al. (2020) The gem5 simulator: Version 20.0+.
arXiv preprint arXiv:200703152

Manotas I, Pollock L, Clause J (2014) Seeds: A software engineer’s energy-optimization deci-
sion support framework. In: Proceedings of the 36th International Conference on Software
Engineering, pp 503–514

64 Miltiadis Siavvas* et al.

Manotas I, Bird C, Zhang R, Shepherd D, Jaspan C, Sadowski C, Pollock L, Clause J (2016)
An empirical study of practitioners’ perspectives on green software engineering. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE, pp
237–248

Marantos C, Salapas K, Papadopoulos L, Soudris D (2021) A flexible tool for estimating
applications performance and energy consumption through static analysis. SN Computer
Science 2(1):1–11

Marantos C, Papadopoulos L, Lamprakos CP, Salapas K, Soudris D (2022a) Bringing energy ef-
ficiency closer to application developers: An extensible software analysis framework. IEEE
Transactions on Sustainable Computing

Marantos C, Papadopoulos L, Tsintzira AA, Ampatzoglou A, Chatzigeorgiou A, Soudris D
(2022b) Decision support for gpu acceleration by predicting energy savings and program-
ming effort. Sustainable Computing: Informatics and Systems 34:100631

Marantos C, Siavvas M, Tsoukalas D, Lamprakos CP, Papadopoulos L, Boryszko P, Filus K,
Domańska J, Ampatzoglou A, Chatzigeorgiou A, et al. (2022c) Sdk4ed: One-click platform
for energy-aware, maintainable and dependable applications. In: 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE), IEEE, pp 981–986

Medeiros N, Ivaki N, Costa P, Vieira M (2018) An approach for trustworthiness benchmark-
ing using software metrics. In: 2018 IEEE 23rd Pacific Rim International Symposium on
Dependable Computing (PRDC), pp 84–93

Mohammed NM, Niazi M, Alshayeb M, Mahmood S (2016) Exploring Soft-
ware Security Approaches in Software Development Lifecycle: A Systematic
Mapping Study. Comp Stand & Interf DOI 10.1016/j.csi.2016.10.001, URL
http://linkinghub.elsevier.com/retrieve/pii/S0920548916301155

Moody A, Bronevetsky G, Mohror K, d Supinski BR (2010) Design, Modeling, and Evalua-
tion of a Scalable Multi-level Checkpointing System. In: 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, pp 1–11,
DOI 10.1109/SC.2010.18

Morrison P, Moye D, Pandita R, Williams L (2018) Mapping the field of software life
cycle security metrics. Information and Software Technology 102(May):146–159, DOI
10.1016/j.infsof.2018.05.011, URL https://doi.org/10.1016/j.infsof.2018.05.011

Noureddine A, Rouvoy R, Seinturier L (2015) Monitoring energy hotspots in software.
Automated Software Engineering 22(3):291–332, DOI 10.1007/s10515-014-0171-1, URL
http://dx.doi.org/10.1007/s10515-014-0171-1

Pinto G, Castor F (2017) Energy efficiency: a new concern for application software developers.
Communications of the ACM 60(12):68–75

Reddy R, Petrov P (2010) Cache partitioning for energy-efficient and interference-free embed-
ded multitasking. ACM Transactions on Embedded Computing Systems (TECS) 9(3):1–35

Rios N, Oliveira Spínola R, Mendonça M, Seaman C (2019) Supporting analysis of techni-
cal debt causes and effects with cross-company probabilistic cause-effect diagrams. In:
2019 IEEE/ACM International Conference on Technical Debt (TechDebt), pp 3–12, DOI
10.1109/TechDebt.2019.00009

Rodríguez G, Martín MJ, González P, Touriño J, Doallo R (2010) CPPC: a compiler-
assisted tool for portable checkpointing of message-passing applications. Concurrency
and Computation: Practice and Experience 22(6):749–766, DOI 10.1002/cpe.1541, URL
http://dx.doi.org/10.1002/cpe.1541

Saaty TL (2008) Decision making with the analytic hierarchy process. International Journal
of Services Sciences

Sas D, Avgeriou P (2020) Quality attribute trade-offs in the embedded systems industry: an
exploratory case study. Software Quality Journal 28(2):505–534

Scandariato R, Walden J, Hovsepyan A, Joosen W (2014) Predicting vulnerable software com-
ponents via text mining. IEEE Transactions on Software Engineering 40(10):993–1006,
DOI 10.1109/TSE.2014.2340398

SDK4ED (2019a) D7.2 - Airborne Use Case Deployment. Tech. rep.
SDK4ED (2019b) D7.3 - Healthcare Use Case Deployment. Tech. rep.
SDK4ED (2019c) D7.4 - Automotive Use Case Deployment. Tech. rep.
SDK4ED (2019d) D7.5 - Empirical Study Results. Tech. rep.
Seaman C, Guo Y (2011) Chapter 2 - measuring and monitor-

ing technical debt. Advances in Computers, vol 82, Elsevier, pp
25–46, DOI https://doi.org/10.1016/B978-0-12-385512-1.00002-5, URL

65

https://www.sciencedirect.com/science/article/pii/B9780123855121000025
Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE

Transactions on software engineering 25(4):557–572
Sentilles S, Papatheocharous E, Ciccozzi F (2018) What do we know about software secu-

rity evaluation? A preliminary study. In: 6th International Workshop on Quantitative
Approaches to Software Quality

Shahzad F, Thies J, Wellein G (2018) CRAFT: A library for easier application-level Check-
point/Restart and Automatic Fault Tolerance. IEEE Transactions on Parallel and Dis-
tributed Systems

Shin Y, Meneely A, Williams L, Osborne JA (2011) Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators of Software Vulnerabilities. IEEE Transactions
on Software Engineering 37(6):772–787, DOI 10.1109/TSE.2010.81

Siavvas M, Gelenbe E (2019a) Optimum checkpoints for programs with loops. Simulation
Modelling Practice and Theory 97:101951

Siavvas M, Gelenbe E (2019b) Optimum interval for application-level checkpoints. In: 2019 6th
IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019
5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom),
IEEE, pp 145–150

Siavvas M, Kehagias D, Tzovaras D, Gelenbe E (2021) A hierarchical model for quantifying
software security based on static analysis alerts and software metrics. Software Quality
Journal 29(2):431–507

Siddiqi MA, Tsintzira AA, Digkas G, Siavvas MG, Strydis C (2021) Adding security to im-
plantable medical devices: Can we afford it? In: EWSN, pp 67–78

Sommerville I (1995) Software engineering. Addison-Wesley
Suryanarayana G, Samarthyam G, Sharma T (2014) Refactoring for software design smells:

managing technical debt. Morgan Kaufmann
Takizawa H, Koyama K, Sato K, Komatsu K, Kobayashi H (2011) CheCL: Transparent check-

pointing and process migration of OpenCL applications. Proceedings - 25th IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2011 pp 864–876, DOI
10.1109/IPDPS.2011.85

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2018) Ten years of jdeodorant: Lessons learned
from the hunt for smells. In: 2018 IEEE 25th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pp 4–14, DOI 10.1109/SANER.2018.8330192

Tsintzira AA, Ampatzoglou A, Matei O, Ampatzoglou A, Chatzigeorgiou A, Heb R (2019)
Technical debt quantification through metrics: an industrial validation. In: 15th China-
Europe International Symposium on software engineering education

Tsoukalas D, Jankovic M, Siavvas M, Kehagias D, Chatzigeorgiou A, Tzovaras D (2019) On the
applicability of time series models for technical debt forecasting. In: 15th China-Europe
International Symposium on Software Engineering Education (CEISEE) (in press), pp
1–10, DOI 10.13140/RG.2.2.33152.79367

Tsoukalas D, Kehagias D, Siavvas M, Chatzigeorgiou A (2020) Technical Debt Fore-
casting: An empirical study on open-source repositories. In: Journal of Systems
and Software, vol 170, p 110777, DOI https://doi.org/10.1016/j.jss.2020.110777, URL
http://www.sciencedirect.com/science/article/pii/S0164121220301904

Tsoukalas D, Siavvas M, Kehagias D, Ampatzoglou A, Chatzigeorgiou A (2023) A practi-
cal approach for technical debt prioritization based on class-level forecasting. Journal of
Software: Evolution and Process p e2564

Wagner S, Goeb A, Heinemann L, Kläs M, Lampasona C, Lochmann K, Mayr
A, Plösch R, Seidl A, Streit J, Trendowicz A (2015) Operationalised prod-
uct quality models and assessment: The Quamoco approach. Information
and Software Technology 62:101–123, DOI 10.1016/j.infsof.2015.02.009, URL
http://www.sciencedirect.com/science/article/pii/S0950584915000452

Walden J, Doyle M, Welch GA, Whelan M (2009) Security of open source web applications.
3rd International Symposium on Empirical Software Engineering and Measurement, ESEM
2009 DOI 10.1109/ESEM.2009.5314215

Wang S, Zhong G, Mitra T (2017) Cgpredict: Embedded gpu performance estimation
from single-threaded applications. ACM Transactions on Embedded Computing Systems
(TECS) 16(5s):146

Wang W, Mishra P, Ranka S (2011) Dynamic cache reconfiguration and partitioning for energy
optimization in real-time multi-core systems. In: 2011 48th ACM/EDAC/IEEE Design

66 Miltiadis Siavvas* et al.

Automation Conference (DAC), IEEE, pp 948–953
Xu H, Heijmans J, Visser J (2013) A practical model for rating software security. Proceedings

- 7th International Conference on Software Security and Reliability Companion, SERE-C
2013 DOI 10.1109/SERE-C.2013.11

Zafar S, Mehboob M, Naveed A, Malik B (2015) Security quality model: an extension of
Dromey’s model. Software Quality Journal 23(1), DOI 10.1007/s11219-013-9223-1

Zagane M, Abdi MK, Alenezi M (2020) Deep learning for software vulnerabilities detection
using code metrics. IEEE Access 8

Zheng X, John LK, Gerstlauer A (2016) Accurate phase-level cross-platform power and per-
formance estimation. In: Proceedings of the 53rd Annual Design Automation Conference

Zheng X, Vikalo H, Song S, John LK, Gerstlauer A (2017) Sampling-based binary-level cross-
platform performance estimation. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, IEEE, pp 1709–1714

Zhou Y, Liu S, Siow J, Du X, Liu Y (2019) Devign: Effective vulnerability identification
by learning comprehensive program semantics via graph neural networks. arXiv preprint
arXiv:190903496

