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Abstract—Modularity is one of the key principles of software 

design. In order for a software system to be modular, it should be 

organized into modules that are highly coherent internally, 

whereas at the same time as independent from other modules as 

possible. In this paper we explore coupling and cohesion metrics 

at the software package level—i.e., one of most basic levels of 

software functional decomposition in object-oriented (OO) sys-

tems, with the aim of investigating their relation to the technical 

debt of each package. Current state-of-the-art tools in TD meas-

urement are working on the source code level, and the extent to 

which they can unveil limitations at the architecture level (e.g., 

violations of the modularity principle), has not been explored so 

far. To achieve this goal, we conducted a case study on 1,200 

packages retrieved from 20 well-known open source software 

projects. The results of the study suggested that current measures 

of technical debt are able to identify / predict modules that lack 

modularity, and therefore suffer from Architectural Technical 

Debt (ATD). The results of the study are discussed both from the 

practitioners’ and researchers’ point of view. 
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I. INTRODUCTION 

Technical Debt (TD) spans across all phases of the software 
development lifecycle, including requirements engineering, 
design, implementation and testing. [10]. In the general con-
text, technical debt refers to immature work in a software sys-
tem that takes compromises in one dimension to meet urgent 
needs in some other dimension [3]. In this work, we focus on 
technical debt at architecture level [12], i.e., architectural tech-
nical debt (ATD). ATD is caused by design decisions that con-
sciously or unconsciously compromise system-wide quality 
attributes (QAs), especially maintainability [10] in order to 
speed up product delivery. Typically, ATD includes violations 
of best architecture practices and principles (e.g., lack of modu-
larity), or the consistency and integrity of the software architec-
tures (e.g., breaking a layered architecture). 

According to van Vliet [18], high-level software design 
should be guided by four main principles, namely: provide ab-
straction, impose modularity, enforce information hiding, and 
decrease complexity. Among those, in this paper we focus on 
software modularity. According to ISO/IEC 25010 standard 
[2], modularity is one of the sub-characteristics of maintainabil-
ity, which is one of the QAs compromised by ATD. Modularity 
is defined as the “degree to which a system or computer pro-
gram is composed of discrete components such that a change to 
one component has minimal impact on other components [2]”. 

 To assess modularity, two quality properties need to be 
quantified, i.e., coupling and cohesion. Improved modularity is 
achieved by promoting low coupling and high cohesion. Cou-
pling represents the strength of the connection between mod-
ules [18], whereas cohesion the “glue” that keeps a module 
together [18]—see Section III. In a typical OO system, classes 
(i.e., the most central element in OO) are grouped together in 
packages, based on their functional similarity. In order for an 
object-oriented design to be modular, classes of the same pack-
age are expected to highly interact with each other (high-
cohesion, such as the classes within packages A and B in Fig-
ure 1), whereas dependencies among classes belonging to dif-
ferent packages should be limited [18] (low-coupling, such as 
the single dependency of A1 upon B1 in Figure 1). 

 

Fig. 1. Modularity Example 

In this study, we investigate the relation between package-
level modularity metrics and technical debt principal, as meas-
ured by a state-of-the-art tool, namely SonarQube that is based 
on the SQALE model [11]. SonarQube is an Open Source 
Software (OSS) platform for the continuous inspection of code 
quality. SonarQube assesses the technical debt of a software 
system at the source code level by counting violations of best 
practices (e.g., Removal of Unused Private Fields, Constructors 
Should be Used for String Initialization, or @Override Should 
be Used for Overriding Methods) and estimating the time 
needed to resolve them. The platform supports a plethora of 
programming languages and it can offer detailed reports re-
garding duplicated code, coding standards, unit tests etc. Nev-
ertheless, based on the current TD calculation model it is not 
clear if the violations that SonarQube can capture are also (di-
rectly or indirectly) related to architecture violations, or at least, 
if the provided measure is correlated with violation of some 
architecture best practices (e.g. modularity). Although, at a first 
glance, the SonarQube TD calculation seems irrelevant to soft-
ware package modularity, we suppose the existence of an un-
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derlying relation, in the sense that sloppy implementation (as 
suggested by the presence of low-level code violations), might 
reflect flaws in the architectural design as well. The existence 
of such a relation would be helpful to both researchers and 
practitioners, since an easy to calculate index at the source code 
level (i.e., SonarQube TD), which is always available to soft-
ware development teams, can act as a proxy of a more high-
level and abstract concept (i.e., architectural modularity). To 
achieve this goal we have performed a large-scale empirical 
study on more than 1,000 packages written in Java and ex-
plored the aforementioned relationship. 

The rest of the paper is organized as follows: In Section II 
we present a narrow (due to space limitations), but representa-
tive, related work on ATD measurement. In Section III, we 
outline the case study design, and in Section IV we present the 
results. We conclude the paper with a discussion of the findings 
and threats to validity in Section V. 

II. RELATED WORK 

Marinescu proposed an approach to identify and measure 
technical debt of object-oriented software systems by detecting 
and assessing specific types of design flaws through object-
oriented metrics [13]. The approach is composed of four steps: 
(1) choose a set of concerned design flaws, (2) define rules for 
detecting the selected design flaws, (3) measure the negative 
impact of each instance of the design flaws, and, finally, (4) 
calculate an overall score based on all detected design flaws to 
indicate the design quality of a system. The accuracy of the 
technical debt measurement in this approach depends on the 
ability of the design flaws detection. This approach can only 
identify and measure technical debt at detailed design level, 
while our investigation focuses on ATD.  

Nord et al. defined a metric for managing ATD [15]. The 
value of this metric, calculated for each release, is the total cost 
of the implementation of new architectural elements introduced 
in this release, and the rework of pre-existing elements in pre-
vious releases. They considered architectural rework as the 
necessary adaption work for adding new architectural elements 
to the existing architecture of a software system. The rework 
cost is calculated based on the analysis of the changing de-
pendencies from existing adapted architectural elements to the 
new introduced elements. This metric can be used to calculate 
the relative amount of ATD incurred in different software evo-
lution paths, i.e., release plans. Suppose that there are two re-
lease plans RP1 and RP2, in which the same features are im-
plemented, i.e., they generate the same amount of business val-
ue. The relative amount of ATD is the difference between the 
values of metric calculated on RP1 and RP2. This metric can 
facilitate architecture decision-making. The main limitation of 
this approach is the accuracy of the estimation of implementing 
new features and rework, especially the latter. Each software 
evolution path involves several releases, which implies that the 
estimation of rework and new implementations of later releases 
is based on the estimation of the earlier releases. This may pose 
a significant threat to the accuracy of ATD estimation. 

III. CASE STUDY DESIGN 

Research Goals and Research Questions. The main research 
question of this paper is: “Is TD principal as quantified by So-

narQube related to the lack of software modularity?” The an-
swer to this question can unveil if and to what extent So-
narQube is able to capture ATD, in the sense that low modular-
ity is an architecture best practice violation. To answer this 
main question we pose two more specific questions, based up-
on the two quality properties that compose modularity: i.e., 
coupling and cohesion.  

RQ1: Is TD principal related to package cohesion? 

RQ2: Is TD principal related to package coupling? 

The study has been designed and reported according to the 
template suggested by Runeson et al. [16]. 

Case Selection and Units of Analysis. This study is a holistic 
multiple case study in which cases and units of analysis are 
software packages. As subjects for this study, we used 20 Java 
OSS projects, which have been selected based on the following 
criteria—for more details see Arvanitou et al. [6]: 

 The software is a popular OSS project in Sourceforge.net. 
This criterion ensures that the investigated projects are rec-
ognized as important by the OSS community. 

 The software has more than 20 versions (official releases). 
We have included this criterion for similar reasons to c1.  

 The software contains more than 300 classes. This criteri-
on ensures that we will not include “toy examples” in our 
dataset.  

 The software is written in java. We include this criterion 
because the employed metric calculation tools analyse Java 
bytecode. 

To measure TD (more specifically its principal) we used ver-
sion 6.3 of SonarQube, without further configuration and ac-
cording to its default status. TD principal at the package level is 
automatically calculated by SonarQube as the sum of the TD 
principal of all classes in the package. Coupling and cohesion 
at the package level have been quantified using three metrics: 

 ACa – Average Coupling Afferent This metric represents 
the average afferent coupling of packages. Afferent cou-
pling is the number of outgoing dependencies of a package 
to other packages [14]. 

 TCIP – Total Coupling Intensity between Packages: This 
metric represents the count of class dependencies that span 
among different packages. This metric is inspired by the 
traditional Coupling between Objects metrics [8], which is 
calculated at the class level. The idea of employing two 
coupling metrics is that one (ACa) captures the number of 
dependencies at the architecture level, whereas the other 
(TCIP) the intensity of the dependency [4]. 

 CaPC - Cohesion among Package Classes: This metric 
assesses how closely two classes that belong to the same 
package collaborate with each other. The metric is inspired 
by reversing the calculation of Lack of Cohesion of Meth-
ods [8]. To calculate this metrics we compute the total 
number of pairs of classes that belong to one package, and 
then we investigate the percentage of these pairs that are 
coherent (i.e., they are coupled to each other). 

The tool that we used for calculating these metrics has been 
developed in our groups as part of a series of previous studies 
on change impact analysis [4][5][6]. In the end of this process 
the dataset of this study consisted of approximately 1,200 soft-
ware packages. 



Data Collection and Analysis. Each package of our dataset 
(i.e., row) is characterized by five variables: name, TD Princi-
pal, ACa, TCIP, and CaPC. To answer the aforementioned 
research questions we perform: (a) Spearman and Pearson Cor-
relation between ACa, TCIP and TD, and CaPC and TD Prin-
cipal, (b) Univariate Regression Analysis with dependent vari-
ables: ACa, TCIP and CaPC, and (c) hypothesis testing to 
check the discriminative power of TD to identify classes with 
low cohesion and high coupling. The analysis follows the IEEE 
standards’ guidelines for empirical metric validation [1]. 

IV. RESULTS  

In this section we present the results that have been ob-

tained from data analysis. In Table I we present the results for 

correlation analysis (Spearman and Pearson), and predictive 

power. For presenting the results on Correlation and Con-

sistency, we use the correlation coefficients (coeff.) and the 

levels of statistical significance (sig.). The value of the coeffi-

cient denotes the degree to which the value of the modularity 

metric is in analogy to the value of TD (either as an actual 

value or as a ranking, respectively). For reporting on Predic-

tive Power, with a regression model, we present the level of 

statistical significance of the effect (sig.) of the independent 

variable on the dependent (how important is the predictor in 

the model), and the accuracy of the model (i.e., mean standard 

error). The results of Table I suggest that TD principal is val-

ue-wise mostly correlated to TCIP, ranking-wise to CaPC, 

whereas it most accurately predicts the value of CaPC. 

TABLE I.  CORRELATION ANALYSIS AND PREDICTIVE POWER 

Assessment 

Criterion Test Indicator ACa TCIP CaPC 

Correlation 
Pearson 

Correlation 

Correl. Coeff. 0.102 0.372 0.314 

Sig. 0.01 0.00 0.00 

Consistency 
Spearman 

Correlation 

Correl. Coeff. 0.318 0.493 0.513 

Sig. 0.00 0.00 0.00 

Predictive 
Power 

Linear 
Regression 

Std. Error 0.332 0.716 0.310 

Sig. 0.01 0.00 0.00 

Additionally, for exploring the Discriminative Power of 

TD principal, we investigate whether groups of packages dif-

fer with respect to the corresponding modularity metric score. 

The groups of packages have been created using the equal 

frequency binning technique [19]. For reporting on the hy-

pothesis testing, we present the level of statistical significance 

(sig.) and the F-value of the ANOVA. We note that in order 

for TD to adequately discriminate groups of cases, the signifi-

cance value should be less than 0.05, or 0.01 for strict evalua-

tions. In the case of our study, we preferred to use the 0.01 

threshold since many differences were significant at the 0.05 

level, leading to inconclusive results. The results are visual-

ized by 95% confidence interval (CI) bars. The 95% CI Bars 

present the mean value of a numerical variable and its 95% 

confidence interval. Error bars can be used to visually compare 

mean values of two or more groups and get preliminary indi-

cations on the existence of significant differences. As suggest-

ed by Fig. 2 and ANOVA, TD principal is capable of discrim-

inating the various levels of all metrics: Optimal discrimina-

tion is achieved for CaPC (F: 41.775, sig < 0.01).  

 

(a) ACa 

 

(b) TCIP 

 
(c) CaCP 

Fig. 2. Discriminative Power 

Finally, another interesting observation is that a combined 

metric based on TCIP and CaPC (i.e., a division of cohesion 

by coupling [17]) is capable of achieving top results in Corre-

lation analysis (coef: 0.408), acceptable results for Consisten-

cy (coef: 0.495), and by far the highest predictive power (R
2
: 

91.9%). 

V. DISCUSSION  

Interpretation of results. The main finding of this case study 

is that TD principal is able to assess the levels of software 

modularity at the package level. A possible interpretation of 

this relation is that software quality assurance processes usual-

ly span across multiple development phases: thus, if a devel-

opment team is not interested in removing (or not introducing) 

violations of source code best practices, it is highly likely that 

similar problems have been neglected in previous development 

phases as well (i.e., architecture). For example, one could as-

sume that in case a development team is interested in reducing 

the coupling of classes or the number of ‘static’ imports, both 

of which are classified as brain-overload smells by So-

narQube, then the architectural quality of the system has also 

been a concern for the team. More specifically, TD is moder-

ately correlated to coupling and cohesion (as actual value), and 

strongly correlated to these metrics, by considering rankings. 

The fact that rank correlation achieves better results than value 

correlations is expected due to the difference of the range of 

values of the involved variables. Additionally, TD principal is 

able to predict the values of coupling and cohesion metrics at a 

statistically significant level, with however low accuracy. 

Nevertheless, it should be noted that TD is able to accurately 

(approx. 90%) predict the value of cohesion divided by cou-

pling. This finding is particularity interesting in the sense that 

the TD assessment offered by SonarQube can be useful at both 

the implementation and the architecture design level. 



By comparing coupling and cohesion metrics that we used, 

one can observe that: (a) TD principal seems to be better relat-

ed to cohesion, rather than coupling; and (b) TD principal is 

more closely related to TCIP rather than ACa. A main differ-

ence between the three metrics is that CaPC is a bounded met-

ric (expressed as percentage), which therefore can be more 

easily interpreted. This finding is in accordance to previous 

studies suggested that bounded metrics are more strongly cor-

related with the existence of bad smells [9]. Regarding the two 

coupling metrics, the intensity of the dependencies seems to be 

more relevant to high level qualities, compared to a simple 

count of dependencies. This outcome is affirmed in previous 

studies (e.g., the MPC metric performs better than CBO) [5]. 

Implications to researchers & practitioners. The outcomes of 

this study provide some useful implications to researchers and 

practitioners. First, it is suggested (although further validation 

is required) that the SQUALE Index as calculated by So-

narQube, is able to assess a specific aspect of Architectural 

Technical Debt (i.e., modularity). This ability of SonarQube 

TD is considered helpful in the sense that ATD is an abstract 

concept, which can be quantified through artifacts that are 

rarely present in practice (e.g., decision document, component 

diagrams, etc.), and therefore can mostly be estimated through 

proxies. On the other hand, TD calculation with SonarQube is 

an easier and straightforward process which relies only on the 

existence of source code, which is always available. Therefore, 

we encourage software architects to take into account package 

level TD assessments offered by SonarQube as a proxy of 

package modularity. Furthermore, we encourage researchers to 

investigate other possible underlying relations between source 

code TD and ATD. Although the source code might have been 

substantially drifted from the intended architecture, and the 

decisions made at that stage, however it represents the imple-

mented architecture, and the way that the aforementioned de-

cisions have been put into practice. 

Threats to validity. Due to space limitations, only the major 

threats to validity of this study are presented in this section. 

Regarding the study constructs, although the relation between 

modularity and coupling / cohesion is not disputable, the in-

vestigated metrics have not been validated prior to their use. 

However, by taking into account that all metrics stem from a 

straightforward tailoring of well-known and rigorously vali-

dated metrics at the class level, to some extent ensures their 

validity. The success of such tailoring approaches has been 

discussed and empirically validated in previous work [4][9]. 
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