Modular Monoliths the way to Standardization

Michail Tsechelidis
tsechelidis.michail@gmail.com
Department of Applied Informatics University of
Macedonia
Thessaloniki, Greece

Theodore Maikantis
teomaik19@gmail.com
Department of Applied Informatics University of
Macedonia
Thessaloniki, Greece

Abstract

In the resent years the monolith architecture gains once
again a lot of popularity in order to reduce costs and time
compared to more complicated architectures. Taking into
account the advantages of microservice, and trying to em-
bed some of them to monolith architectures, we come to the
creation of modular monoliths. This type of design can be
consider quite new, and so there isn’t yet a specific architec-
ture design that someone could follow if they wish to use
it. In this paper we present an architectural design and an
implementation strategy for modular monoliths. To evalu-
ate the usefulness of this architecture, we have conducted a
study, validating the design and its implementation. In this
study 12 architects from different companies took part, ex-
pressing some concerns regarding the feasibility in bigger
project but also giving an overall positive feedback for the
design.

CCS Concepts: « Software and its engineering — Soft-
ware design engineering.

Keywords: modular monolith, services, architecture, evalua-
tion

ACM Reference Format:

Michail Tsechelidis, Nikolaos Nikolaidis, Theodore Maikantis, and Apos-
tolos Ampatzoglou. 2018. Modular Monoliths the way to Standard-
ization. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym "XX). ACM,
New York, NY, USA, 4 pages. https://doi.org/XXXXXXXXXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference acronym "XX, June 03-05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Nikolaos Nikolaidis
nnikolaidis@uom.edu.gr
Department of Applied Informatics University of
Macedonia
Thessaloniki, Greece

Apostolos Ampatzoglou
a.ampatzoglou@uom.edu.gr
Department of Applied Informatics University of
Macedonia
Thessaloniki, Greece

1 Introduction

When designing software systems, architects and develop-
ers have plenty of options to choose from regarding the
architecture. Microservice-based systems have become ubiq-
uitous in the last couple of years, sifting from traditional
monolithic architectures. Microservices have emerged as an
architectural style, in which an application consists of a set
of small services that are independently deployable and scal-
able [6, 7]. This gives a lot of advantages to the developers
and its also very often in recent years a lot of monolithic
system to migrate to microservice architecture [4, 8]

Taking into account the transition from monolithic to mi-
croservice architecture, lately a new type of architecture
gained a lot of popularity. By applying a Domain-Driven
Design (DDD) on a traditional monolithic architecture, we
could have different domains which in turn could become
modules. DDD [2] supports the division of a large domain
model into several independent bounded contexts, in order
to split a large development team into several smaller ones.
So in simple terms the Modular Monolith is an architectural
style where the source code is structured on the concept of
modules, but under one project. The difference between the
monolithic, microservice, and modular monolithic architec-
tures is visible in figure 1.

Monolith Microservices Modular Monolith

Figure 1. The differences of the architectures

Given the novelty of this architectural design and its lim-
ited existing literature, this paper represents an initial step
towards exploring its potential applications. We proposed a
way that this architecture could be implemented and used,
with the help of Spring (but also applicable to other frame-
works). We also evaluated the proposed architecture and

https://orcid.org/0000-0002-7958-9393
https://orcid.org/0009-0005-7332-2910
https://orcid.org/0000-0002-5764-7302
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

usage methodology in a case study with 12 architects from
several companies.

The rest of this paper is structured as follows: Section 2
gives an overview of the background information and related
work. Section 3 presents the proposed approach in terms
of architecture and usage in development. In Section 4, an
evaluation of the proposed approach is presented. Finally,
Section 5 presents the threats to the validity and Section 6
concludes the work and discusses potential limitations and
future work.

2 Background Information
2.1 Hexagonal Architecture

Cockburn [1] introduces Hexagonal Architecture, which is
also known as Ports and Adapters. This architecture was
one of the first that broke up the traditional layering, which
was used till that point, in favor of the onion layering. The
main idea is that we have the core of the software, which is
technology-agnostic, that contains the business logic of the
application. Outside of the core we have the ports (protocols
or interfaces) that define how the application can be used
(by "driving adapters"; port implementations are in the core)
and the data that it needs (provided by "driven adapters"
implemented externally). This architecture offers a twofold
advantage. Firstly, it provides adaptability through the use
of adapters and secondly, it offers a high level of domain
isolation, as it is not bound to any specific adapter.

2.2 Modular Compiles

In order to be able to have modular compiles, in the sense
that a change in one module doesn’t require a rebuilt of the
entire monolithic software, we used runtime dependencies
in combination with a set of patterns [3]. The used patterns
are the following:

e Separated Interfaces pattern, "Defines an interface in a
separate package from its implementation".

o Layer Supertype pattern, "A type that acts as the super-
type for all types in its layer".

e Abstract Factory, "Lets you produce families of related
objects without specifying their concrete classes".

3 Proposed Approach
3.1 Proposed Architecture

In our proposed architecture, we primarily use the hexagonal
architecture for the "individual” services. Additionally, we
have adopted modular compilation for all the proposed mod-
ules. These decisions were made for the following reasons:

e The hexagonal architecture was selected due to its
design, since it isolates the business logic from the ex-
ternal system. Considering that in our case the domain
is a different module, this architecture fits perfectly.

Tsechelidis, et al.

e The modular compiles are used due to its time saving
characteristics, since a change in one of the modules
does not lead to the rebuild of the whole application,
resulting to an overall faster compile time.

The proposed modules and their connections can be seen
in Figure 2. This figure provides an example application that
includes user accounts and rentable movies. Below you can
see what each module is responsible for:

e main - inijtializer scanning in runtime the dependen-
cies/services. It is the executable.

e domain - global/core logic that any service can use
(interface definitions only - like API).

e domain_imp - implementation of domain, and any
other class to support the exposed domain to the ser-
vices.

e web_account - inbound and outbound handling for
account (service).

e web_movies - inbound and outbound handling for
movies (service).

e queries - global/core queries that any service can use
(interface definitions - like API).

e databasePrimary - schemas, and queries implemen-
tion (used by account).

e databaseSecondary - schemas, and queries imple-
mention (used by movie).

main domain domain_imp
Dependencies: Dependencies:
- web_account - domain
- weh_movie

hexagonal hexagonal

web_modules/web_account] web_modules/web_movie
Dependencies: Dependencies:

- domain - domain

- domain_imp - domain_imp

- queries - queres

- databasePrimary - databaseSecondary

persistence_modules/queries|

Dependencies:
- domain

persistence_modules/databasePrimary persistence_modules/database Secondary|

Dependencies: Dependencies:
imp - domain_imp
- queries - gueres

Figure 2. Proposed architecture components

Moreover, it can be noted that given the structure of the
proposed architecture, it is possible to create a different mod-
ule (instead of main) with only a subset of the modules. The

Modular Monoliths the way to Standardization

dependencies of web_account and web_movies are runtime
ones, so given the requirements we could easily create a main
with only the web_account dependency. For a more in-depth
view, the template code of the proposed architecture can be
found online!.

3.2 Proposed Development

Implementing the proposed architecture can be trivial for
big projects, with the biggest reason being the number of
developers working on a single repository. In a microservice
architecture this is not a problem since each developer ac-
cesses only the repository of the service they are working on.
So, we tried to create a similar abstraction where the devel-
oper accesses the "services”, or modules in our case, that they
are working on. We propose that each module can be devel-
oped in a separate repository branch with a set of GitHub
actions, which are responsible for automatically creating the
module artifacts and the final artifact/image of the applica-
tion. In this way for example the developer that works on
the database queries will be in the appropriate branch, and in
turn have access only in the code of that module. Moreover,
this could also be enforced, if needed, in the sense that spe-
cific developers could commit in specific branches. In Figure
3 you can see all the modules of the proposed architecture,
with each one being developed in a separate branch.

GitHub actions can provide an easy and uniform way for
developers to access the latest modules and automate the cre-
ation of the final image, but using this implementation should
be done in parallel with the best practices in git versioning
systems. This means that for each change in a module, a
branch should be created and at the end be merged to the
original branch of the module. This is vital, since it will keep
the work of each developer isolated till the merge, and more
related to this implementation, it will execute the GitHub
actions only in the module related branches. Figure 3 depicts
the development lifecycle of one of the modules, by using a
new "development" branch. Finally, the template repository
along with the branches of the proposed implementation can
be found online®

4 Validation

To evaluate the proposed architecture and its usage we have
performed an empirical study, designed and reported based
on the guidelines of Runeson et al. [5].

4.1 Study Design

To study the proposed architecture and its acceptance, in
terms of real word systems we have formulated the following
three research questions:
[RQ1] - How is the proposed architecture perceived?
[RQ2] - How is the proposed implementation perceived?

https://github.com/tsechelidisMichail/HexagonalSpring_Modular
Zhttps://github.com/tsechelidisMichail/HSMB-v3

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Repository

main

domain

domain_imp

web_movie

web_account

develop_
web_account

MITIL

queries

databasePrimary

databaseSecondary

Figure 3. Development in different branches

[RQ3] - What is the architects acceptance?

In order to answer these RQs we circulated a questioner in
12 software architects from 8 different companies. First we
presented the proposed architecture and implementation to
the architects and asked them to evaluate them, in order to
then answer RQ1 and RQ2. Finally, we asked the participants
to fill out a set of questions that would provide insight to the
acceptance of the overall architecture. For this we reused the
system usability scale (SUS), tailored to the needs of software
architecture acceptance.

4.2 Results and Discussion

Evaluation of the Proposed Architecture: In relation to
the proposed architecture, all participants expressed a posi-
tive opinion; however, they also expressed some uncertainty
regarding their ability to implement it fully. When queried
about their intention to use this architecture 71% of them
replied "Maybe" and 28% "Yes". Moreover, compared to other
monolithic architectures 85% of the participants believed that
this architecture is better. Regarding the comparison with
microservice architecture, the feedback was not so positive.
The majority of participants expressed a preference for the
microservice approach, as evidenced also by their comments.
Their primary concern was related to larger-scale projects, as
the monolithic architecture may result in a larger codebase
compared to the microservice one.

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Evaluation of the Proposed Implementation: Regard-
ing the proposed implementation, once again all of the par-
ticipants liked the idea, but only 28% of them would use it,
42% were reluctant, and the rest 28% wouldn’t use it. Hav-
ing said that, all of them liked the separation of modules in
their own branch, and they don’t think that there will be a
problem with it. The main reason that the majority of them
wouldn’t use this implementation is once again regarding
the concern of big project, since the will start having a lot of
branches, and as one stated "it would be very hard to keep
up". Another participant stated that "Its very hard to be im-
plemented in an actual big system, which is going to have
too many branches".

Acceptance Evaluation: Finally, for the evaluation of
acceptance, the results are visible in the following figure.
We can see that for the majority of the questions we got
very good responses, but there was a problem when it came
to whether the participants would use the architecture fre-
quently. Going back to the open questions regarding the
architecture, the main reason seams to be with how it would
perform in big projects. The majority of them pointed out
concerns regarding the size and possible complexity when
this solution would be applied in big real world software.
But, in the rest of the acceptance questions we can see that
the proposed architecture was evaluated with great scores.

I need to learn a lot of things before |
could get going with this architecture.

| will feel very confident using the
architecture.

| found the architecture very
cumbersome to use.

| would imagine that most people would
learn to use this architecture very
quickly.

| thought there was too much
inconsistency in this architecture.

| found the components in this
architecture were well integrated.

I think that | would need a lot of support
to be able to use this architecture.

I think the architecture will be easy to
use.

I found the architecture unnecessarily
complex.

I think that | would like to use this
architecture frequently

0% 20% 40% 60% 80% 100%

m0outof5 m1outof5 2outof5 m3outof5 m4outofs

Figure 4. User Acceptance

Tsechelidis, et al.

5 Conclusions

In this paper we proposed an architecture and development
methodology for the creation of modular monolithic soft-
ware. The architecture is based on the hexagonal architecture
along with modular compiles for all the associated modules.
In this approach, we have isolated all of the modules and
made possible the development of each one without the need
of rebuilding the entire project. In order to develop this kind
of software and provide flexibility for bigger projects, we pro-
posed that each branch of the Git repository can be used as a
placeholder to develop one module. Our approach was eval-
uated in a small study with 12 software architects through
the use of a questioner. The participants gave very positive
feedback for this design and implementation strategy, but
weren’t sure about its feasibility in bigger projects. Never-
theless, the key advantage lies in the acceptance of all other
aspects of the architecture, which allows for the development
of a practical and modular monolithic architecture.

Acknowledgments

This work has been partially funded by the Horizon Europe
Framework Programme of the European Union under Grant
agreement no 101058479.

References

[1] Alistair Cockburn. 2005. Hexagonal architecture. alistair. cockburn. us
(2005).

[2] Eric Evans. 2004. Domain-driven design: tackling complexity in the heart
of software. Addison-Wesley Professional.

[3] Martin Fowler. 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Nuno Gongalves, Diogo Faustino, Antonio Rito Silva, and Manuel
Portela. 2021. Monolith modularization towards microservices: Refac-
toring and performance trade-offs. In 2021 IEEE 18th International Con-
ference on Software Architecture Companion (ICSA-C). IEEE, 1-8.

[5] Martin Host, Austen Rainer, Per Runeson, and Bjorn Regnell. 2012. Case
study research in software engineering: Guidelines and examples. John
Wiley & Sons.

[6] James Lewis and Martin Fowler. 2014. Microservices: a definition of
this new architectural term. MartinFowler. com 25, 14-26 (2014), 12.

[7] Genc Mazlami, Jurgen Cito, and Philipp Leitner. 2017. Extraction of
microservices from monolithic software architectures. In 2017 IEEE
International Conference on Web Services (ICWS). IEEE, 524-531.

[8] Sam Newman. 2019. Monolith to microservices: evolutionary patterns to
transform your monolith. O’Reilly Media.

	Abstract
	1 Introduction
	2 Background Information
	2.1 Hexagonal Architecture
	2.2 Modular Compiles

	3 Proposed Approach
	3.1 Proposed Architecture
	3.2 Proposed Development

	4 Validation
	4.1 Study Design
	4.2 Results and Discussion

	5 Conclusions
	Acknowledgments
	References

